On Dihedral Angle Sums of Prisms and Hexahedra
Journal article, Peer reviewed
Accepted version
Permanent lenke
https://hdl.handle.net/11250/3165519Utgivelsesdato
2023Metadata
Vis full innførselSamlinger
Originalversjon
International journal of computational geometry and applications. 2023, . 10.1142/S0218195923500036Sammendrag
Various angle characteristics are used (e.g. in finite element methods or computer graphics) when evaluating the quality of computational meshes which may consist, in the three-dimensional case, of tetrahedra, prisms, hexahedra and pyramids. Thus, it is of interest to derive (preferably tight) bounds for dihedral angle sums, i.e. sums of angles between faces, of such mesh elements. For tetrahedra this task was solved by Gaddum in 1952. For pyramids, this was resolved by Korotov, Lund and Vatne in 2022. In this paper, we compute tight bounds for the remaining two cases, hexahedra and prisms.