• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Handelshøyskolen BI
  • Articles
  • Scientific articles
  • Vis innførsel
  •   Hjem
  • Handelshøyskolen BI
  • Articles
  • Scientific articles
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A deep learning approach for the dynamic dispatching of unreliable machines in re-entrant production systems

Wu, Cheng-Hung; Zhou, Fang-Yi; Tsai, Chi-Kang; Yu, Cheng-Juei; Dauzère-Pérès, Stéphane
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
Wu_Zhou_Tsai_Yu_Dauzere-Peres_2020.pdf (699.1Kb)
Permanent lenke
https://hdl.handle.net/11250/2836015
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Scientific articles [1667]
Originalversjon
International Journal of Production Research. 2020, 58 (9), 2822-2840.   10.1080/00207543.2020.1727041
Sammendrag
This research combines deep neural network (DNN) and Markov decision processes (MDP) for the dynamic dispatching of re-entrant production systems. In re-entrant production systems, jobs enter the same workstation multiple times and dynamic dispatching oftentimes aims to dynamically assign different priorities to various job groups to minimise weighted cycle time or maximise throughput. MDP is an effective tool for dynamic production control, but it suffers from two major challenges in dynamic control problems. First, the curse of dimensionality limits the computational performance of solving large MDP problems. Second, a different model should be built and solved after system configuration is changed. DNN is used to overcome both challenges by learning directly from optimal dispatching policies generated by MDP. Results suggest that a properly trained DNN model can instantly generate near-optimal dynamic control policies for large problems. The quality of the DNN solution is compared with the optimal dynamic control policies through the standard K-fold cross-validation test and discrete event simulation. On average, the performance of the DNN policy is within 2% of optimal in both tests. The proposed artificial intelligence algorithm illustrates the potential of machine learning methods in manufacturing applications.
Utgiver
Elsevier
Tidsskrift
International Journal of Production Research

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit