Vis enkel innførsel

dc.contributor.authorKreiberg, David
dc.date.accessioned2024-08-16T11:14:51Z
dc.date.available2024-08-16T11:14:51Z
dc.date.created2023-08-11T14:44:35Z
dc.date.issued2023
dc.identifier.citationAutomatica. 2023, 156 .
dc.identifier.issn0005-1098
dc.identifier.urihttps://hdl.handle.net/11250/3146779
dc.description.abstractOver the years, errors-in-variables (EIV) system identification has attracted considerable research interest. Among the many proposed approaches for identifying EIV models is confirmatory factor analysis (CFA), here referred to as EIV-CFA. This study extends previous research by presenting a EIV-CFA modeling framework that allows for colored output noise. Considerable attention is paid to the theoretical aspects of the minimum distance (MD) estimator. The finite sample performance of the MD estimator is briefly evaluated using simulation. The results suggest that model parameters are well estimated.
dc.description.abstractA confirmatory factor analysis approach for addressing the errors-in-variables problem with colored output noise
dc.language.isoeng
dc.titleA confirmatory factor analysis approach for addressing the errors-in-variables problem with colored output noise
dc.title.alternativeA confirmatory factor analysis approach for addressing the errors-in-variables problem with colored output noise
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
dc.source.pagenumber8
dc.source.volume156
dc.source.journalAutomatica
dc.identifier.doi10.1016/j.automatica.2023.111187
dc.identifier.cristin2166404
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel