Show simple item record

dc.contributor.authorFoldnes, Njål
dc.contributor.authorOlsson, Ulf H.
dc.date.accessioned2019-05-08T12:21:17Z
dc.date.available2019-05-08T12:21:17Z
dc.date.created2019-04-02T19:12:37Z
dc.date.issued2019
dc.identifier.issn1070-5511
dc.identifier.urihttp://hdl.handle.net/11250/2596992
dc.description.abstractRobust standard errors are of central importance in confirmatory factor models. In calculating these statistics a central ingredient is the inverse of the asymptotic covariance matrix of second-order moments calculated under the assumption of normality. Currently, two ways of estimating this matrix are employed in software packages. One approach uses the sample covariance matrix, the other the model-implied covariance matrix. Previous research based on a small confirmatory factor model demonstrated that the latter approach yielded a slight improvement in standard error performance. The present study argues theoretically that the discrepancy between the two approaches increases in models where there are few model parameters relative to p(p+1)/2, where p is the number of observed variables. We present simulation results that support this claim, in both small and large correctly specified models, across a large variety of non-normal conditions. We recommend the model-implied covariance matrix for robust standard error computation.nb_NO
dc.language.isoengnb_NO
dc.publisherTaylor and Francisnb_NO
dc.subjectNon-normalitynb_NO
dc.subjectRobustnessnb_NO
dc.subjectStandard errornb_NO
dc.titleThe choice of normal-theory weight matrix when computing robust standard errors in confirmatory factor analysisnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.journalStructural Equation Modelingnb_NO
dc.identifier.doihttps://doi.org/10.1080/10705511.2019.1600408
dc.identifier.cristin1689852
cristin.unitcode158,3,0,0
cristin.unitnameInstitutt for samfunnsøkonomi
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record