New Evidence on Conditional Factor Models
Journal article, Peer reviewed
Submitted version
View/ Open
Date
2018Metadata
Show full item recordCollections
- Publikasjoner fra CRIStin - BI [1038]
- Scientific articles [2217]
Abstract
We estimate conditional multifactor models over a large cross section of stock returns matching 25 CAPM anomalies. Using conditioning information associated with different instruments improves the performance of the Hou, Xue, and Zhang (HXZ) (2015) and Fama and French (FF) (2015), (2016) models. The largest increase in performance holds for momentum, investment, and intangibles-based anomalies. Yet, there are significant differences in the performance of scaled models: HXZ clearly dominates FF in explaining momentum and profitability anomalies, while the converse holds for value–growth anomalies. Thus, the asset pricing implications of alternative investment and profitability factors (in a conditional setting) differ in a nontrivial way.