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Preface 
 

The overall goal of this thesis is to perform an in-depth study on an economical 

topic of interest, where we are given an opportunity to apply our accumulated 

knowledge in a scientific research setting. We chose to investigate the topic of 

investment in R&D, and whether it leads to growth in firm productivity. The 

research work for the thesis has been very challenging, and consequently we have 

learned much, both in terms of underlying economic theories and empirical 

research on the topic. We want to thank our supervisor Espen R. Moen for good 

assistance, suggestions and inspiration during the work.   
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Abstract 
 

For centuries researchers have grappled with the question: What drives 

technological progress which in turn powers the all important aggregated growth 

of the economy? We argue that this question is interesting because it lies at the 

centre of the endogenous growth theory, which stresses the role of the R&D 

investments rate as the foremost determinant for productivity growth rates. By 

utilising the well-known Cobb-Douglas production function we empirically test 

and quantify the role of R&D investment in a Norwegian manufacturing industry 

setting. Our firm-level findings lend support to the endogenous growth theory 

claim, of both a direct and an indirect R&D effect on firms’ productivity growth 

rates.  
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1.   Introduction  

In recent years the world economy has experienced a period of high economic 

prosperity, caused by sustained and increasing productivity growth rates. 

However, these growth rates have not always been on the rise as was evident 

under the economical slowdown in the 1970’s. In the early 1980’s a ‘new’ 

growth theory emerged in the wake of empirical research trying to explain 

these downward movements in the growth rate. This so-called ‘endogenous 

growth’ theory builds on the original ‘neoclassical growth’ model, developed 

by Solow (1956) and Swan (1956), and stresses the important role of technical 

change as the engine behind productivity growth. However, the ‘new’ growth 

theory deviates from the neoclassical growth theory when it comes to 

providing an actual explanation for growth. While the neoclassical growth 

theory defines technical progress as an unexplainable phenomenon, the 

endogenous growth theory treats the technical progress variable as endogenous, 

making it in effect dependent on different determinants within the model. 

Hence, it provides the ‘social planner’ and agents in the market with an 

instrument to better understand which economical parameters in the economy 

that influence growth through the technical progress variable, and how they 

should manage these economical parameters effectively and optimally. 

 

The endogenous growth model proposes two novel ideas in the growth debate, 

namely that technical progress is caused by deliberate action taken by different 

agents in the economy, and that significant technological spillovers occur 

between different entities in the aggregated economy. Or in other words; 

technical progress is no longer unexplainable, and there is a difference between 

the social incentive and private incentive to invest in the technology process 

due to the presence of externalities in the marketplace. These externalities 

distort the mechanism of the market, and call for possible governmental 

intervention in order to ensure a more stable market solution where the social 

surplus is optimised. Hence, it would be of great interest to measure and 

quantify this technological spillover effect in an empirical study.  
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In our empirical paper we will test the following research question: “Can 

productivity growth rates in Norway be accounted for by an endogenous 

growth model, where technical progress is driven by both direct R&D 

investments and technological spillovers?” The research question will be tested 

on an extended Cobb-Douglas production function, augmented with both a 

direct and an indirect R&D variable, for firms operating in three different 

sectors of the Norwegian manufacturing industry. The parameters of interest in 

this analysis will be the output elasticities with respect to the direct and indirect 

R&D variables, as these variables represent key input factors in a firm’s 

technical progress1 (Higón, 2007). These two input variables will be 

constructed using firms’ individual investments in R&D, since these R&D 

values are readily available in our data set and comparable with a vast body of 

empirical studies on the topic. 

 

Besides testing the research question we will also elaborate on the incentives 

for firms to innovate, and how the social planner can induce the private sector 

to invest in R&D. These questions are highly relevant in the debate connected 

to the endogenous growth theory as spillover externalities arguably create a 

mismatch between the social and private optimal level of R&D investments. 

Hence, we argue there is scope for the ‘social planner’ to take a more active 

role in the market and correct for externalities if we are able to detect the 

presence of spillovers in our model. 

 

The structure of the thesis will be as follows. In section 2 we will cover 

theories relevant for this paper, starting with a review of the endogenous 

growth theory, focusing on technical progress and technological spillovers in 

particular. This section will be two-folded, with an opening part (section 2.1) 

covering the relevant macroeconomic theory in question, and with a second 

part (section 2.2) giving a theoretical discussion of the relevant microeconomic 

theory underpinning the endogenous growth theory. In section 3 we will 

present results from relevant empirical studies and conduct a literature review. 

                                                           
1 Although the relationship between R&D and innovation is complex and non-linear, it is clear 
that substantial advances in technology cannot occur without work undertaken on a systematic 
basis, and R&D is therefore regarded as a good indicator of this broader phenomenon. 
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In section 4 we will focus on the methodological approach we intend to take in 

our empirical analysis. In section 5 we will turn to our actual model of 

estimation. In this part we will also elaborate on our model and our dataset, and 

perform different econometrical tests such as; Unit root tests and a Granger 

causality test. In section 6 we will conclude our paper, before we in section 7 

give a short explanation of the potential short-comings of our model and paper. 

 

2.   Theoretical framework  

In the quest to infer a relationship between R&D spending and productivity 

growth rates, researchers have in recent years turned to the endogenous growth 

theory in the search for answers. With its’ appealing explanation for the long-

run growth rate it provides the researcher with a theoretical framework which 

stresses the role of R&D investments as the chief determinant for technical 

progress. In order to fully utilise this framework we will first cover the 

macroeconomic implication of the endogenous growth theory, before we in the 

following subsection will turn to the microeconomic foundation of this theory, 

and its’ implied implications for the social planner. 

 

2.1     Endogenous growth theory: technical progress and spillovers   

In the macroeconomic literature practitioners are concerned with two 

overarching aspects of the economy, namely the long-run and short-run 

phenomena. The former is the study of long-run trend levels in the economy, 

while the latter focuses on short-run fluctuations in the economy, namely the 

study of ‘Business cycles’. Thus, macroeconomic theories for the long-run 

intend to explain trend-wise movements of main economic variables, assuming 

no nominal rigidities in the long-run. That is; wages and prices are fully 

adjusted in all periods, and the long-run (steady state) equilibrium values can 

be studied in isolation. Macroeconomic theory for the short-run, on the other 

hand, is about understanding cyclical fluctuations in chief economic variables 

(Sørensen and Whitta-Jacobsen, 2005). It is therefore important to utilise the 

appropriate macroeconomic theory depending on the specific timeframe of our 
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investigation. Since growth modelling is about depicting the long-run trend 

levels of the economy, we will in our paper be using long-run macroeconomic 

theories.  

 

When analysing long-run macroeconomic growth theories one comes across 

two distinct camps of thought. On one side you have the strand of practitioners 

who embrace the general Solow model - which states that steady exogenous 

technological progress is the root of positive long-run growth in GDP per 

person (Solow, 1956). This so-called ‘exogenous growth’ model2 is quite 

successful in accounting for many important aspect of economical growth. 

However, it has one major short-coming, namely that it treats the rate of 

technological change as exogenous; a variable determined outside the model 

which movements are ‘unexplainable’. This obvious limitation with the 

traditional growth theory has in recent years been attacked by several 

macroeconomic practitioners who have developed the endogenous growth 

theory in response (e.g. Romer, 1986; Lucas, 1988). In this new theoretical 

setup the rate of technological change is made dependent on basic model 

parameters such as; investment rates in physical and human capital3. By 

treating the rate of technical change as endogenous one can investigate the 

relationship between the determinants of technical change and long-run growth 

in isolation. This allows the social planner to better understand how he/she can 

implement economic policies that affect the basic model parameters, which in 

turn can create the desired long-run growth in income per capita. This is in fact 

the main advantage of the endogenous growth model as it creates a potential 

blueprint for policy-makers and business owners on how to maintain and 

increase current productivity growth rates through adjustments in R&D 

investment rates. 

 

On the other hand, the main advantage of the endogenous growth model is also 

its’ main disadvantage, namely its’ fundamental dependency on a tangible 

                                                           
2 Also referred to as the neoclassical growth model. 
3 With R&D spending acting as the chief proxy for this parameter. 
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relationship between investment rates and productivity growth rates. If such a 

relationship is not detected in empirical studies then the foundation of the 

endogenous growth model will crumble. Empirical research on this matter have 

produced a variety of results, depending on location, time, and what parts of 

the economy the researcher studied (e.g. firm level, industry level, or country 

level). However, the majority of these studies have indeed found an enduring 

and statistical significant relationship between one of the most important 

determinants of technical change, namely R&D investment rates, and long-run 

growth rates in output (e.g. Bernanke and Gurkanyak, 2001; Cameron, 1998).  

 

Conversely, critics of the endogenous growth theory argue that these 

supporting results might be plagued by the so-called ‘scale effect’, where the 

growth is in fact generated by increasing population growth rates. Under such 

circumstances the growth rate of the economy is better explained by the 

exogenous growth model rather than the endogenous growth model. What it 

eventually comes down to in the clash between the endogenous growth theory 

and the exogenous growth theory is a classical trade-off between a complicated 

model with superior explanatory power, and a simple model with less 

explanatory power, but which is easier to reconcile with historical data. The 

same empirical results can also be flawed if they only pick up the transitory 

relationship of variables converging towards their steady state values. Thus, a 

time series study with a short time interval will have difficulties in estimating 

the actual long-run relationship between the measured variables, and will as a 

consequence only pick up the transitory effect. These are only two examples 

found in the growth literature of why the relationship between the determinant 

of technical progress (i.e. R&D investments) and productivity growth rates is 

so hard to measure (Sørensen and Whitta-Jacobsen, 2005).  

 

The endogenous growth model relies on two important assumptions. Firstly, it 

assumes that technical changes are created by investments steaming from 

explicit decisions made by different agents in the economy. Secondly, it 

assumes that there exist significant externalities (i.e. technology spillovers) 

within the economy, meaning that the technology producer is not the only one 
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who benefits from his/hers R&D efforts. The former assumption specifies that 

technical progress does not come about by change, but is indeed the result of a 

conscious business decision. Hence, firms invest in R&D because they expect 

to obtain some form of returns. However, it is worth noting that this is not a 

new observation associated only with the endogenous growth model, but has 

been articulated many times before by economists such as Griliches (1958, and 

1964) and Mansfield (1968). The latter assumption is a highly powerful 

assumption and rather distinct to the endogenous growth theory, as it lays the 

foundation for the existence of a spillover effect in the aggregated economy. 

This means that the economy as a whole may face increasing return to scale 

even if we were to impose the traditional restriction of homogenous outputs 

and inputs, and constant return to scale on a firm level. We can in other words 

observe a positive difference between social returns and private returns of 

R&D (see Appendix 1 for a graphical illustration).  

 

In the time after the original endogenous growth model was first created, new 

augmented endogenous growth models have emerged with the works by Romer 

(1990) and Grossman and Helpman, (1991a). These augmented models relax 

the perfect competition assumption, and leave open the possibility of 

increasing return to scale on a firm level as well as on the aggregated level. In 

these models the R&D variable is treated as having two kinds of outputs. On 

one hand you have general knowledge, which is non-appropriable, and free to 

spillover from one firm to another. On the other hand you have the rent from 

the development of blueprints for new products, which is fully appropriable. It 

is this latter form of output value that acts as a ‘direct’ incentive instrument for 

firms to innovate and invest in R&D. This is because it introduces 

differentiated products into the market setting, which means we are no longer 

dealing with a perfect competitive market, but rather allow for some degree of 

monopolistic power within the market structure (i.e. there is  profit to be 

earned). Therefore, we may in these augmented endogenous growth models 

have increasing return to scale, not only at an aggregated level, but also on a 

firm level.  
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In the growth literature and empirical studies the extended Cobb-Douglas 

production function is used extensively to test the endogenous growth theory, 

and its’ implied spillover effect. As we are interested in both the direct and 

indirect relationship between R&D and output, we have chosen to utilise this 

extended Cobb-Douglas production function suggested by Griliches (1990), 

Romer (1990), and Los and Verspagen (2000): 

 

(1)       

 

where Q, K, L, and R represent firm i’s; output, physical capital input, labour 

input, and technological capital input in time period t, respectively. F(·) is a 

function that represents the economy wide technology capital, while A 

represents a constant. In empirical studies the preferred measure of output is 

the ‘value added’ variable as this includes intermediate inputs. However, most 

studies have been forced to use sales as a measure of output, which is a cruder 

form of measure. We will in our model use firms’ operating income as our 

dependent variable. This variable is closely related to the sales variable, and 

includes both income from sales and income from other operating activities. 

The choice of the direct technological capital input variable will be firms’ 

individual R&D stock4. The indirect stock variable will be constructed by 

aggregating and weighting other firms’ R&D stocks. 

 

 

The reason why we have chosen to adopt this extended Cobb-Douglas 

production function in our analysis is because of its’ direct link to traditional 

microeconomic and macroeconomic theories which gives it a robust design, 

high explanatory power, and with the desired degree of comparability to many 

past studies and models. However, its’ simple design makes it vulnerable for 

missing out on many potentially important explanatory variables such as; 

international technological spillovers, firm size, and firm liquidity. These 

variables could potentially explain the actual relationship better. Nevertheless, 

by including all possible variables we run into the problem of not being able to 
                                                           
4 An extensive explanation for the construct of the R&D stock will be given in section 5.3.   
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interpret our results, and move far away from the macroeconomic theory we 

are investigating. The extended Cobb-Douglas production function also lacks 

dynamic interaction functionality, such as those typically found in VAR 

models, where all variables are treated as endogenous within a recursive 

system of interaction. This type of approach is more common in Business cycle 

analysis, and is therefore not included in our model as we want to measure the 

long-run relationship between our variables in question, and not necessarily 

their short-run interactions.     

 

 

2.2     Microeconomic foundations of the endogenous growth model 

In order to fully understand why profit-motivated firms engage in R&D it is 

important to investigate the microeconomic foundations underpinning the 

endogenous growth theory. This is important for two reasons. Firstly, since the 

model and data we have adopted is based on a firm (micro) level, it would be 

of great interest to investigate firms’ individual reasoning for undertaking 

R&D. Secondly, if a spillover effect is indeed detected in the data then the 

endogenous growth theory states that in most cases the social surplus from 

investing in R&D will be larger than the private sector surplus from investing 

in R&D (see Appendix 1 for an graphical illustration). It is therefore of great 

interest to study why firms tend to underinvest in R&D, and how the social 

planer can induce these agents to invest in R&D at the socially optimal level5.  

 

One of the key features of augmented endogenous growth models is its’ 

relaxation of the perfect competition assumption (e.g. Romer ,1990; Grossman 

and Helpman, 1991a). With such a market structure the different ‘profit 

maximising’ agents will compete with each other in order to create or secure a 

market advantage (Scotchmer, 2004). Their main incentive to invest in R&D is 

therefore to create a competitive advantage in the market place which fulfils 

their ultimate goal of increased profit shares (Porter, 1985). In the augmented 

endogenous growth models intellectual property rights are believed to create 

                                                           
5 In this paper the government is considered to be the social planner, which is a social welfare 
maximising agency who controls all the firms in the economy (Nishimura, 1992).       
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monopoly power which leaves open the possibility of increasing return to 

scale on the firm level. Notice that this will create a situation where the market 

equilibrium will differ from the socially optimal solution associated with the 

perfect competition equilibrium- where the market price equals aggregated 

marginal costs. The social planner is locked into a complicated situation where 

one must give up the efficient market solution (perfect competition and no 

deadweight loss), and implement intellectual property rights in order to induce 

firms to engage in R&D. The social planner might just be forced to accept this 

trade-off as a ‘necessary evil’, since firms in a perfect competition market 

setting cannot  appropriate the rent from their own innovation, and are 

therefore quite unwilling to invest in R&D because its’ ‘public good’ 

characteristic6. Firms will only invest in R&D when they are able to leverage 

on future profit streams in order to cover R&D expenses and fixed costs that 

occur at the research level.  

 

In the endogenous growth literature technological spillovers are usually 

referred to as knowledge spillover. However, notice that technological 

spillovers are in fact a combination of two different forms of spillovers, 

namely; knowledge spillover (also known as the ‘standing on shoulders’ 

externality), and rent spillover (also known as the ‘surplus appropriability’ 

externality). The first type of spillover captures the cost reduction for 

competitors due to knowledge leaks, free movement of labour force, and 

imperfect patenting. Firms are, as a consequence, more reserved regarding 

investing in R&D since the innovating firm carries the full cost and risk 

associated with their R&D project, while the profit stream is shared with 

others. The second type of spillover, namely rent spillover, occurs because 

competitive pressure prevents the producer of an innovation to capture the 

whole price increase that results from the quality improvement in the new 

product relative to the old product. Thus, the innovator cannot appropriate the 

entire surplus from the innovation. In the endogenous growth theory the role of 

knowledge spillover is stressed as the most important form of externality and 

main reason for the resulting underinvestment in R&D. Rent spillover is 

                                                           
6 A ‘public good’ is non-rival and non-excludable good. 
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usually explained as mispricing in the market and is therefore given less 

significance within the model. However, it is inherently difficult to separate 

rent spillovers and knowledge spillovers and most empirical papers tend to 

generalise the two spillover effects as knowledge spillover as they both 

represent a general underinvestment in R&D. Notice that we in our paper make 

no attempt to separate rent and knowledge spillovers, and our empirical results 

may as a consequence overestimated technological spillovers, due to the 

presence of rent spillovers in our spillover measure. 

 

The two forms of externalities associated with spillovers lead to 

underinvestment in R&D compared to the level which is socially optimal. 

However, there are two other types of externalities arising in the market setting 

which could also lead to inefficient levels of R&D investments from the social 

planner’s point of view. These are referred to as; ‘creative destruction’ which 

can lead to overinvestment, and ‘stepping on toes’ which either lead to 

overinvestment if innovations are substitutes, or underinvestment if 

innovations are complements (Cameron, 1998). Out of these two forms of 

externalities the Schumpeterian ‘creative destruction’ has received the most 

attention. It simply says that future innovation will cause a negative externality 

on current innovations since the former replaces the latter. A process which 

according to Aghion and Howitt (1992) will lead to a situation where R&D 

intensive firms push other firms out of the market. Innovations are in such a 

context recognised as the source of temporary market power which can explain 

the dynamics of industrial change throughout the market lifecycle. However, 

these two externalities are outside the scope of our paper, as our main concern 

is to measure the spillover effect associated with the endogenous growth 

theory. They will only be only be used in comparison to our empirical results 

in section 5.6.   

 

The government, as a social planner, can use several policy instruments to 

correct for spillover externalities and induce firms to engage in R&D. These 

can be implemented either ex-ante in terms of grants/awards, or ex-post in 

terms of patents. The grant/award system is designed such that the first firm 
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that completes a R&D project is given a fixed amount of money, and the 

innovation is then treated as a public good. The advantage of the award system 

is that it does not create a monopoly setting, and the firm gets a monetary 

compensation for their research effort and accumulated R&D costs. However, 

this instrument is difficult to implement and may lead to underinvestment in 

R&D, due to the threat of competition at the research level. Patents, on the 

other hand, are given to firms in order to prevent ‘copy cats’ or free-riders from 

taking advantage of the innovation at no or low costs. Consequently, the 

innovating company is given the opportunity to act as a monopolist and extract 

a profit share in order to cover the R&D and innovation costs. The government 

is in effect introducing property rights as a way to eliminate the externalities 

associated with underinvestment in R&D, by providing firms with the right set 

of incentives to invest7. However, a major short-coming with patents is that 

they will lead to an inefficient social solution if the monopolist is not able to 

perfectly price discriminate. This is because of the deadweight loss that arises 

in the monopolistic situation, which is regarded by the social planner as pure 

social waste. There is also an issue concerned with how profitable the patent 

should be. Too high rewards may induce too many firms to invest in R&D, 

which can create a potential profit-dissipating race. This so-called ‘patent race’ 

can be both inefficient and disadvantageous for the society if it leads to the 

pursuit of wrong ideas and duplication of both R&D costs and efforts 

(Scotchmer, 2004). On the other hand, a patent race may also be beneficial in 

terms of increasing the probability of success or the time of discovery. 

Nevertheless, the negative effect tends to dominate the positive effect in most 

instances (Tirole, 1988). 

  

Another way for the government to correct for externalities is by offering tax 

relief and subsidies. Both a R&D tax relief and a R&D subsidy will reduce 

firms’ total costs and act as incentive devices for firms to maximise their profit, 

since cost minimising is a required necessity of this process. The Norwegian 

government’s establishment of ‘Skattefunn’ is an example of such a tax 

                                                           
7 The Coase Theorem states that if property rights can be assigned, bargaining between firms 
can achieve an efficient level of output. 



R&D and Productivity GRA19003 

    
 

12 
 

scheme where firms that invest in R&D receive tax deductions. Patents, grants, 

prices, tax reliefs and subsidies are all instruments available for the social 

planner to utilise in an effort to improve the incentives for firms to invest in 

R&D, with patents being the most prominent and most commonly used 

instrument in both Norway and other industrialised countries. 

 

 

3.    Empirical studies and results  

In the empirical literature one finds a vast body of studies which have tried to 

measure both the spillover effect and direct effect of R&D investments on 

firms’ productivity growth rates. As pointed out earlier, these studies have 

produced rather mixed results, influenced by different factors such as; the 

periods of investigation, data sources, number of economic units, measurement 

methods for R&D and economic performance, aggregation level, and country 

location of investigation. In section 3 we will first cover the literature 

concerned with the direct effect of R&D investments, before we the second 

part will investigate the empirical results linked to the spillover effect. 

 

3.1  The direct effect of R&D investments  

In the literature debate, concerning the actual relationship between the direct 

R&D variable and the productivity variable, there seems to have emerged a 

consensus in recent decades. The majority of studies have indeed found a  

 

Table 1: Estimates of output elasticity of R&D

Author Country Level Elasticity

Griliches (1986) USA Firm 0.09-0.11

Verspagen (1995) USA Industry 0.00-0.17

Srinivasan (1996) USA Industry 0.24-0.26

Bartelsman (1996) Netherland Firm 0.04-0.12

Mansfield (1988) Japan Industry  0.42

Nadiri-Prucha  (1990) Japan Industry 0.27

Mairesse-Cuneo (1985) France Firm 0.09-0.26

Mairesse-Hall (1996) France Firm 0.00-0.17

Source: Cameron (1998), Griliches (1990), and Nidiri (1993) 
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positive and statistical significant relationship between these two variables on 

both a firm level and industry level. The positive output elasticities of R&D, 

depicted in table 1, show that the output elasticity with respect to the direct 

R&D variable has been found to be positive for most firms in all levels of the 

economy. In his literature review paper, Cameron (1998) goes as far as arguing 

that typically a 1 percent increase in the R&D capital stock leads to a rise in 

output of between 0.05 and 0.1 percent.  

 

All the studies in table 1 have either utilised an extended Cobb-Douglas 

production function, Total factor productivity (TFP) function8, or a Complex 

functional forms model in order to estimate the output elasticity with respect to 

R&D. Alternately, other researchers have opted for a different approach and 

transformed the extended Cobb-Douglas production function into growth rates, 

with the R&D intensity (log R/L) included as the chief explanatory variable. 

With this growth rate approach the parameter belonging to R&D intensity 

yields the rate of return to knowledge, instead of the output elasticity with 

respect to the direct R&D stock. Griliches (1992) summarised a large bulk of 

these empirical studies and found that the estimated rate of return to lie 

between 0.2 and 0.34, with the most recent estimates falling in the lower part 

of this range. Notice that these estimates of the marginal productivity of 

“knowledge” are higher than the marginal productivity of other capital 

investments, with real stock market returns seldom venturing as high as 10 

percent when averaged over several years (Scotchmer, 2004). Thus, one would 

expect rational agents to always choose R&D investments over other forms of 

capital investments. However, as it turns out, large degree of risk and 

uncertainty in the innovation process, as well as information asymmetries 

between R&D spenders and capital markets, tend to make R&D investments on 

average equally attractive as other forms of capital investments (Barfield et al, 

2003).    

 

                                                           
8Where the stock of R&D capital is regressed on the the level of total factor productivity.  
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In empirical studies, conducted on a firm level, researchers have also found 

very different R&D output elasticities and rate of return estimates between 

different sectors of the economy. This is an important discovery as the results 

typically show that firms in high-tech industries experience higher growth rates 

as a result of their R&D investments, compared to firms in medium-tech and 

low-tech industries (e.g. Los and Verspagen, 2000; Barfield et. al, 2003). Such 

results are typically attributed to the common notion that the high-tech sector is 

considered to be a growth market where the market is far from saturated. 

Hence, one would expect to find higher average rate of returns for firms 

operating in these industries as compared to firms operating in other sectors of 

the manufacturing industry (Pepall et al, 2005). This claim will be tested 

extensively and debated in section 5.5.  

 

Notice that these empirical results do face many critical voices in the literature, 

and not only from followers of the exogenous growth theory. According to a 

recent strand of researchers the results, depicted in table 1, are in fact highly 

questionable as the majority of the studies have chosen to utilise sales as the 

output variable instead of the more appropriate ‘value added’ variable. These 

authors argue that firms’ growth rates are in reality stochastic of nature and 

therefore unpredictable (e.g. Gerosky, 1999; Geroski et al, 1997). 

Argumentation of this sort is to a large extent based on the well-known 

Gibrat’s law, which states that sales growth rates can only be explained as a 

random walk, and no explanatory variables, such as firm size, can be used to 

explain its’ movements. Thus, there is no purpose of regressing R&D stock on 

sales growth as one will only infer a spurious relationship. For example, 

Manganelli (2008) was unable to detect a relationship between the R&D 

variable and the sales variable when he analysed the determinants of R&D in 

the Norwegian economy. On the other hand, critics of the Gibrat’s law argue 

that this kind of argumentation is in fact highly flawed as there is a scope to 

search for other variables with stochastic trends that could explain the sales 

growth rates. According to the standard econometric framework for time-

series; one can still infer a long-run relationship between the explanatory 
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variables and the dependent variables if the explanatory variables (K, L, and R) 

are also non-stationary and co-integrated with the non-stationary sales variable. 

Recent studies which have adopted this co-integration approach have indeed 

found long-run elasticities with respect to R&D investments to be even higher 

than those reported in table 1, thus discarding the Gibrat’s law theory and 

confirming the previous findings (e.g. Del Monte and Papagni, 2002; Los and 

Verspagen, 2000; Cameron, 2003; Guellec and Van Pottelsberghe de la 

Potterie, 2004). 

 

3.2 The spillover effect  

In empirical literature knowledge spillovers are the source to much of the 

controversies surrounding the endogenous growth model. This is because  

knowledge spillovers are inherently difficult to measure as the well-known 

economist Paul Krugman (1991, p. 53) noted;  "knowledge flows...are 

invisible; they leave little or no paper trail by which they may be measured and 

tracked, and there is nothing to prevent the theorist from assuming anything 

about them that she likes". Researchers who analyse the effects of spillovers 

have to rely on more or less crude proxy variables. As a result, empirical 

methods of measuring spillovers are necessarily somewhat indirect and open 

for discussion. In the literature the spillover effect has been measured on all 

levels of the economy, but with a special focus on the aggregated level and 

international spillovers in particular. Many of these studies have indeed found 

the presence of technological spillovers at an industry and country level9. For 

example, in their influential paper Coe and Helpman (1995) were able to detect 

significant international R&D spillovers in certain countries of the world 

economy, with output elasticities of the indirect R&D stock averaging between 

0.05 and 0.12.  

 

Measuring technological spillovers on a micro level, however, is more of a 

daunting task as the researcher is faced with different ways of measuring intra-
                                                           
9 See Nadiri (1993) for a survey of estimation results. 
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industry spillovers. In the simplest form you have the crude measure of indirect 

R&D as an unweighted sum of the R&D stock of all other firms (e.g. Bernstein 

and Nadiri, 1989). This method however will introduce a spillover effect which 

varies little between different firms, and which in practice acts as a common 

constant parameter for all firms in the model. Many researcher, including Jaffe 

(1986), Wolff and Nadiri (1993), and Putman and Evenson (1994) have 

questioned this way of measuring indirect R&D, and rather proposed a 

weighted system with the indirect R&D flow measured according to the 

following formula:  

(2)                

where the indirect R&D expenditure variable is defined as the aggregated 

weighted sum of other firms’ R&D stock relevant for firm i. The weights are 

determined based on different weighting schemes such as; input-output 

matrixes, capital flow matrixes, patent matrixes and patent citation matrixes.  

 

The different schemes all have different pros and cons, with the patent matrixes 

representing the ‘purest’ form of knowledge spillover. This is because it 

involves no transactions of commodities and financial goods, thus taking rent 

spillovers out of the picture (Jaffe, Trjatenberg and Henderson, 1993). On the 

other hand, critics of this method argue that patent data is inherently difficult to 

utilise in an empirical investigation due to the deficiency of detailed 

information (Wolf and Nadiri, 1993). Instead, two alternative methods are 

proposed, namely the input-output and the capital flow matrix scheme, as they 

will arguably give a better representation of the true patterns of interaction 

between different industries. Based on these patterns one can infer the relevant 

weights for indirect R&D. However, the downside of this last method is that it 

includes rent spillovers, and will therefore not provide a true measure of ‘pure’ 

knowledge spillovers (Coe and Helpman, 1995). By testing these various 

weighting schemes Los and Verspagen (2000) found elasticities of output with 

respect to the indirect R&D stock to fall within the range of 0.2 to 0.6, 
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depending on which method used.  In table 2 the estimated indirect rates of 

return to R&D are presented, taken from studies that have attempted to 

measure R&D spillovers with models specified in growth rates. The results of 

these studies, whether using patent matrices or input/output tables to weight 

imported R&D, suggest that spillovers are indeed pervasive and significant in 

countries such as the USA, Canada, Japan, and the UK (Cameron, 1998). They 

also depict very clearly that the indirect rate of return to R&D is higher than 

the direct rate of return to R&D, with the latter as mentioned earlier, ranging 

somewhere between 0.2 and 0.34. These results highlight an important finding, 

namely that the social return to R&D (both the direct and indirect rate of return 

added together) is larger than the private return to R&D. For example, Jones 

and Williams (1997) found that the optimal amount to invest in R&D is about 

four times the actual amount invested by the USA. In a European setting the 

number is found to average somewhat lower than in the USA (Cameron, 1998).  

 

In recent years a new method of constructing the indirect R&D stock has 

gained popularity in the endogenous growth literature. This so-called 

‘Similarity spillover’ method combines the traditional weighting schemes, 

which focus on similarities in the technological dimension with geographical 

weighting schemes, which focus on similarities in the geographical dimension 

(Costa and Izessi, 2005). By combining the two dimensions one gets a richer 

measure of spillovers than what has been previously available. The new 

geographical dimension builds on the broadly accepted theoretical assumption 

that; spatial agglomeration is positively correlated to diffusion of technology 

Table 2: Estimates of the Rate of Return to indirect R&D

Author Country Level User matrix
Indirect rate 
of return

Scherer (1986, 1984) USA Industry Patents 0.64-1.47
Griliches-Lichtenberg (1983) USA Industry Patents 0.41-0.62
Bernstein-Nidiri (1988) USA Industry Intermediate inputs 0.11-1.11
Wolff-Nadiri (1993) USA Industry Intermediate inputs 0-10-0.90
Bernstein (1989) Canada Industry Intermediate inputs 0.29-0.94
Goto-Suzuki (1989) Japan Industry Intermediate inputs 0.8
Sterlacchini (1989) UK Industry Inovation flow 0.15-0.35

Source: Cameron (1998)
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(Marshall, 1920; Arrow, 1962; Jacobs, 1969; Romer, 1986). However, this 

cluster argument has not been widely tested in an endogenous growth setting 

(see Aiello and Cardamone, 2006), and to the best of the authors’ knowledge 

totally disregarded by all the existing papers analysing the impact of R&D 

spillovers in Norway. We will in our paper focus on the geographical 

dimension of spillovers and adopt a framework of measuring these spillovers, 

using an exponential decaying weighting function found in a paper by 

Verspagen (2007). We want to test and quantify the hypothesis that the closer 

two firms are, the more they will mutually benefit from each others’ R&D 

investments, and thus confirming the existence of a spillover effect. We will in 

our paper use a spatial weighting scheme based on the great circle distance. 

The distance we consider is between the administrative cities of the counties 

where each firm is located. The results obtained can then be compared to other 

weighting schemes, and also be used to shed some light on the cluster 

argumentation in an endogenous growth theory context. 

 

4.   Method and Approach  

In our paper we will be taking an empirical approach to the investigation. The 

extended Cobb-Douglas model, accounting for both the direct and indirect 

effect of R&D, will be estimated using two different data sources. The main 

source of data is the CCGR (Centre for Corporate Governance Research) 

database. This is an unbalanced panel data set containing accounting data for 

Norwegian enterprises, spanning from 1994 to 2007. A supplementary data 

source is the Norwegian Road Authorities’ distance table, which contains the 

physical distance between Norwegian administrative cities. The CCGR panel 

dataset lays the foundation for our actual calculation of the output elasticity for 

labour, physical capital, and direct R&D stock. The second sources will enable 

us to construct the indirect R&D variable in a combination with the CCGR data 

set. The focus in our investigation will be on firms operating in the 

manufacturing industry, as this sector of the economy is better represented by a 

Cobb-Douglas production function, and because product innovations are more 

important in this sector compared to the service sector. A further assignment of 
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manufacturing firms into three different sub-groups will be performed 

(denoted; high-tech sector, medium-tech sector, and low-tech sector) in an 

effort to identify the differences between these three sectors (see Appendix 2 

for the OECD classification of different sectors). This is a useful operation to 

perform as it allows us to investigate the results from previous empirical 

studies, which found a stronger relationship between the direct R&D variable 

and the output variable for firms operating in the high-tech sector than for 

firms operating in the low-tech sector.  

 

The starting point of our empirical regression analysis will be to run a standard 

pooled OLS regression on our model. The regression output will then be tested 

for heteroskedasticity and serial correlation in order to determine the most 

efficient and optimal regression method. If heteroskedasticity and serial 

correlation are indeed detected in the regression output, two different 

instruments will be implemented in order to reduce the problem of 

underestimated standard errors. Firstly, we will apply a Newey-West estimator 

to improve the pooled OLS regression statistics, designed to correct for both 

heteroskedasticity and serial correlation. Secondly, we will implement a set of 

dummy variables in order to reduce the problem of heteroskedasticity in 

particular. We will end our empirical strategy section by checking for spurious 

correlation and testing for causality in the relationship between the productivity 

variable and the direct R&D variable. All econometrical test and regression 

calculations will be performed with the Eviews 6 software package.  

 

5.    Empirical strategy 

The overarching objective of this paper is to test if labour productivity for 

firms in the Norwegian manufacturing industries is endogenous of nature. That 

is, we want to investigate whether R&D investments, as a main driver of 

technological progress, are indeed responsible for productivity growth rates. 
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5.1   Model of estimation  

The empirical analysis will be centred on the extended Cobb-Douglas function 

outlined in the paper by Los and Verspagen (2000):  

(3)  

We choose to take the logarithm of this function in order to obtain a model 

where the respective elasticities of output can be calculated: 

(4)         

Notice that we do not restrict our model to the homogenous assumption of 

constant return to scale for all direct input factors (α + β + γ = 1), but rather let 

the regression results indicate their actual values. This is a common approach 

in empirical studies since researchers are interested in depicting ‘actual’ 

relations and patterns in the historical data, not being restricted by a theoretical 

model à prior. The next step is to normalise equation (4) in order to reduce the 

problem of heteroskedasticity and multicollinearity, and to specify our equation 

in a labour-intensive form:  

(5)     

where , the return to scale parameter with respect to all firm specific inputs, is 

defined as . Next, we wish to reduce the simultaneous bias between 

the dependent variable and two of our independent variables by lagging both 

the direct and indirect R&D stock one year. The practice of lagging these two 

variables is common in empirical studies, as it has been found that an 

innovation takes on average 6 to 18 months to reach the finished development 

stage (e.g. Del Monte and Papagni, 2002)10. Equation (5) is now in its’ final 

form. The elasticities of output can be calculated in order to determine the 

relationship between the two R&D variables and labour productivity. For 

example, a positive and significant direct R&D output elasticity  would imply 

that investments in R&D do in fact materialise into higher productivity. If  is 

                                                           
10 We also tested our model for different lag lengths and found the one year lag length to give 
the highest t-statistics and highest output elasticity with respect to the direct and indirect R&D 
variables. 
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found to be positive and statistical significant a spillover effect is indeed 

present in our model, which signifies an underinvestment in R&D. The same 

result would also imply that the Schumpeterian ‘creative destruction’ 

externality is inferior to the spillover externality in the Norwegian 

manufacturing industry (Los and Verspagen, 2000).  

    

5.2     Data construct 

The empirical model of this paper is constructed and tested using the 

accounting data obtained from the CCGR database. This database includes 

every Norwegian firm with limited liability that are legally obliged to publish 

full accounting statements. It covers around 130,000 firms per year, with 

roughly 240 data items per firm (Berzins, Bøhren and Rydland, 2008). The 

available data set is considerably more extensive than what has been available 

for research purposes in the past, which makes it ideal for depicting the latest 

developments in the R&D and labour productivity relationship.  

 

The initial data set contained 2,070,788 yearly firm observations, and we had 

to undertake an extensive screening and time-consuming filtering process in 

order to end up with a balanced data set for the manufacturing industry only.  

The first step of this filtering/screening process was to remove all firms which 

were not represented in the entire consecutive time period from 1994 up until 

2007. This was done because we were after a balanced panel dataset with a 

timeframe spanning the longest possible length, and with no missing values. 

This procedure left us with 698,334 yearly observations or 49,881 firms. The 

second step was to remove all non-manufacturing firms by applying a filter to 

the NACE industry classification code 11data item for each firm. However, 

since the NACE date item had many missing values and was subject to firm-

specific errors in our data set (no auditing requirements), we had to correct 

                                                           
11 NACE industry codes are a common EU industry classification system which places firms 
into certain sectors of the economy depending on their main production output (see Appendix 
2).     
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these specification errors manually before we could apply a filter. After 

correcting errors and filtering only the firms in the manufacturing industry (i.e. 

NACE codes between 17 and 37), we were left with a total of 63,994 yearly 

observations or 4,571 firms.  

 

The third step was to correct for missing values in the District number data 

item for each firm. This specific data item was also subject to many 

specification errors which had to be corrected manually. No observations were 

removed in this process. At this stage of the process we also decided to remove 

observations for the following years: 1994, 1995, 2005, 2006, and 2007. This 

was done after we discovered that the dataset was missing data for the Number 

of Employees data item in these respective periods. This action retained the 

number of firms at the previous level, but reduced our number of total yearly 

observation to 41,139.  

 

With a total of 4,571 firms in our dataset we next turned to the data cleaning 

process following the widely adopted ‘5 step cleaning procedure’ suggested by 

Hall and Mairesse (1995). The first step in this procedure was to remove all 

firms that had zero R&D spending in the entire nine year consecutive period. 

We were forced to perform this operation since we operate with a log linear 

specification of our equation, and since an R&D stock is impossible to 

construct for a firm with zero R&D spending in all nine years. Hence, our 

research question can only be tested on those firms who have actually reported 

some degree of spending in R&D in the 1996 to 2004 time period. This 

consequentially reduces the scope of our paper as we are now only considering 

firms with direct R&D investments, and the associated spillover effect between 

these firms. This operation left us with a total of 851 firms. At this first step of 

the cleaning process we also removed all firms that had annual observations 

with the value of zero in either: physical capital, operating income, or number 

of employees. The reasoning behind this operation is similar to that of the 
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previous operation, since zero or negative values create obvious problems for 

our logarithmic specification. We were left with a total number of 818 firms.  

 

The second step of the cleaning process was to remove any firm which had 

annual observation for; operating income per worker, physical capital per 

worker, or R&D capital per worker outside of three times the inter-quartile 

range12 above or below the firm individual median. This cleaning step was 

designed so as to remove extreme outliners that could potentially distort the 

regression results. It was evident from our dataset that errors did in fact occur, 

where for example certain entries had been given some additional zeros at the 

end. This was especially typical for the physical capital data item. This 

operation removed 34 firms from the data set.  

 

The third step was to remove any firm for which the growth rates of; operating 

income, labour, physical capital or R&D capital were less than minus 200 

percent or greater than 300 percent. The lower limits were set lower than that 

of Hall and Mariesse (1995), since we would lose too much data by setting the 

lower limit to their suggested minimum limit of 90 percent. The purpose if this 

cleaning step is similar to that of the second step as we want to trim potential 

outliners. We do not want extreme outliners to dominate the regression 

statistics.  After step three we were left with a balanced data set containing a 

total of 712 firms, for nine consecutive annual periods. The remaining two 

steps in Hall and Mairesses’ cleaning procedure did not alter our dataset size. 

Step four proposes ways to deal with the ‘double counting’ issue of labour and 

physical capital employed in R&D, which could potentially yield negatively 

biased estimated elasticities with respect to R&D (Verspagen, 1995). Since we 

lack the information to correct for this problem we can only refer to the 

findings of double counting when interpreting our estimation results. The fifth 

and final step is concerned with removing gaps in the data during certain time 

periods. Since we had already constructed a balanced panel data set, step 5 in 

                                                           
12 The 75 percent value minus the 25 percent value. 
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the cleaning process was completed.  Hence, we were left with the final dataset 

from step 3, containing a total of 712 firms.    

 

5.3     Construct of variables 

The variables of interest in our model are: operating income, physical capital, 

labour, direct R&D stock, and indirect R&D stock, where the first variable is 

the main output variable in the production process, and the remaining four are 

the input variables. The operating income variable was taken from the filtered 

and cleaned panel data set (described in section 5.2) and found under post 33, 

denoted ‘Operating income’. This variable was then deflated with the OECD 

producer price index for Norway in order to obtain real values instead of 

nominal values, since price inflation can potentially distort the measurement of 

our variables (OECD, 2009)13. The physical capital input variable was also 

extracted from the same data set, and constructed by aggregating post 47 to 50 

in the database forming a net plant, property and equipment variable. This 

variable was then deflated using the OECD producer price index for capital 

stock for Norway (OECD, 2009). The labour variable was found in our data set 

under post 113; ‘Number of employees’. This variable was not deflated for 

obvious reasons.  

 

The final variable, taken from our filtered and cleaned CCGR data set, was the 

direct R&D variable found under post 44. This can be quite a problematic 

variable as this post is not clearly defined as a pure R&D account in our 

database. It rather acts as a combined R&D account for patents, licences, 

goodwill, concessions, and many other R&D related costs. This is a potential 

short-coming, and has to be kept in mind when interpreting the final regression 

results. The variable was then deflated with the OECD producer price index for 

Norway (OECD, 2009). Notice that our data contained annual R&D 

                                                           
13 The producer price index serves a similar purpose as that of CPI, and is used to measure the 
average change in prices for a fixed basket of goods and services of constant quantity traded 
among companies. 
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expenditure which can be characterised as a flow variable. Since we operate 

with an extended Cobb-Douglas production function, where output elasticities 

are the parameters to be estimated, we must convert this flow variable into a 

stock variable. To construct the stock of R&D14 we adopted a perpetual 

inventory method like that commonly used for physical capital (e.g. Griliches, 

1979; Hall and Mairesse, 1995). The equation defines R&D stock as follows: 

(5)  

where  is beginning period capital stock, and  is R&D expenditures 

during period t. Two problems arise from this equation, namely that we do not 

know the appropriate depreciation rate , and secondly the fact that we have 

problems in determining the starting point of the accumulation process for the 

R&D stock. In our model we implemented a commonly used simplification 

assumption of a constant depreciation rate of 15 percent (e.g. Griliches, 1990; 

Los and Verspagen, 2000). This assumption let us overcome our first problem. 

The second problem was handled by applying the following formula: 

(6)       

This equation, found in Hall and Mairesse seminal paper from 1995, simply 

says that with an assumed 15 percent deprecation rate , and an initial 5 

percent R&D stock growth rate g, the first period R&D stock is equal to the 

first observation in our time series divided by 0.215. 

 

After we had constructed the direct R&D stock using equation (5), and dealt 

with the two problems associated with this equation, we next moved on to 

construct the more elusive indirect R&D stock. We adopted a weighted system 

utilising equation (2) described in section 3, where our weights are based on 

geographical distances. To construct this spatial matrix we started the process 

                                                           
14 Also typically referred to as the firm’s knowledge capital. 
15 This simplified assumption is supported by some of the patent productivity evidence 
presented in Hall, Griliches and Hausmans’ (1986) research paper.  
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by obtaining a distance table with the physical distance (in kilometres) between 

Norway’s 19 county administrative cities. This information was collected from 

the Norwegian Road Authority (Statens Vegvesen, 2009). Using this distance 

table in matrix form we then applied the following formula in order to 

construct our weighting matrix based on the distance table (see Appendix 3 for 

the weighted distance matrix output):  

(7)           

This equation simply says that   is the spatial weight between firm i and j, 

and  is the distance between the administrative centres of the counties for 

which the firms belong. The equation will, due to the exponential decay 

specification, give lower weights to firm which are located far from each other, 

thus reducing the potential spillover between these two firms. The exponential 

value of 0.01 is arbitrary chosen, however its’ value is based on the value 

suggested by Verspagen (2007) after he had tested various values. He argued 

that a value of 0.01 reflects a fairly rapid decline of the weight with distance, 

which best mimics the actual decaying spillover effect. Notice that the weights 

 

 

Figure 1: Spatial weights and exponential decay 
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will take on a value between 0 and 1, such that weights are equal to one for 

firms located in same county. Figure 1 depicts the value of  as an 

exponential decaying function going from 1 to 0 in the 1000 kilometer interval. 

 

Before we used the weights to construct our indirect R&D stock, we chose to 

standardise the weighting matrix. Each cell in the matrix was divided by the 

matrix total. With the spatial weighting matrix constructed we next calculated 

each firm’s indirect R&D stock by applying equation (2), where the respective 

weights  were multiplied with other firms’ R&D stocks . This was 

then repeated for every firm in the industry until we had constructed the 

weighted indirect R&D stock for all 712 firms in our dataset.  

 

5.4     Descriptive Statistics   

In order to explain the basic features of the data used in our empirical study we 

now turn to an investigation of the descriptive statistics. Table 3 displays the 

mean value, which is a tool for determining the value of the central tendency in  

 

the dataset, with the standard deviation reported in the parenthesis. At first 

glance one notice the mean values do not change much between the different 

sectors. The mean value of log Q/L is found to average around 14, with the 

high-tech supporting the highest ratio and the medium-tech sector supporting 

the lowest ratio. The mean values of log K/L lie slightly above 11 for both the 

                                                           
16 Notice that the spatial weight is set equal to zero when firm i line up with itself in the matrix. 
Hence, the diagonal in the final matrix will contain a value of zero.  

Table 3. Descriptive statistics: Mean values 

log Q/L

log K/L

log R/L

N
Standard deviations in parenthesis. N: number of firms. Q, K and R of 2005 NOK.

Total sample High-tech sectors Medium-tech sectors Low-tech sectors
14.080 14.154 13.915 14.128
(0.728) (0.712) (0.638) (0.777)
11.218 11.256 11.103 11.262

236

(1.770) (1.772) (1.586) (1.879)
11.915 11.739 11.973 12.023
(1.354) (1.402) (1.247) (1.368)

712 189 287
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total sample and the different sectors samples; with the low-tech sector mean 

value just above the high-tech sector mean value. For the third and last variable 

log R/L, we find values centring around 12 for all samples. Our expectation for 

this research intensity variable, based on prior research, is that the mean value 

should be highest in the high-tech sector and lowest in the low-tech sector (e.g. 

Del Monte and Papani, 2002). Notice, however, that our log R/L gives the 

opposite result. The mean value is highest in the low-tech sector with a value 

of 12.023, and smallest in the high-tech sector with a value of 11.739. A 

possible reason for this rather unexpected result could be linked to the labour 

share in different sectors. The average rate of employees per year in the high-

tech sector is approximately 148, and 93 in the low-tech sector. This implies 

that the high-tech sector must undertake more R&D than the low-tech sector in 

order to obtain the same log R/L ratio.  

 

Figure 2 displays the yearly R&D expenditure for the average firm in three 

different sectors. When comparing these numbers with the research intensity 

(log R/L) in table 3 one can observe that when R&D spendings are divided by 

number of firms instead of number of workers, firms in the high-tech sector 

have higher average R&D investments than firms in both the low-tech and the 

medium-tech sectors. This gives us values which fit better with empirical 

results, obtained in previous studies, yielding higher average research intensity 

values for firms in the high-tech sector than for firms in the two other sectors   
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Figure 2: Average R&D spendings, per year, divided into sectors (2005=100)
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(see; Los and Verspagen, 2000; and Ortega-Argiles, Piva, Potter and Vivarelli, 

2009).  

 

The graphical plot of total annual operating income is illustrated in figure 3. As 

the graph displays, annual operating income increased stepwise upwards from 

1996 until it peaked in the middle of year 2000, thereafter decreasing until it  

 

reached yet another turning point in year 2002. As expected, this graph mimics 

the movements of the actual business cycle in Norway during the same time 

period (Statistics Norway, 2009). Figure 4 illustrates the total annual R&D 

spendings for the manufacturing industry. By comparing this figure with figure 

3, one observes that annual R&D spendings do not go hand in hand with the 

annual operating income. However, it appears from a purely visual point of  
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Figure 3: Annual Operating prof it before tax (2005=100)
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Figure 4: Annual R&D spendings (2005=100) 
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view that R&D spending acts as a leading indicator for operating income from 

year 1996 up to year 2002. This movement lends support to the endogenous 

growth theory’s assumption of a casual relationship running from R&D to 

operating income. On the other hand, if R&D actually where a leading 

indicator, one would have expected that annual R&D spending reached a 

turning point in 2001, which it does not. Since the dataset is relative short and 

ends in year 2004 it is not possible to draw any concrete conclusions on this 

subject based on a simple graphical inspection.   

 

Figure 5 reports the average R&D spendings per year divided into nineteen 

Norwegian counties. This gives a good graphical illustration over the allocation 

of R&D spendings throughout Norway for our particular dataset. As expected 

the R&D spendings are highest in Oslo and the surrounding areas; Akershus 

and Buskerud. In Hordaland and Vest-Agder, where we also know clusters of 

technology firms are located, we can observe relative high average R&D 

spendings. Further, the anticipation of low R&D spendings in the northern 

counties where confirmed, where firms in Finnmark, Nordland and Nord-

Trøndelag report the lowest average R&D spendings. 
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Figure 5: Average R&D spendings, per year, divided into states (2005=100)
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5.5    Empirical Results   

As mentioned in section 5.1 we will in this section be estimating the 

relationship between productivity and R&D by utilising equation 5; the labour 

intensive Cobb- Douglas production function augmented with both a direct 

R&D stock and an indirect R&D stock. In table 4 the initial regression results,  

 

using pooled regression estimators on the total sample and the three 

subsamples, are presented. From these initial regression results it is clear that 

all the coefficients have very large t- values, all statistical significant at a 1 

percent level. Since, high t-statistics can be a common sign of either 

autocorrelation or heteroskedasticity (i.e. caused by underestimated standard 

errors) we decided to run two independent residual tests aimed specifically of 

detecting their presence. Notice that serial correlation and heteroskedasticity do 

not cause the Ordinary Least Square (OLS) regression to be biased, thus 

violating the BLUE (Best Linear Unbiased Estimator) principal per say. 

However, it violates the OLS assumption of uncorrelated errors, which cause 

the OLS standard errors to be incorrect, and they should as a consequence not 

be used for inference. Hence, we will postpone our discussion of the coefficient 

results until the model is properly tested and if necessary corrected.  

 

Table 4. Estimation results (Pooled OLS model).

a

α

(μ-1)

γ

η

NOB

Adj. R²

Low-tech sectors
9.720

(71.486)***

(22.299)***

(45.478)***
0.093

(8.508)***

8.796
(41.024)***

0.219

0.131
(26.464)***

Total sample

0.054
(8.988)***

10.330
High-tech sectors Medium-tech sectors

0.066
(6.381)***

1888

(4.598)***

1512

*** Significance at the 1% level. **Significance at the 5% level. *Significance at the 10% level. 

0.120
(13.708)***

5696

10.173
(37.049)***

0.122
(9.755)***

0.0620.0807
(13.747)***

0.243 0.192

0.145

0.156

(5.470)***
0.106

(10.747)***
0.053

0.073
(7.465)***

(21.132)***
0.077

(8.090)***
0.135

(18.083)***
0.055

(5.831)***

2296

0.338976

T-values in parenthesis.
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The first test we ran was a Breusch-Pagan-Godfrey (BPG) heteroskedasticity 

test17 presented in table 5. The BPG test’s null hypothesis is no 

heteroskedasticity. It is a Chi-square test based on an auxiliary regression, 

 

which means that it will reject the null hypothesis with p-values bellow the 

significance level. In table 5 we have also included the Observed R-square test 

statistic introduced by Koenker (1981) which is in essence a simplified BPG 

test, and similar in interpretation. It is evident that both test statistics reject the 

null hypothesis. We conclude that we do in fact have a problem of 

heteroskedasticity in our model.  

 

Next we turned to the second residual test, namely the Breusch-Godfrey 

Lagrange Multiplier (BG-LM) test presented in table 6. The BG-LM test’s null  

 

hypothesis is no autocorrelation in the residuals up to a specific order (i.e. 

number of lags). It is also a Chi-square test based on an auxiliary regression, 

rejecting the null hypothesis with p-values bellow the significance level. This 

test provides a more general testing framework than that of the common 

Durbin Watson autocorrelation test. The BG-LM test also reports a F-statistic, 

which is commonly used as an informal test of the null hypothesis. Both test 

statistics reject the null hypothesis of no autocorrelation with a maximum order 

                                                           
17 The BPG test is sensitive to the normality assumption. Hence, with our residual following a 
normal distribution for all samples this method is preferred to for example the White 
heteroskedasticity test. 

Table 5. Heteroskedasticity Test: Breusch-Pagan-Godfrey

Scaled explained SS

Obs*R-squared

Total sample High-tech sectors Medium-tech sectors Low-tech sectors
501.434 207.131 18.452 305.286
(0.000) (0.000) (0.001) (0.000)

P-values in parenthesis. Ho=Homoskedasticity, Ha=Heteroskedasticity.

224.301 81.570 14.496 141.167
(0.000) (0.000) (0.006) (0.000)

Table 6.  Serial Correlation LM Test: Breusch-Godfrey

F-statistic

Obs*R-squared 881.808
(0.000)

Low-tech sectors
1033.607 305.507 232.901 519.248

Total sample High-tech sectors Medium-tech sectors

(0.000) (0.000) (0.000)
3536.118
(0.000) (0.000) (0.000)

1122.766 1409.989
(0.000)

P-values in parenthesis. Ho=No serial correlation, Ha=Serial correlation.
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of nine. Hence, we conclude that we do in fact have a problem with 

autocorrelation in our model. 

 

With both autocorrelation and heteroskedasticity in our data sample we decided 

to implement econometrical instruments to correct for these violations of the 

OLS assumption. A common way to overcome these problems in the statistical 

econometrics literature is to implement a Heteroskedasticity and 

Autocorrelation (HAC) Consistent Covariance estimator. Newey and West 

(1987b) provide such a HAC consistent covariance estimator which does not 

change the point estimates, only the standard errors. Hence, we chose to 

implement the Newey-West HAC estimator in our model to correct for the 

OLS violations. In addition we chose to include dummy variables for both the 

cross-sectional dimension, constructed from the NACE industry codes, and the 

time dimension, with dummies for year 1996 up to 2004. The choice to include 

dummy variables and adopting a fixed effect (within) model was to correct for 

heteroskedasticity and fixed individual differences (see Appendix 4 for 

regression results for dummy variables). 

 

Our fixed effect model is now in its’ final form with HAC consistent 

covariance estimates for an 8 years lag truncation. In table 7 the estimation  

 

Table 7. Estimation results (Fixed effect model).

α

(μ-1)

γ

η

NOB

Adj. R²

0.134 0.061 0.101 0.215
Total sample High-tech sectors Medium-tech sectors Low-tech sectors

(6.549)*** (2.049)** (3.459)*** (6.078)***
0.059 0.058 0.046 0.064

0.065

(3.768)*** (2.452)** (1.732)* (2.318)**
0.126 0.123 0.095 0.133

1888 1512 2296

(9.647)*** (5.172)*** (4.923)*** (6.900)***
0.058 0.054 0.059

0.292 0.224 0.229 0.361
*** Significance at the 1% level. **Significance at the 5% level. *Significance at the 10% level.

(4.060)*** (2.538)** (2.226)** (2.667)***

5696

T-values in parenthesis.
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results for our model are presented18. One of the most prominent features of the 

estimation results in table 7, compared to the pooled OLS estimation results in 

table 3, is that the t-statistics have indeed dropped significantly for all 

coefficients, and the adjusted R-square values have increased in all samples. 

Nevertheless, all coefficients in the total sample are still statistical significant at 

a 1 percent level. The subsample coefficients are also statistical significant, but 

at different significance levels.  

 

The estimated value of one of the key parameters of interest, namely the output 

elasticity with respect to the direct R&D stock γ, is found to be both positive 

and significant at a 1 percent level, with a value of 0.126 in the total sample. 

This value fits nicely with the output elasticities of R&D found in the previous 

studies, and the predictions of the endogenous growth theory. When we 

compare the estimated R&D elasticities in different sectors of the economy, an 

interesting observation can be observed for the high-tech sector and the low-

tech sector in particular. The low-tech sector actually supports a higher R&D 

elasticity, which contrasts previous empirical results, where the opposite result 

holds (e.g. Los and Verspagen, 2000; Ortega-Argiles, Piva, Potter and 

Vivarelli, 2009).  

 

One possible theoretical explanation for this unexpected result can be the fact 

that Norwegian firms in the high-tech sector invest on average substantial large 

amounts in R&D (see section 5.4, figure 2). The decision to invest in R&D for 

these firms might be based on a continuous patent race setting, where one 

either invests or exits the race (Tirole, 1988). This is a setting where the 

efficiency effect dominants the agents’ incentives to invest in R&D. Firms 

invest in R&D in order to protect current profit and maintaining barriers to 

entry. Thus, the direct ‘pay-off’ from the specific R&D innovation is 

considered less important for firms operating in this sector. The patent race 

might therefore lead to duplication of R&D costs, and decreasing profit 
                                                           
18 We do not report the constant in the empirical results since the dummy variables makes this 
term redundant.   
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opportunities in the high-tech sector. In the low-tech sector where few actors 

invest in R&D, on the other hand, a sudden innovation made by firms can yield 

high direct ‘pay-off’ in the short-run, as long as no other firms are able to copy 

the firm’s innovation within that short timeframe.  

 

Another possible explanation for these rather unexpected results can be the fact 

that export-based traditional industries are placed in the low-tech sector in our 

sample, set according to the OECD classification. These export-based firms 

operate in international markets, and enjoy patents which are multinational in 

scope. Hence, these patents are most likely more profitable than a patent 

belonging to a high-tech firm operating in a single country setting. This means 

that traditional Norwegian firms doing research can create patents allowing 

them to enjoy a competitive advantage not only in the Norwegian market, but 

also in foreign markets. The result can lead to a higher direct R&D output 

elasticity in the low-tech sector. Hence, our finding which contrasts previous 

results might just be a peculiarity of the Norwegian industrial system, where an 

OECD classification will produce misleading results for a sector comparison 

analysis19. In their paper Aiello and Cardamone (2006) find similar results for 

the Italian manufacturing industry, where low-tech firms experience higher 

output elasticities with respect to direct R&D than that of firms in the high-tech 

sector. 

 

The second key parameter of interest is the output elasticity with respect to 

indirect R&D η. This indirect R&D elasticity is found to be both positive and 

significant at a 1 percent level, with a value of 0.058 in the total sample. This 

result lends support to the endogenous growth theory, and its’ claim of a 

spillover effect in the manufacturing industry. When comparing the actual 

magnitude of the elasticity in question we notice that it falls below the 

estimates found by Los and Verspagen (2000) when they tested four traditional 

                                                           
19 Notice that we also found high research intensity in the low-tech sector in Norway (see table 
3) which directly contradicts the construct of the OECD classification system, where industry 
are classified according to the sectoral average research intensity. 
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spillover measures, and similar in magnitude of those estimates found by Coe 

and Helpman (1995) in their paper measuring international spillovers. 

According to our estimates the productivity enhancing effect of spillovers 

clearly dominates over the negative effect of spillovers, the so-called ‘creative 

destruction’ externality. However, while a positive spillover effect leads to 

increasing return to scale in the economy at an aggregated level, it might 

reduce the incentives for firms to invest in R&D for future periods. Hence, our 

findings indicate that there is scope for the social planner to correct and 

improve policy instruments such as; patents, grants, prices, and tax deductions 

in order to strengthen future incentives for firms to invest in R&D.  

 

When comparing the magnitude of the indirect R&D elasticity in our three 

different sector samples, we once again obtain a higher elasticity in the low-

tech sector than in the two other sectors. A possible explanation for this result 

is that firms in the low-tech sector have lower barriers to entry. Hence, only a 

short time after a new innovation has been launched by one firm the competing 

firms in the industry are able to copy the innovation. As a consequence the 

spillover effect is higher in the low-tech sector than in the high-tech sector, 

although the differences are only minor. If these results reflect the actual 

spillovers in the Norwegian economy they may call for a greater social planner 

intervention in the markets with the highest output elasticity with respect to the 

indirect R&D variable, which in our case would be the low-tech sector. 

However, we will be careful to draw a strong conclusion on the matter as our 

sector classification might be biased for reasons previously mentioned. 

 

Another parameter of interest is the return to scale parameter (μ -1) in our 

estimation results. A positive value would indicate increasing return to scale. In 

table 7 all (μ -1) coefficients are positive and significant for all sectors. With μ 

defined as; , we can see that the direct R&D effect cause increasing 

return to scale in all sectors. Notice, that without the direct R&D coefficient 

entering the return to scale parameter it would actually be decreasing, thus 
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violating the constant return to scale assumption in the standard Cobb-Douglas 

production function. The final parameter in table 7 is the output elasticity with 

respect to physical capital α. This is positive and significant at a 1 percent level 

in the total sample. Its’ value is also highest in the low-tech sector, as was 

expected from previous empirical studies (e.g. Los and Verspagen, 2000).  

 

In all our samples the adjusted R-square values are relative low, but fall within 

the acceptable range as indicated by previous studies, which found the usual 

adjusted R-square value for a Cobb-Douglas production function to lie 

somewhere in the range from 0.2 to 0.5 (e.g. Cameron, 2003). As previously 

mentioned, other explanatory variable could undoubtedly have been included 

in our model leading to a boost the adjusted R-square value. However, such a 

model could easily lose its’ simplicity and high explanatory value.  

 

As a detour to the main empirical results, we have in table 8 also presented the 

estimation results for firms located in two selected counties. The counties have 

been chosen on the basis of their locations and differences in the mean R&D 

intensity. The estimation results show that firms in the county of Oslo have 

higher output elasticities with respect to both the direct R&D stock and the 

indirect R&D stock. These results seem to indicate that there exists a cluster 

effect in areas with a high concentration of R&D intensive firms. According to 

 

Table 8. Estimation results for specific counties (fixed effect model).

α

(μ-1)

γ

η

NOB
Adj. R²

Oslo Nordland

(5.976)*** (6.315)***
0.053 0.009

0.223 0.269

(4.343)*** (2.315)**
0.071 0.018

(1.711)* (0.919)'
0.169 0.052

0.345 0.429
*** Significance at the 1% level. **Significance at the 5% level. *Significance at the 10% level. 

T-values in parenthesis.

(2.171)** (1.699)*
696 240
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these estimates, firms in the Oslo area get ‘more bang for their buck’ on their 

R&D investments, but they also experience more spillovers than firms located 

in Nordland. However, we will be careful to infer too much from these results 

in relation to well-funded cluster theories, as these are outside the scope of this 

paper. 

 

Both our main estimation and detour results do indeed lend support to the 

endogenous growth theory, and the claim that technical progress is driven by 

both direct R&D investments and technological spillovers. However, in order 

to test the robustness of these results we will in the next section perform panel 

unit root tests for all our individual variables in an attempt to rule out spurious 

correlations. We will also run a Granger causality test to investigate the 

directional relationship between two of our key variables.  

 

5.6    Robustness tests and Granger causality 

In this section we will first perform robustness tests on our variables by testing 

for a unit-root. This is important because a variable with a time series 

following a non-stationary process (i.e. unit root) will create spurious relations 

in our estimation result, consequentially leading to an upward bias in the 

estimated t-values and R-square values. It has the potential to infer a 

relationship between two variables when in reality there is none (Hamilton, 

1994). The unit root test of our dependent variable is also important in order to 

test the validity of Gibrat’s law discussed in section 3, since operating income 

is strongly linked to the sales variable. Notice that we operate with a level 

specification of our dependent variable , and not with the growth rate 

specification Δy (i.e. first-difference form), as that postulated in the Gibrat’s 

law. However, a variable with a trend-stationary time series in the level 

specification will also be stationary in the first-difference series, so the results 

of our unit-root tests can indeed be used to infer something about the validity 

of Gibrat’s law. Table 9 reports the unit root tests for all variables in  
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our model. In the individual unit-root test proposed by Im, Pesaran and Shin 

(1996) the null hypothesis is unit root. A p-value below the significance level 

will lead us to reject the null hypothesis. It is evident from out unit root test 

that we can reject the null hypothesis at all usual levels of significance, and 

conclude that we do in fact have variables which follows a (trend) stationary 

process. These results also disconfirm the main assumption of Gibrat’s law 

saying that the dependent variable follows a random walk process. Our results 

from section 5.5 are robust when it comes to spurious correlations. 

 

The final issue we will touch upon in section 5 is to test the causal direction of 

the relationship between operating income (dependent variable) and direct 

R&D stock (explanatory variable). Since causality is of great importance in the 

relationship between R&D and productivity, we will use the Granger causality 

test to infer something about the direction. Notice, however, that the Granger 

causality test is a very crude and simplified measure, and Granger causality 

does not imply ‘true’ causality. It rather acts as an indicator for the broader 

phenomenon. In table 10 we have presented the Granger causality test for 

different lag lengths. The test tells us that with a lag length of one R&D  

 

granger causes operating income. However, with a lag length of 8 the story is 

reversed and operating income now granger cause R&D.  The former result 

supports previous studies which have found a casual relationship running from 

R&D to productivity (e.g. Cameron, 1998; Del Monte and Papagni, 2002; Los 

Table 9. Individual Unit root test of the variables in the regression: Im, Pesaran, and Shin W stat

Variable 

Statistic -6.5445

q - l k - l l

P-values in parenthesis. Ho=Unit root, Ha=No unit root.

-7.24369
(0.000) (0.000) (0.000) (0.000)

r - l

-5.07811  -4.87920

ir

-9.6555
(0.000)

Table 10. Granger casuality test: R&D (R) and Operating profit before tax (Y)

Y does not Granger Cause R

R does not Granger Cause Y

P-values in parenthesis.

(0.223) (0.000)
 17.717  1.247

Lag lenght 1 Lag lenght 8
 1.486  5.637

(0.000) (0.269)
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and Verspagen, 2007), thus supporting our method of lagging direct and 

indirect R&D stock with a one year period. The latter result might pick up the 

effect where increases in the cumulative income level give rise to an increase 

in R&D funding possibilities. Hence, higher profit levels might ease and 

increase funding of R&D in the long-run. Nevertheless, there is still much 

debate on what drives what in the economical literature, and a simple Granger 

causality test can by no means depict the true causality with total confidence. 

 

6.   Conclusion 

In this paper we have investigated how well the predictions of the endogenous 

growth theory fit the Norwegian manufacturing industry. An extended Cobb-

Douglas production function has been utilised in order to test these predictions 

on a relative new and unused data set for the Norwegian manufacturing 

industry. The key feature of this extended production function is the inclusion 

of both a direct R&D stock and an indirect R&D stock, which act as proxies for 

technological progress. To construct the elusive indirect R&D stock we used 

the relative novel spatial weighting method with geographical distance weights. 

The regression results of our analysis confirm the existence of both a direct and 

an indirect relationship between investments in R&D and labour productivity. 

These findings lend support to the endogenous growth theory’s claim that 

productivity growth rates are endogenous of nature, driven by technical 

progress which is determined in turn by both ‘own’ R&D investments and 

technological spillovers. However, while the spillover effect creates growth in 

the aggregated economy it also leads to underinvestment in R&D for future 

periods, since agents are not able to appropriate the entire profit stream 

steaming from their innovation. Hence, our findings suggest that there is scope 

for the social planner to improve and modify current R&D incentive 

instruments in the Norwegian manufacturing industry.  

 

A result of particular interest is the unexpected result of higher direct R&D 

output elasticities in the low-tech sector than in the high-tech sector. This 
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finding contradicts previous findings, and is rather surprising as we would not 

expect research in the low-tech sector to make a substantial difference to firms’ 

competiveness. However, this may well be just a peculiarity of the Norwegian 

industrial system, since the OECD classification can produce misleading sector 

classifications. The estimation results also show that the spillover effect is 

marginally larger in the low-tech sector than in the high-tech sector, with all 

sectors experiencing increasing return to scale. These findings imply possible 

policy implication for the ‘social planner’, such as to which sectors of the 

industry they should direct their attention. However, as the sectorial results 

might be plagued by misspecification of sectors (set according to the OECD 

classification) we will caution the reader to infer too much from these sectorial 

results.  

 

7.   Potential Short-comings 

Our research model is based on a well-known model, namely the extended 

Cobb-Douglas production function. It is extensively utilised in the growth 

theory literature, and form the basis for the theoretical endogenous growth 

model. It is a convenient model to adopt in our empirical study as it includes 

key input variables in a production process such as; physical capital, labour, 

and technological investments. However, this production function is designed 

to fit the theoretical framework well, and is therefore somewhat vague in its’ 

description of the ‘true’ profit maximising firm in a ‘real’ market setting. By 

focusing only on very basic input factors it leaves out other important 

determinants of output (e.g. natural resources etc). Critics argue that the 

extended Cobb-Douglas production function is in fact too simple to represent 

the ‘real’ production function for a firm, and there is scope to search for other 

explanatory variables. 

 

Our model might also be plagued by an endogeneity problem, where the 

positive output elasticities we found are be caused by a common unknown 

variable, which is not explicitly included as an explanatory variable. Hence, we 
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might potentially infer a relationship between two variables that is in reality 

non-existing, and only caused by an unknown phenomenon. For example, the 

spillover effect might not be caused by investments in R&D, but other factors 

such as; infrastructure and access to skilled labour in a particular geographical 

location, while the direct effect of R&D might be caused by other factors such 

as; firm size and the shut-down effect. For example, according to Olley and 

Pakes (1996), productivity gains are a result of reallocation of output and 

capital to the more productive firms. This implies that productivity growth 

might be caused by the shut-downs of unproductive firms, leaving resources to 

the more productive firms and new productive establishments. In other terms, 

Olley and Pakes (1996) argues that it is the most productive firms that receive 

the highest rates of return of investing in R&D, and therefore chose to invest 

the most in R&D. In our model we operate with a balanced panel data set, and 

we are therefore left with no possibilities for studying this shut-down effect or 

the effect of new establishments.   

 

The restriction of homogenous goods and constant return to scale in the market 

setting is also a highly theoretical proposition. Researchers have avoided this 

problem by unrestricting this assumption and rather let the estimation results 

indicate whether or not there is constant or increasing return to scale on a firm 

level. Hence, the estimation results from our model cannot by no means 

confirm or disconfirm the theoretical endogenous growth model per say. 

Instead they can be used to investigate and shed some light on the main 

assumptions of the theory.  

 

In our model we performed an extensive screening and filtering process which 

ultimately lead to a database which cannot be seen as a random sample. For 

example, the spillover effect is measured only between firms in the 

manufacturing industry. This means we miss out on the overall spillover effect 

in the total economy. Notice however that the descriptive statistics show that 

our sample is quite evenly balanced looking at the cross-sectional dimension of 
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our data (e.g. similar number of firms in each sub sample). Hence, we argue 

that it represents the population fairly well.  

 

The model also suffers with respect to how we constructed both the direct 

R&D stock and the indirect R&D stock. For example, our use of the perpetual 

inventory formula to construct the direct R&D stock is a highly questionable 

practice, solely due to the formulas’ simplistic design. The model is also 

attempting to measure knowledge spillovers which are inherently difficult to 

measure, since they leave very little paper trails. The method we have opted for 

in our paper with exponential decreasing weights based on geographical 

distance, is a relative new way of measuring the spillover effect. Hence, there 

are no guaranties that we have in fact adopted the correct way to measure the 

spillover effect occurring in the manufacturing industry. Our method, for 

example, makes no attempt to separate rent and knowledge spillovers, which 

may lead to overestimated technology spillover values in our empirical results.  

 

Our model also suffers the short-coming of being potentially limited in scope. 

Firstly, we only considered geographical similarities when we constructed the 

spillover weights, ignoring the issue of technological similarity, mentioned in 

section 3. Hence, our findings might not capture the true spillover effect 

occurring in the economy. Secondly, international spillovers are not included in 

the model, which leaves out the impact of indirect foreign R&D investment. 

Hence, we do not measure one of the main sources of technological spillovers 

in the Norwegian economy.  

 

In our model we have assumed that the direction of the relationship runs from 

R&D to the productivity. However, as we pointed out before, there is no clear-

cut conclusion drawn on this topic. Researchers are still debating the classical 

problem of what came first; the egg or the chicken? Does high productivity 

lead to increases in R&D investments, or do investments in R&D lead to higher 
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productivity? As mentioned in section 5.6 the Granger causality test does by no 

means produce the final answer, nor does a simple glance at the graphs in 

section 5.4. Last but not least, the problem of a rather short dataset with a time 

span of nine years is a great problem since it makes it difficult to infer long-run 

relationship between our respective variables. We might only be able to depict 

a transitory short-run effect in the industry, which does not represent the actual 

long-run relationship between our dependent variable and explanatory 

variables.  
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Appendix 1:  

A graphical representation of the differences between the private and social 

returns to R&D investments. 

 

 

 

Source: Cameron (1998) 
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Appendix 2:  

OCED classification- Manufacturing industries classified according to their 

global technological intensity- NACE Revision 1.1 (Note: In our study the two 

sub groups; medium-high-tech sector and medium low-tech sector, where 

combined to form an aggregated medium-tech sector): 

 

Source: http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/reg_hrst_base_an3.pdf 

 

 

 

 

 

 



R&D and Productivity GRA19003 

    
 

53 
 

Appendix 3:  

 

Distance matrix: 

 

 

Weighted distance matrix (with the exponential decaying formula): 

 

 

Standardized distance matrix (with cell entries divided by matrix total):   
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Appendix 4:  

Total sample regression results: 

 

High-tech sample regression results: 

 

Dependent Variable: Y   
Method: Least Squares 
Newey-West HAC Standard Errors & Covariance (lag truncation=9) 

 Coefficient Std. Error t-Statistic Prob.   

C 9.944652 0.471259 21.10231 0.0000 
G 0.134968 0.020607 6.549673 0.0000 

LOG_ANNSATTE 0.059947 0.015908 3.768315 0.0002 
LAG1_R 0.126498 0.013111 9.647950 0.0000 

LAG1_LOG_IR_FOU 0.058937 0.014515 4.060509 0.0000 
INDUSTRIKODER=15 0.247620 0.128401 1.928490 0.0538 
INDUSTRIKODER=17 -0.066046 0.149165 -0.442771 0.6579 

    INDUSTRIKODER=18 0.047972 0.224414 0.213765 0.8307 
INDUSTRIKODER=19 -0.004503 0.172017 -0.026177 0.9791 
INDUSTRIKODER=20 -0.050486 0.144632 -0.349067 0.7271 
INDUSTRIKODER=21 0.072824 0.172974 0.421014 0.6738 
INDUSTRIKODER=22 -0.038135 0.114941 -0.331780 0.7401 
INDUSTRIKODER=24 0.279725 0.148657 1.881683 0.0599 
INDUSTRIKODER=25 -0.004443 0.126960 -0.034993 0.9721 
INDUSTRIKODER=26 0.014578 0.130059 0.112086 0.9108 
INDUSTRIKODER=27 0.391978 0.215354 1.820155 0.0688 
INDUSTRIKODER=28 -0.226082 0.122831 -1.840596 0.0657 
INDUSTRIKODER=29 0.108930 0.120339 0.905198 0.3654 
INDUSTRIKODER=30 0.325291 0.142151 2.288349 0.0222 
INDUSTRIKODER=31 0.069600 0.149904 0.464296 0.6425 
INDUSTRIKODER=32 -0.032647 0.227517 -0.143493 0.8859 
INDUSTRIKODER=33 -0.087673 0.160769 -0.545335 0.5855 
INDUSTRIKODER=34 0.361220 0.160000 2.257626 0.0240 
INDUSTRIKODER=35 0.070121 0.129688 0.540692 0.5887 
INDUSTRIKODER=36 -0.245592 0.123939 -1.981561 0.0476 

YEAR=1997 -0.151043 0.030092 -5.019426 0.0000 
YEAR=1998 -0.087273 0.028694 -3.041461 0.0024 
YEAR=1999 -0.130114 0.026360 -4.935966 0.0000 
YEAR=2000 -0.173626 0.024084 -7.209079 0.0000 
YEAR=2001 -0.109737 0.021606 -5.078933 0.0000 
YEAR=2002 -0.036658 0.018239 -2.009905 0.0445 
YEAR=2003 -0.024493 0.013652 -1.794087 0.0729 

R-squared 0.296196      Adjusted R-squared 0.292344 
 

Dependent Variable: Y   
Method: Least Squares 
Newey-West HAC Standard Errors & Covariance (lag truncation=9) 

 Coefficient Std. Error t-Statistic Prob.   

C 10.94326 0.657235 16.65044 0.0000 
G 0.061386 0.029946 2.049873 0.0405 

LOG_ANNSATTE 0.058576 0.023880 2.452961 0.0143 
LAG1_R 0.123392 0.023855 5.172619 0.0000 

LAG1_LOG_IR_FOU 0.054153 0.021330 2.538793 0.0112 
INDUSTRIKODER=24 0.382949 0.152668 2.508372 0.0122 
INDUSTRIKODER=29 0.058035 0.078486 0.739431 0.4597 
INDUSTRIKODER=30 0.052293 0.112380 0.465323 0.6418 
INDUSTRIKODER=31 -0.000413 0.111659 -0.003695 0.9971 
INDUSTRIKODER=32 -0.030233 0.188946 -0.160011 0.8729 
INDUSTRIKODER=33 -0.140980 0.122288 -1.152857 0.2491 
INDUSTRIKODER=34 0.282674 0.113436 2.491931 0.0128 

YEAR=1997 -0.119269 0.058635 -2.034084 0.0421 
YEAR=1998 -0.045426 0.054611 -0.831803 0.4056 
YEAR=1999 -0.101433 0.050192 -2.020902 0.0434 
YEAR=2000 -0.153924 0.045619 -3.374124 0.0008 
YEAR=2001 -0.081799 0.041381 -1.976747 0.0482 
YEAR=2002 -0.024511 0.035328 -0.693793 0.4879 
YEAR=2003 -0.000105 0.027126 -0.003875 0.9969 

R-squared 0.231440        Adjusted R-squared 0.224038 
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Medium-tech sample regression results: 

 

Low-tech sample regression results: 

 

 

 

Dependent Variable: Y   
Method: Least Squares 
Newey-West HAC Standard Errors & Covariance (lag truncation=9) 

 Coefficient Std. Error t-Statistic Prob.   

C 10.48698 0.669046 15.67452 0.0000 
G 0.101668 0.029386 3.459714 0.0006 

LOG_ANNSATTE 0.046298 0.026715 1.732991 0.0833 
LAG1_R 0.095139 0.019322 4.923975 0.0000 

LAG1_LOG_IR_FOU 0.059561 0.026748 2.226806 0.0261 
INDUSTRIKODER=25 0.264625 0.090597 2.920890 0.0035 
INDUSTRIKODER=26 0.297246 0.095241 3.120981 0.0018 
INDUSTRIKODER=27 0.699002 0.200213 3.491297 0.0005 
INDUSTRIKODER=28 0.011850 0.078150 0.151631 0.8795 

YEAR=1997 -0.183129 0.059530 -3.076233 0.0021 
YEAR=1998 -0.109992 0.057304 -1.919455 0.0551 
YEAR=1999 -0.184469 0.052015 -3.546432 0.0004 
YEAR=2000 -0.213450 0.047424 -4.500888 0.0000 
YEAR=2001 -0.127910 0.044068 -2.902538 0.0038 
YEAR=2002 -0.058832 0.036070 -1.631062 0.1031 
YEAR=2003 -0.057268 0.026667 -2.147522 0.0319 

R-squared 0.236712          Adjusted R-squared 0.229059 
 

Dependent Variable: Y   
Method: Least Squares 
Newey-West HAC Standard Errors & Covariance (lag truncation=9) 

 Coefficient Std. Error t-Statistic Prob.   

C 8.980679 0.715055 12.55942 0.0000 
G 0.215431 0.035442 6.078436 0.0000 

LOG_ANNSATTE 0.064946 0.028016 2.318197 0.0205 
LAG1_R 0.133708 0.019378 6.900134 0.0000 

LAG1_LOG_IR_FOU 0.065405 0.024520 2.667365 0.0077 
INDUSTRIKODER=17 -0.277267 0.113169 -2.450030 0.0144 
INDUSTRIKODER=18 -0.052693 0.214032 -0.246192 0.8056 
INDUSTRIKODER=19 -0.226881 0.158915 -1.427686 0.1535 
INDUSTRIKODER=20 -0.260600 0.110745 -2.353152 0.0187 
INDUSTRIKODER=21 -0.198542 0.158622 -1.251673 0.2108 
INDUSTRIKODER=22 -0.210513 0.079010 -2.664399 0.0078 
INDUSTRIKODER=37 -0.318201 0.129994 -2.447821 0.0144 

YEAR=1997 -0.178254 0.050451 -3.533216 0.0004 
YEAR=1998 -0.131511 0.047593 -2.763248 0.0058 
YEAR=1999 -0.144219 0.043939 -3.282285 0.0010 
YEAR=2000 -0.181676 0.039971 -4.545204 0.0000 
YEAR=2001 -0.135552 0.035818 -3.784516 0.0002 
YEAR=2002 -0.038148 0.030088 -1.267904 0.2050 
YEAR=2003 -0.019197 0.022385 -0.857590 0.3912 

R-squared 0.366430         Adjusted R-squared 0.361422 
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