• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Handelshøyskolen BI
  • BI Research Centre's Series
  • Centre for Applied Macro- and Petroleum economics (CAMP)
  • Vis innførsel
  •   Hjem
  • Handelshøyskolen BI
  • BI Research Centre's Series
  • Centre for Applied Macro- and Petroleum economics (CAMP)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Flexible Negative Binomial Mixtures for Credible Mode Inference in Heterogeneous Count Data from Finance, Economics and Bioinformatics

Cross, Jamie L.; Hoogerheide, Lennart; Labonne, Paul; Van Djik, Herman K.
Working paper
Thumbnail
Åpne
CAMP_WP_9_2024.pdf (1.489Mb)
Permanent lenke
https://hdl.handle.net/11250/3176624
Utgivelsesdato
2024-08-29
Metadata
Vis full innførsel
Samlinger
  • Centre for Applied Macro- and Petroleum economics (CAMP) [140]
Sammendrag
In several scientific fields, such as finance, economics and bioinformatics, important theoretical and practical issues exist involving multimodal and asymmetric count data distributions due to heterogeneity of the underlying population. For accurate approximation of such distributions we introduce a novel class of flexible mixtures consisting of shifted negative binomial distributions, which accommodates a wide range of shapes that are commonly seen in these data. We further introduce a convenient reparameterization which is more closely related to a moment interpretation and facilitates the specification of prior information and the Monte Carlo simulation of the posterior. This mixture process is estimated by the sparse finite mixture Markov chain Monte Carlo method since it can handle a flexible number of non-empty components. Given loan payment, inflation expectation and DNA count data, we find coherent evidence on number and location of modes, fat tails and implied uncertainty measures, in contrast to conflicting evidence obtained from well-known frequentist tests. The proposed methodology may lead to more accurate measures of uncertainty and risk which improves prediction and policy analysis using multimodal and asymmetric count data.
Utgiver
BI Norwegian Business School
Serie
CAMP Working Paper Series;09/2024

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit