Vis enkel innførsel

dc.contributor.authorEriksen, Eivind
dc.date.accessioned2022-10-25T15:44:27Z
dc.date.available2022-10-25T15:44:27Z
dc.date.created2020-07-16T12:20:18Z
dc.date.issued2020
dc.identifier.citationAlgebras and Representation Theory. 2020, 24 273-286.en_US
dc.identifier.issn1386-923X
dc.identifier.urihttps://hdl.handle.net/11250/3028245
dc.description.abstractIn this paper, we study length categories using iterated extensions. We fix a field k, and for any family S of orthogonal k-rational points in an Abelian k-category A, we consider the category Ext(S) of iterated extensions of S in A, equipped with the natural forgetful functor Ext(S) → A(S) into the length category A(S). There is a necessary and sufficient condition for a length category to be uniserial, due to Gabriel, expressed in terms of the Gabriel quiver (or Ext-quiver) of the length category. Using Gabriel’s criterion, we give a complete classification of the indecomposable objects in A(S) when it is a uniserial length category. In particular, we prove that there is an bstruction for a path in the Gabriel quiver to give rise to an indecomposable object. The obstruction vanishes in the hereditary case, and can in general be expressed using matric Massey products. We discuss the close connection between this obstruction, and the noncommutative deformations of the family S in A. As an application, we classify all graded holonomic D-modules on a monomial curve over the complex numbers, obtaining the most explicit results over the affine line, when D is the first Weyl algebra. We also give a non-hereditary example, where we compute the obstructions and show that they do not vanish.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleIterated Extensions and Uniserial Length Categoriesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe Authorsen_US
dc.source.pagenumber273-286en_US
dc.source.volume24en_US
dc.source.journalAlgebras and Representation Theoryen_US
dc.identifier.doi10.1007/s10468-020-09946-0
dc.identifier.cristin1819587
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal