dc.contributor.author | Canova, Fabio | |
dc.contributor.author | Matthes, Christian | |
dc.date.accessioned | 2023-09-25T11:59:05Z | |
dc.date.available | 2023-09-25T11:59:05Z | |
dc.date.created | 2022-02-07T09:21:27Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Economic Journal. 2021, 131 2447-2474. | en_US |
dc.identifier.issn | 0013-0133 | |
dc.identifier.uri | https://hdl.handle.net/11250/3091775 | |
dc.description.abstract | We explain how to use the composite likelihood function to ameliorate estimation, computational and inferential problems in dynamic stochastic general equilibrium models. We combine the information present in different models or data sets to estimate the parameters common across models. We provide intuition for why the methodology works and alternative interpretations of the estimators we construct and of the statistics we employ. We present a number of situations where the methodology has the potential to resolve well-known problems and to provide a justification for existing practices that pool different estimates. In each case, we provide an example to illustrate how the approach works and its properties in practice. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Oxford University Press | en_US |
dc.subject | Dynamic structural models | en_US |
dc.subject | composite likelihood | en_US |
dc.subject | identification | en_US |
dc.subject | singularity | en_US |
dc.subject | large scale models | en_US |
dc.subject | panel data | en_US |
dc.title | A Composite Likelihood Approach for Dynamic Structural Models | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | acceptedVersion | en_US |
dc.rights.holder | Oxford University Press | en_US |
dc.source.pagenumber | 2447-2474 | en_US |
dc.source.volume | 131 | en_US |
dc.source.journal | Economic Journal | en_US |
dc.identifier.doi | 10.1093/ej/ueab004 | |
dc.identifier.cristin | 1998363 | |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 2 | |