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Abstract

This paper studies the predictability of cryptocurrencies time series. We compare several alternative

univariate and multivariate models in point and density forecasting of four of the most capitalized

series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely on

Dynamic Model Averaging to combine a large set of univariate Dynamic Linear Models and several

multivariate Vector Autoregressive models with different forms of time variation. We find statistical

significant improvements in point forecasting when using combinations of univariate models and in

density forecasting when relying on selection of multivariate models.

Keywords: Cryptocurrency; Bitcoin; Forecasting; Density Forecasting; VAR; Dynamic Model

Averaging

1. Introduction

Bitcoin is the first decentralized cryptocurrency created in 2009 and documented in Nakamoto

(2009). Since its introduction, it has gained a growing attention from the media, academics, and

finance industry, and in recent months the global interest in Bitcoin and cryptocurrencies has spiked

dramatically. The reasons for this are several, just to name few: Japan and South Korea have

recognized Bitcoin as a legal method of payment (Bloomberg, 2017a; Cointelegraph, 2017); some

central banks are exploring the use of the cryptocurrencies (Bloomberg, 2017c); a large number of

companies and banks created the Enterprise Ethereum Alliance1 to make use of the cryptocurrencies

and the related technology called blockchain, (Forbes, 2017). Finally the Chicago Mercantile

Exchange (CME) started the Bitcoin futures on 18th of December 2017, see Chicago Mercantile

Exchange (2017), Nasdaq and Tokyo Financial Exchange will follow in 2018, see (Bloomberg, 2017b;

Tokyo Financial Exchange, 2017).

This interest has been reflected on the cryptocurrencies market capitalization that exploded from

around 19 billion in February 2017 to around 800 billion in December 2017 and more than 1000

cryptocurrencies. Although Bitcoin can be considered to be relatively new, there has already been

1Source: https://entethalliance.org/members/
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some initial analysis into the cryptocurrency. Hencic and Gourieroux (2014) applied a non–causal

autoregressive model to detect the presence of bubbles in the Bitcoin/USD exchange rate. Sapuric

and Kokkinaki (2014) measure volatility of Bitcoin exchange rate against six major currencies. Chu

et al. (2015) provide a statistical analysis of the log–returns of the exchange rate of Bitcoin versus

the USD. Catania and Grassi (2018) provide a new model to analyze the main characteristics of the

crypto-currency volatility. Hotz-Behofsits et al. (2018) apply a time-varying parameter VAR with

t-distributed measurement errors and stochastic volatility.

Despide all this effort a detailed analysis of the forecasting performances of different models to

this series has not been provided yet. This paper tries to fill this gap and compares a large set of

different models for point and density forecasting of four of the most capatilized cryptocurrencies,

precisely: Bitcoin, Litecoin, Ripple and Ethereum. We compare univariate autoregressive models to

univariate linear regression models based on a large set of crypto–predictors. The predictors include

commodity prices, other financial assets such as stock prices and bond prices, and volatility indices to

proxy market sentiments, following evidence in Bianchi (2018) that returns on cryptocurrencies are

mild correlated (in in-sample analysis) with commodities and few more financial assets. Moreover,

we apply dynamic selection of the large set of models based on our predictor lists using dynamic

model selection (DMS) and dynamic averaging of the same model set using dynamic model averaging

(DMA) proposed by Raftery et al. (2010). DMS and DMA have been found to provide forecasting

gains in macroeconomic applications, see for example Koop and Korobilis (2011) and Koop and

Korobilis (2012), and have not yet applied to cryptocurrencies. Then, we generalize the exercise

to multivariate models where we predict jointly the four series using Vector Autoregressive (VAR)

models, Bayesian VAR, time–varying parameters and stochastic volatility VAR models as in Koop

and Korobilis (2013), selection and averaging of these models with different degrees of smoothness

and different set of predictors. See, among other, Stambaugh (1999), Pastor (2000), Pastor and

Stambaugh (2000) and Barberis (2000) for the use of multivariate modelling and Bayesian inference

in asset predictions and allocation; Dangl and Halling (2012) for application of model averaging to

stock price prediction; and Johannes et al. (2014) for time-varying parameters and stochastic volatility

VAR models for stock price prediction. We extend this methodology to cryptocurrencies and enlarge

the model set by allowing for different sources of time variation and model uncertainty.

In total, we have 24 class of models and combine in the univariate up to 2’621’440 models and in the

multivariate case up to 4 time-varying VAR models. We separate univariate analysis from multivariate

analysis and in the former one we predict and report results separately for each cryptocurrencies; in

the letter one we predict and evaluate forecast jointly for the four cryptocurrencies giving information

for building portfolios of cryptocurrencies. We consider prediction from one day ahead to seven days

(one week) ahead.
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Our results show that DMA and DMS of a large set of models provide forecasting gains in terms of

point forecasting relative to the autoregressive benchmark. Gains are economically and statistically

significant for Bitcoin at short horizons, one and two days ahead, up to 4% and for Ethereum for

several horizons up to 4%. Evidence is weaker for Litecoin and Ripple. When focusing on density

forecasting, gains in predicting Bitcoin and Ethereum disappear, even if moderate improvements

emerge for Litecoin and Ripple. Therefore, combinations of a large set of predictors increase point

forecast accuracy for the major currencies but do not improve density forecasting.

The evidence is opposite when focusing on multivariate models. Very few models provide

marginally more accurate point predictions and only for longer horizons, but generally predictability

does not emerge. However, when the complete distribution is predicted, most of the multivariate

schemes offer statically significant gains at all horizons. In particular, selection of time–varying

VARs with different set of predictors and different level of smoothness provide the largest gains.

Our finding corroborates and extends evidence in Hotz-Behofsits et al. (2018), which also find with

their time-varying parameter VAR sizeable improvements in density forecasting but not on point

forecasting, and Catania et al. (2018), which show that (more) sophisticated volatility models can

improve volatility predictions at different forecast horizons, to a large set of multivariate models.

The remaining of the paper proceeds as follows. Section 2 provides details on cryptocurrencies

and crypto–predictors. Section 3 presents our univariate and multivariate models. Section 4 presents

the metrics used to assess our results and explains in details the major findings, and finally Section

5 concludes.

2. Dataset description

2.1. Cryptocurrency

The data used in this study are the cryptocurrencies closing log returns. The crypto–market is

open 24 hours a day, seven days a week; hence for computing returns we use the closing price at

midnight (UTC). Those data are freely available from CoinMarketcup.2

Since the introduction of Bitcoin in 2009, hundreds of other cryptocurrencies have been created

and, as of January 2018, 1440 cryptocurrencies exist. The analysis and forecast of such a big dataset

is outside the scope of this paper. Here we focus on four major cryptocurrencies: i) Bitcoin, ii)

Ethereum, iii) Ripple, and iv) Litecoin.

Bitcoin is the most popular and prominent cryptocurrency based on the decentralization and

cryptography. The decentralization means that the Bitcoin network is controlled and owned by all of

its users, who must adhere to the same set of rules. The cryptography controls money creation (fixed

2https://coinmarketcap.com/
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to a maximum of 21 million coins) and transactions, no central bank is needed, see Nakamoto (2009).

This decentralized nature offers many advantages, such as being free from government control and

regulation, but critics often argue that apart from its users, there is nobody overlooking the whole

system and that the value of Bitcoin is unfounded. Despite that, since its creation from a starting

price of few cents in 2010, it touched 12015 USD in December 2017 and at the time of writing is

above 10000 USD.

Ethereum is a decentralized platform that runs smart contracts which facilitates online

contractual agreements applications that run away any possibility of downtime, censorship, fraud,

or third party interference. The Ethereum also provides a cryptocurrency token called Ether which

can be transferred between accounts and used to compensate participant nodes for computations

performed, see Ethereum (2014).

Ripple, developed by the banking industry in 2012, is a blockchain network which incorporates

a payment system and a currency system known as XRP. It enables banks to send real–time

international payments across them and for this reason is currently used by many banks such as

UBS, Santander, and Standard Chartered among others, see Ripple (2012).

Litecoin has been created in 2011 and is based on the same protocol used by Bitcoin. For this

reason it is often considered Bitcoin’s leading rival. It has one main feature which distinguishes

it from Bitcoin: it is significantly faster regarding transactions, and it is particularly attractive in

time–critical situations, see Litecoin (2014).

We collect data in the sample between August 8, 2015 to December 28, 2017, for a total of 874 daily

observations and compute percentage daily log returns. Table 1 reports some descriptive statistics

for the cryptocurrencies and Table A.1 in Appendix A describes data transformation. Series are

far from being normal distributed as documented in Chu et al. (2015) and display high volatility,

non-zero skewness and very high kurtosis. Series present several spikes too, see Figure 1.

2.2. Crypto-predictors

Currently, cryptocurrencies are mainly considered as alternative investment since their use as

payment is still limited. This can create correlations with other assets for at least two main reasons.

The first reason is that investors usually allocate wealth in a global portfolio and hedge across

investments; the second reason is that market sentiments spread fast among different assets. See

Bianchi (2018) for similar arguments.

Our list of crypto–predictors includes international stock index prices, precisely S&P 500, Nikkei

225, Stoxx Europe 600; commodity prices, precisely gold and silver prices; interest rates and CDS,

precisely 5-year Europe credit default swap and 1-Month US Treasury and 10-year US 10-Year

Treasury rates; volatility index, VIX closing price. At midnight (UTC) when we compute daily
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Figure 1: The plots show the four crypto–currencies daily percentage log returns considered in this study: Bitcoin
(BTC) in panel (a); Litecoin (LTC) in panel (b); Ripple (XRP) in panel (c); and Ethereum (ETH) in
panel (d). The dashed horizontal red line indicates the beginning of the out-of-sample period on the 6th
June, 2016. The full sample spans from 9th August, 2015 to 28th December, 2017 for a total of 873
observations.

crypto–returns all series are available. See Table A.1 in Appendix A for data transformation.

We also apply lags of each and other cryptocurrencies, and a transformation of previous day

cryptocurrencies, labelled in the paper crypto–explicative, to account for intra-day patterns by taking

the difference between the highest and the lowest price, as a proxy of cryptocurrencies volatility.

3. Competing models

In this section, we introduce our different models to forecast daily cryptocurrencies. As

anticipated, we consider univariate and multivariate models with and without exogenous variables

and selection and combinations of such models. For a full list of univariate models see Table 2 and

of multivariate models see Table 3. We compare both univariate and multivariate models to the

autoregressive of order 1, AR(1), benchmark.3

3We also compute forecasts using a random walk model and economically and statistical evidence is almost identical
to the AR(1). Results are available upon request.
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Coin Bitcoin Ethereum Ripple Litecoin
Created 03-Jan-09 01-Aug-14 01-Jul-13 01-Nov-13
Supply 21 Millions Total 18 Millions Yearly 100 Billions Total 84 Millions Total
Market Cap 277 Billions 466 Billions 27 Billions 15.5 Billions

Maximum 22.512 41.234 51.035 102.736
Minimun -20.753 -130.211 -39.515 -61.627
Mean 0.453 0.639 0.467 0.591
Median 0.318 -0.051 0.000 -0.338
Std Dev. 3.84 8.535 5.785 7.743
Skewness -0.091 -3.721 1.637 3.767
Kurtosis 9.391 67.442 19.091 50.455

Table 1: Descriptive statistics for the four larger cryptocurrencies by market capitalization calculated between
08/08/2015 to 28/12/2017, for a total of 874 observations. The table reports the name of the coins,
the creation date, the maximum number of coins in Million (Mil.) and Billion (Bil.) and the market
capitalization as in December 2017 reported in https://coinmarketcap.com/. The Ethereum has a total
supply of 18 Millions coins per year, the other three have a total prefix amount.

3.1. Univariate models

Linear regression models. Our data set includes 13 different crypto–predictors including macro and

finance variables and crypto–explicative for each series. We apply a linear regression where we include

lags of the dependent variable and all predictors, labelled KS, and a restricted version where we only

include lags of the cryptocurrencies and crypto–explicative, labelled KS-noreg.

Model combinations. The previous linear equations can suffer of massive model uncertainty. Indeed,

a model with 16 predictors and up to 3 lags of the dependent variable results in more than 524’288

possible combinations.4 To mitigate it, we propose to apply model combination techniques.

In Raftery et al. (2010) introduce an estimation technique to predict the output strip thickness

for a cold rolling mill, which they refer to as DMA. Recently, DMA has also shown to be useful in

macroeconomic and financial applications see Koop and Korobilis (2011) and Koop and Korobilis

(2012).

To provide more details on the underlying mechanism of DMA, we start by assuming that

any combination of the elements on the right–hand–side of a linear regression can be expressed

as a Dynamic Linear Models (DLM), see West and Harrison (1999) and Raftery et al. (2010).

Particularly, let F
(i)
t denote a p × 1 vector based on a given combination of our total predictors,

Ft = (1, yt−1, yt−2, yt−3, x1,t−1, . . . , x16,t−1)
′. Then, we can express our i–th DLM as:

yt = F
(i)′
t β

(i)
t + ε

(i)
t , ε

(i)
t ∼ N

(
0, V

(i)
t

)
β
(i)
t = β

(i)
t−1 + η

(i)
t , η

(i)
t ∼ N

(
0,Q

(i)
t

)
,

(1)

4We also include an intercept term in all models, hence we have a total of 19 predictors resulting in 219 = 524′288
combinations.
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where the p× 1 vector of time–varying regression coefficients, β
(i)
t =

(
β
(i)
1t , . . . , β

(i)
pt

)′
, determines the

impact of F
(i)
t on yt. The Random Walk specification of β

(i)
t do not assume any systematic movements

but consider changes in β
(i)
t as unpredictable.

The conditional variances, V
(i)
t and Q

(i)
t , are unknown quantities. We assume an Inverted–gamma

prior for V
(i)
0 and update it’s estimate at each point in time via its posterior distribution as in Prado

and West (2010). Regarding Q
(i)
t we employ the forgetting factor approach detailed in Dangl and

Halling (2012). We allow λ to take one of the d = 5 values in the grid {0.91, 0.93, 0.95, 0.97, 0.99} and

augment the number of possible models by to k = 219d = 2′621′440.5 Notably, when Q
(i)
t = 0 for

t = 1, . . . , T , then β
(i)
t is constant over time. Thus, (1) nests the specification of constant regression

coefficients. For Q
(i)
t 6= 0, β

(i)
t varies according to Equation 1. However, this does not mean that

β
(i)
t needs to change at every time period, we can easily have periods where Q

(i)
t = 0 and thus

β
(i)
t = β

(i)
t−1. Ultimately, the nature of time variation in the regression coefficients is dependent on

the data at hand.

DMA then averages forecasts across the k different combinations using a recursive updating scheme

based on the predictive likelihood, that measures the ability of a model to predict yt, thus making it

the central quantity of interest for model evaluation. Besides averaging, we can also use the model

receiving the highest probability among all model combinations to forecasts, this is the so called

DMS, see Koop and Korobilis (2012). For both DMA and DMS, we also include restricted versions

with only lags of the dependent variable, see Table 2 for more details. Estimation and prediction is

made exploiting the eDMA package for R of Catania and Nonejad (2018).

Abbreviation Full Description

AR(1) Autoregressive model of order one, benchmark model.
KS Kitchen Sink specification, i.e., a linear multiple regression including all variables.
KS–noregr Kitchen Sink specification with only the lagged values of the series as covariates.
DMA Dynamic Model Averaging across all models and forgetting factor combinations.

See Dangl and Halling (2012).
DMS Dynamic Model Selection, selecting at each t the best model between: all models

and forgetting factor combinations. See Dangl and Halling (2012).
DMA–noregr Dynamic Model Averaging with only the lagged values of the series as covariates.
DMS–noregr Dynamic Model Selection with only the lagged values of the series as covariates.

Table 2: Univariate models considered in the forecasting exercise. The first column is the model’s abbreviation.
The second column provides a brief description of each individual model.

3.2. Multivariate models

Constant parameter VARs. The first class of multivariate models we consider is the constant

parameter Vector autogressive (VAR) specification. VARs are among the most common models

5Dangl and Halling (2012) refer to this parameter as δ.

7



applied in financial and macroeconomic forecasting, see among others Ltkepohl (2007) and Koop

and Korobilis (2010). We have four-variate VARs with three lags selected using BIC. We apply two

version of them: a frequentist VAR estimated using OLS and a Bayesian VAR (BVAR) as in Koop

and Korobilis (2013).

Time–varying parameter specifications. Cryptocurrencies are subject to several instabilities, both in

mean and at higher moments. Large parametrized constant parameter VAR models might fail to

capture these instabilities and we extend the model set with 14 different time–varying specifications.

The starting point for the analysis is the time-varying parameter vector autoregression model

(TVP-VAR) as described in Koop and Korobilis (2013) (henceforth KK). KK provide a new approach

to estimate large–dimensional TVP-VAR. Focusing on the case where the VAR has one lag and

intercepts are suppressed, the TVP-VAR(1) model can be written as:

yt = Ttyt−1 + εt, (2)

with yt an (M × 1) vector containing observations on M time series variables, Tt a (M ×M) matrix

containing M2 parameters and εt ∼ N(0,Σt). KK close the model by specifying dynamics for the

time-varying VAR parameters and rewrite the model in state space form:

yt = Ftβt + εt, εt ∼ N(0,Σt)

βt+1 = βt + ηt, ηt ∼ N(0,Qb)
(3)

where the (M ×M2) matrix Ft collects lagged observations, and the time-varying vector βt captures

the time-varying VAR parameters (with βt = vec(T′t) = vecr(Tt)) which are taken random walks

with innovations ηt ∼ N(0,Qt). As for the constant parameter VARs, we consider three lags of the

dependent variables.

As the model is in state space form, the usual estimation approaches based on the Kalman filter

seems attractive. For example, one could use the frequentist approach of maximizing the likelihood,

or the Bayesian approach of using Markov Chain Monte Carlo (MCMC) methods. Unfortunately, for

large-dimensional VARs these standard approaches turn out to be unfeasible. For a VAR of dimension

7 and a model with 4 lags the amount of time-varying parameters would be 4 × 72 = 196, making

either approach computationally very demanding.

To reduce the computational burden, KK propose to make two adjustments such that the usual

Kalman filter can still be used. The parameters of the model are in the variance matrices Qt and

Σt, the idea of KK is to take Qt out of the model and replace it by an approximation. In this

case βt can be obtained using closed-form expressions without having to maximize a likelihood first
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in order to get parameter estimates (or do so using MCMC methods). Typically the latent state

innovation variance Qt enters the Kalman filter in the updating step, where the state variance matrix

is updated through Pt|t = Pt−1|t−1 + Qt (see Durbin and Koopman, 2012). If one instead writes

Pt|t = 1
λPt−1|t−1 (for some λ), an estimate of Qt is no longer necessary. This is often referred to as a

forgetting factor set-up. The second adjustment is to replace the measurement error variance matrix

Σt by an estimate using an exponentially weighted moving average (EWMA) filter. The EWMA

filtering recursion Σ̂t = κΣ̂t−1 + (1 − κ)ε̄tε̄
′
t (with ε̄t = yt − Ftβt|t−1) gives the measurement error

variance estimates, which we can plug into the filter. From the discussion above this methodology

requires the specification of the hyperparameters λ and κ (and the specification of the initial condition

of the states β0 and Σ0), we refer to KK for an extensive discussion of the problem.

As explained in KK we carry out model selection using a model space involving all the variable

reported in Table A.1. We cluster them in four different database and have consequently four TVP-

VARs of different size: a small TVP-VAR with only the four cryptocurrencies; a medium TVP-VAR

with the four cryptocurrencies series plus the four crypto–explicative; a second medium TVP-VAR

with the four cryptocurrencies series plus the seven financial and macro variables for a total of eleven

dependent variables; and a larger TVP-VAR with all the seventeen variables. As described in KK

the algorithm selects between the four TVP-VARs based on past predictive likelihoods for the set of

variables the researcher is interested in forecasting, allowing for model switching accordingly to an

ad hoc hyperparameter α. Moreover, as described in KK the forgetting factor λ can be dynamically

selected together with the optimal value of the shrinkage parameter at different points in time. This

results in 14 different models, labelled M4–M18 in Table 3.

4. Empirical Section

Our results are based on one, two, three, four, five, six and seven day-ahead forecasting process

using an expanding window and an initial insample period of 146 days for Bitcoin, Litecoin, Ripple

and Ethereum. Multistep ahead predictions are obtained through direct forecasting, see Marcellino

et al. (2006). Hence, our forecast evaluation period is from January 1, 2016 to December 28, 2017.

In all the analysis we consider an autoregressive model of order 1, AR(1), as benchmark and also

compute forecasts using univariate and multivariate models described in the previous section. We

discuss forecast metrics in 4.1 and present univariate results in 4.2 and multivariate results 4.3.

For the univariate analysis, we present results for each cryptocurrency separately; for multivariate

application we provide joint results in line with model predictions.6

6Separate statistics for each currency are reported in Appendix B.
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4.1. Forecast metrics

We assess the goodness of our forecasts using different point and density metrics. Considering the

accuracy of point forecasts, we use the mean squared errors (MSEs) for each of the forecast horizon,

h = 1, · · · , 7 we consider.7 For the univariate exercise, the metric is computed seperately for each

cryptocurrency series, i = Bitcoin, Litecoin, Ripple and Etherum:

MSEi,h =
1

T −R

T−h∑
t=R

(
ŷi,t+h|t − yi,t+h

)2
, (4)

where T is the number of observations, R is the length of the rolling window, ŷi,t+h|t is the ith-

cryptocurrency forecasts made at time t for horizon h and yi,t+h is the realization. For the multivariate

application, we compute a average squared errors for each forecast and an average MSE as:

MSEh =
1

(T −R)

T−h∑
t=R

1

4

4∑
i=1

(
ŷi,t+h|t − yi,t+h

)2
. (5)

To evaluate density forecasts, we use predictive log score (LS). The LS is commonly viewed as the

broadest measure of density accuracy, see Geweke and Amisano (2010). As for the MSE, we compute

it for each horizon and series separately in the univariate application

si,h(yi) =
T−h∑
t=R

ln (f(yi,t+h|Ii,t)), (6)

where f(yi,t+h|Ii,t) is the predictive density for yi,t+h constructed using information up to time t. The

multivariate version is

sh(y) =

T−h∑
t=R

ln (f(yt+h|It)), (7)

where f(yt+1|It) is the joint predictive density for the 4-variate yt+h constructed using information

up to time t. For the AR, we assume a joint distribution composed by the four independent marginal

predictions; therefore we assume a diagonal variance-covariance matrix.

More specifically, we report the MSEs and the LSs for the AR benchmark model. For the other

models, we report the ratios of each model’s MSE to the baseline AR model, such that entries less

than 1 indicate that the given model yields forecasts more accurate than those from the baseline

and differences in score relative to the AR baseline, such that a positive number indicates a model

beats the baseline. In order to statistically assess the differences among alternative models, we apply

Diebold and Mariano (1995) t-tests for equality of the average loss (with loss defined as squared

error and negative log score) of each movel versus the AR benchmark and we also employ the Model

7In Appendix B we also report mean absolute deviations (MADs).
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Confidence Set procedure of Hansen et al. (2011) using the R package MCS detailed in Bernardi and

Catania (2016) to compare jointly all predictions. Differences are tested separately for each horizon

h.

4.2. Univariate forecasting results

Table 4 reports mean squared errors for predicting the four cryptocurrencies using univariate

models.8 Largest gains are found when using DMA for predicting Bitcoin at shorter horizons and

Ethereum at all horizons. For Bitcoin, DMA gives statistically significant reductions at one and two

day-ahead of 4% and 2% respectively. Considering the large volatility of the series and that we focus

on a daily forecast horizons, forecast gains are economically sizeable, above all when compared to

other high volatile assets such as stock prices and exchange rates. At both horizons the AR benchmark

is not included in the model set confidence. Precisely, only models based on dynamic averaging, DMA

and DMA-noreg, are included in the model set.

Table 6 shows the inclusion probability of the most probable five crypto–predictors. For Bitcoin,

one of the other cryptocurrencies or of the crypto–explicative is always included, but also other assets,

such as VIX and silver at one day-ahead horizon, both bonds and SP 500 at two day-ahead horizon,

have large positive probabilities. In general, correlation evidence in Bianchi (2018) are confirmed,

but there is also large uncertainty on which predictors shall be included and several variables receive

large probability, underlying the importance of combining them.

For the other models, straightforward linear regressions based on direct forecasting, labelled KS

and KS-noreg in the Table, do not seem a credible strategy, with very different performances across

horizons and possible enormous losses, see for example statistics at the second horizon.

When focusing on Ethereum, we find evidence of statistically superior predictability of alternative

models to the benchmark at several horizons. DMA performs accurately at one day ahead with an 3%

reduction in MSE; and DMA–noreg provides economically sizeable gains at five horizons over seven

and statistically significant gains at three horizons over seven. Furthermore, it is always included in

the model confidence set. Interestingly, a combination of its own lags and lags of other currencies is

a more valuable strategy for Ethereum than Bitcoin, somewhat confirming its central role as larger

exchanger of currencies in the crypto–system and therefore highly connected to several currencies,

more than the leading role of the Bitcoin that often drives movements in the crypto–market. Indeed,

inclusion probabilities in Table 6 show that probabilities for macro and finance crypto–predictors

become more relevant for longer horizons when DMA deteriorates performance relative to DMA–

noreg. For Litecoin and Ripple, predictability is weaker and model averaging seems to reduce accuracy

we have found with Ethereum and Ripple even if Table 6 indicates still large uncertainty among

8See Table B.2 in Appendix B for MAD scores.
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h 1 2 3 4 5 6 7

Bitcoin
AR1 42.49 42.28 41.54 41.62 41.55 41.42 41.12
KS 1.52 12.25 1.84 0.96 1.06 1.06 1.12
KS-noreg 2.07 7.03 1.61 1.02 1.01 1.03 1.01
DMA-noreg 0.96 0.98 0.99 1.00 1.00 0.99 1.00
DMS-noreg 0.97 1.00 0.99 1.03 1.02 1.01 1.02
DMA 0.97 0.97 1.01 1.04 1.02 1.02 1.13
DMS 1.01 1.02 1.06 1.06 1.02 1.05 1.15

Litecoin
AR1 134.27 132.88 133.05 133.43 133.60 133.25 131.71
KS 1.02 1.17 7.64 1.01 1.17 1.11 1.09
KS-noreg 0.96 1.03 1.88 1.00 1.01 1.02 1.00
DMA-noreg 0.99 1.03 1.04 1.02 1.02 1.05 1.05
DMS-noreg 1.01 1.04 1.06 1.04 1.02 1.04 1.04
DMA 0.98 1.03 1.09 1.11 1.03 1.06 1.15
DMS 1.00 1.07 1.11 1.11 1.04 1.09 1.22

Ripple
AR1 224.02 221.31 222.02 221.13 218.93 219.62 219.45
KS 1.11 1.24 1.27 1.10 1.76 1.21 2.01
KS-noreg 1.03 1.04 1.02 1.01 1.08 1.00 1.02
DMA-noreg 0.99 1.03 1.03 1.05 1.06 1.00 1.05
DMS-noreg 1.02 1.03 1.04 1.07 1.08 1.03 1.08
DMA 1.20 1.03 1.22 1.25 1.10 1.18 1.17
DMS 1.27 1.05 1.22 1.26 1.11 1.21 1.21

Ethereum
AR1 180.57 174.99 175.61 175.56 175.79 175.90 174.08
KS 1.05 12.72 1.09 1.01 1.02 1.67 1.09
KS-noreg 1.01 3.40 1.02 1.00 1.00 1.01 1.00
DMA-noreg 0.96 1.00 0.98 0.97 0.98 0.98 1.00
DMS-noreg 0.98 1.01 1.01 0.99 0.99 1.00 1.01
DMA 0.97 1.01 1.03 1.01 1.04 1.04 1.04
DMS 1.02 1.04 1.08 1.05 1.05 1.09 1.04

Table 4: Mean squared error (MSE), computed over the forecast horizon. Results are reported relative to the
benchmark specification (AR1) for which the absolute score is reported. Models’ description is reported
in Table 2. Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability between
each model and the benchmark according to the Diebold–Mariano test at the 5% confidence level. Gray
cells indicate those models that belong to the Superior Set of Models delivered by the Model Confidence
Set procedure at confidence level 10%.

predictors. Only KS models provide economical and statistical gains at some horizons, but a clear

pattern does not exist. Their lower capitalization relative to Bitcoin and Ethereum results in lower

correlations with other assets and less accurate predictions. New predictors based on crypto–market

sentiments might be considered to investigate heterogeneity across cryptocurrencies.

Table 5 provides log score results for univariate models. Evidence is different than for point

forecasting. Gains vanishes for prediction of Bitcoin and Ethereum with no models providing an

higher score than the benchmark and in the case of Ethereum the AR model is the only specification
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h 1 2 3 4 5 6 7

Bitcoin
AR1 −884.29 −885.08 −876.44 −874.76 −872.13 −870.71 −865.93
KS −384.99 −1733.72 −383.63 −18.42 −16.18 −54.75 −29.44
KS-noreg −579.10 −1371.64 −420.92 −9.53 6.52 −11.00 10.75
DMA-noreg −20.42 −1.06 −15.81 −10.13 −11.05 −5.49 −5.43
DMS-noreg −23.00 −13.25 −24.20 −39.24 −34.63 −13.71 −27.47
DMA −24.94 −8.41 −28.80 −21.42 −7.05 −7.73 −9.29
DMS −42.82 −40.67 −64.87 −100.95 −101.66 −67.71 −138.00

Litecoin
AR1 −909.55 −909.03 −906.77 −903.98 −901.54 −898.99 −894.19
KS 105.90 58.05 −1253.89 135.78 58.31 34.51 125.68
KS-noreg 141.25 110.27 −256.93 150.40 133.68 123.37 156.28
DMA-noreg 120.22 120.52 81.40 114.41 140.68 140.48 125.26
DMS-noreg 108.91 103.53 73.45 79.45 119.50 126.34 89.72
DMA 132.07 122.20 102.71 64.61 101.14 134.11 84.64
DMS 91.53 105.62 69.44 −24.63 45.05 102.23 −63.56

Ripple
AR1 −772.26 −766.65 −765.52 −763.71 −762.24 −759.32 −748.10
KS 97.18 −0.83 17.67 107.70 −260.45 −24.84 −488.58
KS-noreg 141.42 115.97 145.36 125.82 86.93 152.24 145.89
DMA-noreg 142.93 132.62 141.18 108.81 111.68 141.85 97.90
DMS-noreg 114.99 130.49 116.91 94.92 95.26 130.15 75.24
DMA −5.56 76.59 −0.87 27.06 80.77 60.29 69.71
DMS −68.25 70.99 −48.87 −19.64 73.09 25.38 67.49

Ethereum
AR1 −611.31 −604.34 −606.14 −604.58 −602.32 −601.87 −600.36
KS −228.53 −1972.69 −243.49 −212.21 −215.65 −578.28 −222.97
KS-noreg −206.94 −881.72 −198.98 −187.75 −192.16 −193.34 −187.38
DMA-noreg −205.45 −232.79 −201.42 −198.84 −199.22 −204.81 −201.60
DMS-noreg −212.74 −238.07 −210.52 −202.34 −200.69 −206.75 −202.01
DMA −220.16 −244.29 −219.43 −218.75 −212.86 −220.10 −217.00
DMS −224.69 −250.47 −237.06 −219.91 −228.38 −230.53 −224.63

Table 5: Log Score (LS), computed over the forecast horizon. Results are reported relative to the benchmark
specification (AR1) for which the absolute score is reported. Models’ description is reported in Table 2.
Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability between each model
and the benchmark according to the Diebold–Mariano test at the 5% confidence level. Gray cells indicate
those models that belong to the Superior Set of Models delivered by the Model Confidence Set procedure
at confidence level 10%.

included in the model confidence set at all horizons. However, evidence reverts for Litecoin and Ripple

with several models outperforming the AR models at all horizons. In particular, DMA-noreg and

DMS–noreg improve accuracy at all horizons for both series. Univariate DMA even if it allows for

time–varying volatility seems to fail to capture dynamics of cryptocurrency higher moments. Catania

et al. (2018) find that sophisticated univariate models are required to produce accurate forecasts of
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cryptocurrency volatility. The next subsection investigates (time–varying) multivariate models for

prediction of cryptocurrency returns.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7

bitcoin
ETH(62) ETH HL(37) Lag3(70) LTC(44) LTC(40) VIX(42) CDS 5y(45)
VIX(44) ETH(13) Lag4(69) CDS 5y(40) ETH HL(39) NK 225(38) SV(41)

ETH HL(41) BD 10y(12) SV(57) Lag6(36) NK 225(38) BTC HL(37) BD 10y(40)
XRP HL(31) SP 500(12) ETH(43) SP 500(36) Lag5(38) GLD(37) Lag8(37)

SV(25) BD 1m(11) ES 600(43) BD 10y(35) VIX(35) XRP(34) LTC HL(37)

litecoin
ES 600(46) ETH HL(60) Lag5(76) SV(40) BTC(50) SP 500(60) LTC HL(46)

ETH HL(45) SP 500(57) SV(47) Lag4(39) ETH(49) BTC(59) SP 500(40)
SP 500(44) ES 600(52) ETH(35) GLD(37) ES 600(47) ES 600(58) ES 600(39)

NK 225(42) Lag3(52) BTC(31) ETH HL(36) SV(46) GLD(58) SV(39)
BD 1m(41) NK 225(48) XRP(27) ES 600(33) NK 225(45) Lag8(56) XRP HL(39)

ripple
XRP HL(64) SP 500(59) SV(49) LTC HL(45) ES 600(50) SP 500(59) SV(55)

Lag2(50) VIX(55) CDS 5y(46) BTC(32) BTC HL(47) XRP HL(58) ES 600(54)
Lag1(48) NK 225(52) ETH HL(44) Lag6(30) BTC(47) BD 10y(55) BTC(53)

NK 225(46) GLD(52) ES 600(43) ETH(29) LTC(46) SV(50) NK 225(53)
VIX(45) Lag3(51) LTC(42) VIX(28) ETH HL(46) BD 1m(46) BD 1m(53)

ethereum
Lag3(50) Lag2(52) GLD(42) BD 1m(37) BTC HL(42) CDS 5y(37) NK 225(38)

XRP HL(43) Lag3(47) BD 10y(40) ES 600(35) BTC(35) Lag8(35) CDS 5y(36)
BD 1m(42) Lag4(40) SP 500(40) NK 225(34) NK 225(34) BTC HL(34) Lag7(35)

LTC HL(40) BTC(24) Lag3(39) SP 500(33) ETH HL(34) Lag7(33) ES 600(32)
GLD(39) ETH HL(23) ETH HL(38) LTC(33) LTC(34) BTC(32) BTC(31)

Table 6: Top 5 crypto predictors for different cryptocurrencies and forecast horizon. Number in brackets is the
average (%) inclusion probability of the selected predictor over the forecasting period.

4.3. Multivariate forecasting results

Tables 7 and 8 report MSE and predictive log score for the multivariate models. The evidence is

striking and results are almost opposite to the univariate case in terms of forecast metrics: no model

provides economic gains when point forecasting cryptocurrencies; several models provide large gains

when density forecasting cryptocurrencies. Focusing on MSE results, simpler constant–parameter

VAR and BVAR specifications, labelledM2 andM3 respectively, are very imprecise at short horizons

with losses up to 20%, but they perform more similar to the AR(1) at longer horizons with mild

improvements forM2. Time–varying specifications provide more similar performance across horizons

but they are never superior to the benchmark, even if several of them are included in the 5% model

confidence set.

Focusing on predictive log score, most of the models in Table 8 provide statistically superior

forecasts relative to the benchmark at almost all horizons. ModelM9, selection among a model with

only cryptocurrencies and a model with also crypto–explicative; modelM13, selection among a model
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h 1 2 3 4 5 6 7

M1 21.66 21.68 21.72 21.74 21.92 22.07 22.22
M2 1.12 1.11 1.07 1.01 0.99 0.99 0.99
M3 1.22 1.08 1.02 1.02 1.00 1.00 1.00
M4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M5 1.01 1.00 1.01 1.00 1.00 1.00 1.00
M6 1.02 1.00 1.01 1.00 1.00 1.00 1.00
M7 1.01 1.01 1.00 1.00 1.01 1.00 1.00
M8 1.00 1.01 1.00 1.00 1.00 1.00 1.00
M9 1.01 1.02 1.01 1.01 1.01 1.00 1.01
M10 1.01 1.01 1.01 1.00 1.00 1.00 1.01
M11 1.00 1.00 1.00 1.01 1.01 1.00 1.00
M12 1.00 1.01 1.01 1.00 1.00 1.00 1.00
M13 1.01 1.01 1.01 1.01 1.00 1.00 1.01
M14 1.01 1.01 1.01 1.01 1.00 1.00 1.00
M15 1.00 1.00 1.00 1.01 1.01 1.00 1.00
M16 1.00 1.00 1.00 1.00 1.00 0.99 1.00
M17 1.01 1.01 1.02 1.01 1.01 1.01 1.01
M18 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Table 7: (Multivariate) Mean Squared Error, computed over the forecast horizon. Results are reported relative to
the benchmark specification (AR1) for which the absolute score is reported. Models’ description is reported
in Table 3. Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability between
each model and the benchmark according to the Diebold–Mariano test at the 5% confidence level. Gray
cells indicate those models that belong to the Superior Set of Models delivered by the Model Confidence
Set procedure at confidence level 10%.

with only cryptocurrencies and a model with also macroeconomic variables; model M17, selection

among a model with only cryptocurrencies, a model with also crypto–explicative, a model with also

macro predictors and a model with all variables give the higest gains. In particular M17 is included

in the 5% model confidence set in six horizons over seven and at two day-ahead and four day-ahead

horizons it is the only model in the confidence set. At three day-ahead horizon it is not included,

but modelM9 andM13 are the only two included. As in the univariate case, crypto–explicative and

macro and financial predictors improve forecast accuracy. However, differently than the univariate

case, a selection of models containing clusters of them, instead of averaging predictors, provides the

largest gains. We speculate that the importance of crypto–predictors differs across currencies and

a flexible multivariate combination scheme which allows for very different weights across series and

clusters of predictors could improve accuracy, see for example Casarin et al. (2018).

When focusing on performance over time, Figure 2 reports the cumulative predictive log score

over time relative to the benchmark for three different horizons, h=1, 4 and 7. At each point in

time, a positive number indicates that the alternative model outperforms the benchmark. Plots show

that DMS of TVP-VAR models provides constant gains relative to the AR benchmark over all the

out-of-sample period and in some circumstances the increase is very large, such as at the end of March

2017 when all currencies experienced a break in volatility, see Figure 1. Models based on DMA also
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h 1 2 3 4 5 6 7

M1 −3478.72 −3478.98 −3487.65 −3492.26 −3502.20 −3508.01 −3513.73
M2 129.77 165.02 186.89 237.95 318.04 284.02 283.34
M3 42.25 155.45 278.58 283.21 301.68 303.23 301.74
M4 694.76 511.70 451.84 443.52 400.53 413.30 387.20
M5 684.82 506.99 456.74 449.26 418.59 424.72 385.97
M6 672.21 530.81 478.04 448.88 463.85 443.22 407.06
M7 706.90 532.33 474.76 459.00 452.44 423.65 388.44
M8 364.12 289.74 225.30 202.69 173.61 160.91 109.54
M9 723.90 556.84 530.91 503.06 514.39 451.97 426.99
M10 395.03 316.48 250.84 243.64 212.34 197.99 153.79
M11 717.53 529.22 479.58 457.88 448.87 444.57 367.63
M12 12.82 −68.29 −138.84 −172.83 −197.46 −210.15 −254.22
M13 726.15 550.67 529.80 514.83 509.57 473.75 407.17
M14 48.83 −2.64 −75.41 −99.42 −124.50 −132.56 −177.41
M15 697.97 549.74 493.45 487.39 440.75 443.40 397.99
M16 −304.17 −390.70 −449.44 −498.01 −531.88 −551.27 −591.65
M17 723.08 621.99 517.05 533.95 517.43 500.67 443.85
M18 −296.44 −327.60 −411.81 −429.96 −456.00 −476.11 −516.87

Table 8: (Multivariate) Log Score (LS), computed over the forecast horizon. Results are reported relative to the
benchmark specification (AR1) for which the absolute score is reported. Models’ description is reported
in Table 3. Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability between
each model and the benchmark according to the Diebold–Mariano test at the 5% confidence level. Gray
cells indicate those models that belong to the Superior Set of Models delivered by the Model Confidence
Set procedure at confidence level 10%.

outperform the benchmark, but gains are lower. VAR (M2) and BVAR (M3) provide some gains

in the initial part of the sample, but their performance deteriorates substantially with instability

in March 2017. Only the BVAR at long horizons maintains part of its predictability power at long

horizons, but scores are substantially lower than DMS alternatives.

As final check, we report in Tables B.4-B.7 in Appendix B log score results for multivariate models

in predicting each cryptocurrency separately. Previous evidence is confirmed for each currency and

gains are not a result of the models performing well just for a subset of asset.

5. Conclusions

This paper compares several alternative univariate and multivariate models for predicting four

of the most capitalized cryptocurrencies, Bitcoin, Litecoin, Ripple and Ethereum. A set of crypto–

predictors is applied and univariate and multivariate model combinations are proposed to combine

these predictors. The results show large statistical significant improvements in point forecasting of

Bitcoin and Ethereum when using combinations of univariate models and in density forecasting for

all the cryptocurrencies when relying on selection of time–varying multivariate models.

We believe that our analysis opens various research agenda in predicting cryptocurrencies. For

example, flexible multivariate combination schemes which allow for different weights across series
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Figure 2: Cumulative Log Score
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The plots show cumulative log score relative to the AR(1) benchmark (M1), computed over one day forecast horizon

(panel (a)), four day forecast horizon (panel (b)) and seven day forecast horizon (panel (c)).

could improve point and density forecast accuracy. Moreover, new predictors based on crypto–market

sentiments might be considered to investigate heterogeneity across cryptocurrencies and could result

in (point) forecast gains across all series.
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Appendix A. Data transformation

Data Overview

Abbreviation Full name Transformation

Cryptocurrencies time series

BTC Bitcoin First difference of Log
ETH Ethereum First difference of Log
XRP Ripple First difference of Log
LTC Litecoin First difference of Log
Additional crypto–explicative time series

BTC HL Bitcoin High minus Bitcoin Low Log
ETH HL Ethereum High minus Ethereum Low Log
XRP HL Ripple High minus Ripple Low Log
LTC HL Litecoin High minus Litecoin Low Log
Additional financial and macro time series

CDS 5y Europe credit default swap index 5 years First difference of Log
ES 600 Stoxx Europe 600 - Price Index First difference of Log
GLD Gold Bullion LBM First difference of Log
NK 225 Nikkei 225 Stock Average - Price Index First difference of Log
SP 500 S&P 500 Composite - Price Index First difference of Log
SV Silver Handy & Harman Base Price First difference of Log
BD 1m 1-Month US Treasury Constant Maturity Rate First difference
BD 10y 10-Year US Treasury Constant Maturity Rate First difference
VIX VIX closing price Log

Table A.1: This table provides an overview of the data we use in the paper. The table reports the main four
cryptocurrencies used in the paper. The series are available over the period August 8, 2015 to December
28, 2017. The table also reports the additional cryptocurrency time series e.g. Bitcoin High minus
Bitcoin Low together with the macro and financial time series used in the study. For each series the
table reports the abbreviation we use in the paper, the full name of the series, and the transformation
applied on the raw data series.
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Appendix B. Results for alternative forecasting metrics

h 1 2 3 4 5 6 7

Bitcoin
AR1 10.88 10.82 10.63 10.66 10.64 10.60 10.53
KS 2.13 115.05 2.51 0.91 1.06 1.03 1.15
KS-noreg 3.24 43.78 2.27 1.02 1.03 1.07 1.02
DMA-noreg 0.95 0.97 1.01 1.03 1.03 0.99 1.04
DMS-noreg 0.95 1.00 1.01 1.07 1.05 1.03 1.05
DMA 0.90 0.95 1.01 1.15 1.02 1.05 1.31
DMS 0.97 1.03 1.11 1.21 1.02 1.10 1.33

Litecoin
AR1 21.99 21.76 21.79 21.85 21.88 21.82 21.57
KS 0.96 1.24 44.67 0.97 1.22 1.10 1.12
KS-noreg 0.97 1.06 3.44 0.99 1.00 1.03 0.99
DMA-noreg 1.04 1.09 1.06 1.05 1.04 1.11 1.12
DMS-noreg 1.06 1.11 1.11 1.06 1.06 1.10 1.09
DMA 0.99 1.07 1.17 1.26 1.09 1.12 1.34
DMS 1.01 1.13 1.24 1.19 1.06 1.16 1.60

0.88 0.89

Ripple
AR1 27.14 26.81 26.89 26.79 26.52 26.60 26.58
KS 1.23 1.44 1.46 1.22 2.60 1.24 3.19
KS-noreg 1.07 1.07 1.04 0.99 1.14 0.95 1.02
DMA-noreg 0.99 1.09 1.07 1.14 1.19 0.97 1.16
DMS-noreg 1.06 1.07 1.06 1.20 1.21 1.05 1.22
DMA 1.61 1.11 1.70 1.75 1.32 1.46 1.51
DMS 1.77 1.12 1.65 1.81 1.36 1.56 1.74

Ethereum
AR1 25.93 25.13 25.22 25.21 25.25 25.26 25.00
KS 1.06 153.01 1.13 0.98 1.00 2.47 1.08
KS-noreg 0.99 6.92 1.02 0.97 0.98 1.00 0.98
DMA-noreg 0.88 1.00 0.94 0.91 0.91 0.93 0.97
DMS-noreg 0.90 0.99 0.98 0.93 0.92 0.96 0.97
DMA 0.89 1.03 1.00 0.96 1.06 1.06 1.05
DMS 0.97 1.09 1.10 1.02 1.07 1.16 1.01

Table B.2: Mean absolute deviation (MAD), computed over the forecast horizon. Results are reported relative
to the benchmark specification (AR1) for which the absolute score is reported. Models’ description is
reported in Table 2. Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability
between each model and the benchmark according to the Diebold–Mariano test at the 5% confidence
level. Gray cells indicate those models that belong to the Superior Set of Models delivered by the Model
Confidence Set procedure at confidence level 10%.
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h 1 2 3 4 5 6 7

M1 3.08 3.08 3.08 3.09 3.10 3.11 3.12
M2 1.06 1.05 1.03 1.01 1.00 1.00 1.00
M3 1.12 1.04 1.01 1.01 1.00 1.00 1.00
M4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M5 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M6 1.01 1.01 1.01 1.00 1.00 1.00 1.00
M7 1.00 1.01 1.00 1.00 1.01 1.00 1.00
M8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M9 1.00 1.01 1.00 1.00 1.00 1.00 1.00
M10 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M11 1.00 1.00 1.00 1.00 1.01 1.00 1.00
M12 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M13 1.01 1.00 1.00 1.00 1.00 1.00 1.00
M14 1.01 1.00 1.00 1.00 1.00 1.00 1.00
M15 1.01 1.01 1.00 1.01 1.01 1.01 1.01
M16 1.00 1.01 1.00 1.00 1.00 1.00 1.00
M17 1.01 1.00 1.01 1.01 1.01 1.00 1.01
M18 1.01 1.01 1.01 1.01 1.01 1.00 1.01

Table B.3: (Multivariate) Mean Absolute Error, computed over the forecast horizon. Results are reported relative
to the benchmark specification (AR1) for which the absolute score is reported. Models’ description is
reported in Table 3. Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability
between each model and the benchmark according to the Diebold–Mariano test at the 5% confidence
level. Gray cells indicate those models that belong to the Superior Set of Models delivered by the Model
Confidence Set procedure at confidence level 10%.
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h 1 2 3 4 5 6 7

M1 −876.09 −876.76 −877.37 −877.44 −884.73 −885.18 −888.04
M2 −7.18 3.80 −3.17 2.64 5.84 2.55 1.69
M3 −63.36 −24.54 −28.78 −16.28 −17.51 −12.89 −11.57
M4 77.79 74.96 74.14 65.74 65.59 63.36 56.92
M5 74.87 76.18 70.55 60.88 63.09 59.46 58.48
M6 78.34 69.26 62.10 65.42 64.76 62.86 57.55
M7 76.46 69.07 72.04 59.34 66.49 58.07 54.18
M8 36.46 20.11 18.73 8.41 11.60 −15.47 −19.80
M9 70.56 72.01 65.85 62.17 69.27 58.49 57.06
M10 30.69 34.24 32.60 15.56 10.15 −4.99 −8.38
M11 79.82 71.53 68.84 60.63 66.56 63.26 55.26
M12 −97.59 −119.69 −134.88 −145.26 −163.42 −182.32 −202.54
M13 71.24 65.14 70.23 57.97 64.61 60.83 60.28
M14 −82.33 −97.77 −106.70 −131.75 −137.77 −165.34 −178.96
M15 70.73 71.43 68.34 60.72 66.61 63.79 55.62
M16 −280.07 −282.17 −309.96 −331.16 −342.09 −360.59 −381.50
M17 71.03 68.26 64.04 61.49 65.21 63.37 56.84
M18 −257.19 −282.18 −299.56 −312.96 −355.97 −348.63 −353.54

Table B.4: Bitcoin. Predictive Log Score (LS), computed over the forecast horizon. Results are reported relative to
the benchmark specification (AR1). Models’ description is reported in Table 2. Values in bold, indicate
rejection of the null hypothesis of Equal Predictive Ability between each model and the benchmark
according to the Diebold–Mariano test at the 5% confidence level. Gray cells indicate those models
that belong to the Superior Set of Models delivered by the Model Confidence Set procedure at confidence
level 10%.

h 1 2 3 4 5 6 7

M1 −767.01 −764.97 −765.69 −765.77 −766.76 −767.21 −768.98
M2 −3.66 −1.87 −4.55 −2.83 −11.92 −4.52 −4.08
M3 −73.29 −23.70 −0.99 −0.70 6.26 2.66 0.85
M4 113.42 95.24 90.64 82.94 77.47 80.49 79.38
M5 108.89 94.36 91.33 82.92 77.08 78.51 79.10
M6 110.94 92.16 90.69 82.69 75.63 76.57 77.28
M7 111.09 91.62 87.86 80.72 79.01 75.73 79.66
M8 120.02 92.77 70.55 45.33 49.40 40.52 54.89
M9 108.45 95.54 85.94 75.50 79.85 74.26 77.43
M10 116.89 97.96 84.52 52.72 63.88 60.01 57.59
M11 107.95 92.28 90.89 79.71 73.93 75.14 79.56
M12 25.71 1.53 −29.88 −79.51 −110.80 −91.24 −83.66
M13 106.47 95.31 88.36 75.24 75.99 77.56 75.53
M14 30.84 18.07 −38.09 −58.62 −77.83 −56.30 −62.70
M15 108.36 86.86 91.48 79.74 72.36 75.74 75.66
M16 −72.90 −148.07 −176.85 −243.73 −255.74 −221.11 −249.88
M17 107.25 87.21 84.83 77.66 76.04 76.45 76.63
M18 −105.33 −117.89 −178.88 −209.26 −226.10 −252.94 −230.30

Table B.5: Litecoin. Predictive Log Score (LS), computed over the forecast horizon. Results are reported relative to
the benchmark specification (AR1). Models’ description is reported in Table 2. Values in bold, indicate
rejection of the null hypothesis of Equal Predictive Ability between each model and the benchmark
according to the Diebold–Mariano test at the 5% confidence level. Gray cells indicate those models
that belong to the Superior Set of Models delivered by the Model Confidence Set procedure at confidence
level 10%.
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h 1 2 3 4 5 6 7

M1 −603.55 −600.59 −605.76 −606.77 −607.88 −611.34 −611.94
M2 −63.53 −65.14 −60.18 −8.37 5.65 4.08 2.39
M3 −71.22 −40.96 −19.64 −24.53 −13.99 −9.17 −9.28
M4 69.15 48.74 42.50 40.79 43.47 46.14 45.46
M5 64.38 50.46 40.88 40.27 41.02 45.02 46.16
M6 55.39 50.72 38.69 43.20 41.58 45.09 48.91
M7 63.01 52.21 42.89 40.76 39.91 41.61 41.03
M8 98.08 73.92 51.54 44.25 48.03 42.58 42.09
M9 57.46 43.90 37.33 36.67 36.36 41.40 42.54
M10 103.79 71.86 53.67 44.73 56.69 54.15 57.61
M11 66.62 49.29 43.40 43.20 40.92 44.21 47.15
M12 18.56 −6.65 −34.98 −43.00 −36.64 −40.04 −45.79
M13 55.15 43.80 34.79 34.51 40.07 45.68 42.33
M14 52.09 3.91 −30.94 −31.81 −12.71 −10.02 −23.29
M15 62.15 43.78 46.13 42.04 39.58 45.13 39.53
M16 −84.91 −104.22 −136.71 −158.44 −158.15 −141.25 −144.49
M17 57.78 44.28 37.78 38.74 36.46 41.63 38.78
M18 −63.05 −112.33 −138.49 −139.10 −154.96 −112.62 −122.29

Table B.6: Ripple. Predictive Log Scores (LS), computed over the forecast horizon. Results are reported relative to
the benchmark specification (AR1). Models’ description is reported in Table 2. Values in bold, indicate
rejection of the null hypothesis of Equal Predictive Ability between each model and the benchmark
according to the Diebold–Mariano test at the 5% confidence level. Gray cells indicate those models
that belong to the Superior Set of Models delivered by the Model Confidence Set procedure at confidence
level 10%.

h 1 2 3 4 5 6 7

M1 −906.59 −908.45 −908.15 −908.29 −907.92 −907.63 −907.24
M2 69.96 79.13 87.61 98.82 99.23 99.55 101.28
M3 36.49 68.67 84.86 80.77 80.81 81.79 80.62
M4 179.47 175.62 168.81 162.80 158.85 157.37 157.34
M5 178.71 175.86 170.06 163.32 158.64 156.99 153.51
M6 169.02 168.41 167.10 160.62 158.95 156.60 155.77
M7 182.64 171.69 168.22 162.06 156.91 153.61 152.01
M8 136.15 117.50 111.20 92.17 92.63 80.97 81.78
M9 177.00 170.93 170.49 159.29 154.67 152.72 155.73
M10 136.75 131.59 124.51 118.97 100.11 91.11 94.30
M11 176.76 161.40 166.38 152.81 149.81 146.08 153.89
M12 −15.11 −29.84 −37.84 −52.61 −71.38 −74.89 −87.89
M13 170.48 170.89 169.05 156.51 156.92 152.68 151.31
M14 0.52 −6.06 −23.49 −28.42 −45.68 −51.36 −51.01
M15 169.74 160.08 157.84 146.28 149.88 145.13 147.50
M16 −175.79 −192.04 −204.95 −251.08 −244.24 −263.94 −252.94
M17 165.87 162.03 166.61 152.53 155.36 139.99 146.36
M18 −149.92 −159.93 −205.19 −213.03 −212.76 −234.01 −227.41

Table B.7: Ethereum. Predictive Log Score (LS), computed over the forecast horizon. Results are reported
relative to the benchmark specification (AR1). Models’ description is reported in Table 2. Values
in bold, indicate rejection of the null hypothesis of Equal Predictive Ability between each model and
the benchmark according to the Diebold–Mariano test at the 5% confidence level. Gray cells indicate
those models that belong to the Superior Set of Models delivered by the Model Confidence Set procedure
at confidence level 10%.
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