dc.contributor.author | Moss, Jonas | |
dc.date.accessioned | 2022-08-04T09:48:19Z | |
dc.date.available | 2022-08-04T09:48:19Z | |
dc.date.created | 2022-05-19T13:21:13Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Journal of the Korean Statistical Society. Online First 22 April 2022 | en_US |
dc.identifier.issn | 1226-3192 | |
dc.identifier.uri | https://hdl.handle.net/11250/3010109 | |
dc.description.abstract | Meta-analysis, the statistical analysis of results from separate studies, is a fundamental building block of science. But the assumptions of classical meta-analysis models are not satisfied whenever publication bias is present, which causes inconsistent parameter estimates. Hedges’ selection function model takes publication bias into account, but estimating and inferring with this model is tough for some datasets. Using a generalized Gleser–Hwang theorem, we show there is no confidence set of guaranteed finite diameter for the parameters of Hedges’ selection model. This result provides a partial explanation for why inference with Hedges’ selection model is fraught with difficulties. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.subject | Meta-analysis | en_US |
dc.subject | Confidence intervals | en_US |
dc.subject | File-drawer problem | en_US |
dc.subject | Publication bias | en_US |
dc.subject | Selection models | en_US |
dc.subject | Weight function models | en_US |
dc.title | Infinite diameter confidence sets in Hedges’ publication bias model | en_US |
dc.title.alternative | Infinite diameter confidence sets in Hedges’ publication bias model | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | The Authors | en_US |
dc.source.pagenumber | 0 | en_US |
dc.source.journal | Journal of the Korean Statistical Society | en_US |
dc.identifier.doi | 10.1007/s42952-022-00169-1 | |
dc.identifier.cristin | 2025627 | |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 1 | |