• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Handelshøyskolen BI
  • Articles
  • Scientific articles
  • Vis innførsel
  •   Hjem
  • Handelshøyskolen BI
  • Articles
  • Scientific articles
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometry of noncommutative algebras

Eriksen, Eivind; Siqveland, Arvid
Journal article, Peer reviewed
Thumbnail
Åpne
Eriksen_BCP_2011.pdf (466.8Kb)
Permanent lenke
http://hdl.handle.net/11250/93660
Utgivelsesdato
2011
Metadata
Vis full innførsel
Samlinger
  • Scientific articles [1722]
Originalversjon
http://dx.doi.org/10.4064/bc93-0-6
Sammendrag
There has been several attempts to generalize commutative algebraic geometry to the

noncommutative situation. Localizations with good properties rarely exists for noncommutative

algebras, and this makes a direct generalization di cult. Our point of view, following Laudal,

is that the points of the noncommutative geometry should be represented as simple modules,

and that noncommutative deformations should be used to obtain a suitable localization in the

noncommutative situation.

Let A be an algebra over an algebraically closed eld k. If A is commutative and nitely

generated over k, then any simple A-module has the form M = A=m, the residue eld, for

a maximal ideal m A, and the commutative deformation functor DefM has formal moduli

A^m. In the general case, we may replace the A-module A=m with the simple A-module M, and

use the formal moduli of the commutative deformation functor DefM as a replacement for the

complete local ring A^m. We recall the construction of the commutative scheme simp(A), with

points in bijective correspondence with the simple A-modules of nite dimension over k, and

with complete local ring at a point M isomorphic to the formal moduli of the corresponding

simple module M.

The scheme simp(A) has good properties, in particular when there are no in nitesimal rela-

tions between di erent points, i.e. when Ext1

A(M;M0) = 0 for all pairs of non-isomorphic simple

A-modules M;M0. It does not , however, characterize A. We use noncommutative deformation

theory to de ne localizations, in general, and we nd a presheaf O, of noncommutative algebras, de ned on the Jacobson topology of simp(A) which re nes the commutative scheme, simp(A),

by accounting for the in nitesimal relations in simp(A).

We consider the quantum plane, given by A = khx; yi=(xy 􀀀qyx), as an example. This is an

Artin-Schelter algebra of dimension two.
Beskrivelse
This is the author’s final, accepted and refereed manuscript to the article
Utgiver
Institute of Mathematics · Polish Academy of Sciences
Tidsskrift
Banach Center Publications

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit