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Abstract

This paper proposes a labor market model with job search frictions where workers
have private information on match quality and e¤ort. Firms use wage contracts to
motivate workers. In addition, wages are also used to attract employees. We de�ne and
characterize competitive search equilibrium in this context, and show that it satis�es
a simple modi�ed Hosios rule. The model is used to address the "Shimer puzzle"
related to the low volatility of the unemployment rate relative to the volatility of output
observed in the data. We �nd that private information may increase the responsiveness
of the unemployment rate to changes in productivity and in particular to changes in
the information structure.
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1 Introduction

There exists a large literature analyzing the e¤ects of search frictions in the labor market.

In this literature, �rms are typically modeled in a parsimonious way, with exogenous output

per worker. In particular, agency problems between workers and �rms are ignored. The

focus is thus solely on the e¤ects of search frictions on the �ows into and out of employment.
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In the present paper, we allow a �rm�s output to depend on the wage contracts �rms o¤er

their workers. A worker�s output depends on both her e¤ort and a match-speci�c component.

The �rm observes total output, but cannot disentangle output into its di¤erent components.

The �rm acts as a principal and chooses a wage contract that maximizes pro�ts given the

information constraints. Our aim is to analyze the interplay between search frictions in

the market place and agency problems created by workers�private information. The search

frictions and agency problems interact through the amount of "rents" that accrue to the

worker.

A worker�s private information gives her an information rent, which is larger the closer

the wage is linked to her output. Without search frictions, a �rm, when setting the wage

contract, trades o¤ incentives for the worker to provide e¤ort and rent extraction from the

worker. This trade-o¤ is also present when there are search frictions in the labor market.

However, with search frictions, rents that accrue to the worker have an additional e¤ect.

More rents to the worker when hired also bene�t the �rm in the recruiting process, as it

speeds up the hiring rate. Hence, it is less costly for a �rm to provide workers with incentives

when it operates in a competitive, frictional market than in a frictionless market.

We show that the resulting search equilibrium, which we refer to as generalized com-

petitive search equilibrium, has a simple form. The agency problem and the wage posting

problem can be disentangled into two separate maximization problems. The solution to

the �rms�problem satis�es a modi�ed Hosios rule, which determines constrained e¢ cient

resource allocation. When the information constraints are tight in a well-de�ned sense, the

optimal wage contract prescribes that a large share of the match surplus is allocated to the

employees. As a result, pro�ts will be lower, and fewer resources are used to create new

vacancies as compared to the equilibrium without agency problems.

We then analyze the e¤ect of private information on the responsiveness of the unem-

ployment rate to productivity changes, motivated by �ndings in Shimer (2005) and Hall

(2004). They document that �uctuations in the unemployment rate predicted by the stan-

dard Diamond-Mortensen-Pissarides (DMP) model (Diamond 1982, Mortensen 1986, Pis-

sarides 1985) in response to observed productivity shocks are much smaller than actual

�uctuations in the unemployment rate, as wages in the model absorb much of the shock.
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First, we analyze the e¤ects of negative productivity changes where all �rms are hit

equally hard (pure productivity shocks). Such a negative shock tightens the constraints im-

posed by workers�private information, and workers�share of the match surplus increases.

Therefore, the unemployment rate becomes more responsive to such shocks than in the stan-

dard search model. Theoretical considerations imply that an upper bound on the e¤ects

of pure productivity shifts on unemployment volatility is the volatility obtained with rent

rigidity (the worker�s expected gain from �nding a job stays constant, see Brugemann and

Moscarini (2007) and Brugemann (2008)). Our numerical analysis indicates that the respon-

siveness of the unemployment rate to pure output shifts is close to this upper limit. We also

analyze the e¤ects of changes in the dispersion in the match-speci�c productivity term. This

has a large e¤ect on the unemployment rate and a small e¤ect on output. A combination of

changes in productivity and dispersion may give rise to an elasticity of the unemployment

rate to observed output per worker consistent with the empirical �ndings.

Our private information model builds on the procurement model by La¤ont and Tirole

(1993) and its adoption to a frictionless labor market by Moen and Rosén (2006). As the

emphasis in the present paper is on the interplay between search frictions and wage contracts,

the analysis di¤ers radically from that of Moen and Rosén (2006).

In a related model, Faig and Jerez (2005) analyze a retail market with search frictions

when buyers have private information about their willingness-to-pay. Although their paper

studies private information in a competitive search environment, their model and its emphasis

di¤er from ours. Faig and Jarez focus on welfare analysis and abstract from moral hazard

problems. They do not derive the modi�ed Hosios condition, nor do they analyze the impact

of macroeconomic variables on sharing rules and incentives.

Shimer and Wright (2004) consider a competitive search model where �rms (not work-

ers) have private information about productivity and workers have private information about

e¤ort. They show how private information may distort trade, thereby increasing unemploy-

ment. However, the mechanism in their paper di¤ers from ours. We focus on the division of

the match surplus between workers and �rms as an instrument to mitigate the ine¢ ciencies

caused by private information, summarized in the modi�ed Hosios condition. This is absent

in Shimer and Wright, who instead focus on the direct e¤ect of the ine¢ ciencies created
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by two-sided private information on unemployment and vacancy rates. Guerrieri (2008)

studies the welfare e¤ects of including non-pecuniary aspects of a match which are private

information to workers. She �nds that the resulting allocation is ine¢ cient out of steady

state.

Several recent studies seek to make the search model consistent with Shimer and Hall�s

empirical �ndings. Our paper belongs to a small subset of this literature that focuses on

private information.1 Our paper is perhaps most closely related to Kennan (2007). In his

paper, �rms have more private information about the productivity of the match. Workers and

�rms bargain over wages, and the bargaining game is set up in such a way that the increase

in average productivity associated with a boom is allocated to the �rm. This dramatically

increases unemployment volatility. Although asymmetric information is the driving force in

both models, the mechanisms are very di¤erent. In Kennan�s model, �rms are motivated to

create more vacancies during booms because their pro�t is then disproportionately higher.

In our model, private information leads to agency problems within the �rm and thus lower

output. The �rms respond to this by advertising higher expected wages as this reduces the

agency problems. As a result, relatively small ine¢ ciencies in the worker-�rm relationship

may lead to a large increase in the unemployment rate.

Menzio (2005) also studies bargaining between workers and �rms with private informa-

tion, and shows that �rms may �nd it optimal to keep wages �xed if hit by high-frequency

shocks. Guerrieri (2008) studies a competitive search model where workers have private

information about non-pecuniary aspects of a match. Private information only plays a role

at the hiring margin. She �nds, in calibrations, that this amendment to the standard search

model does not help to amplify unemployment volatility.

Our model is also related to the literature on e¢ ciency wage models (e.g. Weiss, 1980;

Shapiro and Stiglitz, 1984). Some of these papers examine the comparative static properties

1There are also several other approaches. Nagypál (2006) and Krause and Lubik (2007) show that on-
the-job search in a matching model may amplify the e¤ects of productivity shocks on the unemployment
rate. In Rudanko (2008), the e¤ect of risk averse workers and contractual incompleteness on volatility is
explored. Reiter (2007) shows that the responsiveness of the unemployment rate to productivity shocks may
be increased if one allows for technological change that is embodied into the match. Gertler, Sala and Trigari
(2007) explain wage rigidity by staggered wage contracts while Hall (2005a) do it by social norms. For a
recent survey on this literature see Mortensen and Nagypál (2006).
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of e¢ ciency wage models (Strand, 1992; Danthine and Donaldson, 1990; Ramey and Watson,

1997; MacLeod, Malcomson and Gomme, 1994; MacLeod and Malcomson, 1998). In a static

model, Rocheteau (2001) introduces shirking in a search model and shows that the non-

shirking constraint forms a lower bound on wages.

The paper is organized as follows: Section 2 presents the model. In section 3, we study

the full-information benchmark. In section 4, we introduce and characterize the generalized

competitive search equilibrium. Section 5 contains the quantitative analysis. Section 6 o¤ers

�nal comments. Unless otherwise stated all proofs are relegated to the appendix.

2 The model

The matching of unemployed workers and vacancies is modeled using the Diamond-Mortensen-

Pissarides (DMP) framework (Diamond, 1982; Mortensen, 1986; Pissarides, 1985) with com-

petitive wage setting. The economy consists of a continuum of ex ante identical workers and

�rms. All agents are risk neutral and have the same discount factor r. Workers live for ever

and the measure of workers is normalized to one.

Let u denote the unemployment rate and v the vacancy rate in the economy. Firms

are free to open vacancies at no cost, but maintaining a vacancy entails a �ow cost c. The

number of matches per unit of time is determined by a concave, constant return to scale

matching function x(u; v). Let p denote the matching rate of workers, showing the rate at

which unemployed workers meet a vacancy. Let q denote the matching rate of �rms, showing

the rate at which �rms with a vacancy meet an unemployed worker. The probability rates p

and q can be written as p = x(u; v)=u = x(1; �) = ep(�) and q = x(u; v)=v = x(1=�; 1) = ~q(�),

where � = v=u. We assume that lim�!0 p(�) = 0 and lim�!0 q(�) = 1. The matching

technology can be summarized by a function q = ~q(�) = ~q(ep�1(p)) = q(p), with q0(p) < 0.

Our model brings two new elements into the standard DMP model, both common in

other parts of labor economics. First we assume that the output of a match depends on

worker e¤ort, e. Second, we include stochastic job matching (Jovanovic (1979, Pissarides

2000, ch. 6), i.e., the productivity of a given worker-�rm pair is match-speci�c. The output
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y of a worker-�rm pair is given by

y(e; ") = y + "+ 
e; (1)

where y is a constant, " the match-speci�c term (or stochastic matching term) and e is

worker e¤ort.

Output y is observable and contractible. Still the employee (the agent) has an information

advantage over the employer (the principal) as the employee can decompose output y into

e¤ort e and the stochastic matching term " while the employer only observes y. Note that

although there are two variables the �rm cannot observe, the information problem facing

the �rm is one-dimensional since it observes the sum of the two variables.

We make the standard simplifying assume that " is i.i.d across all worker-�rm matches.

In footnote 8, we argue that our results also hold when allowing for some correlation of the

stochastic match component. For any given match, " is constant over time and continuously

distributed on an interval ["; "] with the cumulative distribution function H and density

function h. We assume that H has an increasing hazard rate.2

Employed workers who receive a wage w and exert an e¤ort e obtain an instantaneous

utility �ow w �  (e), where  (e) is the disutility of e¤ort. In what follows we assume that

 0(e) > 0;  00(e) > 0 and  000(e) � 0 and that  (0) =  0(0) = 0:

Firms advertise wage contracts, and can commit not to renegotiate the contract. We

describe the wage contracts as direct revelation mechanisms designed so that workers truth-

fully reveal their match-speci�c term, ". When a worker and a �rm meet, the worker learns

" and reports it to the �rm. If the contract prescribes that a match should not be formed

for the reported ", workers and �rms continue to search. Formally, a contract is given by

a triple � = (w("); e("); "c), where "c � " denotes the threshold value of " below which

a match is not formed. Below we show that the optimal contract indeed has the cut-o¤

property that a worker is employed with probability 1 if " > "c and with 0 if " < "c, both

with and without private information (see lemma 2). We do not consider tenure-dependent

contracts. Below we show that the optimal contract, allowing for time dependence, is indeed

2Workers with di¤erent observable (and contractible) characteristics would be o¤ered di¤erent wage
contracts. Furthermore, in competitive search equilibrium, they search in separate search markets and
hence do not create search externalities towards each other.
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tenure-independent.

Before we continue, we would like to make two comments regarding the set-up, both

related to the match-speci�c term ". The �rst comment regards the exact timing of when

a worker learns the match-speci�c productivity term ". We assume that a worker learns "

before the contract is signed. This sequence rules out up-front payments from the worker to

the �rm before the worker learns ".3 The second comment regards our assumption that the

match-speci�c productivity term is unobservable to the �rm. An alternative interpretation is

that the �rm is able to observe ", but is unwilling or unable to di¤erentiate output-contingent

wage contracts between workers with the same observable characteristics. In this context

di¤erent wage contracts would here mean o¤ering less attractive contracts to workers with a

high stochastic match term. Evidence of workers with di¤erent productivities working under

the same bonus scheme is given in e.g., Lazear (2000).

Asset value equations

The asset value equations de�ne the parties�payo¤s for a given contract, � = (w("); e("); "c).

Let U denote the expected discounted utility of an unemployed worker and fW (") the ex-
pected discounted utility of an employed worker with a match-speci�c productivity term ",

hereafter somewhat imprecisely referred to as her type. Then fW (") is de�ned as
rfW (") = w(")�  (e("))� s(fW (")� U);

where s is the exogenous separation rate. The utility �ow when employed is equal to the

wage less the e¤ort cost and less the expected capital loss associated with losing the job.

Rearranging the above equation gives

(r + s)fW (") = w(")�  (e(")) + sU

� !(") + sU; (2)

where !(") is the wage net of e¤ort costs. The expected discounted value of a worker being

matched is thus
3If up-front payments are not admitted, it is su¢ cient that the worker learns " after exerting e¤ort and

observing y.
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W =

Z "

"c

fW (")dH +H("c)U:

=

Z "

"c

!(") + sU

r + s
dH +H("c)U:

The expected discounted utility of an unemployed worker is given by

rU = z + p(W � U),

where z is the utility �ow when unemployed.

Let eJ(") denote the expected discounted value of a �lled job with a worker of type ".
Assuming that an abandoned �rm has no value, eJ(") is given by

(r + s) eJ(") = y(e("); ")� w("):

Let V denote the expected discounted value of a �rm with a vacancy. The expected value J

to a �rm of being matched is thus

J =

Z "

"c

eJ(")dH +H("c)V

=

Z "

"c

y(e("); ")� w(")

r + s
dH +H("c)V: (3)

The value of a vacancy can be written as

rV = �c+ q(J � V ): (4)

For our subsequent analysis, it is convenient to use the concept of worker rents associated

with a match. The rents from a match re�ect the workers� expected "capital gain", or

expected income (net of e¤ort costs) in excess of U , of being matched to a vacancy. The

expected worker rents of a match can be expressed as

R � W � U

=

Z "

"c

[
!(") + sU

r + s
� U ]dH: (5)
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Using the de�nition of worker rents, the expected utility of an unemployed worker takes a

particularly simple form

rU = z + pR: (6)

That is, the �ow value of an unemployed worker is equal to the utility �ow when unemployed

plus the expected gain from search, which is equal to the matching rate times the expected

rent associated with a match. The total expected surplus of a match is S � J � V + R, or

(using equations (3) and (5))

(r + s)S =

Z "

"c

[y(e("); ")�  (e("))� rU � (r + s)V ]dH: (7)

Let u denote the equilibrium unemployment rate. In equilibrium, the in�ow to unemploy-

ment, s(1� u), is equal to the out�ow up(1�H("c)). Thus, we have

u =
s

s+ p(1�H("c))
: (8)

3 Equilibrium with full information

In this section we derive the equilibrium outcome in the special case where " and e are ob-

servable and contractible. This will serve as a benchmark for later analysis. Our equilibrium

concept is the competitive search equilibrium (Moen 1997). One of its core elements is that

it postulates a unique relationship between the attractiveness of the o¤ered wage contract

and the expected rate at which the vacancy is �lled. This relationship can be derived in

several alternative settings.4 In the present paper, we choose the interpretation that �rms

advertise wage contracts.

Although the contracts advertised by �rms may be complex, the relevant variable for an

unemployed worker is the expected value of being matched. The more attractive contract a

�rm o¤ers, the more workers will be attracted to that �rm. Generically, let U e denote the

equilibrium utility of a searching worker. For any value of the expected rent R a �rm o¤ers,

4Moen (1997) assumes that a market maker creates submarkets and shows that the same equilibrium can
be obtained if �rms advertize wages. The market maker interpretation is further developed in Mortensen
and Wright (2002). Mortensen and Pissarides (1999, section 4.1) interpret the market maker as a �middle
man� (like a job center) that sets the wage. In Acemoglu and Shimer (1999), the labor market is divided
into regional or industrial submarkets o¤ering potentially di¤erent wages.
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the queue length of workers adjusts so that the applicants obtain their equilibrium expected

utility. It follows that

z + pR = (r + s)U e; (9)

which de�nes p as a decreasing function of R, p = p(R) (the dependence of U e is suppressed).

In equilibrium, �rms choose wage contracts so as to maximize pro�ts. In addition, free

entry of �rms implies that the value V of a vacancy is zero.

De�nition 1 The competitive search equilibrium under full information is a contract �F =

(wF ("); eF ("); "Fc ); a vector of asset values (S
F ; RF ; UF ), and a job �nding rate pF such that

the following holds:

1. Pro�t maximization. �F ; SF ; RF ; pF solves the program P1 given by

rV max(UF ) = max
�;S;R;p

�c+ q(p)(S �R)

s.t.

rU = z + pR (C1)

(r + s)R =

Z "

"c

[w(")�  (e("))� rU ]dH(") (C2)

(r + s)S =

Z "

"c

[y(e("); ")�  (e("))� rU � (r + s)V ]dH("): (C3)

2. Free entry:

V max(UF ) = 0: (10)

Note that the equilibrium does not explicitly include an ex post participation constraint

for employed workers. Below we show that this constraint can easily be satis�ed.

Note that when setting R, the �rms take into account that a high wage bill implies a

higher arrival rate of workers. There is typically only one value of R advertised in equilibrium

(see below). Nonetheless, when setting R, �rms expect that the arrival rate of workers to

their �rm, bq, for out-of equilibrium R o¤ers will be given by bq = q(p(R)), where p(R) satis�es
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(9).5 In addition the �rm takes into account that the design of the wage contract in�uences

the value S of a match.

We solve the pro�t maximization program P1 in two steps.

1. For a given U , �nd Smax(U) such that

(r + s)Smax(U) = max
e(");"c

Z "

"c

[y(e("); ")�  (e("))� rU � (r + s)V ]dH("): (11)

2. For a given U and Smax(U), �nd V max(U) such that

rV max(U) = max
R
�c+ q(p(R))[Smax(U)�R]; (12)

where p(R) is de�ned by (9).

The �rst-order condition for optimal e¤ort levels reads:

 0(e(")) = 
 for all ": (13)

Note that e¤ort level is independent of worker type, re�ecting that the gain from e¤ort is

the same for all workers. The optimal cut-o¤ level is given by either "c = " or (with V = 0)

y + "c + 
e("c)�  (e("c)) = rU: (14)

The above equation uniquely de�nes the optimal cut-o¤ level, which equalizes the worker�s

net productivity with her outside option. The solutions for both "c and e are independent

of R.

Then we turn to the second step. The �rst order condition for the maximization problem

(12) is given by

q0(p)p0(R)(S �R)� q = 0: (15)

Let � denote the absolute value of the elasticity of q with respect to � = v=u. In the appendix

we show that the �rst order condition can be rewritten as
5Note that the expectations are rational in the following sense; Suppose that a small set of �rms deviates

and advertises an out-of equilibrium rent R0. Applications would then �ow to these �rms up to the point
at which the applicants obtain exactly their equilibrium expected income U�, in which case q(R0) = bq(R0)
holds (see Moen 1997 for details).
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RF

SF �RF
=

�

1� �
: (16)

In the appendix we also show that the second order conditions are satis�ed provided that

d�=d� � 0. This is always the case with a Cobb-Douglas matching function, x(u; v) =

Au�v1��, in which case � = � (constant).

The pro�t-maximizing level of R, which optimally trades o¤ a short waiting time to get

a worker and a high expected payment to the worker, is thus obtained if the worker is given

a share � of the expected surplus SF . Equation (16) is identical to the so-called Hosios

condition for socially e¢ cient resource allocations in search models (Hosios, 1990).

Finally, the free-entry condition (10) pins down UF . Given UF , equations (13) and (14)

de�ne eF (which is independent of both " and U , see equation 13) and "Fc , while equation

(16) determines RF and indirectly pF through equation (9) The equilibrium does not pin

down a unique wage schedule, wF ("). The equilibrium wage schedule may, for instance, be

a �xed, type-independent wage. Since the e¤ort cost is the same for all worker types hired,

the participation constraint is then satis�ed for all types.

4 Generalized competitive search equilibrium

We now consider the situation where e and " are private information. We require that e � 0.

Let e!(";e") denote the utility �ow of a worker of type " who reports type e", de�ned as
e!(";e") = w(e")�  (e(e")� "� e"



) (17)

The �rst term shows the wage and the second term the e¤ort cost of a worker of type " who

reports a type e". To understand the last term, suppose the contract prescribes e¤ort level
e(e"). A worker of type e" then produces y + e" + 
e(e"). A worker of type " can reach this
output requirement by exerting an e¤ort e(e")� "�e"



.

The worker�s incentive compatibility constraint can now be formulated as

e!("; ") � e!(";e"); for all ";e". (C4)
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Let !(") � argmaxe" e!(";e"). The participation constraint requires that fW (") � U . From

equation (2) it thus follows that the participation constraint can be written as

!(") � rU; for all " � "c: (C5)

De�nition 2 The generalized competitive search equilibrium (GCS-equilibrium) is a contract

�� = (w�("); e�("); "�c) where e
�(") � 0 for all ", a vector of asset values (S�; R�; U�), and a

job �nding rate p� such that the following holds:

1. ��; S�; R�; p� solves program P1 for U = U� with (C4) and (C5) as additional con-

straints. We refer to this as program P2.

2. Free entry:

V max(U�) = 0: (18)

In the appendix (in the proof of proposition 1) we show that the utility functions of two

di¤erent worker types satis�es the single-crossing property, and that a su¢ cient condition for

truth-telling is that e(") is monotonically increasing in " whenever e(") > 0.6 We will assume

that e(") is monotonically increasing in ", and then verify afterwards that the resulting

solution indeed is so. It follows from monotonicity that e(") is continuous and di¤erentiable

almost everywhere. In the appendix we show that the wage w("), and thus also !("), is

di¤erentiable at all points " where e(") is di¤erentiable. From the envelope theorem it

follows that the �rst order conditions for truth-telling when e > 0 can be written as

!0(") =
@e!(";e")
@"

je"=" (19)

=  0(e("))=
; (20)

(from 17). If a worker�s type increases by one unit, she can reduce her e¤ort by 1=
 units

and still obtain the same output, thereby increasing her utility by  0(e("))=
 units. Incentive

compatibility requires that the worker obtains the same gain by reporting her type truthfully.

Using equation (20), the utility �ow to a worker of type " � "c can be written as

6The optimal contract may prescribe that e = 0 for some types (pooling).
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!(") = !("c) +

Z "

"c

 0(e(x))



dx: (21)

Note that contracts that prescribe more e¤ort from low-type workers must give higher utility

to high-types to keep the incentive compatibility constraint satis�ed.

A �rst question that arises is whether the full information equilibrium (SF ; RF ; UF ; pF ; �F )

is still feasible. The next lemma addresses that question.

Lemma 1 a) For "Fc > ", the GCS-equilibrium with full information is not feasible when "

and e are private information.

b) For "Fc = ", the GCS-equilibrium with full information is feasible with private infor-

mation if and only if RF � R, where

R =

Z "

"

"� "

r + s
dH("): (22)

The lemma thus states that with interior cut-o¤, the full information equilibrium can

never be implemented when information is private. If all worker types are hired in the full

information case, and the search rent is su¢ ciently large (RF � R), the full information

equilibrium can be implemented with private information. In what follows we assume that

RF � R.

To solve the �rms�maximization program P2, we use the standard method of integrating

up the incentive compatibility constraint using integration by parts. As rent is valuable,

�rms do not leave rents to the marginal worker, !("c) = rU . From equation (21), we then

get

Z "

"

!(")dH(") = rU +

Z "

"c

Z "

"c

 0(e(x))



dxdH(")

= rU +

Z "

"c

 0(e("))




1�H(")

h(")
dH("):

Using (5) thus gives

(r + s)R =

Z "

"c

 0(e("))




1�H(")

h(")
dH("): (C6)
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Equation (C6) incorporates both the incentive compatibility constraint and the participation

constraint. As for the full-information equilibrium, program P2 is solved in two steps:

1. (Optimal contracts) For a given U and R, �nd the maximum match surplus Smax(R;U)

de�ned as

(r + s)Smax(R;U) = max
e(");"c

Z "

"c

[y(e("); ")�  (e("))� rU � (r + s)V ]dH(") (23)

s.t.

(r + s)R =

Z "

"c

 0(e("))




1�H(")

h(")
dH("):

Denote the associated contract by �max(R;U).

2. (Optimal sharing rule) For a given U and Smax(R;U), �nd the expected rent R that

maximizes the value of a vacancy V max(U), de�ned as

rV max(U) = max
R
�c+ q(p(R))[Smax(R;U)�R]; (24)

where p(R) is de�ned by (9).

We write S� = Smax(R�; U�) and �� = �max(R�; U�).

Step 1: Optimal contracts Denote the Lagrangian parameter associated with the rent

constraint (C6) by �. The Lagrangian is given by

L =

Z "

"c

[y + "+ 
e(")�  (e("))� rU � (r + s)V ]dH(")

��[
Z "

"c

 0(e("))




1�H(")

h(")
dH(")� (r + s)R]: (25)

Proposition 1 (Solution to the �rst step).

i) For given R and U , the optimal contract satis�es the following conditions:

1. The �rst-order condition for the e¤ort level. The optimal e¤ort is either e = 0 or given

by


 �  0(e(")) = �
1�H(")

h(")
 00(e("))=
: (26)
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2. The �rst-order condition for the optimal cut-o¤ level. The optimal cut-o¤ level is either

"c = " or (with V = 0)

[y + "c + 
e("c)�  (e("c))� rU ]h("c) = �(1�H("c))
 0(e("c))



: (27)

3. The rent-constraint de�ned by equation (C6).

ii) The �rst order conditions have a unique solution, and solve the �rst step of the max-

imization problem P2.

The proof of ii) is given in the appendix. There we also show that if e(") = 0 for some

"0, then e(") = 0 for all " < "0. For convenience we assume that the optimal e¤ort level is

strictly positive for all ". From (26) it follows that e(") is continuously di¤erentiable in " for

e > 0.

Before we explain the �rst-order conditions in some detail, note that � is the shadow

�ow value of worker rents for the match surplus Smax(R;U). From (25) it follows that

@L
@R
= (r + s)�, or

SmaxR = �, (28)

where subscript R denotes the derivative with respect to R.

Equation (28) captures a fundamental role of private information. In the full-information

equilibrium derived in the previous section, the match surplus Smax was independent of R.

With private information, the total amount and the division of surplus are interrelated. The

higher the expected rent/wage the �rm pays to the worker, the higher is the expected output.

The two �rst-order conditions generalize optimal contracts with private information (as

in e.g. La¤ont and Tirole, 1993) to a setting with search frictions. In the contracting

model of La¤ont and Tirole, the principal maximizes (in our terminology) S(R) � R, and

the maximum is obtained for S 0(R) = 1. With search friction, the rent paid to the worker

also in�uences the arrival rate of workers, hence it is less costly for the �rm to give rents to
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the worker. As will be clear below, it is always true that S 0(R) < 1 (or � < 1) in GCS-

equilibrium. From (26) it follows that the incentive power of the contract is lower in our case

than in the standard La¤ont-Tirole environment, where the agent (or the set of potential

agents) is present from the outset.

Consider the optimal e¤ort equation (26) and suppose that the e¤ort level of a type

"̂ worker increases by one unit. The left-hand side of equation (26) captures the resulting

e¢ ciency gain 
� 0(e("̂)). The right-hand side captures the costs associated with an increase

in e¤ort. A one unit increase in e¤ort of a type "̂ worker increases the rents of all workers

above "̂ by  00(e("̂))=
 units (from equation 21) and the shadow value of this rent is �. The

likelihood of obtaining a worker of type "̂ is re�ected in h("̂), while the measure of workers

with higher match-speci�c productivity is 1�H("̂). This explains the factor (1�H("̂))=h("̂).

Note that e(") = eF (no distortion at the top). Since h has an increasing hazard rate and

 000(e) � 0, e(") is increasing in " (hence the second order conditions for truth-telling are

satis�ed, see appendix for details).

The left-hand side of the cut-o¤equation (27) shows the net productivity loss of increasing

"c. The right-hand side represents the gain in terms of reduced rents, which have a shadow

�ow value �.

Let (a; b) denote a linear contract of the form w = a+by. The optimal non-linear contract

can be represented by a menu (a("); b(")) of linear contracts.7 For any b, the worker chooses

the e¤ort level such that  0(e) = b
. Inserting this condition into equation (26), we obtain

b(") = 1� �
1�H(")

h(")

 00(e)


2
: (29)

We refer to b(") as the incentive power of the optimal contract. The value of a(") is set so

that (C6) is satis�ed. For later reference, we also express the expected rent in terms of b(").

Inserting  0(e) = b
 into equation (C6) gives

(r + s)R =

Z "

"c

b(")
1�H(")

h(")
dH("): (30)

7See, e.g., La¤ont and Tirole, 1993.
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Proposition 2 The optimal contract �max(R;U) and match surplus Smax(R;U) have the

following properties:

a) The e¤ort level e(") is strictly increasing in R for all " < " and the cut-o¤ level "c is

decreasing in R.

b) The match surplus Smax(R;U) is strictly increasing and concave in R.

c) If all types are hired ("c = "), then

i) a shift in U shifts a(") but leaves b(") unchanged for all ".

ii) a shift in U does not in�uence the marginal value of rents, i.e., SmaxRU = 0.

When the principal has more rents to dole out, she can a¤ord to give stronger incentives

to all workers. Furthermore, as the expected rent is decreasing in the cut-o¤ level, a higher

R also implies that the principal can a¤ord to hire workers of a lower type, by reducing "c.

Proposition 1a) states that the principal does both.

The �rst part of b), that the match surplus, Smax, increases in R, follows directly from

the fact that the rent constraint is binding. The second part of b), that Smax is concave in

R, follows from the convexity of the maximization problem, i.e. that the marginal return

from a higher e¤ort or a lower cut-o¤ level is decreasing.

Result c) states that if all workers are hired, the workers� outside option U neither

in�uences the incentive power of the contract nor the shadow value of rents. Intuitively, for

a given cut-o¤, a change in U (for a given R) only implies that more income is transferred

to the worker and the e¤ort level remains constant for all types.8

As noted above, we derived the optimal contract under the assumption that it has the

cut-o¤ property that a worker is hired with probability 1 if " > "c and with probability 0

if " < "c. With a larger contract space, the hiring probability of a worker, �, is a general

function of ", � = �(").

Lemma 2 The optimal contract has the cut-o¤ property that there exists a value "c � " such

that �(") = 1 for " > "c and �(") = 0 for " < "c:

8 If the match productivities " were correlated between �rms, a worker�s outside option would increase
with ". However, U 0(") < 1=r would still hold and U 0(") would be smaller when the correlation is weaker.
The incentive compatibility constraint would be unaltered. Furthermore, the participation constraint would
still only bind for the lowest type, provided that the correlation is not too high. Hence, our main argument
would still hold. However, the rents associated with a given contract and thus also R would be lower.

18



Above, we have derived the optimal static (tenure independent) contract. In the appendix

we set up a more general contracting problem, where e¤ort and wages may be time dependent,

and show the following result:

Lemma 3 The optimal dynamic contract repeats the static contract.

Providing incentives is costly for �rms, as it yields information rents to inframarginal

workers. Deferred compensation or other time dependent wage contracts do not reduce this

information rent, as they do not reduce the rent high types can obtain by pretending to be low

types. Furthermore, deferred compensation does not in�uence the participation constraint

at the hiring stage. It may loosen the participation constraint for tenured workers, but this

has no value to the �rm as the worker�s outside option is time independent.

Step 2: Optimal sharing rules In the appendix we derive the �rst- and second order

condition for the maximization problem (24). With the equilibrium value of U� inserted, the

�rst-order condition reads

[1� SmaxR (R�; U�)]
R�

S� �R�
=

�

1� �
; (31)

where, as before, � denotes the absolute value of the elasticity of q with respect to � = v=u.

The second order condition is satis�ed as long as � is nondecreasing in �, exactly as in the

full-information case.

We refer to (31) as the modi�ed Hosios condition. The modi�ed Hosios condition states

that the workers� share of the match surplus, R�=(S� � R�); increases with the marginal

value of worker rents, SmaxR . Thus, a smaller fraction of the match surplus is allocated

to job creation. When SmaxR = 0, equation (31) is identical to the Hosios condition with

full information given by equation (16). With full information, a wage increase is purely

redistributional. It reduces the value of a match for the �rm by exactly the same amount

as it increases its value for the worker. With private information, this no longer holds. A

one-unit increase in R increases the match surplus Smax by SmaxR units, thereby reducing the

�rm�s pro�t J by 1� SmaxR units only.
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Proposition 3 Suppose z < y + 
eF �  (eF ) + ". Then the generalized competitive search

equilibrium exists. If � is non-decreasing in �, the equilibrium is unique.

With Cobb-Douglas matching function x(u; v) = Au�v1��, it follows that � = �. The

modi�ed Hosios condition then reads

[1� SR(R
�; U�)]

R�

S� �R�
=

�

1� �
: (32)

Equation (32) can be rewritten as

R� = �effS�

where

�eff =
�

1� (1� �)SR
(33)

can be interpreted as the worker�s e¤ective bargaining power. Note that �eff = � when

SR = 0, �
eff is strictly increasing in SR, and �

eff approaches 1 if SR approaches 1 (in which

case it is costless to provide incentives).

An interesting question is how the optimal contract is in�uenced by policy variables.

To some extent z is a variable controlled by the government. The vacancy costs c and

the e¢ ciency of the matching process (A in the Cobb-Douglas case) may also depend on

institutional arrangements.

Lemma 4 Suppose "c = ". Then an increase in z and A or a reduction in c strictly reduces

the incentive power of the wage contract b(") for all ".

An increase in z tends to reduce the match surplus, and hence the amount of rents

available to incentivize the worker. Firms thus have to cut back on the incentive power of

the wage contract. For the same reason �rms will lower the incentive power of the contract

if the matching process becomes more e¢ cient (c falls or A increases).

The competitive search equilibrium with full information maximizes the asset value of

unemployed workers, given that �rms break even (Acemoglu and Shimer, 1999, Moen and

Rosen, 2004). This property also holds for the GCS-equilibrium:

Lemma 5 The generalized competitive search equilibrium maximizes U given the free entry

constraint V = 0 and the relevant information constraints.
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We can also show that when "c = ", the equilibrium with private information has a higher

unemployment rate than the equilibrium without private information

Proposition 4 Suppose "c = ":Then the unemployment rate is strictly higher with private

information than with full information.

For a given cut-o¤ value "c, the unemployment rate increases for two reasons. First, for

a given rent sharing rule, the expected productivity of a worker falls, and as a result fewer

�rms enter the market. Second, the workers� share of the surplus is higher with private

information, hence fewer �rms enter the market compared to the full information case. This

in turn also increases the unemployment rate.

5 Unemployment volatility

As pointed in the introduction, work by Shimer (2005) has demonstrated that the standard

Diamond-Mortensen-Pissarides search model cannot easily explain the observed �uctuation

in unemployment and vacancy rates. They demonstrate that the observed volatility of the

unemployment rate relative to that of aggregate productivity is much larger than the DMP-

model predicts. While a standard Diamond-Mortensen-Pissarides search model indicates an

unemployment-output elasticity of around 1, data suggests an elasticity that is signi�cantly

larger, around 10.

In this subsection we will analyze whether private information in our model may enhance

the responsiveness of the unemployment rate to aggregate shocks. To simplify the analysis

we focus on comparative statics analysis. We assume that the matching function is Cobb-

Douglas, x(u; v) = Au�v1��.

Changes in productivity y

We will �rst study the e¤ects of changes in the deterministic productivity term y. Recall

that �eff de�ned by (33) denotes the equilibrium share of the surplus allocated to the worker.

We start by showing the following result

Proposition 5 Suppose "c = ", and R� � R. Then dbeff

dy
< 0.
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A negative shift in y decreases the equilibrium surplus S�, which for a given sharing rule

reduces R�. Since SRR is negative this increases the shadow value of rents, so that �eff

increases and R� falls less than if the sharing rule was constant. It follows that a negative

shift in y increases the share of the expected match surplus allocated to the worker. As

a result, private information tends to make wages less responsive and unemployment more

responsive to shifts in y.

Our result relates to the discussion in Hall (2005a). Hall argues that due to social norms,

the worker�s share of the match surplus is counter-cyclical.9 Our model generates a counter-

cyclical sharing rule as an optimal response to changes in aggregate variables in the presence

of private information.

Note that �eff increases after a negative shift in y because R� decreases. Hence, an upper

bound on the volatility that our model can deliver after shocks in y is what obtains if R�

stays constant after the shock. Brugemann and Moscarini (2007) and Brugemann (2008)

refer to constant worker rent as rent rigidity. They show that if rent rigidity is imposed on

the standard DMP model after a shock, this is not su¢ cient to account fully for the lacking

volatility in the unemployment rate. They �nd that the standard matching model with rent

rigidity can explain at most around 20-30 percent of the observed unemployment volatility.

Our main issue when looking at changes in y is therefore how close we can come to the upper

bound for unemployment volatility de�ned by the volatility with rent rigidity, not whether

we can "explain" the Shimer puzzle.

Our numerical analysis follows Kennan (2009), who also studies a model with private

information and two states. Kennan in turn builds on Shimer (2005). We set r = 0:012 and

s = 0:1 (with a quarter as the time unit) and � = 0:5. The search cost c is set equal to 0:4,

and A is calibrated so that the job �nding rate initially is p = 1:35.

We assume that " is uniformly distributed on an interval [�b";b"], where b" is to be de-
termined below. The cost of e¤ort is written as  (e) = ge2=2, where g is a constant. In

our baseline case we set g = 0:3 and the value of e¤ort, 
, equal to 0:6. Without private

information and with "c = �b", the average output per worker net of e¤ort cost is y + 0:6,
9Hall (2005b) also shows that wage rigidity may be the result of alternative speci�cations of the bargaining

procedure or self-selection among workers.

22



y u % change Elasticity
2.2 6.9

2.134 7.08 2.6087 0.8696

Table 1. Unemployment volatility
without effort costs

while the average measured output per worker (e¤ort costs not subtracted) is y + 1:2. We

set the initial value/benchmark of y to be 1, in which case observed �rst best output is 2:2:

Kennan (2009) argues that the variance in productivity estimated in Shimer�s is analogous

to a drop in productivity in a two-state model of 3 percent. With output equal to 2:2, this

corresponds to a drop in y by 0:066 with �rst-best output. Note though that we are focusing

on the elasticity of the unemployment rate to output changes, hence the size of the shift is

of second order importance. For the income while unemployed we follow Shimer and set it

equal to 40 percent of initial output, z = 0:4 � 2:2 = 0:88 (see comments below).

Table 1 shows the e¤ect of a three percent reduction in output in our model if all workers

have constant productivity and there is no e¤ort cost.

The elasticity of the unemployment rate to changes in y (measured as the percentage

increase in u to the percentage decrease in y) is below .9, much lower than Shimer�s estimate

of 10.

We then include private information. We calibrate the model such that R = R for y = 1.

This is done by solving the model in the full information case. Recall from (22) that with

uniform distribution, (r + s)R = b". We therefore set b" = (r + s)�S�, in which case R = R

initially. A negative shock to y will then drive R below R. In the appendix we show that if

R = R at y = y, there always exists an interval [ya; y] at which "c = �b". The critical value
of ya is reported below.

We analyze three di¤erent cases; one without private information, one with private in-

formation, and one with rent rigidity. In the model simulations without private information

we simply �x the expected output per worker at its �rst best level and the worker�s share of

the surplus at �. Rent rigidity is obtained by �xing R at R.

The �rst part of Table 2 shows the responsiveness of the unemployment rate without
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ybar u % increase Elasticity u % increaseRel. to no% reductionElasticity

in u in u private infoin output

1.00 6.8966 6.8966
0.934 7.2370 4.9358 1.6453 7.5585 9.5975 1.9445 3.2091 2.9907

Relative to no private info shows the increase in u with private information
relative to that of no private information.

Table 2. Unemployment volatility with private info
z=0.88 (0.4*2.2), β=0.5

Without priv. Info With private info

private information. Note that even without private information the elasticity of the un-

employment rate with respect to output is almost twice as big as in table 1. The reason

is that the cost of e¤ort is now included. The cost of e¤ort increases the attractiveness

of unemployment relative to employment. Recall that the unemployment bene�t is 40% of

observed �rst-best output, z = :4 � 2:2 = :88. The �rst best output level net of e¤ort cost is

only 1:6. Hence the e¤ective replacement ratio is now 0:88=1:6 = 0:55.

The second part of table 2 shows the e¤ect of the same shock in y with private information.

The unemployment rate increases by 9.6 percentage points, almost double that without

private information (column "Rel. to no private info"). Expected output per worker drops

by more than 3%, as we are no longer in �rst best and the e¤ort level decreases. Still the

elasticity of the unemployment rate with respect to output is almost 3, and 82 percent larger

than without private information.

Table 3 compares the solutions with private information and with rent rigidity.

It follows that the change in the unemployment rate under private information is 95% of

the change with rent rigidity. If we look at elasticities, the number is slightly smaller, since

output falls by more than 3 percent with private information (with rent rigidity, �rst best

output is achieved also after the shift). Still the elasticity under private information acounts

for 89 percent of the elasticity with rent rigidity. Thus, in this case private information
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y u % increase Elasticity Change in Elasticity
in u unempl.

1.00 6.8966
0.934 7.5943 10.1166 3.3722 94.8689 88.6873

Rent rigidity Private info rel.

Table 3. Private information vs rent rigidity

to rent rigidity

increases the responsiveness of the unemployment rate to shocks close to its upper bound

de�ned by rent rigidity. To understand the result, note that the cost of increasing the

worker�s share of the surplus from its initial value of � is of second order, as it is the solution

to the �rms�maximization problem. Thus, as the rent constraint starts to bite, �rms are

reluctant to reduce the rent paid to workers�, R, they instead create fever vacancies.

We also calculated ya (the lowest value of y at which "c = �b"), and found it to be :77.
Thus there is a large interval of y at which the rent constraint binds and at the same time all

workers are hired. In this simulation b" = 0:0512. The support of " thus has measure 0.1024.
Hall and Milgrom (2008) argue that if the value of leisure is included, a value of z equal

to 0:71 times initial output may be a better estimate of the value of leisure. The value of

leisure is arguably analogous to the absence of e¤ort cost when working, hence including both

would imply double accounting of the disutility of working. Still we have carried out the

same calculations as above using a higher unemployment bene�t, by setting z = 1:136 ( 0:71

times the expected productivity of a worker net of e¤ort cost, 0:52 times observed output.

Not unexpectedly, the unemployment rate becomes more responsive to shifts in output. In

addition, the di¤erence between the model with private information and without private

information grows slightly, while the di¤erence between the model with private information

and with rent rigidity drops slightly. The responsiveness of the unemployment rate with

private information is now 2:01 times the responsiveness without private information and

96.6 percent of the response with rent rigidity. The elasticity of the unemployment rate with

respect to output is 5.0, which is 90.0 percent of the elasticity under rent rigidity.
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%  of eps u y % matches % reduction Elasticity
not accepted in y of u

100 6.8966 2.20 0 0
110 7.4698 2.1911 0 0.4045 20.5449
120 8.0368 2.1828 0 0.7818 21.1466
130 8.4589 2.1788 2.1484 0.9636 23.5080
140 8.7583 2.178 5.7059 1.0000 26.9945

Table 4. Changes in the support of ε.
 z=0.88 (0.4*2.2), β=0.5

In our calibration, e¤ort is important. The value added from optimal e¤ort, net of e¤ort

cost, is 0:6, and the value gross of e¤ort cost is 1:2. It is therefore interesting to see what

happens if we reduce the importance of e¤ort. To this end we reduce 
 to :3. In this case

the optimal e¤ort level is 1, the gross value of e¤ort is only .3, while the net value is only

:15. We increase the benchmark value of y to 1:45, so that the equilibria without private

information and with rent rigidity are unaltered (the �rst best expected output level net of

e¤ort costs remains 1:6). Note that the net value of e¤ort is now less than 10 percent of

total output net of e¤ort costs. Even in this case the responsiveness of unemployment is

84 percent of the response with rent rigidity. The elasticity of the unemployment rate to

changes in output is 80 percent of that with rent rigidity.

Changes in the distribution of "

We now study the e¤ects of changes in b". We calibrate the model exactly in the same
way as above, but now we keep y equal to 1 and instead study the e¤ects of an increase inb". We also report the resulting changes in y, the observed average productivity.
The �rst column in table 4 shows the value of b" in percent of the initial value which gives

R = R. The initial value of b" is 0:0512, as above. The �rst line in the �gure shows the
baseline case. In the second line, b" is increased by 10 percent, in the third line by 20 percent
and so forth. The second column shows the unemployment rate, and the third column

shows average observed productivity per match. The fourth column shows the percentage

of matches that are rejected (that do not lead to employment). The �fth column shows the

reduction in expected output relative to the full-information case. Finally, the last column
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Parameters u % increase % matches % reduction Elasticity
in u not accepted in output

Baseline 6.8966 0 0 0 0
y: 1%, eps: 40% 8.9651 29.993 6.56 1.991 15.06
y:2%, eps 30% 8.8713 28.633 3.87 3.259 8.79
y:3%, eps 20% 8.7596 27.013 0.83 3.905 6.92
y:4%, eps 10% 8.463 22.713 0 4.664 4.87

Table 5. Simultaneous shifts in y and epsilon
z=0.88, β=.5

shows the elasticity of the unemployment rate to observed output (still measured as the ratio

of the percentage increase in the unemployment rate to the percentage reduction in output).

We see that the elasticity of the unemployment rate is around 20 and slightly increasing

as the shifts become larger. An increase in b" by 40 percent increases the unemployment
rate by more than 1.8 percentage points, and reduces output per employee by slightly more

than 1.3 percent. Note that all worker types are hired except in the last two cases, where a

small proportion of matches are rejected. However, as only matches that lead to employment

are observable and included in y, an increasing cut-o¤ dampens the reduction in y. Similar

results are obtained using z = 1:136.

It can be interesting to see the e¤ects of combined changes in y and b", after all the shifts
may be likely to occur in tandem.

The baseline case in table 5 is the same as in table 4. The next row shows the e¤ects of a

reduction in y of 1% and an increase in b" of 40 percent, the next row shows a decrease in y of
2 percent and an increase in b" of 30 percent, and so forth. Clearly, the e¤ect is particularly
large when the change in b" is large. Still a two percent decrease in y coupled with a 30
percent increase in b" increases the unemployment rate by around 2 percentage points and
gives an elasticity of the unemployment rate to output of 8:79.

We have also analyzed the e¤ects of shifts using lower value of e¤ort, that is, with


 = 0:3. As described in the subsection on shifts in y, this reduces the value of e¤ort net

of search e¤ort from :6 to :15. We calibrate the model as above and �nd that this reduces

the responsiveness of the unemployment rate to shifts in b", but it is still large. A 20 percent
increase in b" increases the unemployment rate from 6.8966 to 7.7295, and the elasticity of
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Parameters u % increase % matches Output % reduction Elasticity
in u not accepted in output

Baseline 6.8966 0 0 2.1825 0 0
y: 3% 7.4162 7.534 2.5824 2.117 3.001 2.51
eps 20% 7.519 9.025 8.74 2.1809 0.073 123.10
eps 40% 8.0789 17.143 15.51 2.1794 0.142 120.69

Table 6. Cut­off binds initially
z=0.88, β=.5

the unemployment rate to changes in observed output is 9.1.

Internal cut-o¤

Finally, we analyze the e¤ects of shifts in y and b" if R < R initially. We have calibrated

the model by choosing A and b" so that 1) the �rst order conditions for optimal cut-o¤ level
has "c = �b" as the solution initially, and 2) p = 1:35. This was obtained for b" = 0:0535 and
A = 1:3088. A reduction in y below 1 or an increase in b" above 0:0535 implies that we have
interior cut-o¤. It follows that � > 0 initially and worker e¤ort is lower than its �rst-best

level from the outset. The results are shown in table 6.

The baseline case shows the initial equilibrium. Note that expected output is less than

2.2 initially, as we do not have �rst best e¤ort levels. The next line shows the e¤ects of

a reduction in y of 3 percent of �rst best output (y is reduced to 0:934): The elasticity

of the unemployment rate is still substantially larger than the elasticity without private

information as calculated above. Still the e¤ect is smaller than above, when the initial

equilibrium satis�ed R� = R. To understand why, note that if "c stays constant at �b", �rms
can only adjust to a lower level of R by cutting back on worker e¤ort. When "c > �b", the
�rm can cut back both by reducing e¤ort and increasing the hiring threshold, and as a result

the shadow value of rent, �, and thus �eff increases less rapidly when R is reduced. On the

other hand, increasing "c has a direct, negative impact on the unemployment rate. It turns

out that the �rst e¤ect dominates, and that the responsiveness of the unemployment rate is

lower with interior cut-o¤.10

10We have also calculated the e¤ect on u of a fall in y with the same initial conditions, but with "c locked
at �b". The unemployment rate is then 7.5695 after the shock in y, which is larger than the rate of 7.4162
reported in the table.
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The two last rows show the e¤ects of increasing b" by 20 and 40 percent, respectively.
Compared to the results obtained when R� = R initially, we see that also for changes in b"
the e¤ects in terms of increase in the unemployment is lower with interior cut-o¤. However,

as �rms become more selective, the decrease in observed output associated with an increase

in b" falls, and the elasticity of the unemployment rate to observed expected output actually
increases.11

6 Final comments

In this paper, we de�ne and characterize what we refer to as the generalized competitive

search equilibrium, in which workers have private information regarding their e¤ort and

"type". In our model, the �rms face a trade-o¤ between extracting rents from workers and

providing incentives to exert e¤ort. Search frictions with competitive wage setting imply

that the cost of leaving rents to the worker are lower than in the standard frictionless model,

as worker rents save on search costs for the �rms. We show that the resulting equilibrium

satis�es what we refer to as the modi�ed Hosios condition. The incentive power of the wage

contracts is positively related to high productivity, low unemployment bene�ts and high

search frictions, and private information increases the unemployment rate.

We then analyze analytically and numerically to what extent our model is able to reconcile

the high volatility of the unemployment rate relative to the volatility of output per worker

observed in the data. Theoretical considerations imply that an upper bound on the e¤ects

of pure productivity shifts on unemployment volatility is the volatility obtained with rent

rigidity (the worker�s expected gain from �nding a job stays constant). Our numerical

analysis shows that the volatility of the unemployment rate is close to this upper bound

with reasonable parameter values. If the negative shifts are associated with greater variance

in output per worker, the model can easily reproduce the volatility of the unemployment

rate observed in the data.

It is our belief that developing search models with a richer structure than the standard

11Also for changes in b" we have calculated the e¤ect on the unemployment rate with "c locked at �b". A
20 percent increase in b" then leads to an unemployment rate of 8:0789, approximately the same as in the
case where R� = R initially.
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Diamond-Mortensen-Pissarides model may add new insights, both within macroeconomics

and di¤erent sub�elds of labor economics. In previous studies, the inclusion of human

capital in search models has improved our understanding of human capital formation. The

present paper addresses questions that are relevant for both macroeconomic �uctuations and

personnel economics within a search framework. Adding more structure to search models

may therefore be a fruitful avenue for future research.

Appendix

Optimal sharing rules, full information

From (15) it follows by simple manipulation that

elpq(p)elRp(R) =
R

SF (R)�R
: (34)

From equation (9) it follows that elRp(R) = �1. We want to show that elpq(p) = � �
1�� . To

see this, let p = ep(�) and q = eq(�). Then
elpq(p) = elpeq(ep�1(p))

=
el�eq(�)
el�ep(�) :

Since el�eq(�) = �� and el�ep(�) = el�[�eq(�)] = 1 � �, it follows that elpq(p) = � �
1�� . The

result thus follows.

Let us then turn to the second order conditions. Using (12) gives

dV

dR
= q0(p)p0(R)(S �R)� q(p(R))

= q(p(R))
q0(p)p

q

p0(R)R

p

S �R

R
� q(p(R))

= q(p(R))(
�

1� �

S �R

R
� 1)

(since elRp(R) = �1 and elpq(p) = � �
1�� ). The second order derivative is thus

d2V

dR2
= q0(p)p0(R)(

�

1� �

SF �R

R
� 1) +

d �
1��

dR
q(p(R))

SF �R

R
+
dS

F�R
R

dR
q(p(R))

�

1� �
(35)
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The �rst term is zero at the stationary point. The last term is strictly negative. However, our

assumptions on the matching function is not su¢ cient to sign
d �
1��
dR
. A su¢ cient condition

to satisfy the second order conditions and ensure that the Hosios condition has a unique

solution is thus
d �
1��
dR

� 0, i.e., since � is decreasing in R, that d�
d�
� 0.

Proof of Lemma 1

a) Suppose the full information equilibrium is feasible. Denote the full information output

level by yF ("). Truth-telling around "c requires that fW ("c) = U , or !("c) = rU . In order

to implement the �rst best cut-o¤ it thus follows that w("c) = yF ("c) (from 14). Inserting

 0(e(")) = 
 into (21) thus gives

w(") = yF ("c) + "� "c

= yF ("):

Hence, the pro�t is zero for all worker types. Since search is costly this implies that the value

of a vacancy is negative for all � > 0, and no �rm enters the market. This is inconsistent

with equilibrium.

b) For "c = " we may have that rU < yF (") and hence !("c) < yF ("c) �  (eF ). Set

!("c) at its lowest possible value that satis�es the participation constraint, !("c) = rU .

Inserting  0(e(")) = 
 into (21) then gives !(") = rU + " � ". The lowest possible rent R

that implements the full information allocation is thus given by (22).

Proof of the claim that !(") is di¤erentiable.

Since e(") is strictly increasing it is di¤erentiable almost everywhere. We want to show

that w(") is di¤erentiable at all points where e(") is di¤erentiable. It then follows that

!(e) = w(")�  (e(")) is di¤erentiable almost everywhere.

Suppose e(") is di¤erentiable at " = "1 > "c. Consider another type "2 > "c. Truth-telling

then implies

w("2)�  (e("2)) � w("1)�  (e("1)� "2 � "1



)

and

w("1)�  (e("1)) � w("2)�  (e("2)� "1 � "2



)
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Combining the equations gives

 (e("2)� "1 � "2



)�  (e("1)) � w("2)� w("1) �  (e("2))�  (e("1)� "2 � "1



)

Suppose �rst that "2 > "1. It follows that

 (e("2)� "1�"2


)�  (e("1))

"2 � "1
� w("2)� w("1)

"2 � "1
�
 (e("2))�  (e("1)� "2�"1



)

"2 � "1

We then take the limit as "2 ! "1+. Both the left-hand side and the right-hand side, and

thus also w("2)�w("1)
"2�"1 , converge to  0(e0("1)+ 1=
). Suppose then that "2 < "1. It follows that

 (e("2)� "1�"2


)�  (e("1))

"2 � "1
� w("2)� w("1)

"2 � "1
�
 (e("2))�  (e("1)� "2�"1



)

"2 � "1

We now take the limit as "2 ! "1�. Again both the left-hand side and the right-hand side

converge to  0(e0("1) + 1=
). It follows that the left and the right limit of w("
2)�w("1)
"2�"1 both

exist and are equal, and hence that w(") is di¤erentiable at " = "1.

Proofs related to Proposition 1.

In this appendix we 1) identify su¢ cient conditions for truth-telling, 2) show that the

�rst order condition has a unique solution, 3) derive properties for e("), "c and �; and 4)

show that the �rst order condition solves step 1 of P2.

1. Su¢ cient conditions for truth-telling

We want to show that the second order condition for truth-telling is satis�ed if e(") is

monotonically increasing in " whenever e > 0. Recall that

e!(";e") = w(e")�  (e(e")� "� e"


)

The second order condition for truth-telling is satis�ed if e!(";e") satis�es the single cross-
ing property e!e";"(";e") > 0. To see this, recall that the �rst order condition requires thate!e"("; ") = 0 for all " > "c The single crossing property thus implies that for e" > ",e!e"(";e") < e!e"(e";e") = 0. Analogously, the single crossing property implies that for e" < ",e!e"(";e") > e!e"(e";e") = 0. Together these conditions show that it is optimal to report e" = ".

Now

e!e"(";e") = w0(e")�  0(e(e")� "� e"


)(e0(e") + 1



)

e!e""(";e") =  00(e(e")� "� e"


)(e0(e") + 1



)
1
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which is surely satis�ed if e0(e") > 0 (actually it is su¢ cient that e0(e") > �1=
, i.e. that

output is increasing in ").

2. Unique solution to the �rst order conditions

From (25) it follows that

@L

@e(")
= 
 �  0(e("))� �

1�H(")

h(")
 00(e("))=
 (36)

The second order derivative is

@2L

@e(")2
= � 00(e("))� �

1�H(")

h(")
 000(e("))=
 < 0 (37)

It follows that the �rst order condition (26) uniquely de�nes the e¤ort level e(") (for a given

�), and that e(") is independent of "c.

Then we turn to "c. Since e(") is independent of "c; we can substitute the optimal value

of e(") into L. Taking derivatives of (25) then gives

@L

@"c
= �h("c)[y + "c + 
e("c)�  (e("c))� rU � �

1�H("c)

h("c)

 0(e("c))



] (38)

@2L

@"2c
= �h("c)� h("c)[
 �  0(e("c))� �

1�H("c)

h("c)
 00(e("c))=
)]e

0("c)

+h("c)�
d1�H("c)

h("c)

d"c

 0(e("c))




�h0("c)[y + "c + 
e("c)�  (e("c))� rU � �
1�H("c)

h("c)

 0(e("c))




= �h("c) + h("c)�
d1�H("c)

h("c)

d"c

 0(e("c))



< 0 (39)

where the last equation is obtained by substituting in the �rst order conditions for e and

"c and the fact that the hazard rate h=(1 � H) is increasing by assumption. Hence any

stationary point must be a local maximum. It follows that the �rst order condition (27) at

most has one stationary point and that this uniquely de�nes "c for "c > ".

3. Properties of e("), "c and �;

Since " by assumption has an increasing hazard rate, an increase in " shifts @L=@e(") in

(36) up. Thus, e(") is strictly increasing in e for e(") > 0. This has two implications:
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1. The second order condition for truth-telling is satis�ed

2. If e("0) = 0, e(") = 0 for all " < "0 as claimed in the main text.

Similarly, an increase in � shifts @L=@e(") in (36) down, hence e(") is decreasing in �.

We also want to show that "c is increasing in �. To this end, we take the derivative of

(38) with respect to � and �nd that

@2L

@"c@�
= �h("c)[(
 �  0(e("c))

de

d�
+ �

1�H("c)

h("c)

 00(e("c))




de

d�
+
1�H("c)

h("c)

 0(e("c))



]

= [1�H("c)]
 0(e("c))



> 0

From (39) we know that @2L=@"2c < 0 and it follows that @"c=@� > 0 for "c > ".

Unique �

We want to show that � is unique, and thus that the �rst order conditions have unique

solutions. Suppose there is more than one solution for �, and denote two of the solutions by

�1 and �2, �1 < �2. From above it follows that "c(�1) < "c(�2) and that e("; �1) � e("; �2)

with strict inequality whenever e(�1) > 0. But then it follows from (C6) that R(�1) > R(�2),

a contradiction.

4. The �rst order conditions de�ne the global maximum

We have already seen that e(") is strictly increasing in " for e > 0, and as stated above

this is a su¢ cient condition for truth-telling.

We want to show that the �rst order conditions (C6), (26) and (27) solve P2 step 1, and

do this by showing that the solution e("); "c maximizes L (with � de�ned by the �rst order

conditions). The cut-o¤ makes it hard to show that L is concave, still the result follows

almost immediately from (36)-(39).

For any given cut-o¤, it follows from (37) that e(") de�ned by the �rst order condition

maximizes L. Since e(") is independent of "c, it is therefore su¢ cient to evaluate L for

di¤erent values of "c given the optimal e¤ort e("):However, we have already seen that the

second order conditions are always satis�ed locally at any stationary point. It follows that

L is maximized at "c given by the �rst order condition (27) if this equation has a interior

solution. Otherwise, it is maximized at "c = ". The proof is thus complete.
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Proof of Proposition 2

We will �rst show that � is strictly decreasing in R for R < R. Suppose the opposite, i.e.

suppose that R strictly increases and � increases . In the proof of proposition 1 we showed

that that "c is increasing in � and that e(") is decreasing in � for all ". Equation (C6) thus

implies that R is decreasing, a contradiction. 2a) and b) then follows directly.

Proof of Proposition 2c). The results in part c) directly follow from the fact that when

"c = ", U only in�uences the maximization problem through the participation constraint

!(") = rU . The �rst-order condition for optimal e¤ort as well as � is then independent of

U .

Proof of lemma 2

We want to prove that the optimal contract has the cut-o¤ property that the worker is

hired with probability 1 if her type is above a threshold "c and with probability 0 if her type

is strictly below this threshold (unless "c = ", in which case the worker is always hired).

To this end, we extend the contract space by allowing for randomized hiring. Let �(")

denote the probability that a worker of type " is hired, 0 � �(") � 1. The contract is thus

a vector (w("); e("); �(")).

Full information

Although almost trivial, we �rst show the claim under full information. The optimal

contract solves (analogous to 11)

(r + s)Smax(U) = max
�(");e(")

Z "

"

�(")[y(e("); ")�  (e("))� rU ]dH("):

which is maximized given the constraints that 0 � �(") � 1. The associated Lagrangian

writes

L =

Z "

"

�(")[y(e("); ")�  (e("))� rU � (r + s)V ]dH(")� �1(�(")� 1) + �0�(")

The �rst order conditions for e(") reads (as in 13)

 0(eF (")) = 
 for all ":
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The �rst order condition for �(") reads

y + "+ 
eF �  (eF )� rU > 0) �(") = 1

y + "+ 
eF �  (eF )� rU < 0) �(") = 0

y + "+ 
eF �  (eF )� rU = 0) �(") 2 [0; 1]

The last equations is identical to equation (14), which uniquely de�nes "Fc . It thus follows

that

�(") = 1 if " > "Fc

�(") = 0 if " < "Fc

Private information

Again we use the revelation principle. Let fW �(";e") denote the expected discounted
income of a matched worker of type " that claims to be of type e". It follows that

fW �(";e") = (1� �(e"))U + �(e")w(e")�  (e(e")� "�e"


) + sU

r + s

Truth-telling requires that fW �(";e") is maximized for e" = ". The envelope theorem thus

implies that a necessary condition for truth-telling is that

dfW �(";e"("))
d"

=
@fW �(";e")

@"

evaluated at " = e". It thus follows that
dfW �(";e"("))

d"
= �(")

 0(e("))=


r + s

It follows that we can write

fW �(") = fW �(") +

Z "

"

�(")
 0(e(x))=


r + s
dx

Integrating over all " and using that fW �(") = U (as in the main model)Z "

"

fW �(")dH(") = U +

Z "

"

Z "

"

�(")
 0(e(x))=


r + s
dxdH(")

= U +

Z "

"

�(")
 0(e(x))=


r + s

1�H(")

h(")
dH(")
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The rent constraint thus reads

(r + s)R =

Z "

"

�(") 0(e(x))=

1�H(")

h(")
dH(")

The only di¤erence from the rent constraint (C6) is the multiplicative factor �("). In order to

�nd the optimal contract we proceed in the same way as above. It follows that the associated

Lagrangian reads (analogous to 25)

L =

Z "

"c

�(")[y + "+ 
e(")�  (e("))� rU ]dH(")

��[
Z "

"c

�(")
 0(e("))




1�H(")

h(")
dH(")� (r + s)R]:

��1(�(")� 1) + �0�(")

where the two last terms capture the constraints that 0 � �(") � 1 for all ", and where �1
and �0 are the associated non-negative Lagrangian parameters. The �rst order conditions

for e(") reads


 �  0(e(")) = �
1�H(")

h(")
 00(e("))=


which is identical to (26). For � we get that

y + "+ 
e(")�  (e("))� rU >
 0(e("))




1�H(")

h(")
) �(") = 1

y + "+ 
e(")�  (e("))� rU <
 0(e("))




1�H(")

h(")
) �(") = 0

y + "+ 
e(")�  (e("))� rU =
 0(e("))




1�H(")

h(")
) �(") 2 [0; 1]

The third equation is identical to equation (27) determining "c (unless the left-hand side is

strictly greater than the right-hand side for all ", in which case "c = "). We have already

shown in the proof of proposition 1) that "c is unique. It thus follows that

�(") = 1 if " > "c

�(") = 0 if " < "c

The proof is thus complete.

Proof of Lemma 3

37



We want to show that the optimal time-independent contract is also optimal within the

larger class of time-dependent contracts. A similar proof, based on Baron and Besanko

(1984), can be found in Fudenberg and Tirole (1991, p. 299). To simplify the proof and

avoid uninteresting technicalities, we assume time to be discrete. We �rst consider the case

where the cut-o¤ level is ". This will be modi�ed at the end.

The revelation principle still holds. Hence, it is su¢ cient to study the set of contracts that

maps the worker�s (reported) type into a sequence of wages and e¤ort levels fwt("); et(")g1t=0,

where t denotes the tenure of the worker in question.

Let �t("; et) = y+ "+ 
et(")�wt("). The expected discounted pro�t to the �rm is given

by

� = E"�1t=0�t("; et)�
t;

where � = 1�s
1+r

is the discount factor, including the exit rate of the worker. The expected

discounted utility of a worker of type " who announces type e" is given by
W (";e") = �1t=0 [wt(e")�  ("; e(e")) + sU ] �t;

where

 ("; e(e")) �  (e(e")� "� e"


):

Incentive compatibility requires that " = argmaxe"W (";e"). Let W (") � W ("; ").

The optimal dynamic contract solves

max
fwt(");et(")g1t=0

E"�1t=0�t("; et)�
t

subject to

� Incentive compatibility: " = argmaxe"W (";e"):
� Individual rationality: W (") � U for all ". This constraint is only binding for ":

Note that the participation constraint regards the expected discounted utility of all future

periods. It does not require that the utility �ow of employed workers is higher than the utility

�ow of unemployed workers in all periods. Thus, deferred compensation with an increasing

wage-tenure pro�le is allowed for.
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Let Cd = fwdt ("); edt (")g1t=0 denote an optimal contract within the larger set of time-

dependent contracts, and let C� = fw�("); e�(")g1t=0 denote the time-independent contract.

We want to show that Cd is equivalent to C�, in the sense that it implements the same e¤ort

level in each period, the same discounted expected pro�t to the �rm and the same expected

discounted rents to the workers.

Suppose that Cd 6= C�. Then, Cd cannot implement a time independent e¤ort level,

as this contract is, by de�nition, dominated by the optimal static contract C�: Therefore,

suppose that Cd does not implement a time independent e¤ort level. We will show that this

leads to a contradiction.

To this end, consider the random time-independent stochastic mechanism CdS, de�ned as

follows: in each period, the contract (wdt ("); e
d
t (")) is implemented with probability

�t

1�� . By

de�nition, this contract is both incentive compatible and satis�es the individual rationality

constraint. Furthermore, it yields a higher expected pro�t to the �rm than the static contract

(w�("); e�(")); since Cd dominates C� and thus, contradicts the optimality of the latter

mechanism in the class of time-independent contracts. Thus, it follows that Cd = C�.

Finally, the same argument holds for any given cut-o¤ value "c and hence, the optimal

cut-o¤ level with time-dependent contracts must be equal to the optimal cut-o¤ level with

time-independent contracts.

Optimal sharing rules with private information, equation (31)

Taking the �rst-order condition for the problem of maximizing V de�ned by equation

(24) gives

q0(p)p0(R)(Smax(R;U)�R)� q(1� SmaxR ) = 0;

or, by simple manipulation,

elpq(p)elRp(R) = (1� SmaxR )
R

Smax �R
;

analogous to (34). From equation (9) it follows that elRp(R) = �1 and from appendix 1

that elpq(p) = � �
1�� , thus we have

�

1� �
= (1� SmaxR )

R

Smax �R
:
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Let us then turn to the second order conditions. Using (24) we can write

dV (R)

dR
= q0(p)p0(R)(Smax �R)� q(p(R))(1� SmaxR )

= q(p(R))
q0(p)p

q

p0(R)R

p

Smax �R

R
� q(p(R))(1� SmaxR )

= q(p(R))(
�

1� �

Smax �R

R
� (1� SmaxR )):

The second order derivative thus writes

V 00(R) = q0(p)p0(R)(
�

1� �

Smax �R

R
� (1� SmaxR ))

+
d �
1��

dR
q(p(R))

Smax �R

R
+
dS

max�R
R

dR
q(p(R))

�

1� �
+ SmaxRR q(p(R)):

The �rst term is zero at the stationary point, and locally the condition thus writes

d �
1��

dR
q(p(R))

Smax �R

R
+
dS

max�R
R

dR
q(p(R))

�

1� �
+ SmaxRR q(p(R)): (40)

If we compare this expression to the analogous expression (35) for the full information case,

it follows that the only di¤erence is the last term in (40), and since SmaxRR < 0 this term is

surely negative. It follows that the su¢ cient conditions for the second order conditions to

be satis�ed are weaker with private information than with full information. In particular,

the requirement that
d �
1��
dR

� 0 is a su¢ cient condition also in the private-information case.

Proof of proposition 3

It is trivial to show that V max(U) is continuous and strictly decreasing in U . Clearly

limU!1 V
max(U) < 0. To show existence, it is su¢ cient to show that V max( z

r
) > 0. This will

always be the case if y is su¢ ciently high. We want to show that a su¢ cient productivity

requirement for V max( z
r
) > 0 is that z < y + 
eF �  (eF ) + ".

Suppose U = z=r. Let � = y + 
eF �  (eF ) + " � z. Consider a �rm that o¤ers the

following contract: The worker will receive a wage w = z + � +  (eF ) � 2k if and only if

she delivers an output y � z +�+  (eF )� k, where k is an arbitrary number in (0;�=2).

Since the contract gives workers an expected rent that is strictly positive, all workers in

the economy apply to this �rm, and the labor market tightness facing the �rm is 0. The
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vacancy is �lled immediately and the �rm earns an expected pro�t k=(r + s) > 0. Hence

V max(z=r) > 0.

Since V max(U) is strictly decreasing in U , the equilibrium value U� de�ned by V max(U) =

0 is unique. We have already shown that for a given U�, the optimal contract is unique

provided that �(�) is non-decreasing. The proposition thus follows.

Proof of lemma 4

The maximization problem (23), and thus Smax(R;U), is independent of z andA. Changes

in z and A only in�uences the optimal contract through R� and U�.

From (29) it follows that the incentive power b(") is strictly decreasing in �. From

proposition 2 part c) it follows that SRU = 0 (in this proof we suppress the superscript max

for convenience). It follows from 2 part b) that � = SR(R
�) is increasing in z if and only if

R� is decreasing in z. Suppose therefore to the contrary that R� is increasing in z. We want

to derive a contradiction.

Since the equilibrium maximizes U , it follows from the envelope theorem that U� is

increasing in z. Recall that R� = �effS�. Hence

d

dz

1� �eff

�eff
=

d

dz

S(R�; U�)�R�

R�

=
((SR � 1)dR

�

dz
+ SU

dU�

dz
)R� � (S(R�; U�)�R�)dR

�

dz

R�2

< 0

given that R� is increasing in z, where we have used that SU < 0 (from 23). It follows that

�eff is increasing in z. From (33) it then follows that SR(R�) is increasing and hence that

R� is decreasing, a contradiction. The claim thus follows.

Since the equilibrium maximizes U it also follows that U is increasing in A, hence the

same argument applies for A.

Proof of lemma 5

Suppose the contrary, i:e. that there exists a wage contract ~� such that U(~�) = ~U > U�

and V = 0. By de�nition, a �rm o¤ering ~� breaks even at U = ~U . Thus, the �rm makes

a strictly positive pro�t if it advertises this contract when U = U� < ~U (recall that V only

depends on U). But then �� cannot be a pro�t-maximizing contract, which is a contradiction.
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Proof of proposition 4

It is su¢ cient to show that pF > p�. Suppose pF � p�. We want to show that this leads

to a contradiction. Suppose �rst that �(�)) = � (Cobb-Doulgsas matching function). First

recall that

rUF = z + pF�SF

rU� = z + p��effS�

Since U is maximized in equilibrium, it follows that UF > U�. If pF � p� it follows that

SF > S� (since �eff > �). But then

c

q(pF )
= (1� �)SF > (1� �eff )S� =

c

q(p�)

Hence pF > p�, a contradiction.

Consider then the general case, in which case � = �(�), �0(�) � 0. With private informa-

tion, the workers�share of the surplus can be written as (analogous with 33)

�eff =
�(��)

1� (1� �(��))SR

With full information, the workers�share of the surplus is �(�F ). It follows that if �� � �F ,

then certainly �eff > �(�F ). Exactly the same argument as above thus applies, and it follows

that p� < pF also in the general case.

Proof of proposition 5

From proposition 2 part c) it follows that SRU = 0. It follows that � = SR(R
�) is

increasing in y if and only if R� is increasing in y.

Consider a positive shift in y. From Lemma 5, we know that in equilibrium, U� is

maximized; hence, it is trivial to show that U� is increasing in y.

Suppose that S� shifts downwards following an increase in y. We want to derive a

contradiction. First recall that

R� = �effS�

From (33) it follows that �eff is decreasing in R�. Di¤erentiating the above equation gives

dR� =
d�eff

dR�
S�dR� + �effdS�
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or

dR�(1� d�eff

dR�
S�) = �effdS�

Hence dS� < 0 ) dR� < 0, and d�eff > 0. Free entry together with equation (4) implies

that
c

q(p�)
= (1� �eff )S�

Hence d c
q(p�) < 0 ) dp� < 0. Since rU� = z + p�R�, it follows that U� decreases. We have

thus derived a contradiction.

Proof of existence of ya

Suppose RF = R for y = y1. We want to show that there exists an ya < y1 such that for

any y 2 (ya; y1) the following holds: 1) R > RF and 2) the cut-o¤ level is equal to ":

First note that for y < y1, SF (y) < SF (y1), and hence RF (y) = �SF (y) < �SF (y1) = R.

Hence the �rst condition is satis�ed.

By assumption, the �rst best e¤ort level is obtained at y = y1. As workers have full

incentives, w0(y) = 1. Since �rms have positive pro�t, it thus follows that y(") > w(");

otherwise �rms would obtain zero pro�ts. Thus, increasing the cut-o¤ level has a �rst-order

e¤ect on the expected surplus. Slightly reducing the incentive power of the contract only

gives a second-order e¤ect on the expected surplus. Thus, for values of y < y1 su¢ ciently

close to y1, �rms reduce the incentive power of the contract below the �rst best and still

hire all types. It follows that there exists an ya < y1 such that for any y 2 (ya; y1) 1) and 2)

above are both satis�ed.
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