Vis enkel innførsel

dc.contributor.authorAastveit, Knut Are
dc.contributor.authorForoni, Claudia
dc.contributor.authorRavazzolo, Francesco
dc.date.accessioned2014-10-07T07:34:17Z
dc.date.available2014-10-07T07:34:17Z
dc.date.issued2014
dc.identifier.issn1892-2198
dc.identifier.urihttp://hdl.handle.net/11250/223209
dc.description.abstractIn this paper we derive a general parametric bootstrapping approach to compute density forecasts for various types of mixed-data sampling (MIDAS) regressions. We consider both classical and unrestricted MIDAS regressions with and without an autoregressive component. First, we compare the forecasting performance of the different MIDAS models in Monte Carlo simulation experiments. We find that the results in terms of point and density forecasts are coherent. Moreover, the results do not clearly indicate a superior performance of one of the models under scrutiny when the persistence of the low frequency variable is low. Some differences are instead more evident when the persistence is high, for which the ARMIDAS and the AR-U-MIDAS produce better forecasts. Second, in an empirical exercise we evaluate density forecasts for quarterly US output growth, exploiting information fromtypical monthly series. We find that MIDAS models provide accurate and timely density forecasts.nb_NO
dc.language.isoengnb_NO
dc.publisherHandelshøyskolen BInb_NO
dc.relation.ispartofseriesCAMP Working Paper Series;3/2014
dc.subjectMixed Data Sampling, Density Forecasts, Nowcastingnb_NO
dc.titleDensity Forecasts with MIDAS Modelsnb_NO
dc.typeWorking papernb_NO
dc.subject.nsiVDP::Social science: 200nb_NO
dc.source.pagenumber34nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel