• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Handelshøyskolen BI
  • BI Research Centre's Series
  • Centre for Applied Macro- and Petroleum economics (CAMP)
  • Vis innførsel
  •   Hjem
  • Handelshøyskolen BI
  • BI Research Centre's Series
  • Centre for Applied Macro- and Petroleum economics (CAMP)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecasting Cryptocurrencies Financial Time Series

Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco
Working paper
Thumbnail
Åpne
WP_CAMP_5_2018.pdf (552.6Kb)
Permanent lenke
http://hdl.handle.net/11250/2489408
Utgivelsesdato
2018-03
Metadata
Vis full innførsel
Samlinger
  • Centre for Applied Macro- and Petroleum economics (CAMP) [140]
Sammendrag
This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely on Dynamic Model Averaging to combine a large set of univariate Dynamic Linear Models and several multivariate Vector Autoregressive models with different forms of time variation. We find statistical significant improvements in point forecasting when using combinations of univariate models and in density forecasting when relying on selection of multivariate models.
Utgiver
BI Norwegian Business School, Centre for Applied Macro- and Petroleum Economics
Serie
CAMP Working Paper Series;5

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit