• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Handelshøyskolen BI
  • BI Research Centre's Series
  • Centre for Applied Macro- and Petroleum economics (CAMP)
  • Vis innførsel
  •   Hjem
  • Handelshøyskolen BI
  • BI Research Centre's Series
  • Centre for Applied Macro- and Petroleum economics (CAMP)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Macroeconomic Forecasting with Large Stochastic Volatility in Mean VARs

Cross, Jamie L.; Hou, Chenghan; Koop, Gary; Poon, Aubrey
Working paper
Thumbnail
Åpne
CAMP_WP_4_2021.pdf (2.527Mb)
Permanent lenke
https://hdl.handle.net/11250/2760927
Utgivelsesdato
2021-06-15
Metadata
Vis full innførsel
Samlinger
  • Centre for Applied Macro- and Petroleum economics (CAMP) [104]
Sammendrag
Vector autoregressions with stochastic volatility in both the conditional mean and variance are commonly used to estimate the macroeconomic effects of uncertainty shocks. Despite their popularity, intensive computational demands when estimating such models have made out-of-sample forecasting exercises impractical, particularly when working with large data sets. In this article, we propose an efficient Markov chain Monte Carlo (MCMC) algorithm for posterior and predictive inference in such models that facilitates such exercises. The key insight underlying the algorithm is that the (log-)conditional densities of the log volatilities possess Hessian matrices that are banded. This enables us to build upon recent advances in band and sparse matrix algorithms for state space models. In a simulation exercise, we evaluate the new algorithm numerically and establish its computational and statistical efficiency over a conventional particle filter based algorithm. Using macroeconomic data for the US we find that such models generally deliver more accurate point and density forecasts over a conventional benchmark in which stochastic volatility only enters the variance of the model.
Utgiver
BI Norwegian Business School
Serie
CAMP Working Paper Series;04/2021

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit