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Summary 
 

In this thesis a mathematical formulation of a new transportation lot sizing model 

is presented. The model is developed in three separate steps, starting with the 

development of a single level capacitated multi-terminal lot sizing model. This 

step constitutes our initial model and is referred to as Model 0. In the next step we 

have added the extension of period overlapping setup to our initial model. This 

step proved to be the most difficult to formulate in the model. The final step that 

concludes our final model is the implementation of the possibility for inventory 

shortage. Solutions to the three steps are found by the optimization tool used to 

solve the model – MPL with the Gurobi solver. Each step is presented separately 

in chapter four with a discussion of the solution together with a discussion of the 

challenges concerning each step. 

 

Based on the discussion and observations made in chapter four; the stability, 

flexibility and functionality of the model are tested in chapter five. The tests are 

performed in different scenarios by changing different parameters in the model, 

and also by testing how the model reacts to different demand patterns. The utility 

value of the two extensions made in the model becomes more evident in these 

tests, and we also discuss the solutions and findings from each scenario. 
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1 Introduction 

1.1 Motivation 

In our first year of the Master of Science (MSc) program at BI we both chose the 

course Introduction to Management Science as our elective. This course was the 

first out of three focusing on quantitative modelling and operations 

research/management science within our major in Logistics – Supply Chain and 

Networks. The other two were Supply Chain Planning and IT Tools for Logistics 

Analysis. In Introduction to Management Science we were introduced to how we 

could use quantitative modelling for decision making in supply chain 

management. We spent the majority of time in this course in Excel, using the 

Premium Solver, but we were also briefly introduced to the optimization tool 

SAS/OR. Supply Chain Planning was in many ways similar to Introduction to 

Management Science, only focusing more on different types of theoretical models 

for supply chain planning, how to implement these in SAS/OR, and consequently 

analysing the results of such models. We also got a better understanding of why 

IT tools like Excel and SAS/OR can be of great help during the planning process. 

 

As the interest for quantitative modelling and operations research grew it became 

more and more evident to us that this would be the focus of our master thesis. 

Once we had decided on this, the choice of supervisor was quite evident. Atle 

Nordli is the leading professor at BI within operations research. As far as we 

know he is also the only one with sufficient knowledge of the IT-tools we were 

going to use in our thesis; SAS/OR and MPL. He was also the lecturer in the three 

elective courses mentioned above and a professor that we knew we could 

cooperate well with. As we have been through several courses in our MSc-

program covering operations research, we feel well prepared for using theory 

from this academic field in our thesis-work. Writing a master thesis is also a 

mandatory part of the MSc-program at BI. 

 

We have cooperated with the Norwegian division of HeidelbergCement on our 

thesis. Initially the intention was to solve an aggregate planning problem for the 

company. But in collaboration with our supervisor we discussed several other 

possible problems we could look at in our thesis and found that it would be 

interesting to use a case from HeidelbergCement to test if we could adapt 
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economical lot sizing theory in order to make a transportation planning model. In 

the Supply Chain Planning course we solved and analysed several different 

economic lot sizing-problems, and found this area of operations research 

interesting. As our supervisor wrote the dissertation for his doctorate on the topic 

of lot sizing, this further motivated us to pursue this research problem. 

 

1.2 The Company 

HeidelbergCement is the third largest manufacturer of cement and concrete, and 

the largest manufacturer of aggregates in the world. They have facilities in more 

than 40 countries around the world, about 53 000 employees that are situated in 

2500 different locations and the company had a consolidated turnover of 

approximately 12 billion Euro in 2010. Their core business includes the 

production and distribution of cement and aggregates, which are the two essential 

raw materials for concrete. (HeidelbergCement Annual Report 2010).  

 

The logistics division for Northern Europe is located in Oslo, Norway, and 

controls the logistics of Norway, Sweden, Denmark and the Baltic countries. In 

Norway and Sweden the company is the dominating provider of cement and 

concrete. The Norwegian cement-division of HeidelbergCement is Norcem AS 

and the Swedish cement-division is Cementa AB. Cementa produces cement to 

meet the demand within Sweden, but they also export cement to other countries 

when they have excess capacity. Our master thesis will use data obtained from 

one of the three production facilities in Cementa, henceforth called the factory. 

The factory has a production capacity of 1000 tons of cement each day. From the 

production facilities the cement is transported by vessel to eight different 

terminals on the coast of Sweden, where the end-customer picks up the final 

product. 

 

We were so fortunate that we were invited to visit Norcem’s factory in Brevik, 

Norway. Even though this is not the same factory that we are focusing on in this 

thesis, the processes and the essence of what they do are the same. We got a 

guided tour of the different parts of the facilities and were informed of how the 

process of producing, loading and transporting the cement works. This experience 

was educational for both of us and gave us new insight as to how the different 
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processes of producing and shipping cement are handled. It was also interesting to 

hear from those close to the daily operations in the company how the supply chain 

planning tools affected their daily work, and what they regarded as advantages 

and disadvantages with such tools. 

 

1.3 The Industry 

HeidelbergCement operates in the construction and building materials industry. 

There are several risks that the construction and building materials industry is 

exposed to, and the market for their products can be quite unstable. According to 

HeidelbergCement’s annual report (HeidelbergCement Annual Report 2010) the 

demand for building materials will fluctuate with the construction activity. If the 

investments in the construction industry are high, there will be an increased 

demand for building material and vice versa. The seasonal fluctuations in an 

industry like this are quite high as well. The demand for their products will most 

likely be dependent on the economical state in the region where they are operating 

as well as the weather condition and seasonal fluctuations. The construction and 

building material industry is described by HeidelbergCement as a cyclical 

industry, indicating that the demand fluctuates in certain cycles 

(HeidelbergCement Annual Report 2010). The variations will vary from country 

to country, and since HeidelbergCement is located in about 40 countries they are 

quite diversified and might be able to spread the risks that they are facing. Even 

though there are risks associated with operating in the construction and building 

materials industry, the demand for such materials will most likely always be 

present. Thus, one can argue that it is a somewhat stable industry in the sense that 

the demand will be there even though it fluctuates. 
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1.4 The Research Problem 

The framework of this master thesis is defined by the following research problem: 

 

“How can we adapt existing production lot sizing-models and theory to develop 

a transportation lot sizing model? A case from a cement producer” 

 

The overriding objective in this thesis is to develop a new transportation lot sizing 

model. In order to do this we have to adapt existing theory and lot sizing models 

usually formulated for production problems. While the literature on lot sizing for 

production planning is vast, we are not aware of any work on the specific topic of 

transportation lot sizing. Hence we hope to find a new area of application for 

existing lot sizing models. 

 

The new lot sizing model will be formulated in order to solve an empirical case 

from HeidelbergCement. Therefore the problem in this thesis is somewhat two-

fold. However, while we solve this case based on the input data provided to us by 

the company, the data is first and foremost utilized to develop the model. We will 

not compare the results found from our model with the actual situation in 

HeidelbergCement. The main objective in this thesis is to develop a stable and 

functional transportation lot sizing model. Thus the model is not meant to be 

utilized by HeidelbergCement, but if the model seems to work well it may still be 

used in some capacity by the company.  

 

The transportation in this thesis is performed by a vessel. Maritime transportation 

is in general an expensive and time consuming way of distributing products. One 

objective when formulating a transportation lot sizing model would therefore be to 

make the model provide a solution (transportation plan) consisting of as large lot 

sizes as possible for each trip. Another objective will be to formulate the model in 

order to make it as flexible as possible when it comes to time management. When 

developing a model like this, you also have to be aware that it is an iterative 

process. Finding a solution to one problem may shed new light over another 

problem. The model will be solved using the optimization tool MPL 

(Mathematical Programming Language) with the Gurobi solver. 
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1.5 Importance of topic - why develop a transportation lot sizing model? 

The purpose of this thesis is first and foremost to find a new way of utilizing 

existing lot sizing theories through the development of a new transportation lot 

sizing model. We recognize that there are several other ways of solving a 

transportation problem like the one in our empirical case.  We also recognize that 

some extensions have been made to integrate distribution as a result of lot sizing 

decisions in the production planning, but these are not made solely as 

transportation lot sizing models. 

 

Up until now the focus in the lot sizing literature has been on production planning. 

However, some industries have low complexity in production, only one final 

product and a very high setup costs in production. In such industries the decision 

of when and how much to produce becomes irrelevant. The only true option is to 

produce at full capacity in all periods (except when there is downtime for 

maintenance). The empirical case from HeidelbergCement can be described as 

such an industry. In this case the decision should rather be to find an optimal 

transportation plan while balancing the costs of transportation and holding 

inventories. These are decisions that are made by a lot sizing model. From a 

theoretical point of view we therefore argue that it is important to expand the area 

of application for lot sizing models from production planning to transportation 

planning. 

 

Another important aspect in lot sizing theory is that from a practical point of view 

the utility value of lot sizing models may seem limited to some. In order to 

increase the usability of lot sizing models in practice and further replicate the real-

life situation it is therefore important to implement as many aspects as possible to 

the model. We argue that the implementation of period overlapping setups and the 

possibility for inventory shortage in our model increases the utility value of the 

transportation lot sizing model. Hence, this also underlines the (relative) 

importance of the work performed in this thesis. 
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1.6 Outline 

The remainder of this master thesis is structured in the following way: In chapter 

two we will present the research methodology used for this paper; a 

multimethodology consisting of normative axiomatic research and empirical 

research. Chapter three contains a literature review, reviewing the different lot 

sizing models, theory on the model extensions of period overlapping setup and 

inventory shortage as well as a review on the work done on models with seasonal 

demand. In chapter four we start with a discussion of possible objective functions 

in the model before we present the mathematical formulation of the model in 

detail in three separate steps. The different solutions and a discussion of each step 

are also presented. Chapter five contains an analysis and test of the model in order 

to test its stability, flexibility and functionality. The final chapter summarizes the 

work in the thesis and discusses the practical use of the model and provides 

suggestions for further research. 
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2 Research methodology 

 
Research in operations management usually differs somewhat from ―traditional‖ 

research.  It is as Meredith et al. (1989, p 297) put it: 

 

“Due to the heritage and history of operations management, its research 

methodologies have been confined mainly to that of quantitative modelling and, 

on occasion, statistical analysis. The research methodologies in operations have 

largely remained stagnant”.  

 

Meredith et al. (1989) presented a framework for research methods which consists 

of two dimensions;  

1. Natural moving towards artificial  

2. Rational moving towards existential.  

Normative modeling corresponds to the ‖artificial reconstruction of object reality‖ 

on the first dimension and axiomatic research on the second dimension. In their 

article, Bertrand and Fransoo (2002) classify quantitative model-based research 

into two distinct classes with two corresponding research types. 

1. The axiomatic research approach  

2. Research based on empirical findings and measurements 

Both classes can be either normative or descriptive. 

 

Bertrand and Fransoo (2002, p. 249), which base some of their article on the 

insights provided by Meredith et al. (1989), have defined axiomatic research as 

the following;  

 

“In this class of research [axiomatic research], the primary concern of the 

researcher is to obtain solutions within the defined model and make sure that 

these solutions provide insights into the structure of the problem as defined within 

the model”. 

 

This type of research is driven by an idealized model. Such a model can be 

interpreted as a highly simplified model of reality; for instance a lot sizing model. 

According to Bertrand and Fransoo (2002) almost all axiomatic research seems to 
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be normative. Normative research mainly wants to develop policies, strategies and 

actions to improve the results that have been provided by the literature that 

already exists, and also to provide solutions to problems that have just been 

defined. 

 

Mitroff, Betz, Pondy and Sagasti (1974) present a model on how to approach 

operational research based on quantitative modeling. We present the research 

model’s four central phases. 

 

 

Figure 2.1: Research model (Source: Mitroff et al. (1974)) 

 

The conceptualization phase  

Starting from an existing ―reality‖, or problem, the researcher here makes 

decisions on which variables that need to be included and also address the scope 

of the problem and model. This relates to our problem where we choose theory 

and variables to use from the existing theory. It also relates to the empirical case 

as this is where the problem is narrowed down from the ―real-world‖ to the 

simplified problem we will solve.  

 

The modeling phase 

Based on the conceptual model, the researcher builds the quantitative model. The 

causal relationships between the variables are defined. This phase is where we 

develop our mathematical model from the relevant theory and variables picked in 

the previous phase, and through parameters provided from the empirical case. 
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The model solving phase 

This phase involves solving the quantitative model. Here we apply a computer 

program – MPL – to the mathematical model in order to solve the model. 

 

The implementation phase 

If the previous phase provides positive results, then the results can be 

implemented to the original departure point, or reality. If the model solved 

provides results that are possible to implement in the origin of the empirical case, 

this is done here. Nevertheless, we will not be implementing our model. It is not a 

model made for use, rather to explore the field of lot sizing. If we manage to find 

results that can add new insight to existing literature, this also occurs in this phase. 

 

Mitroff et al. (1974) also include one horizontal axis, indicated by (6) in the 

figure, and one vertical axis, indicated by (5). The horizontal axis (6) describes the 

validation phase of the model, while (5) is called the feedback phase. One feature 

of the ―framework‖ presented here is that it can, and perhaps should, work as an 

iterative process. We will probably have to adjust our problem after each iteration 

that is performed.  

 

Another approach to quantitative modeling is presented by Pidd (1999). He has 

set up six different principles that discuss model development as a gradual 

process. His belief is that one should divide larger models into several smaller 

ones, so that it would be easier to model, and then combine them. The six 

different principles that he has come up with are (Pidd 1999, p 121);  

1. Model simple; think complicated. It will be too time-consuming, 

expensive etc. to model an exact replica of the reality, but it is important to 

be aware that the model is just a simplification.  

2. Be parsimonious; start small and add. Develop your model gradually – 

start with simple assumptions and add complications only as needed.  

3. Divide and conquer; avoid mega models. This avoids over-general models 

that cannot be validated. 

4. Use metaphors, analogies and similarities 

5. Do not fall in love with data 

6. Model building may feel like muddling through.  
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Given our previous experience with quantitative modeling we believe these 

principles to be good advice. It is always easier to start with a small and simple 

model and add the constraints that you need to add as you go along.  

 

As mentioned before, the objective for our thesis can somewhat be divided into 

two parts. We will use quantitative modeling to test existing theory on a new area 

of application, while at the same time solving an empirical case. When you take 

existing models and tweak them a bit and try to further develop them you are 

using axiomatic research design. On the other hand, when you are considering a 

real life problem and trying to solve this you are using an empirical design. Thus 

one can argue that we in some ways are using a mulitmethodology; a mixture of 

two different designs. As Mingers and Brocklesby (1997, p 489) states:  

 

“…in dealing with the richness of the real world, it is desirable to go beyond 

using a single methodology to generally combining several methodologies, in 

whole or in part, and possibly from different paradigms.” 

 

According to Mingers and Brocklesby (1997) one of the reasons for using 

multimethodology is that the real world situations are highly complex and multi-

dimensional. Thus, your work might not fit into one methodology alone, as is the 

case for our thesis.  

 

Based on the type of work we are going to perform, the most fitting methodology 

seems to be normative axiomatic research methodology. The reason why we 

believe this to be the case is that we want to explore a new field for the use of 

existing lot sizing models, and hence we can describe this as normative research 

(or modeling).  Further we want to find solutions to our problem through the 

model – we want to see if, and how, the model we develop actually work and 

provides us with new and useful insight to our problem. This seems to correspond 

with axiomatic research. We will also use the two approaches proposed by Mitroff 

et al. and Pidd when formulating our mathematical model. 
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2.1 Collection of data 

We have been provided with the data needed by the company. Thus, this can be 

considered secondary data. One of the pitfalls of secondary data is that you have 

not collected them yourself, and therefore it is not as easy to make sure that they 

are up to date, that they are not too general and that they are correct. Nevertheless, 

since we are obtaining realistic data through an associate (consultant) of the 

company, we consider the validity of the data to be secured.  

 

The data itself should not have an impact on the quality of the mathematical 

model itself, but erroneous data may of course lead to wrong solutions for the 

company. Nevertheless, our main goal for this master thesis is not necessarily to 

make a decision tool for the company, rather to explore the field of lot sizing and 

try to further exploit the literature in order to make a transportation lot sizing 

model.  

 

2.2 Reliability 

The notion of reliability is that when another researcher tries to replicate your 

research with the same data, he or she should be able to obtain the same result. 

Pedhauzer (1991) defines reliability in the most general way as this: “Reliability 

refers to the degree to which test scores are free from errors of measurement.”  

 

There are three different ways of measuring the reliability; test retest, equivalent 

forms and internal consistency. Test retest is most likely the simplest form of 

testing the reliability. The concept of test retest is that you check the consistency 

and the repeatability of measurement (Elazar J. Pedhauzer 1991). Our model will 

most likely be easy to replicate by retesting the work that we have done. Along 

the way of making our model, we will carefully document the work, by explaining 

the mathematical formulation and our method of approach. The process will be 

documented very closely, and we believe that our results could be replicated 

should one want to do so.  

 

When you are testing the reliability by equivalent forms you want to measure the 

same phenomenon in two different ways. According to Pedhauzer (1991), the two 

different methods should preferably be parallel. Nevertheless, there are several 
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strict assumptions behind parallel measurements and this method is therefore not 

used as often. In our case, one way of securing reliability through equivalent 

forms is to implement our model in several programs. We intend to model our 

problem in both MPL and SAS/OR. Internal consistency is to make sure that your 

object of interest responds in the same manner after some time has passed. This 

way of securing reliability is not relevant to us and will not be elaborated further.  

 

2.3 Methods for solving lot sizing models 

According to Karimi, Fatemi Ghomi, and Wilson  (2003) there are three methods 

of solving the lot sizing problems: (1) Exact methods, (2) Common sense or 

specialized heuristics and (3) Mathematical programming based heuristics.  

 

In our thesis we will be using exact methods, therefore we will only be reviewing 

this method in more detail. Within the exact methods there are three different 

types of solution methods (Karimi, Fatemi Ghomi, and Wilson 2003, 369-373); 

1. Implementation of a mixed integer programming formula, using branch 

and bound techniques to solve it 

2. Cut-generation techniques 

3. The variable redefinition techniques 

The implementation of a mixed integer program is the most straightforward 

approach out of the three, and the one that we will be using in our master thesis.  

Nevertheless, the Gurobi solver uses a combination of these three solution 

methods, so one can argue that we are in fact using all three. 

 

Branch and bound is a way of finding the best integer solution while allowing for 

relaxation of the variables which means that we allow them to be between 0 and 1 

instead of exactly 0 or 1. Branch and bound is said to be a very effective way of 

solving mixed integer programs, and is therefore a good approach for us to use 

(Sas 2011). The model is divided into several sub problems, one for each possible 

outcome. If the sub problems are not integer-feasible new sub problems are 

defined. If a sub problem is integer-feasible it becomes the upper bound for a 

minimization problem or the lower bound for a maximization problem (Sas 2011).  
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The algorithm chooses to branch on the solution with the largest fractional value, 

i.e. the value closest to 1. From here the model is able to find the solution that 

yields the best objective value by fathoming (excluding) infeasible sub problems, 

sub problems where the LP solution yields binary variables for the 0-1 variables 

and sub problems where the objective function does not exceed the incumbent 

value. This is also known as the best known feasible MIP solution (Shapiro 2007). 

If it turns out that there is no integer solution to be found the MIP problem itself is 

infeasible. Nevertheless, if an integer solution is found, this is the optimal solution 

for the MIP program.  

 

According to Buschkühl et al. (2008) the bounds that are found during the 

relaxation of lot sizing problems are quite poor. It can be beneficial to introduce 

inequalities in order to tighten the lower bounds, which increases the efficiency of 

the branch and bound method. Within the inequalities approach there are three 

different methods (Buschkühl et al. 2008, p 240); 

1. The cutting plane method; the inequalities are generated dynamically to 

cut of current non-integer solutions. 

2. The branch and cut; the valid inequalities are introduced in the course of 

the branch and bound algorithm. 

3. The cut and branch procedure; the cut and branch method incorporates all 

the generated inequalities into the model formulation before starting the 

branch and bound algorithm.  

Another exact method is the cut-generation technique. When you are using the cut 

generation technique you are adding strong inequalities. This reformulates the 

problem and speeds up the solution process and it will also give you what is a near 

to optimal solution. The reformulated problem will be solved by using branch and 

bound. The inequalities that are used to reformulate the models are produced by 

using a cutting plane procedure (Karimi, Fatemi Ghomi, and Wilson 2003, p 369). 

 

The third exact method that is mentioned above is the variable redefinition 

technique. According to Martin (1987, p 821) the general idea of variable 

redefinition “is to develop an alternative formulation for the special structure 

subproblem.” The variable redefinition can consist of a completely new set of 
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variables, but it can also contain a subset of the variables in addition to some new 

auxiliary variables (Eppen and Martin 1987). 

 

Buschkül et al (2008) also provides a thorough review of different solution 

approaches for lot sizing problems, and has included an additional category of 

solving lot sizing models; decomposition and aggregation approaches. This 

approach divides the model or problem into several smaller sub-problems. Each of 

the sub-problems are solved individually and their solutions are then coordinated. 

Given that we have a problem from real-life, this might be the approach that 

would yield the most realistic result, but not necessarily what is most optimal. 

Nevertheless, since our main goal is to develop a transportation lot sizing model 

we want to develop a model that yields the most optimal results. The best way to 

do this is presumably to view the problem as a whole, not dividing it into sub 

problems as suggested by Buschkühl et al. (2008).  

 

2.4 Tools used 

Deciding which tool to use in order to solve an optimization problem in 

quantitative modeling can be an important decision in regards to several aspects; 

how easy it is to use, how good the solver is, whether the programming language 

is commonly known etc. We were, as previously mentioned, introduced to 

SAS/OR in our course Introduction to Management Science. As we knew the 

program, we initially used the modeling tool SAS/OR and Enterprise Guide 4.3. 

Our three different steps of the model were initially implemented in SAS/OR.  

 

SAS/OR is an optimization tool that is designed for people with a background 

within operations research/management science (or similar) that uses for instance 

mathematical programming (Sas 2011). It is a tool for constraint based 

programming. In our case we used the OPTMODEL-procedure which uses a 

solver called MILP. According to SAS (2011) “the MILP solver implements an 

LP-based branch-and-bound algorithm”. 

 

After trying to solve the different models in SAS/OR we experienced that the 

solution time was extremely long. Our computers ran out of memory before the 

optimal solution could be found. In order to try to solve the problem more 
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efficiently we chose to implement our models in another planning tool, MPL 

(Mathematical Programming Language), which is quite similar to SAS/OR but 

that has a better solver; GUROBI. The solution times were considerably reduced 

when we started using MPL. The smallest models were solved in approximately 

five seconds. The largest ones were cut off after two hours as we saw that the 

objective function were the same as when we let the program run until the PC was 

out of memory. The reason why the largest problems are taking so long to solve is 

that as more variables are added the solution time increases exponentially (Bahl, 

Ritzman, and Gupta 1987). We chose to terminate the program after some time 

because there were not really any other realistic alternatives. We could have found 

another solver, but his would be too time-consuming. The other option was to let 

the program run until the computer was out of memory, but this would not be an 

efficient use of our time. 

 

According to Maximal Software, the developer of MPL, “MPL includes an 

algebraic modeling language that allows the model developer to create 

optimization models using algebraic equations. The model is used as a basis to 

generate a mathematical matrix that can be relayed directly into the optimization 

solver. This is all done in the background so that the model developer only needs 

to focus on formulating the model.”(Maximal Software 2011).Since MPL is 

designed to handle large problems; it can be a good choice for supply chain 

problems since these tend to be quite large. The solver that we have chosen to use 

with MPL is GUROBI 4.5.1, which solves linear problems, quadratic problems, 

mixed integer problems (as our problem) and mixed integer quadratic problems 

(Maximal Software 2011). According to Gurobi; “For MILP and MIQP models, 

the Gurobi Optimizer incorporates the latest methods including cutting planes 

and powerful solution heuristics. All models benefit from advanced presolve 

methods to simplify models and slash solve times” (Gurobi 2011). 

 

The computers that were used during the modeling and solving of our models; 

- Acer Aspire Timeline 3820T, Intel Core i3-M350 @ 2.26GHz, 4GB 

RAM. Windows 7, x64.  

- Asus UL30V, Intel Core 2 Duo SU7300 @ 1.3GHz, 4GB RAM, 

Windows 7, x64. 
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3 Literature review 
 

In production planning and inventory management the term ―lot sizing” refers to 

the determination of the optimal timing and level of production while considering 

the trade-offs between setup costs, production costs and inventory costs. Karimi, 

Fatemi Ghomi and Wilson (2003) argue that lot sizing decisions can have a large 

impact on a manufacturing firm’s productivity and performance, and hence its 

ability to compete in the market. They further argue that developing and 

improving solution procedures for lot sizing problems therefore is very important. 

 

The perhaps most famous lot sizing model; the Economic Order Quantity model 

(EOQ), was originally presented by Harris in 1913. The model determines an 

order quantity that minimizes inventory and ordering costs for a single product, 

under the assumptions of no capacity constraints and a deterministic and static 

demand over an infinite planning horizon (Harris 1990). One can argue that these 

assumptions make this model highly simplified. Axsäter (1986) discusses some of 

the assumptions or simplifications made in lot sizing models and how valid they 

are in practical situations. Also for computational purposes, simplifications of the 

reality have to be made when formulating lot sizing models. According to Bahl, 

Ritzman and Gupta (1987) the computational time, or the solution time, can 

increase exponentially when the number of products or time periods increases. 

The development of computers and their processing-power allows researchers to 

make fewer simplifications and hence lot sizing models are able to edge closer to 

describing the real life problem. Then again, as the complexity increases so does 

the solution time. Jans and Degraeve (2008) points out that while early lot sizing 

models focused on the main trade-off between the production- ,inventory- and 

setup costs, new extensions increasingly focus on incorporating industrial 

concerns. They argue further that: “The power of production planning theory 

comes from the ability to solve more and more complex industrial problems”. 

 

Wagner and Whitin (1958) introduced the extensions of dynamic demand to lot 

sizing decisions. Their seminal work was the beginning of what Jans and 

Degraeve (2008) describe in their paper as “the dynamic lot sizing problem, with 

discrete time scale, deterministic dynamic demand and finite time horizon”. This 

type of lot sizing problem will be the focus of this literature review. Ekşioğlu 
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(2009,  p 93) defines the classical economic lot sizing model as follows:  “Given 

the demand, the unit production cost, the unit inventory holding cost for a 

commodity, and the set-up costs for each time period over a finite and discrete-

time horizon; find a production schedule that satisfies demand at minimum cost”. 

 

There is an extensive amount of literature on the topic of lot sizing. Jans and 

Degraeve (2008), Brahimi et al.(2006), Karimi, Fatemi Ghomi and Wilson (2003) 

and Bahl, Ritzman and Gupta (1987) have all provided some very good review 

papers on the topic. While almost all literature focuses on lot sizing problems in 

production, some have included transportation/distribution. We cannot seem to 

find any work on lot sizing models used specifically on transportation planning - 

which is the topic of our thesis. As we will try to expand and extend the use of 

existing lot sizing theory from production to transportation, the literature review 

will continue to focus on lot sizing in production. 

 

All lot sizing models have some characteristics in common that determines their 

level of complexity. In their review, Karimi, Fatemi Ghomi and Wilson (2003) 

lists the following characteristics as decisive when modeling, classifying and 

determining the complexity of lot sizing models:  

 

1. The planning horizon: You can have different levels of planning in 

accordance to how long your planning horizon is. If your schedule applies 

for a year or more you typically have a strategic planning tool, if it applies 

for 3-4 months you most likely have a tactical planning tool, and if the 

planning horizon is shorter than this it is typically called an operational 

model/planning tool. The planning horizon can either be finite or infinite.  

2. Number of levels: A lot sizing model can either be single-level or 

multiple-level. You can have single/multi-level production. In single-level 

production systems the final product is a very simple one, while in multi-

level systems several levels of handling exist and the demand on one level 

of production is dependent on its ―parents’‖ level. You can also have 

single/multi-level production and transportation. A model is single-level 

if it only consists of production, while it is multi-level if transportation is 

included and is dependent on the production levels (its parents’ level). 
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3. Number of products. You can either have a single-item model; one 

product for each time period only, or a multi-item model; you can produce 

multiple products on the same machine within the time period. Multi-item 

problems is said to have much higher complexity than single-item 

problems. 

4. Capacity or resource constraints: When building a model there are 

several constraints that need to be considered. For instance capacity 

constraints in regards to production, vessel-size, silo capacity etc. As the 

number of constraints increases, the solving complexity increases. 

5. Demand: The demand can be static; where its value does not change over 

time, or it can be dynamic; where its value does change over time. Most 

optimization models assume deterministic demand which means that 

demand is known in advance. Most likely the demand is also dynamic. 

This will increase the complexity of the modeling. 

6. Setup structure: If the setup costs or setup times are not sequence-

dependent it is called a simple setup. When it is dependent on previous 

periods or sequence it is called a complex setup structure. Setup carry-over 

or period overlapping setup is an example of a complex setup structure. 

Setup costs and time are generally modeled as a binary variable (0/1). This 

makes it harder to solve the model and also extend the solution time.  

7. Inventory shortage: If you allow for shortage, this means that you allow 

for unmet demand in the current period to be met in future periods. This is 

known as backlogging. If you do not allow for inventory shortage, you 

allow for demand not to be satisfied at all. This is known as lost sales. 

These extensions make the lot sizing model more difficult to solve. 

From here on we will concentrate on single-/multi-item lot sizing problems with a 

finite planning horizon, single level production, and dynamic demand since this is 

the most relevant to our problem. We will present one uncapacitated and one 

capacitated model, before we present two extensions of the model: Period 

overlapping setup (complex setup structure) and inventory shortage 
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3.1 The single-item uncapacitated lot sizing model 

The simplest type of lot sizing model is the single-item uncapacitated model, 

which Brahimi et al. (2006,  p 5) have defined as: “a lot sizing problem where we 

consider a single (or aggregate) product, and the production capacity is assumed 

to be high enough to never bind in an optimal solution”. Jans and Degraeve 

(2008) have formulated a mathematical model of the single-item uncapacitated 

problem. The notations used are the following: 

 

     variable cost of producing one unit. 

    The amount of the product that is produced. 

     The cost of setting up the machine for production. 

    A binary variable that is 1 if the machine is setup in period t, 0 otherwise. 

     The cost of storing one unit. 

    The inventory in period t. 

    The demand in period t. 

   A large number 

   A time period 

 

The mathematical formulation: 

 

                     ∑( (      )   (       )    (      ) )                                  ( )

 

   

 

 

subject to 

 

                                                                                                             ( ) 

                      (     )                                                                                        ( ) 

                               [   ]                                                                            ( ) 

 

The objective function is to minimize the total costs of producing, storing and 

setting up for production (1). The inventory balance is modeled in (2), and tells us 

that the demand can be covered either by the inventory from last period or the 
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production from the current period, and any excess is carried over to the next 

period as inventory. Constraint (3) is a ―setup logic‖ that symbolizes that you 

cannot produce the product if you have not set up the machine for production. The 

inventory and production variable in the model must be greater or equal to zero 

and the setup variable is a binary variable (4). 

 

When working on a real life problem you are not likely to find many cases where 

the single-item uncapacitated lot sizing model would be realistic for the problem 

at hand. Every company has some kind of capacity constraints in regards to their 

resources. Nevertheless, Bahl, Ritzman and Gupta (1987) argue that in many 

cases it can be easier to approach a lot sizing problem by developing an 

uncapacitated model as a starting block, and then expand the model with the 

capacity constraints so that it eventually becomes a capacitated model. This way it 

can be easier to avoid the capacity infeasibility, by evolving the model step by 

step 

 

3.2 The capacitated multi-item lot sizing model (CLSP) 

In the capacitated model there are restrictions in regards to the capacity available, 

as for instance the inventory-capacity, the capacity on the chosen transportation 

mode or the production capacity (Karimi, Fatemi Ghomi, and Wilson 2003). You 

have to calculate what capacity will be available in each period, or use an 

approximation of an average constant value based on previous experiences. The 

multi-item lot sizing model is quite similar to the single-item lot sizing model. 

The main difference is that you have to calculate the lot-sizes for several products 

and not just one. As a consequence you have to change the setup-state each time 

you start producing a new product. In the CLSP you are going to schedule N items 

over a horizon of T periods while minimizing the total costs, and according to 

Karimi, Fatemi Ghomi, and Wilson (2003) the multi-item capacitated lot sizing 

model is strongly NP-hard. Strongly NP-hard problems are often solved as mixed 

integer programs.  

 

Capacitated lot sizing problems can be classified into two different classes, or 

time buckets. The length of each period in a planning horizon is called time 

buckets (Sox and Gao 1999). There are two different types of time buckets; small 
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bucket models and large bucket models. In a small bucket model you are only 

allowed to produce one product within one time period. The Continuous Lot 

Sizing Problem (CSLP) is a small bucket model. In the large bucket model you 

can produce several products on the same machine within one time period. The 

Capacitated Single-/Multi-Item Lot sizing Problem (CLSP) is a large bucket 

model (Jans and Degraeve 2008). Our problem is a capacitated multi-item lot-

sizing problem and the new mathematical extensions can be formulated as follows 

(using the same notation as before with the addition of     , which is a capacity 

constraint, and vti is the time used to produce product i): 

 

                     ∑∑((        )  (        )  (        ))

 

   

                         ( )

 

   

 

 

subject to 

 

                                                                                                      ( ) 

                       (     )                                                                              ( ) 

                  ∑ (       )         
 
                                                                        ( )  

                                  [   ]                                                               ( ) 

 

The objective function is to minimize the total cost of producing and storing the 

products and the setup for the different products (1). The inventory balance (2) 

and the setup logic (3) now apply for each product i in each period t, and (4) is the 

capacity constraint. The inventory and production variable in the model must be 

greater or equal to zero and the setup variable is a binary variable (5). 

 

3.3 Lot sizing models and transportation 

There is a vast amount of literature on the topic of transportation. We have 

narrowed down our review so it only concerns literature that includes lot sizing 

models used in transportation planning. Molina et al. (2009) argue that while the 

transportation costs accounts for a substantial portion of the logistics cost for a 
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product, the costs considered in lot sizing models are usually restricted to 

production, setups and inventory. Hence transportation costs in lot sizing models 

deserve some attention.  

 

Speranza and Ukovich (1993) describes several strategies for finding the lowest 

total cost of inventory and transportation for a specific problem. One of the 

strategies that they describe is the ship-when-full strategy. Using this method you 

simply fill up the truck or vessel and ship it when it is completely filled. This way 

the transportation capacity is utilized to its fullest potential. This strategy was 

found to be less than optimal compared to the other strategies. Speranza and 

Ukovich (1993) also mention some other strategies. One of them is to weight the 

value of the products and then ship at a regular pace a certain quantity or the truck 

capacity whichever is smaller. This approach is intended for high value goods. 

The other strategy mentioned is to manage the different products independently. 

The products are shipped on different trucks and the frequency for each product is 

different. Hwang (2010) points out yet another strategy; in order to reduce the 

number of deliveries that are fairly small (less than truckload) a shipment 

consolidation program can be used. Here some of the units are backlogged or held 

back so that you can combine several small shipments into one large shipment 

(full truckload) or several full truckload shipments. This will lead to an overall 

lower shipment per unit cost.  

 

Over the years the ―traditional‖ lot sizing models, which only consider production 

and inventory, have been extended by some authors to also include transportation. 

Hwang (2010) presents a lot sizing model with integrated production and 

transportation; the ELSP-PT. The ELSP-PT is a model used to find optimal lot 

sizes when considering that the production and transportation is linked. In his 

paper he models the production costs as concave (economies of scale) and 

transportation costs as a stepwise function based on the cargo capacity 

(consolidation). Hwang (2010) assumes that the transportation is uncapacitated 

and that the demand is deterministic. Haq et al. (1991) developed mixed integer 

programming (MIP) model which determines the transportation lot sizes that 

minimizes the total transportation cost where the production, inventory and 

distribution are integrated. The model is built upon a multi echelon system.  Neng, 

Lee and Tseng (2003) have also developed a MIP model which minimizes 
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transportation costs for supply chains with discrete-period variable demand and 

have developed a two-phase heuristic to solve it. Cetinkaya and Lee (2000) 

present a model for coordinating inventory and transportation in Vendor Managed 

Inventory (VMI) systems. Kaminsky and Simchi-Levi (2003) have developed a 

two-stage model where items are produced at stage one, held at an inventory and 

then transported to stage two where additional production is completed. After this 

the finished products are transported to the final inventory which the customers 

are served from. Diaby and Martel (1993) have developed a model for planning in 

a multi-echelon distribution system. 

 

According to Chen (2010) it is critical to integrate the production and 

transportation, and plan and schedule them jointly in a coordinated manner in 

order to achieve optimal operational performance in a supply chain. Chandra and 

Fisher (1994) investigates the value of coordinating production and transportation 

planning, and finds that this is cost saving compared to planning the two in 

separate. Another benefit of integrating the two operations, in addition to reducing 

costs, is that this can often lead to better customer service which is key in many 

industries (Chen 2010). 

 

3.4 Period Overlapping Setup (Model extension 1) 

We have done an extensive search for literature concerning period overlapping 

setup, but to our knowledge there are not an abundance of articles on the topic. 

This is also acknowledged by Suerie (2006,  p 877):  “Regarding the case in 

which setup times overlap two (or more) periods, only a few model formulations 

have been proposed so far.”  All the articles we have found on the topic of period 

overlapping setups are written in conjunction with production lot sizing (Suerie 

and Stadtler 2003), (Gopalakrishnan, Miller, and Schmidt 1995), (Suerie 2006), 

(Tempelmeier and Buschkühl 2009) and more. 

 

Jans and Degraeve (2008) explain that setup times represent the capacity that is 

lost due to cleaning, machine adjustments, inspection, testing etc. when 

production for a new item starts. The capacitated lot sizing problem have been 

criticized because it does not allow a setup to be carried over from one period to 

the next one, even if the product that is to be produced (or in our case shipped) at 
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the beginning of the period is the same as the one at the end of the last period  

(Jans and Degraeve 2008). According to Gopalakrishnan, Miller and Schmidt 

(1995) it is desirable to maintain and carry over a setup for a product (or trip) if it 

is produced (shipped) last in a period and first in the following period. In order to 

be able to do so it is important that the product that is produced last in period t and 

the one produced first in period t+1 are identified. If they are not the same we 

cannot have a period overlapping setup.  

 

Since the notion of period overlapping setups is a relevant problem when dealing 

with real-life situations there has been a development of new models which allow 

for such overlaps. The problem above is referred to as the capacitated lot sizing 

problem with linked lot sizes, period overlapping setups or setup carryovers 

(Suerie and Stadtler 2003), (Suerie 2006), (Gopalakrishnan, Miller, and Schmidt 

1995), (Briskorn 2006). What is important to remember here is that maximum one 

setup state can be carried over from one period to the next (Suerie and Stadtler 

2003).  

 

Including a period overlapping setup might be advantageous. If the capacity is 

tight in the previous periods, there may not exist a feasible solution 

(Gopalakrishnan, Miller, and Schmidt 1995). By introducing a period overlapping 

setup a feasible solution might be obtained. In addition, by allowing a setup to be 

carried over there can be substantial cost savings since the number of setups and 

the inventory most likely will be reduced  (Gopalakrishnan, Miller, and Schmidt 

1995). An example of a practical situation where period overlapping setups is 

important is found in Kim et al. (2010). They argue that some industries have to 

produce on a ―24/7 – basis‖ in order to avoid expensive shutdowns (as is the case 

with HeidelbergCement). In such situations setups can take place any time in 

order to make an efficient plan, and hence period overlapping setups are 

important. This resembles the empirical case in our thesis and makes the extension 

of period overlapping setup interesting. 

 

There are several different manners in which the challenge of a period 

overlapping setup can be solved. One method for implementing a period 

overlapping setup is presented by Dirk Briskorn (2006). He established a binary 

variable that is 1 if the setup for a product is preserved from period t to period 
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t+1. In addition he has a binary variable for a regular setup, as for the regular lot 

sizing models. The model that he has developed is presented below (Briskorn 

2006, p 1045). The notations will be the same as before with the exception of the 

new binary variable which will be denoted by     , which will be 1 if we have a 

period overlapping setup and 0 otherwise: 
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Two constraints have been added and one has been changed. Constraint (2) has 

been altered to account for the period overlapping setup. Constraint (4) has been 

added in order to assure that we can have at most one period overlapping setup. 

Constraint (5) assures us that we cannot have a period overlapping setup for a 

product if it was not setup last period.  

 

In addition to allowing period overlapping setups there are some models that have 

been able to identify the sequence of the lot-sizes, not only the first and the last 

but also those in between. This extension can be necessary if you have sequence-

dependent setup-times or setup-cost (Gupta and Magnusson 2005),(Xiaoyan and 
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Wilhelm 2006), (Gopalakrishnan, Miller, and Schmidt 1995). As we have 

sequence independent setup times and costs in our model we will not explore this 

any further.  

 

3.5 Inventory Shortage (Model extension 2) 

Inventory shortage is usually dealt with by allowing for either lost sales or 

backlogging. There are several authors that have reviewed the topic of inventory 

shortage (Vijayan and Kumaran 2008), (Zipkin 2008), (Zipkin 2008), (Absi and 

Kedad-Sidhoum 2009), (Huh et al. 2009).  

 

When you do not have enough products to supply your customers at a certain 

point in time you have a stock-out or inventory shortage. According to Vijayan 

and Kumaran (2008) there are three different ways of handling stock-outs, or 

inventory shortage: 

1. Backlogging 

2. Lost sales 

3. A mixture of backlogging and lost sales 

If the customers are willing to wait to get their order fulfilled in the next period 

instead of the current one, you have a case of backlogging. If they are not willing 

to wait you have a case of lost sales. Normally there will be a penalty cost for 

each unit that the company is unable to deliver. This penalty cost can for instance 

be the lost profit margin or the cost of ordering the product from another supplier. 

Hsu and Lowe (2001) believe that there can be costs from stock outs additional to 

the lost margin. If the customers have to wait a long time, you may lose future 

sales to these customers and your future production might decrease due to 

decreased demand. These costs can increase in a nonlinear manner.  

 

The fact that all of these elements have to be included in the evaluation can make 

it quite difficult to estimate the real stock out cost. In many instances the cost of 

lost sales can be higher than the holding cost for the product (Huh et al. 2009), 

hence you want to be able to produce enough products in order to meet demand 

unless there are financial reasons or capacity restrictions that do not allow for this 

to happen. Nevertheless, in some situations firms choose to lose the sales because 
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this will be more beneficial than taking on the orders. According to Kesen, 

Kanchanapiboon and Das (2010, p 182):  

 

“Companies are increasingly convinced that when demand drops it is better to 

lose the sales rather than expose the supply chain to substantial inventory risk 

and discount pricing.” 

 

Liu et al. (2007, p. 5882) mention some of the reasons why losing sales might be 

beneficial; if the setup costs and production costs are too high or if the product 

holding and storage costs are too high. According to the authors there are two 

different lost sales strategies;  

1. The conservation strategy where the customers’ demand is not met even if 

the inventory is positive because there is a greater opportunity for the 

company in a later period.  

2. The stock-out strategy where the customers’ demand will be met until the 

inventory is empty, and from there you will have lost sales.  

Kesen, Kanchanapiboon and Das (2010) have come up with the specific example 

of the electronics industry where the life time of a product is getting smaller and 

smaller and the price of the product is declining fast. Many speculate in ordering 

the forecasted demand and would rather lose some sales than be left with a large 

inventory and having to sell the products at a discounted price. To order smaller 

batches is the increasing trend in the retail industry.   

 

The simplest manner of modelling inventory shortage is as follows (Absi and 

Kedad-Sidhoum 2009, p 1353): 

  

        A non-negative variable that accounts for the inventory shortage of 

product i in period t. 

 

       A parameter which accounts for the penalty cost incurred by lost-sales.  
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Subject to: 

 

                                                                                                                 

 

We have only included the objective function and the constraint that is affected by 

the introduction of inventory shortage. The penalty cost has to be included in the 

objective function and the inventory shortage has to be accounted for in the 

inventory balance.  

 

Vijayan and Kumaran (2008) have combined backlogging and lost sales. They 

allow for a mixture of backlogging and lost sales, i.e. if the customers are willing 

to wait they fulfil their orders, if not they lose the sale. Most articles separate the 

two different scenarios, but when looking at what is most realistic in real life it is 

most likely to have a mixture of backlogging and lost sales; some customers are 

willing to wait while others need the products straight away and prefer to go to a 

competing firm, or settle for a substitute product.  

 

A field within the area of inventory shortage that resembles our empirical case is 

lateral transhipment. If a company is unable to meet a customer’s demand the 

company might order transhipment from a store within the same chain. Then you 

perform an intrafirm transhipment (Wenjing, Xinxin, and Yi 2010). In order for a 

transhipment to be beneficial there needs to be a surplus at one of the inventories 

and a deficiency at another, and the surplus must be larger than the shortage. In 

addition the price of transferring the demand must be lower than the shortage cost. 

 

What separates our case from lateral transhipment as described by Wenjing, 

Xinxin and Yi (2010) is that the product is not sent from one terminal to another, 

it is the customers that pick up their product from another terminal. One can 

argue that it is not a transhipment of products, but rather a ―transhipment of 

demand‖. As one terminal loses a sale, another terminal gets an increase in 

demand. For the case of lateral shipments there is a second handling of the 

products when they are shipped to the second location, while in our case there is 

no re-handling of the product since the customers are sent to the ―new‖ terminal. 

Most likely it will not be less expensive, but at least you do not have to re-handle 

the products. 
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3.6 Seasonal demand 

Many industries are facing challenges with fluctuations in demand. There are 

some researchers that have developed different heuristics and models in order to 

cope with this challenge. Amongst them are Metters (1998) and Buxey (1993). 

The literature that we have found on the topic of seasonal demand has to do with 

production, not transportation. According to Buxey (1993) a company’s capacity, 

when they have seasonal demand, should be about equal to the trend figure; what 

you will normally sell. This means that there will be an excess of products when 

the demand is slightly lower than what you on average produce (or ship). You can 

use this excess to build up your stocks and utilize it when the demand is higher 

than usual. On the other hand you are not able to produce (or ship) what is 

demanded when the demand is higher than normal unless you have stock than you 

can feed of or you are able to expand the capacity by using overtime or produce at 

a more intense level.  

 

Some of the strategies that are well known and that are used by companies is the 

“chase strategy” and the “level production strategy” (Buxey 1993). When you 

are using the chase strategy you are constantly changing the output according to 

sales. When using the level strategy you are producing at a rate that is calculated 

by finding the monthly mean values. Based on a survey that Buxey (1993) did, he 

found that there was an overwhelming trend towards using the chase strategy in 

order to cope with the seasonal fluctuations of demand. One of the reasons why so 

many companies choose to follow the chase strategy is to avoid speculation and to 

strengthen the cash flow situation, seeing as you are not binding so much capital 

in the inventory (Buxey 1993). A company’s capacity constraints may not allow 

the company to follow a chase strategy. In many cases they have to produce to 

stock in anticipation of a high seasonal demand.  

 

Metters (1998, p 1397) have created five rules of thumb that could be used 

alongside a heuristic as a support tool; (1) minimize over-commitment risk – there 

are many that begin to produce at maximum capacity too early, (2) store capacity 

cheaply – anticipatory stock should be built taking the holding cost per unit into 

consideration. Build the stock with the lowest cost first. (3) Production can be 

seasonal regardless of demand – produce the cheaper product first. (4) Produce the 
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sure thing first and (5) when your plan fails, produce the money-makers. These 

are relatively easy general rules that might provide some guidance for the planner.  
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4 The Model 

4.1 Case description 

HeidelbergCement produces the final product (cement) at the factory in Sweden 

before it is shipped out by a vessel to eight surrounding terminals. The production 

is at full capacity as the cost of a production shutdown is significant. In addition to 

the storage capacity at each terminal, inventory of the final product is also held at 

the factory. As the supply chain planning in this case is managed by a central 

division in the company, the inventory management is similar to the Vendor 

Managed Inventory (VMI). In our particular case, the company does not transport 

any amount of cement out to their customers from the terminals. At the terminals, 

each customer picks up their desired amount of cement themselves with their own 

trucks. There is no need for the customer to make a prior notification of their visit; 

hence it is important to have a good transportation planning system in place so 

that you are able to meet the customers’ demand by shipping the vessel with a fill 

rate that is as high as possible. The case is illustrated in figure 4.1. 

 

 

Figure 4.1: Case illustration 

 

 

4.2 Model description 

In order to develop a transportation lot sizing model that determines the optimal 

timing and level of the transportation of cement from the production facility to the 



GRA 19002 Master Thesis    01.09.2011 

Page 32 

surrounding terminals, we have to adapt the existing theory – usually intended for 

production problems – to our transportation problem.  

 

Our model is similar to the capacitated multi-item lot sizing model. While the 

factory produces only one item, this does not imply that we have a single-item 

problem. The production quantity is assumed to be deterministic in the model – 

hence no decisions of when, and how much to produce are made by the model. In 

our model we have one vessel that is used to transport cement to several terminals 

within one period, and as a consequence each trip to each terminal requires a new 

setup in the model. The purpose of the model is then to decide the optimal timing 

of each shipment and the corresponding optimal lot size on each shipment. This is 

equivalent to the ―traditional‖ multi-item problem where you can produce several 

products on the same machine within a time period. Hence we can say that our 

model is a multi-item model, or rather; a multi-terminal model. The transportation 

lot sizing model has one level of transportation - from the factory to the terminals, 

i.e. we do not transport via a distribution center or change transportation mode. 

This would have made the model multi-leveled. Thus we argue that our model is a 

single level capacitated multi-terminal lot sizing model. 

 

In traditional lot sizing models the binary setup variable is connected to a setup 

cost and setup time that usually cover all costs/time associated with changing 

production from one item to another on the same machine. Hence the production 

resumes after the setup has been performed. In our model the setup cost refers to 

the costs associated with a specific trip. The setup time is equal to the time spent 

on each trip, including the loading and unloading of the vessel and the trip from 

the factory to the terminal and back. In other words; a setup in our model refers to 

a trip from the factory to terminal k, and when the setup is finished a new one can 

begin.  

 

The number of possible setups (trips) in each period is limited by the time 

capacity in this period, and each period is equal to one week (or 168 hours). The 

vessel capacity decides how much that can be transported on each trip. The vessel 

capacity is 3000 tons. The factory and each of the eight terminals has an inventory 

capacity constraint, and the inventory capacity is 5000 tons in both the factory and 

the terminals. The production capacity at the factory is 7000 tons each week 
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except from every third week when the capacity is reduced by 50 tons due to 

maintenance work. The holding costs are related to the cost of handling the 

inventory and are equal to 2 per ton at both the factory and at the terminals. The 

setup cost for each trip is equal to 1000. The cost of production is irrelevant to the 

model and is therefore not included. 

 

Maritime transportation is a capital intensive business. Hence supply chains that 

include maritime transportation usually have a significant transportation cost. 

When developing a planning model in such a case we argue that it should be 

optimal to send as few vessels as possible, with as high fill rate on each vessel as 

possible. Another aspect of maritime transportation is that each trip is time 

consuming. In our case, no trip is completed in less than 28 hours. Hence we 

argue that time management should be important in maritime transportation 

planning. 

 

In line with the methodology presented by Pidd (1999) in chapter two and Bahl, 

Ritzman and Gupta (1987) in chapter three we have developed the model through 

several steps. We started out with a small model and gradually added variables 

and constraints. First we developed an initial model (henceforth called Model 0). 

Based on this model we have made two extensions in order to make a better fit to 

the empirical case, and to make the model more flexible as a planning tool. In the 

first extension we have added the possibility of performing a period overlapping 

setup in the model. In the second extension we have added the possibility of 

allowing for inventory shortage. After adding these two extensions to Model 0 we 

end up with our final model: A single level capacitated multi-terminal 

transportation lot sizing model with period overlapping setups and inventory 

shortage. 

 

4.3 Underlying assumptions in the model 

In quantitative modeling you have to make assumptions regarding what you 

include in your mathematical model. These assumptions are made to simplify the 

real life problem we are trying to solve in order to reduce the complexity of the 

model. Some of the assumptions may be more valid than others. 
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- The demand is dynamic and deterministic. This is a common way of 

treating demand in lot size modeling.  

- Production is static and at full capacity, except for every third week when 

capacity is reduced due to maintenance work. The production costs are 

omitted from the model since we assume the production to be static and 

hence they will not affect the decision made in the model. We argue that 

these assumptions are valid as it is very expensive to shut down the 

production facilities even for a short period of time, and shut-downs are 

therefore avoided whenever possible. 

- The vessel is available constantly throughout the planning period. This is a 

necessary assumption in any lot sizing model but may be a bit unrealistic 

in our case. In reality, factors as maintenance work, vessel breakdowns 

and weather conditions affect the vessel-availability for 

HeidelbergCement. 

- There is an initial inventory level at each terminal of 2000 tons. 

- The safety stock at each terminal is set to zero. 

- The planning horizon is finite and set to 19 weeks. Hence the model will 

work as a tactical planning tool. 

 

The following assumptions do not apply to our initial model – Model 0: 

- By adding the period overlapping setup variable C, we assume that you are 

allowed to start a trip in period t and return in the following period t+1. 

- All quantity shipped (Z) in a period overlapping setup-situation (C) is 

assumed to be delivered in period t, even though the vessel is returning in 

period t+1. This assumption had to be made in order to make the model 

work. Ideally you would know the arrival time at the terminal in order to 

decide which period the shipment was delivered. 

- We assume that the quantity produced for period t is available at the 

beginning of the period. Hence we do not recognize the fact that 

production takes place ―24/7‖. The consequence of this assumption is that 

you may have shipped all available production-quantity in period t (7000 

tons), but still have more time available at the end of the period to start a 

new trip (setup). In reality there is a quantity of finished product available 
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at this point that are meant for next period (t+1). Ideally you should then 

be able to ship some of this quantity, if this is optimal. 

 

The following assumption applies only to our final model: 

- The demand at each terminal are picked up by the customer themselves. 

Instead of including all customers in the model we assume that the demand 

at terminal k is picked up by customer group i. 

 

4.4 Objective values 

The most commonly used objective value in lot sizing models is minimization of 

total costs. We thought however that it could be interesting to test whether we 

could use other objective values in our model. We tested Model 0 with three 

different objective functions in order to find out which one of them that would 

provide the most logical results, both from a theoretical and practical perspective. 

The tests were performed in Model 0 as they were done before we made the two 

extensions to the model. The three different objective functions that we have 

tested are: 

- Maximization of tons shipped 

- Maximization of time used 

- Minimization of total costs 

 

4.4.1 Maximization of tons shipped 

The mathematical formulation of the objective function: 

 

                 ∑∑    

 

   

 

   

 

 

Where t: period and k: terminal are sets in the model. 

 

        Variable that says how many tons the vessel ships to each terminal in 

each period. 
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When using maximization of tons shipped as the objective function, the model 

ships out 132 700 tons. This is equal to the produced amount over all periods. 

Hence the objective function works satisfactory in the manner that it is able to 

ship out the cement to the terminals in order to meet demand. The average 

utilization of the vessel capacity is not particularly good, as we see from figure 

4.2. However this is not unreasonable as the objective function has no incentives 

to ship as few trips as possible. We also found that the vessel was on average used 

143 hours a week which is the same as about 85% usage of the capacity.  

 

 

Figure 4.2: Results for maximization of tons shipped 

 

When analyzing the data we discovered that while there are 52 trips made, there 

are only 49 trips that were actually transporting cement. From a practical point of 

view it is not realistic that a vessel would ship out to a terminal without carrying 

any cement. In order to avoid this, we adjusted the objective function by 

subtracting a number that was five times as high as the number of trips that were 

made.  Thus the model got an incentive to make as few trips as possible. The 

―new‖ objective function: 

 

                 ∑∑          (∑∑    

 

   

 

   

)

 

   

 

   

 

 

Where              If the vessel ships to terminal k in period t then X = 1, 

otherwise 0. 

 

When we made this adjustment the three redundant trips were eliminated and the 

new results are presented in figure 4.3:  

 

 

Figure 4.3: Results for maximization of tons shipped, with penalty. 

 

The problem of empty vessels being shipped is eliminated, and the results have 

become more realistic. As you can see from figure 4.3 there are fewer trips made 

 # Trips Average lot size Average fill rate Objective value

52 2 552 85 % 132 700

 # Trips Average lot size Average fill rate Objective value

45 2 949 98 % 132 700
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after the adjustment. This was expected since we penalized the model for each trip 

made. The average lot size is significantly higher, and close to optimal. The model 

still manage to ship out all amount produced over the period of 19 weeks. The 

average use of time during a week is 127 hours, which is less than before. This is 

due to the fact that the vessel is utilized more efficiently. 

 

4.4.2 Maximization of time used 

The mathematical formulation of the objective function: 

 

              ∑∑(          )

 

   

 

   

 

 

Where       is the number of hours the vessel use out to each terminal k. 

 

Using this objective function we find that the vessel is utilized close to its 

potential in terms of time-management. Over the planning period of 19 weeks 

there are 7 weeks where the vessel is utilized in all available hours of period t 

(168 hours) and for the remaining 12 weeks the vessel is used 166 hours a week. 

This gives an average time used of 167 hours per week. The number of trips is 

however very high, resulting in a poor utilization of the vessel capacity as seen in 

figure 4.4. The problem when using this objective function is the same as when 

we used max tons shipped; the model has no incentives to plan as few shipments 

as possible. Out of 63 trips the vessel only carries a load in 53 of them. Hence 10 

trips are made solely for the purpose of aggregating more hours. We think it is 

unnecessary to extend this objective function with a penalty as we did above, 

since the objective function will still be to maximizing number of trips (X). 

 

 

Figure 4.4: Results for maximization of time used 

 

 

 

 # Trips Average lot size Average fill rate Objective value

63 2 054 68 % 3 168
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4.4.3 Minimization of total costs 

The mathematical formulation of the objective function: 

 

               ∑∑((       )   (         ))    ∑(        )

 

   

 

   

 

   

 

 

Where the parameters are sc: the cost of sending a vessel, hct: the holding cost at 

the terminals and hcf: holding cost at the factory. The variables are       

   Inventory at terminal k and        Inventory at the factory. 

 

We see from figure 4.5 that the number of trips now is reduced to 43, resulting in 

an average fill rate of 99 % on the vessel. As this objective function gives the 

model an incentive to make the vessel perform as few trips as possible we have 

also eliminated the previous problem of shipping out empty vessels. It chooses to 

ship 5000 tons less than what is produced over the planning period of 19 weeks. 

The utilization of time is rather low with an average of 122 hours each week. 

 

 

Figure 4.5: Results for minimization of total costs 

 

4.4.4 Comparing results 

When the objective functions were maximization of tons shipped and time used we 

found that there were trips made without transporting any cement in both of the 

models. If we ignore the ―penalty function‖ introduced in the first objective 

function there were three empty trips made when we maximized tons shipped 

compared to ten when we maximized time used. This gives the model with 

maximization of tons the benefit of larger lot sizes and thereby a larger fill-rate, 

compared to the model with maximization of hours. Nevertheless, from a practical 

point of view it is would still be wrong to ship empty vessels.  

 

The results from the model where we used minimization of total costs as objective 

function were quite different from the two other models. There were no trips made 

without transporting cement. As mentioned before the average fill rate was close 

 # Trips Average lot size Average fill rate Tons shipped Objective value

43 2 970 99 % 127 700 1 001 524
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to optimal, 99%, so the utilization of the vessels capacity was better when 

minimizing the costs. The hours used to ship out the cement were fewer for the 

model with the minimization of costs. The number of hours used when 

maximizing tons and hours were 2717 and 3168 respectively, while when 

minimizing the costs only 2322 hours were used. This indicates a more efficient 

planning of the transportation when we use minimization of total costs as 

objective function.   

 

Even though we managed to eliminate the problem of empty shipments by using a 

―penalty-function‖ when we maximized tons shipped, the results we obtained 

from minimizing costs were better. The output from the model also became more 

realistic and logical when minimizing the costs. This is most likely due to the fact 

that you are taking the costs of shipping a vessel into consideration and the model 

therefore gives us an output which uses the company’s resources in the most 

efficient way possible still delivering all the demand that is required. From the 

results that we have obtained from these three tests, it is clear that the objective 

function that should be used in the model is to minimize total costs. 

 

4.5 Initial model – Model 0 

Model 0 is our initial model for finding the optimal timing and level of the 

transportation of the cement. The purpose of the model is to find out which 

terminals are replenished with cement in each period, and the lot size on each trip. 

This model does not include any extensions and the objective function is to 

minimize the total costs of shipments (setup costs) and the inventory costs at the 

terminal and factory. The following notations have been used: 

 

Sets in the model: 

t: period 

k: terminal 

 

Parameters in the model: 

      Demand in period t from terminal k 

    : Production capacity in period t 

       The number of hours the vessel use out to terminal k 
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Limit: The maximal hours available in each period t 

VCap: Vessel capacity 

hct: Holding cost at the terminals 

hcf: Holding cost at the factory 

          Inventory capacity at each terminal k 

         Inventory capacity at the factory 

     Minimum inventory at each terminal k 

sc: Cost of sending a vessel. 

 

Variables in the model: 

         Inventory at terminal k in period t. 

       Inventory at the factory in period t.  

             If the vessel ships to terminal k in period t then X = 1, otherwise 0. 

        How much the vessel ships to each terminal k in each period t 

           How many hours the vessel has been utilized during period t 

 

Mathematical formulation: 

 

   ∑∑((       )  (         ))  ∑(        )

 

   

 

   

 

   

 

 

subject to:  

 

(1)                                                                                              

(2)                                                                                      

(3)                                                                                                

(4)                                                                                                       

(5)           ∑                                                                 
 
  

(6)                                                                                                
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(7)            ∑  (          )
 
                                                 

(8)                                                                                        

 

(1) This constraint states that one cannot use the vessel to ship cement to a 

terminal k in time period t unless the vessel is set up for the trip of going to 

terminal k in time period t. We refer to this as a ―setup logic‖. 

(2) The inventory balance for the terminal needs to be defined, and this 

constraint also assures us that the demand for each terminal k in each 

period t is either met by what is shipped to the terminal or by the inventory 

from last period.  

(3) Each terminal k has a maximum inventory capacity in each period t and 

this capacity cannot be exceeded.  

(4) The inventory level at each terminal k in each period t cannot go below the 

level set as safety stock. 

(5) The inventory at the factory in each period t is what we produced in period 

t in addition to what was at the inventory in last period t-1 less what we 

have shipped out to each terminal k in period t.  

(6) The inventory at the factory cannot exceed the inventory capacity. 

(7) The amount of time that the vessel is used in each period t is calculated by 

summing up all trips made by the vessel in period t. 

(8) This constraint assures us that the time used in each period t is not 

exceeding the capacity of 168 hours (1 week).  

 

4.5.1 Results 

From a theoretical perspective the results from Model 0 show that the model has 

found an optimal solution to the problem without violating any constraints. This is 

encouraging as it indicates that the model is stable and formulated in a good way 

(stability-tests are performed on the final model in chapter five). The solution-

time was about five seconds, which is insignificant. From a practical perspective 

the results also seem satisfying. The highlights of the results are the same as in 

chapter 4.4.3 and are shown in figure 4.5. Since we want the lot size of each 

shipment to be as high as possible it is very positive with an average lot size of 

2970 tons (out of 3000). As the holding cost at the factory and the terminals are 
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similar, there is no cost-difference in regards to where you store the cement. Thus 

not everything that is produced (132 700 tons) each period has to be shipped out 

to the terminals. On average the vessel is used 122 hours each week which 

indicates a good time-utilization. 

 

4.5.2 Challenges 

Model 0 was the first step of the model. The biggest challenge when formulating 

this step was that we had to change our train of thoughts on how we usually solve 

a lot sizing problem in order to adapt the existing theories from production 

problems to a transportation problem. In accordance with the amount of theory on 

the topic, there are a lot of empirical examples from lot sizing problems in 

production planning and, to our knowledge, none from lot sizing problems in 

transportation planning. Hence we did not have any examples to use for 

comparison when developing Model 0. This made the interpretation and 

discussions of both theoretical and practical aspects of the model a time 

consuming affair. 

 

Even though Model 0 seems to work well, we argue that the model does not 

reflect the real life situation from HeidelbergCement in a satisfying manner. 

Hence we have made two extensions to Model 0 that are presented in the two 

following chapters. 

 

4.6 Model extension 1: Period overlapping setup  

As the model is defined in Model 0 the vessel cannot begin a trip at week t and 

finish it at week t+1. All the trips that it makes must be completed within the 

same period t. In a real life scenario it is very unlikely that such a restriction 

would exist. In order to mend this problem, we have implemented a period 

overlapping setup which allows the vessel to start a trip in period t and return in 

the following period t+1. Since this extension builds upon Model 0, we will only 

present the parameters, variables and constraints that are changed or added by this 

extension.  
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Added parameters: 

co: The cost of letting the vessel start a trip in period t and returning in period t+1 

 

          This is a matrix showing the time it takes to travel to terminal k in 

period t. 

 

Added variables: 

         The amount of tons shipped on the period overlapping setup 

 

               If we have a period overlapping setup then C is equal to 1, 

otherwise 0 

 

            :  This identifies the share of the period overlapping setup 

performed in period t+1. It has to be less than or equal to 0.98 in order to secure 

that at least one hour (1 - 0.98 = 0.02) of the trip occurs in period t. 

 

               This identifies the share of the period overlapping setup 

performed in period t. It has to be less than or equal to 0.98 in order to secure that 

at least one hour (1 - 0.98 = 0.02) of the trip occurs in period t+1. 

 

Added constraints and changes in the objective function: 

 

   ∑∑((       )  (       )  (         ))

 

   

 

   

 ∑ (       )

 

   

 

   

subject to 

 

(9)   ∑        
 
                                                                                   

(10)                                                                                 

(11)                                                                                       

(12)                                                                                                
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(13)                                                                                              

(14)                                                                                      

(15)          (                )                                 

(16)            ∑  (                )
 
                              

 

Where  

(9) One period overlapping setup is allowed in each period t 

(10) You can only have one trip (X) in addition to a prospective period 

overlapping setup to terminal k in period t. 

(11) If we have a period overlapping setup the amount of tons shipped to 

terminal k in period t cannot exceed the vessel capacity 

(12) The vessel cannot return from terminal k in period 1 since this is our 

starting period. 

(13) The vessel cannot start a period overlapping trip in week 19 without 

returning in the same period as this is the ending period  

(14) The fraction of what is shipped in in period t+1 and out in period t must be 

equal to the binary value of the period overlapping setup-variable C. If we 

do not have a period overlapping setup, both in and out must be equal to 

zero 

(15) This constraint helps us display the time used to each terminal k in each 

period t. 

(16) The amount of time the vessel is used in each period t is calculated by 

summing up all trips (X) made by the vessel in period t in addition to the 

prospective portion of a period overlapping setup (α and/or β). 

 

4.6.1 Results 

The results from extension 1 are exactly the same as in Model 0 (see figure 4.5), 

with one exception – the number of hours the vessel is utilized on average per 

period is reduced from 122 hours to 121 hours. The transportation plan is however 

altered compared to Model 0. As there are many possible ways of create a 
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transportation plan in order to end up on the same amount of total trips and total 

amount shipped, this is not of importance. This also explains the difference in 

time-utilization. As we can see in figure 4.6, the new period overlapping-variable 

C are used in 11 periods. However, it is only in period 5 that Time Used is equal 

to the maximal amount of available hours in a period (168), and this does not 

correspond with the start of a period overlapping trip. This indicates that the new 

setup variable C does not work as we first thought it would. We initially thought 

C would only be utilized when there was insufficient time available in period t to 

complete a trip (X) in this period, and thus it would choose a period overlapping 

trip (C) instead. 

 

 

Figure 4.6: Period overlapping setups for model extension 1  

 

What we have found is that the model uses the new variable C as a ―substitute‖ 

for variable X. This can be explained by looking at period 3. Here the model 

chooses to use a period overlapping setup (C) in order to send a vessel to terminal 

T2 so that the vessel starts in period 3, runs for 27 hours (98% of the trip) in this 

period, before it returns in period 4. The scenario from period 3 is illustrated by 

the timeline in figure 4.7. What happens is that the vessel waits at the dock by the 

factory for 73 hours before it starts the trip to terminal T2. In real life this could 

have been because the vessel has to wait for the correct amount of cement to be 

Period C β α Time Used β * Timek α * Timek

1 122

2 106

3 1 0,98 95 27

4 1 0,10 0,02 97 6 1

5 0,90 168 53

6 1 0,98 122 67

7 0,02 128 1

8 1 0,98 92 38

9 1 0,02 0,02 128 1 1

10 0,98 154 27

11 113

12 1 0,98 153 38

13 1 0,02 0,02 128 1 1

14 1 0,98 0,98 94 67 27

15 1 0,02 0,02 152 1 1

16 0,98 140 54

17 1 0,98 126 67

18 1 0,02 0,02 41 1 1

19 0,98 132 50
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produced. Since we assume that all production in period t is available at the 

beginning of the period, this situation will however not occur in our model. 

  

 

Figure 4.7: Illustration of period overlapping setup – timeline for period t=3 

 

We see that in period 3 only 95 out of 168 hours are utilized. Hence there is no 

need for the model to choose C instead of X in this case. If the model were to be 

used as a planning tool in some capacity for the company, we recognize that this 

flaw could provide illogical results from a practical point of view.  

 

From a theoretical perspective we argue that this does not necessarily imply that 

the period overlapping setup-extension does not work. The time capacity in each 

period is only maximized in one period. Thus, due to the nature of the empirical 

data the extension has not been tested in a satisfying manner. We will perform 

such tests in chapter five. 

 

4.6.2 Challenges 

As Model 0 appeared to be stable, there was always a risk of altering this stability 

by introducing new parameters, variables and constraints. When we started to 

implement this extension, this is also what happened. It took a while to restore the 

model-stability, but as it is presented here it seems stable. Although we could to a 

certain extent support our work on what had been done previously, we had to 

make some adjustments in order to be able to implement a period overlapping 

setup that was adapted to the transportation lot sizing problem and our empirical 

case.  

 

In our model a period overlapping setup has to be linked with the setup time (time 

used on each trip) - i.e. we have to find the share of time used by a period 

overlapping trip performed in period t (β) and the share of time used in period t+1 

(α). Our initial thought was to connect β to the remaining time available in period 

t by saying that β had to be equal to the remaining time available for an 

overlapping setup in period t, but this made the model become non-linear. As the 

Gurobi-solver that we are using cannot handle such problems we had to formulate 

t = 3 27 h

Terminal T2

68 h 73 h

T4 At the dock
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the model so that the problem became linear. We struggled for a long time to see 

how we could solve this before we realized that we should model period 

overlapping trips independently of the remaining time available in period t. We 

introduced the binary variable C that told us when a period overlapping setup was 

performed, and the two continuous variables β and α that represented each share 

of the overlapping trip in period t and t+1 respectively.  

 

Initially the setup variable C was connected to the lot size variable Y, thus when a 

period overlapping setup occurred the lot size could be seen in the Y matrix along 

with those lot sizes Y connected with the setup variable X. Recall that we assume 

that a terminal k can be refilled by one ordinary setup X and one period 

overlapping setup C in each period t.  When this situation occurred at a terminal k 

we were therefore not able to distinguish the two lot sizes from each other. Hence 

we introduced the lot size variable Z which is now connected to C. 

 

Two challenges occurred that forced us to make an assumption of Z. First, we 

could not link Z to β and α as they were linked to the time-share used through the 

variable C. We argue that to distribute Z with the same distribution formula as C 

would be wrong since this would affect the inventory levels both at the terminals 

in two periods in addition to the time. We only wanted β and α to be connected to 

the time. Second, since we do not know the exact point of time that the shipment 

is unloaded from the vessel it would be too complicated to formulate this in the 

model and then link this to Z. Thus we chose to assume that all amount of cement 

in Z are delivered in period t, and not divided among period t and t+1. This 

assumption allows the model to ―exploit‖ the period overlapping setup extension 

in an inappropriate way. Even if the results of the model says that only one hour 

of the period overlapping trip occurs in period t, it still register a (potentially) full 

lot size Z of 3000 tons to terminal k in period t. From a practical point of view this 

is wrong, and this is a challenge we have not been able to solve adequately. 

 

4.7 Model extension 2: Inventory Shortage 

Until this point we have assumed that the demand stems from each terminal k. In 

real life the customers pick up their own demand at their closest terminal. In order 

to make the model more similar to the real life case and to further increase the 
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flexibility of the model, we extend the model with the possibility of inventory 

shortage. This implies that the customers have to be taken into account, and hence 

we declare a set that is customer group i. This allows the model to redirect 

customer group i to another terminal than their designated terminal. For 

simplification we only allow customer group i to be redirected to the two 

terminals closest to their designated terminal as illustrated in figure 4.8. 

 

 

 

Figure 4.8: Case illustration of inventory shortage extension 

 

We will only include the sets, parameters and variables that have been added or 

changed since the model builds on Model 0 with extension 1. 

 

Added sets: 

i:  a customer group 

 

Added parameters:  

      The demand from each customer group i in each period t, which is the same 

as the demand used for the terminals before since it is ultimately the same.  

 

         The distance from each customer group i to each terminal k. 
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Added variables: 

               A binary variable that is 1 if customer group i picks up their 

demand from terminal k in period t, 0 otherwise. 

 

              Tells us how much cement each customer group i has picked up 

from terminal k in period t. As there could potentially be two or three customer 

groups i picking up their demand from terminal k in period t we had to introduce 

this variable. 

 

Added constraints and changes in the objective function: 

 

      ∑∑((       )  (       )  (         ))
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(18)            (           )                                                           

(19) ∑         
 
                                                                                          

(20)       ∑          
 
                                                                          

 

Where 

 

(17) The inventory balance had to take into account that there could potentially 

be two or three customer groups i picking up their demand from terminal k 

in period t.  

(18) In order for customer group i to pick up cement from terminal k in period t 

the trip must be set up. This is a ―setup logic‖.  
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(19) Each customer group i can pick up the demand in period t from up to two 

terminals; either at their own and one of their two neighboring terminals, 

or at the two neighboring terminals. 

(20) The demand has to be covered.  

 

4.7.1 Results 

The results from adding this extension is the same as in Model 0 with extension 1 

with the exception of an altered transportation plan, resulting in a slightly higher 

average time used per period t (124 hours). The objective value has also increased 

slightly due to the new distance cost introduced. This implies that after we 

included the inventory-shortage extension the model does not redirect any 

customers to other terminals. Since the model now is equal to the final model, the 

results are discussed in chapter 4.8.1. As we shall see in chapter five, you have to 

either increase the demand or change some of the parameters in order to see that 

this extension actually works and thus we refer to the discussion of the results in 

that chapter.  

 

4.7.2 Challenges 

In this case the literature found on the topic of inventory shortage were not very 

helpful during the model formulation, since the solution in these cases often is to 

backlog the demand or forfeit the sale (lost sales). Most similar to our problem 

was the literature found on lateral transhipment (Wenjing, Xinxin, and Yi 2010), 

but from a modelling perspective this did not help us in formulating the problem 

either. 

 

The most challenging part of implementing our form of inventory shortage was to 

―inform‖ customer group i that they initially had to go to their designated terminal 

unless their demand was either higher than the current inventory, or it was 

beneficial from a planning perspective to pick up the demand from another 

terminal k. Our initial thought was to make a variable dependent on the inventory. 

But, as we experienced during the formulation of extension 1, this made the 

problem non-linear. The solution we came up with was to construct the distance 

matrix shown in figure 4.9. As we did not have any information of the actual 
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distances between the terminals, the distance matrix is constructed so that the 

distance between the terminals is sufficiently long enough to secure that customer 

group i is only allowed to visit the two (one for T1 & T8) nearest terminals, 

assuming that T2 is nearest to T1, T1 and T3 are nearest to T2, and so forth. 

 

 

Figure 4.9: Distance Matrix 

 

This distance matrix was then connected to the binary variable P so that if 

customer group 1 picks up the demand at their designated terminal T1, the 

distance is equal to one. If they choose to pick up the demand at terminal T2 

instead, this will result in an additional distance of 99 (+1 =100). Eventually these 

distances were connected to a small and insignificant cost of one and incorporated 

into the objective function of minimizing the total cost. Hence we forced the 

model to choose to send the customers to their own terminal, unless this was not 

an option due to either low inventory at terminal t or overriding planning 

objectives. 

 

4.8 The final model 

In order to give the reader a clearer picture of the final model, we sum up the 

different parts presented in this chapter and present the final model in its entirety. 

The notations and the explanations of the objective function and constraints are 

the same as what is explained throughout chapter four.  
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Terminal/Customer gr. 1 2 3 4 5 6 7 8

T1 1 100 999 999 999 999 999 999

T2 100 1 100 999 999 999 999 999

T3 999 100 1 100 999 999 999 999

T4 999 999 100 1 100 999 999 999

T5 999 999 999 100 1 100 999 999

T6 999 999 999 999 100 1 100 999

T7 999 999 999 999 999 100 1 100

T8 999 999 999 999 999 999 100 1
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subject to 
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4.8.1 Results 

The results we have found from solving the final model in MPL is exactly the 

same as what we found when we solve Model 0 and Model 0 with extension 1 

except that the objective value has now slightly increased (see figure 4.10). The 

reason why the objective value has increased is because of the new distance cost 

introduced in extension 2. The difference (1 001 675 – 1 001 524 = 151) is equal 

to the distance from each customer group i to each terminal k (19 periods * 8 

terminals – 1 period with no demand = 151). The transportation plan is again 

altered which results in an average time used per period of 124 hours. 

 

 

Figure 4.10: Results for the final model 

 

The reason why the solution is equal to the solution found in Model 0 may be due 

to the nature of the input data from the empirical case. As shown in figure 4.11 the 

inventory levels at the terminals over the planning period of 19 periods is rather 

high and not once equal to zero. This indicates that the input data is such that no 

―inventory-bottlenecks‖ occur at the terminals and thus the model does not have 

to utilize extension 2. If the demand is increased, this may change. Some of the 

assumptions we have made also influence the model. Since we assume the 

production (and the production-cost) to be constant and the holding cost at the 

factory and the terminal to be equal, this does not give the model any possibilities 

to adjust the inventory levels by lowering the production in some periods. 

 

 

 # Trips Average lot size Average fill rate Tons shipped Objective value

43 2 970 99 % 127 700 1 001 675
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Figure 4.11: Inventory level at the terminals 

 

Even though the optimal solution is similar from Model 0 to the final model, two 

important findings are made. The first important finding is that we have found that 

the model produces on average a very high fill rate of 99 %, as shown in figure 

4.10, with only seven out of 43 trips having a lot size that is less than maximum 

capacity. This means that the model is able to ―understand‖ that it is most 

reasonable to ship as few vessels as possible, with as high fill rate as possible. 

 

 

Figure 4.12: Lot sizes from the final model 

 

The other important finding from the final model is that the period overlapping 

setup variable is utilized in the manner we initially intended it to. This is 

illustrated by the two timelines in figure 4.13. As we saw in chapter 4.6.1 this was 

Period/Terminal T1 T2 T3 T4 T5 T6 T7 T8

1 37 % 35 % 37 % 2 % 27 % 74 % 22 % 80 %

2 35 % 31 % 35 % 31 % 25 % 58 % 9 % 66 %

3 31 % 26 % 32 % 65 % 78 % 44 % 60 % 63 %

4 87 % 23 % 29 % 21 % 66 % 63 % 43 % 53 %

5 85 % 77 % 26 % 42 % 59 % 42 % 91 % 41 %

6 79 % 71 % 86 % 2 % 54 % 12 % 75 % 87 %

7 72 % 60 % 82 % 9 % 45 % 38 % 64 % 71 %

8 69 % 46 % 78 % 37 % 99 % 71 % 55 % 58 %

9 62 % 25 % 70 % 68 % 88 % 100 % 100 % 46 %

10 60 % 72 % 66 % 85 % 67 % 65 % 89 % 28 %

11 54 % 53 % 56 % 100 % 43 % 27 % 75 % 70 %

12 46 % 30 % 50 % 55 % 80 % 54 % 62 % 52 %

13 39 % 67 % 44 % 71 % 58 % 82 % 49 % 34 %

14 33 % 48 % 39 % 87 % 99 % 56 % 39 % 19 %

15 85 % 24 % 35 % 28 % 81 % 90 % 20 % 61 %

16 78 % 66 % 29 % 36 % 67 % 70 % 9 % 49 %

17 73 % 54 % 85 % 2 % 59 % 56 % 2 % 100 %

18 70 % 48 % 83 % 41 % 51 % 48 % 58 % 95 %

19 67 % 41 % 80 % 81 % 43 % 100 % 54 % 91 %

Total (Y+Z) T1 T2 T3 T4 T5 T6 T7 T8

1 - - - - - 3 000 - 3 000

2 - - - 3 000 - - - -

3 - - - 3 000 3 000 - 2 966 -

4 3 000 - - - - 2 483 - -

5 - 3 000 - 3 000 - - 3 000 -

6 - - 3 000 - - - - 3 000

7 - - - 2 451 - 3 000 - -

8 - - - 2 937 3 000 3 000 - -

9 - - - 3 000 - 3 000 3 000 -

10 - 3 000 - 3 000 - - - -

11 - - - 3 000 - - - 3 000

12 - - - - 3 000 3 000 - -

13 - 3 000 - 3 000 - 3 000 - -

14 - - - 3 000 3 000 - - -

15 3 000 - - - - 3 000 - 3 000

16 - 3 000 - 3 000 - - - -

17 - - 3 000 - - - - 2 924

18 - - - 2 940 - - 3 000 -

19 - - - 3 000 - 2 999 - -
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not the case after we had implemented only extension 1. Due to the extension of 

period overlapping setup the model is able to set up a new trip to terminal T4 at 

the end of period 9 even if it has to return in period 10. 

 

 

Figure 4.13: Period overlapping setup illustrated 

 

The stability and flexibility of the model become even more evident when we 

adjust some of the parameters in the model and test the model for seasonal 

variations in demand in chapter five. 

t = 9 62 h

Terminal T4

t = 10 6 h 67 h 27 h

Terminal T4 At the dock T2

68 h

T4

59 h

T6 T7

47 h
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5 Model testing and analysis 

5.1 The purpose of model testing 

The discussion in chapter four showed that the model appeared to be stable. From 

a theoretical perspective it is important to make sure that the model also is stable 

and provides logical and acceptable results under different assumptions, 

parameters and input data. As we saw from chapter four the extension of period 

overlapping setups did not work optimally and the results for whether or not the 

inventory shortage worked were inconclusive. We therefore have to ensure that 

their functionality becomes evident under different input data. In order to ensure 

this, we have tested the model by changing the parameters we presume to affect 

the stability of the model. The industry that HeidelbergCement operates in is 

exposed to seasonal fluctuations in demand. Thus, from a practical perspective it 

is also important to test whether the model is able to handle such changes in the 

demand. 

 

5.2 Model testing by changing parameters 

The model-testing is divided into seven different scenarios. Except for the 

parameter in question in each scenario, all other parameters are held equal. Since 

the overriding objective in this chapter is to test the stability and functionality of 

the model, we do not take any investments costs that would occur from changing 

the parameters into consideration. Hence no evaluation of potential costs savings 

are made in any of the scenarios and no consideration are made in regards to the 

realism of changing these parameters from HeidelbergCement’s perspective. 

 

When we changed optimization tool from SAS/OR to MPL we were given the 

possibility of analysing the model to a larger extent than what we would have 

been able to do had we continued using SAS/OR. This is due to the fact that MPL 

has a better solver than SAS/OR does. This has been paramount in order to 

perform the tests in this chapter. 

 

Scenario 1: Inventory capacity at the terminals - increase of 2500 tons 

The inventory capacity at each terminal k is increased from 5000 tons to 7500 

tons. By increasing the inventory at the terminals the model are given an 
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opportunity to reallocate the inventory in the first periods of the planning horizon 

such that the inventory shortage may be utilized later on in the planning period 

and hence reduce total number of shipments.  

 

The results from this test are unchanged and equal to those in the final model. At 

three of the terminals with the largest demand (T4, T6 and T7) the capacity-

extension is utilized four times so that they are able receive two vessels in the 

same period, but this is not offset by fewer trips in other periods. Hence the 

inventory shortage-extension was not utilized the way we thought it would, in fact 

it was not utilized at all over the 19 periods. An interesting observation is that 

there are only two shipments with a lot-size lower than 3000, compared with the 

regular situation in the final model where there were seven. This implies that the 

model is working intuitively correct as it is choosing to fill up as many vessels as 

possible to maximal capacity when the opportunity arises.  

 

Another interesting observation is that the average inventory for the two terminals 

with lowest average demand has decreased, while the average inventory at the 

terminal with the highest average demand has increased significantly (see figure 

5.1). From a practical perspective this would be a logical solution; if you could 

increase the inventory-capacity you would do it where it is needed the most in 

order to further secure the ability to meet demand. 

 

 

Figure 5.1: Inventory levels compared 

 

We argue that the model’s reaction to the new parameter value, as highlighted in 

these two observations, underlines the model’s ability to provide logical results 

and hence also its stability. 

 

Scenario 2: Inventory capacity at the factory - increase of 2500 tons. 

The inventory capacity at the factory is increased from 5000 tons to 7500 tons. 

We observed in the results from the final model that in some periods the inventory 

at the factory had to be built up in order to be able to produce large lot-sizes in 

Terminal: T1 T2 T3 T4 T5 T6 T7 T8

Avg. inventory scenario 1 2 105 2 520 1 954 3 422 2 811 3 146 4 178 3 017

Avg. inventory final model 3 053 2 362 2 743 2 268 3 126 3 026 2 568 3 065

Difference -947 158 -789 1 154 -316 120 1 609 -49

Avg. demand at the terminal 246 630 210 1 910 625 1 236 593 651
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later periods. Because of this, less than optimal (3000 tons) lot sizes were shipped 

out in some of those periods. When the inventory capacity at the factory is 

increased, the model should be able to increase the lot sizes in periods where it 

has to build up inventory at the factory. It should also be able to reduce the 

number of trips. 

 

We see from the solutions presented in figure 5.2 that the number of trips is 

reduced by one and that the model has been able to further increase the average 

fill rate on the shipments. This indicates that the model has found results that are 

in accordance with what we presumed it would find, and it utilizes the capacity 

extension by exceeding the old capacity in five periods. 

 

 

Figure 5.2: Results for Scenario 2 

 

While the reduction of one trip should mean that the reduction in objective value 

would be 1000, the actual reduction is only 900. This is because the inventory 

shortage extension is now utilized once in period nine (see figure 5.3) and the 

extra trip for customer group six result in an extra cost of 100. Even if it is 

positive that the extension is utilized, we will not draw any conclusions from it. 

The same scenario was tested without the extension, and found the same results. 

In other words; the solution in this scenario is not dependent on the extension 

working. 

 

 

Figure 5.3: Illustration of the inventory shortage variable from Scenario 2 

 

Scenario 3: Vessel capacity - increase of 1000 tons. 

In this scenario we want to test whether an increase in vessel capacity from 3000 

tons to 4000 tons will force the model to use the inventory shortage extension. We 

expect that such an increase may lead to bottlenecks at some of the factories 

 # Trips Average lot size Average fill rate Tons shipped Objective value

42 2 981 99,4 % 125 200 1 000 775

Terminal/Customer gr. 1 2 3 4 5 6 7 8

T1 340 - - - - - - -

T2 - 1 070 - - - - - -

T3 - - 443 - - - - -

T4 - - - 1 478 - - - -

T5 - - - - 581 526 - -

T6 - - - - - 1 023 - -

T7 - - - - - - 744 -

T8 - - - - - - - 588
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unless the inventory shortage extension is utilized. In reality, when you increase 

the vessel capacity the setup time will also change. A larger vessel will take 

longer time to load/unload. No adjustments to the setup times are made in the 

model, and hence the time-utilization in this scenario will be erroneous. Despite 

this weakness it still contributes to highlight a ―logical problem‖ with the period 

overlapping setup variable C. As we discussed in chapter 4.6.1 the variable C 

were used as a substitute for X even if it did not make sense from a logical 

perspective. This becomes even more evident in this scenario (see figure 5.4).  

  

 

Figure 5.4: Period overlapping setup, scenario 3 

 

When the number of trips decreases the available time per week increases, and 

consequently the maximal time-capacity is not utilized once in this scenario. Still 

the variable C is used in nine periods and on all occasions either β*Time or 

α*Time is equal to one hour. This indicates that our formulation of the period 

overlapping setup seems to work in an unsatisfying manner the more slack you 

have in the time-capacity. This is further discussed in scenario four. 

 

From figure 5.5 we see that number of trips made is reduced. This should come as 

no surprise. Even if the number of trips made is reduced, the model still manages 

to increase the average lot size, which is positive. The objective value is reduced 

Period C β α Time Used β * Timek α * Timek

1 1 0,98 53 53

2 0,02 128 1

3 1 0,02 40 1

4 0,98 114 46

5 1 0,98 86 58

6 0,02 124 1

7 68

8 106

9 1 0,02 52 1

10 1 0,98 0,98 159 67 53

11 0,02 60 1

12 1 0,98 95 27

13 1 0,98 0,02 121 53 1

14 1 0,98 0,02 98 38 1

15 0,02 116 1

16 1 0,02 69 1

17 0,98 66 27

18 113

19 68
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by 10 602, meaning that the 11 000 saved in setup costs are reduced by an extra 

distance cost of 398. 

 

 

Figure 5.5: Results for Scenario 3 

 

We find in this solution (see appendix) that the inventory shortage extension is 

better utilized, which is positive and what we expected. However, as we saw in 

scenario two, the solution is not necessary dependent on the extension. We have 

therefore also tested this scenario without the possibility of inventory shortage, 

and the results are shown in figure 5.6: 

 

 

Figure 5.6: Results for Scenario 3 implemented without inventory shortage 

 

It is interesting to see that this solution is not as good as when we included the 

inventory shortage extension. The model now only manages to reduce the number 

of trips to 33 and with a lower average lot size. We argue that from a planning 

perspective this shows the importance of including the possibility of inventory 

shortage. It also shows some of the flexibility of the model. 

 

Scenario 4: Time available - reduce the time available per period to 120 hours.  

When we implemented the period overlapping setup in the model, we experienced 

that the period overlapping setups were not functioning optimally, as we have 

explained in chapter 4.6.1 and in scenario two. Even though it functioned better in 

the final model there were still some ―problems‖ where larger portions of the trip 

could have been performed in period t instead of postponing it to period t+1.  

 

In order to investigate this problem, we decided to see whether or not the same 

issue would occur when we operated with a shorter planning period. We reduced 

the planning horizon per week from 7 days (168 hours) to 5 days (120 hours). 

When decreasing the length of the planning horizon per period we obtained the 

same results as for the final model with the exception of the average use of time. 

The average use of time is now 119 hours a week which is almost a utilization of 

 # Trips Average lot size Average fill rate Tons shipped Objective value

32 3 991 99,8 % 127 700 991 073

 # Trips Average lot size Average fill rate Tons shipped Objective value

33 3 870 96,7 % 127 700 991 524
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100%. As we can see from figure 5.7 there is a substantial use of period 

overlapping setups: 

 

 

Figure 5.7: Period overlapping setup, Scenario 4 

 

There is a period overlapping setup performed in 16 of the 19 periods. This is 

because the time available during a period has been reduced since we are only 

operating with 5 days. Then the vessel has to take advantage of all the hours 

available and thereby using period overlapping setups.  As you can see from 

figure 5.7 most of the periods where a period overlapping setup is being 

performed has a time utilization of 120 hours. In other words, when the time 

capacity is tighter, the period overlapping setup is working better.  

 

We can also see an improvement with respect to how large the portions,   and  , 

of the overlapping setup are. The setup variable C does not work as a substitute 

for X when the planning horizon per period is reduced to five days; all the period 

overlapping setups that are performed are due to the fact that this is the only way 

the model could find and optimal solution. Hence we argue that when time-

capacity is tight the period overlapping setup extension works very well and in 

line with what we intended it to. 

 

Period C β α Time Used β * Timek α * Timek

1 1 0,90 120 61

2 1 0,88 0,10 120 45 7

3 1 0,22 0,12 120 12 6

4 1 0,49 0,78 120 19 42

5 1 0,78 0,51 120 53 20

6 1 0,59 0,22 120 23 15

7 1 0,66 0,41 120 45 16

8 1 0,15 0,34 120 10 23

9 1 0,91 0,85 120 62 58

10 1 0,19 0,09 120 13 6

11 1 0,10 0,81 120 6 55

12 0,90 120 53

13 1 0,68 114 46

14 1 0,28 0,32 120 11 22

15 1 0,47 0,72 120 24 28

16 0,53 120 27

17 1 0,11 120 6

18 1 0,22 0,89 110 15 48

19 0,78 120 53
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For almost all the periods every customer group is picking up the demand from 

their own terminal. The only exception is week 16, where customer group four is 

picking up the demand from terminal T5. This is a consequence of the fact that the 

demand of terminal T4 is too high as to what the inventory level was, and terminal 

T5 was supplied in week 16.  

 

Terminal T4 can be said to be the ―problem child‖ since its demand is consistently 

high in every period. When you have a bottleneck like this it is very helpful to 

have implemented the inventory shortage, so that the customers belonging to one 

terminal have the possibility of turning to their adjacent terminal should their own 

be out of stock or not have enough inventory. We can see that the implementation 

of inventory shortage is functioning as a planning tool.  

 

When we reduced the planning horizon per period to five days in Model 0 and in 

Model 0 with extension 1, we found that the solution were infeasible. Thus, had it 

not been for the implementation of the period overlapping setup and the inventory 

shortage we could not have reduced the planning horizon per period to 120 hours. 

We argue that this illustrates the flexibility that the two extensions have added to 

the model.  

 

Scenario 5: Production capacity - let the production fluctuate between 5000 and 

7000 tons. 

Theoretically it may not be correct to assume the production to be constant since 

you are then ignoring that the level of production may be adjusted in periods. 

Even if the machines are supposed to be running ―24/7‖ because it is too 

expensive to shut them down, you may still adjust the production volumes. When 

you have a fluctuating production this is considered to a greater extent since you 

can adjust the production to the demand, or to produce the exact amount in order 

to achieve full vessels. Having a production capacity that is assumed to be at a 

constant level might be considered to be too rigid as there is no demand that is 

completely stable. If you are following a level-strategy you are producing at a 

constant level. Nevertheless, most companies follow the chase-strategy where you 

adjust the production to the demand. Thus, in order to test how the model would 
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handle such a situation, we let the production capacity fluctuate between 5000 and 

7000 (6950) tons in this scenario.  

 

Figure 5.8: Results for Scenario 5. 

 

The expansion of letting the production capacity vary is highly utilized. There is 

only three of the periods where the production is 7000 tons (or 6950), and for 14 

of the periods the production is set to the minimum; 5000 tons. As this model only 

takes the balance between vessel-trips (setups) and inventory holding cost into 

consideration, there is no setup costs connected to starting the production. Thus 

the model has no incentive to produce more than what is needed. By not 

producing more than necessary the additional cement does not have to be stored, 

and hence inventory costs are saved.  

 

For the previous scenarios the production capacity has been constant, now the 

model can ―choose‖, and what is produced is actually less than what is demanded 

due to the fact that there is an initial inventory that the customers can feed of. This 

is one of the dangers of having such a short planning horizon. Since the model 

assumes that the world ―stops‖ after 19 periods, it tries to save as much as 

possible by downsizing the inventory, not considering that this inventory might be 

needed to cover future demand (see figure 5.9). Nevertheless, this would happen 

no matter how long planning horizon you were operating with. If you are 

operating in an industry that has to deal with seasonal demand you would also 

have to build up some inventory in order to be able to cover the increased demand 

in future periods.  

 

 # Trips Average lot size Average fill rate Tons shipped Objective value

39 2 564 85 % 100 009 361 917
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Figure 5.9: Inventory levels 

 

Lower inventories yields a lower cost, but it can be undesirable since it impacts 

the company’s ability to deliver. As it is now the safety stock is set to zero in 

order to make our extension of inventory shortage as realistic as possible. From a 

practical perspective the company would probably like to have some sort of safety 

stock. The way we have developed the model you could add a value to the safety 

stock (or any other parameter) by changing the input-file. This makes our model 

more flexible to work with as you can change the parameters when needed. Since 

you are producing less cement there is also less cement to ship out to the 

terminals, thus the number of trips taken have decreased by four trips compared to 

the final model. 

 

For 10 out of the 19 periods the customer groups are not picking up their demand 

at their designated terminal, rather going to one of the adjacent terminals. This is 

mainly due to the fact that it is empty at their designated terminal. In order to see 

how well the extension of inventory shortage is functioning in this scenario we 

will implement the same scenario (fluctuating production) without the extension. 

Doing so we obtained the following results: 

 

 

Figure 5.10: Results for Scenario 5 implemented without inventory shortage extension 

 

The number of trips performed now is considerably higher and the average lot-

size is lower. Compared to when we implemented it in the final model, we are 

Period/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

1 1 832 1 733 1 850 3 006 1 353 709 1 118 977 2 081

2 1 734 1 559 1 741 1 491 1 238 2 639 428 300 4 345

3 1 548 1 323 1 580 3 190 896 1 924 3 045 3 052 424

4 1 361 1 149 1 461 3 946 288 421 2 171 2 571 2 424

5 1 233 829 1 297 2 025 2 590 2 342 1 589 1 981 1 761

6 3 254 532 1 297 0 2 383 851 807 1 265 4 481

7 2 339 532 1 110 577 1 937 2 167 2 460 1 246 800

8 2 180 2 652 921 2 070 1 634 802 2 022 588 0

9 1 840 1 582 478 592 1 053 2 253 1 278 0 2 000

10 1 725 926 316 1 473 0 484 718 1 947 1 121

11 1 431 0 2 031 0 0 384 18 1 046 121

12 1 063 0 562 765 0 0 18 145 801

13 695 926 250 126 0 0 0 0 0

14 401 0 0 0 0 0 500 0 983

15 0 0 0 0 0 0 0 0 78

16 0 0 0 0 0 0 0 0 0

17 290 0 0 72 0 0 0 0 0

18 145 0 460 1 496 0 0 435 0 0

19 0 0 0 106 0 0 0 0 4 604

 # Trips Average lot size Average fill rate Tons shipped Objective value

48 2 202 73 % 105 693 412 032
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transporting an additional 5 684 tons of cement. Nevertheless, there are an 

additional nine trips performed. This is a quite substantial increase of trips given 

the small increase in the amount of cement to be shipped. This is because there is 

not an option to redirect the customers so that you only have to replenish a few of 

the terminals instead of all of them.  

 

Here you cannot utilize the extension of inventory shortage as a planning tool. 

Thus, we can see the benefit of implementing the inventory shortage; the 

utilization of the company’s resources are more efficient both in terms of the use 

of the vessel’s capacity (higher fill rate) and in regards to the time utilized (fewer 

trips – more efficient use of the time). When you see that you are able to avoid 

nine additional trips to transport 5 684 tons of cement, you see that the inventory 

shortage is functioning well as a planning tool and is essential to obtain the best 

possible results. 

 

Scenario 6: Holding cost at the terminals - increase of 1. 

In this scenario we increased the holding cost at the terminals to 3, thus making it 

cheaper to store cement at the factory. The reason why we made this change is so 

that we could see whether the lot sizes would change and the number of trips 

would be reduced. Since the amount of cement stored at the factory is likely to 

increase, more cement will be available at the factory and hence the possibility for 

larger lot sizes should increase. 

 

 

Figure 5.11: Results for scenario 6 

 

The number of trips that is being performed has increased compared to the final 

model. Thus the fill rate and the average lot size are not as good as for the final 

model. We did not see the desirable effect of the change in holding cost at the 

terminals.  

 

The number of tons that is shipped out to the terminals is the same as before; it is 

the manner in which it is done that differs. The smallest lot size that is being 

shipped is 1000 tons, a utilization of 33%.This means that from a practical 

perspective the model makes inexpedient decisions in terms of the lot sizes. The 

 # Trips Average lot size Average fill rate Tons shipped Objective value

50 2 554 85 % 127 700 1 397 687
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model has an incentive to keep the inventory at the factory as full as possible, and 

thereby ships the amount of cement that makes this possible, not taking into 

consideration that the fill rate of the vessel is poor. 

 

 

Figure 5.12: Inventory levels 

 

The average inventory at the factory is 4750 which is 95% of the total capacity. 

This means that the difference in what was stored at the factory earlier and now is 

the change in the inventory at the terminals. As expected the inventory at the 

factory is full in almost every period. Also, all customer groups are picking up 

their demand from their designated terminal in this scenario. 

 

Scenario 7: Holding cost at the factory - increase of 1. 

From a supply chain perspective it may be beneficial to store the final product 

closer to the customers. One of the reasons for this is that it is easier to supply 

unexpected orders and that the lead time becomes better. Another reason is that 

you should be able to ship out fewer vessels with larger lot sizes from the factory.  

Since this may be more correct from a ―lot sizing-point of view‖ we wanted to see 

the how the model behaved when we increased the holding cost at the factory to 3 

as opposed to keeping the costs equal. 

 

 

Figure 5.13: Results for Scenario 7 

 

Since it is less expensive to store the cement at the terminals the model will try to 

ship as much of the cement as possible out to the terminals, which will increase 

Period/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

1 1 832 1 733 1 850 87 1 353 2 709 1 118 977 5 000

2 1 734 1 559 2 801 1 572 1 238 1 903 428 3 240 5 000

3 1 548 1 323 2 640 2 294 3 176 1 188 2 692 3 071 5 000

4 1 361 4 149 2 521 3 050 2 568 685 1 818 2 590 5 000

5 1 233 3 829 2 357 1 129 2 207 2 241 3 551 5 000 4 050

6 974 3 532 2 357 2 104 5 000 750 2 769 4 284 5 000

7 2 722 5 000 2 170 0 4 554 1 935 2 178 3 509 5 000

8 2 563 4 320 1 981 1 493 4 251 3 549 1 740 4 822 4 050

9 2 223 3 250 1 538 3 015 3 670 5 000 996 4 234 5 000

10 2 108 2 594 1 376 5 000 2 617 3 231 3 332 3 302 5 000

11 1 814 1 668 3 879 2 739 3 367 4 331 2 632 2 401 4 050

12 1 446 511 3 567 3 504 2 245 2 717 4 984 1 500 5 000

13 1 078 2 354 3 255 3 379 1 123 1 103 4 336 2 489 5 000

14 784 1 428 3 005 4 191 2 429 2 518 3 848 1 768 4 050

15 383 3 228 2 818 1 256 1 529 1 227 2 906 3 868 5 000

16 0 4 969 2 510 0 847 3 183 2 359 3 269 5 000

17 1 699 4 376 2 308 1 290 400 2 499 5 000 2 877 4 050

18 4 554 4 033 2 191 3 300 0 2 103 4 792 2 650 5 000

19 4 409 5 000 2 074 5 000 2 600 1 707 4 584 2 423 5 000

 # Trips Average lot size Average fill rate Tons shipped Objective value

52 2 552 85 % 132 700 1 015 425
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the number of trips made. As you can see, more cement (5000 tons) are 

transported compared to the results in the final model, which confirms this. 

 

As in scenario six the model makes inexpedient decisions. The lowest lot size is 

950 tons for this scenario, but the reasoning is different. Now the model wants to 

transport as much cement out to the terminals as possible, so if there is 950 tons at 

the factory that there is room for at the terminals this will be shipped regardless of 

how poor the utilization of the vessel is as long as the cost of shipping this vessel 

is less than the extra holding cost of storing the product at the factory 

 

 

Figure 5.14: Inventory levels 

 

The average inventory at the terminals is 3122 tons. This compares to an average 

utilization of the capacity of 62 %, which is quite high. This is not surprising 

given the change in holding cost. The average inventory at the factory has 

decreased significantly; from 4747 tons in the scenario six to 250 tons. The only 

inventory that is held is 950 tons during the periods where the production capacity 

is reduced by 50 tons.  

 

5.3 Changing demand patterns 

The cement industry is prone to seasonal fluctuations and variations in demand 

that stems from other external factors they cannot control, as for instance the 

recent financial crisis. In their annual report for 2010 HeidelbergCement states 

that “changes in demand obviously present both opportunities and risks for 

HeidelbergCement” and “A significant risk in building material sales volumes 

Period/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

1 3 733 1 733 4 850 87 1 353 709 3 217 977 0

2 3 635 1 559 4 741 1 572 1 238 2 903 2 527 1 300 0

3 3 449 1 323 4 580 3 271 896 2 188 2 144 4 131 950

4 3 262 1 149 4 461 3 886 2 379 3 685 1 270 3 650 0

5 3 134 829 4 297 4 025 2 018 2 606 3 688 5 000 0

6 2 875 3 532 4 297 5 000 1 811 1 115 2 906 4 284 950

7 2 499 2 993 4 110 2 896 1 365 4 696 5 000 3 509 0

8 2 340 4 644 3 921 4 389 1 062 5 000 4 562 2 851 0

9 5 000 3 574 3 478 2 911 3 481 3 451 3 818 2 263 950

10 4 885 2 918 3 316 3 792 5 000 4 060 3 258 1 331 0

11 4 591 1 992 2 819 1 531 3 800 4 590 2 558 5 000 0

12 4 223 3 835 2 507 2 296 2 678 2 976 1 910 4 099 950

13 3 855 2 678 2 195 3 061 1 556 3 312 4 262 3 198 0

14 3 561 4 469 1 945 3 873 1 901 2 021 3 774 2 477 0

15 3 160 3 269 1 758 3 938 1 001 3 730 2 832 1 577 950

16 2 777 5 000 1 450 4 328 319 5 000 2 285 978 0

17 2 526 4 407 2 866 2 618 2 400 4 316 4 780 586 0

18 2 381 4 064 2 749 2 578 5 000 3 920 4 572 3 359 0

19 5 000 3 721 5 000 1 588 4 600 3 524 4 364 5 000 0
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results mainly from seasonal demand, especially because of the dependency on 

weather conditions”. In other words; it is important from both a theoretical and 

practical point of view to see if the model can handle fluctuations in demand and 

also how it reacts to the increase and decrease demand.  

 

We first tried to reduce the demand by 15% in order to simulate a low-season, but 

the model could not handle such a large decrease. Since the production capacity is 

set and constant there was produced too much cement for the vessel and the 

inventories to handle, thus there was no feasible solution found to the problem. A 

possible solution for this is to let the production capacity fluctuate. The two 

different scenarios that we modelled were a low-season scenario, with a decrease 

in demand by 10%, and a high-season scenario, with an increase in demand by 

15%. Both demand scenarios have the demand from the final model as a ―starting 

point‖, which can be described as a ―regular season‖. The results from the final 

model is discussed in chapter four and hence not included in this chapter.  

 

“Low-season” 

In order to simulate a low season we reduced the demand by 10%, which provided 

these results: 

 

 

Figure 5.15: Results for ―low-season‖ 

 

The results are the same as for the final model, with the exception of the objective 

value. The reason why the number of shipments is still equal to the final model is 

that the model utilizes the inventory shortage extension as a mean to coordinate 

the shipments so that the fill rate can be as good as possible. We illustrate this 

with an example from the last three periods in the planning horizon. Figure 5.16 

shows that the inventory levels at the terminals in these periods are very high. 

This is due to the low demand. This situation could also be similar to a real-life 

situation where the company choose to build up inventories in a ―low-season‖. In 

order to handle this situation the model utilizes the inventory shortage extension 

(see figure 5.17). This again shows how well the implementation of the inventory 

shortage works as a planning tool, and the importance of implementing it to the 

model. 

 # Trips Average lot size Average fill rate Tons shipped Objective value

43 2 970 99 % 127 700 1 233 441



GRA 19002 Master Thesis    01.09.2011 

Page 69 

 

 

Figure 5.16: Inventory level at the terminals in period 17-19 

 

 

Figure 5.17: Inventory shortage extension illustrated in period 17-19 

 

As you can see from figures 5.18 and 5.19 the average inventories are also 

consistently higher when there is a ―low-season‖ than for the ―regular season‖ 

since the production level is the same but the demand is lower. It could be 

beneficial to be able to adjust the production level according to the ―low-season‖, 

so that less inventory had to be stored. 

 

 

Figure 5.18: Average inventory for ―low-season‖ 

 

 

Figure 5.19: Average inventory in the final model 

 

“High-season” 

For the high-season it is interesting to see whether the model is able to maintain 

the solution from the final model. If the model is stable it should utilize one of the 

extensions in order to meet the challenge of the increased demand. In order to 

simulate a high-season we increased the demand by 15%, giving us these results: 

Period/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

17 2 877             5 000             5 000             3 045             4 324             4 960             5 000             2 319             3 000             

18 2 438             5 000             5 000             5 000             3 607             4 960             5 000             4 926             4 000             

19 4 999             5 000             4 895             5 000             5 000             4 960             4 813             4 721             5 000             

t = 17 Terminal/Customer gr. 1 2 3 4 5 6 7 8

T1 226 - - - - - - -

T2 - 534 - - - - - -

T3 - - 182 424 - - - -

T4 - - - 1 115 402 - - -

T5 - - - - - - - -

T6 - - - - - 616 323 -

T7 - - - - - - - -

T8 - - - - - - - 353

t = 18 T1 131 309 - - - - - -

T2 - - - - - - - -

T3 - - - - - - - -

T4 - - 105 891 - - - -

T5 - - - - 360 356 - -

T6 - - - - - - - -

T7 - - - - - - - -

T8 - - - - - - 187 204

t = 19 T1 131 309 - - - - - -

T2 - - - - - - - -

T3 - - 105 - - - - -

T4 - - - - - - - -

T5 - - - 891 360 356 - -

T6 - - - - - - - -

T7 - - - - - - 187 -

T8 - - - - - - - 204

Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

Average inventory 3 345 3 027 3 881 3 398 3 132 4 020 3 783 3 191 3 510

in % 67 % 61 % 78 % 68 % 63 % 80 % 76 % 64 % 70 %

Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

Average inventory 3 053 2 362 2 743 2 268 3 126 3 026 2 568 3 065 3 013

in % 61 % 47 % 55 % 45 % 63 % 61 % 51 % 61 % 60 %
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Figure 5.20: Results for ―high-season‖ 

 

The inventory at the terminals and the factory are naturally smaller than before 

since more cement is picked up by the customers. And as you can see from figure 

5.21 the inventory at certain terminals are completely drained in some periods. 

This is usually not desirable since it is usual to operate with some safety stock in 

order to cope with extreme situations as an increase in demand or unexpected 

orders. Since we have allowed for inventory shortage, safety stock at the terminals 

becomes less important as the model has the possibility of redirecting customers 

in such situations. A potential problem with our formulation of the extension must 

however be mentioned. As you can see, the inventory levels in period 16 at 

terminal T1, T2 and T3 are zero. This implies that for customers designated to 

terminal T1 and T2 it is potentially not possible to pick up the demand at the 

adjacent terminals. They could pick up the demand at one of the other terminals, 

but due to the distance we have assumed to be 999 this is not probable. If the real 

distances were implemented in the distance matrix, this may have improved the 

functionality of the extension in such situation. 

 

 

Figure 5.21: Inventory levels 

 

Nevertheless, the implementation of the inventory shortage is still working as a 

planning tool since the model is redirecting customers not only because their 

terminal is empty, but also in order to coordinate the shipments so that the fill rate 

will not be too poor. What this shows is that the model is able to handle increased 

 # Trips Average lot size Average fill rate Tons shipped Objective value

43 2 970 99 % 127 700 656 504

Period/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

1 1 807 1 693 1 827 2 800 1 256 515 986 824 4 000

2 1 694 1 493 1 702 4 058 1 124 2 588 192 45 5 000

3 1 480 1 221 1 517 2 562 3 730 1 766 2 752 2 851 2 950

4 1 265 1 021 1 380 2 981 3 031 3 038 1 747 2 298 3 950

5 3 861 653 1 192 3 772 2 616 1 797 1 077 4 619 2 207

6 3 563 3 312 1 192 4 443 2 378 82 178 3 796 3 157

7 3 130 2 692 976 2 024 1 865 987 2 498 2 904 4 316

8 2 947 1 910 3 759 3 290 1 517 2 417 1 995 2 148 2 316

9 2 556 3 679 3 250 1 591 848 636 4 139 1 471 3 266

10 2 424 2 925 3 063 2 154 2 638 1 602 2 857 1 038 1 266

11 2 086 1 860 2 492 2 554 1 258 2 417 2 052 2 2 266

12 1 663 530 2 133 2 984 2 967 561 1 306 1 966 216

13 1 240 3 486 444 413 412 2 969 561 930 1 260

14 902 2 421 156 897 2 333 1 485 0 101 2 260

15 440 1 041 354 107 1 298 0 1 635 1 662 898

16 0 0 0 105 514 1 697 1 006 973 2 000

17 2 029 0 2 768 1 139 0 911 593 522 0

18 1 863 2 556 2 633 0 2 540 455 354 261 1 000

19 1 696 2 161 2 499 1 862 2 080 0 114 0 5 000
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demand due to the extension of the inventory shortage, which further underlines 

the importance of including this in the model. 
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6 Concluding remarks 

6.1 Summary and conclusions 

The transportation lot sizing model was developed in three separate steps. In the 

first step (Model 0) the optimization tool MPL found an optimal solution to the 

model within seconds. We observed that the solution showed a very good 

utilization of the vessel capacity with an average lot size close to maximum 

capacity. This indicated that the model was formulated in a way that provided 

logical results both from a theoretical and practical perspective. In order to 

increase the flexibility of the model we made two extensions to Model 0 in two 

separate steps; ―Period overlapping setup‖ and ―Inventory shortage‖. These three 

steps constituted our final model. The model did not utilize the two extensions as 

we initially thought it would, and hence the solution found in the final model was 

similar to the one found in Model 0. 

 

In order to test the stability and flexibility of the model, and also prove that the 

extensions made to the model work, we changed different parameters in the 

model. We found that the model continued to deliver logical solutions, and we 

argue that this shows the stability of the model. The utility value of the two 

extensions also became more evident. Under tighter capacities the period 

overlapping setup worked very well, but less so if there was slack in the 

capacities. In scenario three the inventory shortage extension helped the model to 

find a better solution than what it did without the extension. The ―model-value‖ of 

this extension became further evident when we tested the model for different 

demand patterns. As this is a highly relevant problem for HeidelbergCement it 

was important to show that the model was able to handle such changes. We argue 

that by including the two aforementioned extensions in the model we have 

improved the flexibility of the model, both from a theoretical and practical 

perspective. 

 

By adapting lot sizing models and theory usually found in production planning to 

a transportation planning problem, we argue that we have been able to formulate a 

lot sizing model that can be used solely for transportation planning – a 

transportation lot sizing model. We have also been able to find a solution to the 
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empirical case provided to us by HeidelbergCement by using the model we have 

developed in this thesis. 

 

6.2 Practical use of the model 

It was not an objective in our thesis to formulate a model that the company would 

use in its daily planning work. As the model has proven to be stable and provides 

what we presume to be logical solutions from HeidelbergCement’s perspective, 

we will however briefly discuss our opinions on whether we think the model may 

be utilized as a planning tool for the company. 

 

In order to formulate this model in a way that was possible to solve in MPL, we 

have shown that we had to make several assumptions and simplifications. While 

this is necessary when modelling, such simplifications will always lead to 

solutions that are not directly transferrable to a real life situation and this is 

something you always have to bear in mind when analysing the findings of these 

types of models. But it does not necessarily reduce the ability to use the solutions 

found in the model in some capacity. The planning horizon we have used in our 

formulation is 19 periods. According to theory the model can therefore be 

described as a tactical planning tool. 

 

From a practical perspective we argue that the inventory shortage extension 

provides a great opportunity from a practical planning perspective to see how you 

can redirect customers in order to find an overall better transportation and 

inventory plan. The discussion in chapter five also shows that it is possible to use 

the model in order to see how the plan would change with different capacities. 

Hence the model could be utilized as a support tool in new investment analysis. 

The analysis of seasonal demand patterns also shows that the model can be used 

to simulate how the transportation and inventory plan would react under different 

demand scenarios. This may help the company to identify possible bottlenecks if 

the demand changes, 

 

While we recognize the fact that the model should not be used on a day-to-day 

basis, it could still be of some practical use for the company in situations as those 

described above. Thus we argue that due to the stability and flexibility of the 
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model it may be utilized for simulation studies and as a support tool in different 

scenarios. 

 

6.3 Suggestions for further research 

Throughout the analysis of the model we have shown that the period overlapping 

setup does not work entirely as we had hoped for when you have slack in the 

time-capacity per period. When the capacity is tight however it seems to work 

very well. We therefore suggest that the formulation of the period overlapping 

setup should be further investigated in order to find a formulation that makes more 

sense from a practical perspective. One possibility could be to implement some 

form of sequence dependent setups in order to create different ―time slots‖ that the 

overlapping setup variable had to depend on. This might however be misguiding 

since there is no sequence dependent setup costs or setup times in the way we 

have formulated the model. 

 

Regardless of the share of the period overlapping setup C performed in period t, 

the entire lot size Z has to be delivered in period t. This assumption leads to some 

of the ―misbehaviour‖ of C as only one hour of the trip has to be performed in 

period t in order to deliver the whole lot size Z in period t. It would be interesting 

to see if it is possible to implement the point of time at each trip that the delivery 

is made at terminal k. This would give a more realistic picture of the period 

overlapping trip and could also help with some of the challenges with C. 

 

We assumed that the production available each period t is constant and do not 

adjust concurrently with the production over the period t. Implicit we say that all 

that is produced in period t only becomes available at the beginning of period t+1. 

This is too simplified as production takes place 24/7 with constant replenishment 

of the inventory at the factory. It would be very interesting to see if it would be 

possible to implement a form of continuously available production in the model. 

This could also help to facilitate the period overlapping setup possibility as the 

vessel under such new production availability could be forced to stay in dock 

while waiting for enough cement to be produced before it could start a new trip. 

From a real life perspective we argue that this would certainly improve the model.  
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The distance matrix and cost assumptions we have made for the extension of 

inventory shortage is highly simplified. It would be interesting to see how this 

extension would work if the actual data distances and costs were analysed and 

implemented into the model. As this would increase the realism in the model you 

could also relax the assumption that one customer group can only go to two 

adjacent terminals. This could be particularly interesting in periods with high 

demand, where the customers could be willing to travel longer in order to pick up 

their demand. It would also benefit the company as the ability to use the model as 

a planning tool would increase. 
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Appendix 1: MPL source code for the final model: 
title   

cplm 

 

index 

 period = 1..19; 

 terminal = (T1, T2, T3, T4, T5, T6, T7, T8); 

 customer = (C1, C2, C3, C4, C5, C6, C7, C8); 

 

data 

 D[period, customer] := EXCELRANGE("ImportFinal.xlsx","Demand!D"); 

 ProdCap2[period] := EXCELRANGE("Prodcap!Prodcap"); 

 TimeC[period, terminal] := EXCELRANGE("Timecount!Timecount"); 

 Time[terminal] := EXCELRANGE("Time!Time"); 

 Limit := EXCELRANGE("Timelimit!Timelimit"); 

 VCap := EXCELRANGE("Vesselcap!Vesselcap"); 

 HCT := EXCELRANGE("HCT!Hct"); 

 HCF := EXCELRANGE("HCF!Hcf"); 

 InvCapT[terminal] := EXCELRANGE("InvCapT!Invcapt"); 

 InvCapF := EXCELRANGE("InvCapF!Invcapf"); 

 SS[terminal] := EXCELRANGE("Safetystock!Safetystock"); 

 InitInvT[terminal] := EXCELRANGE("InitialInvT!Initialinv"); 

 InitInvF := EXCELRANGE("InitialInvF!Initialinvf"); 

 Setupcost[terminal] := EXCELRANGE("Setupcost!Setupcost"); 

 COcost := EXCELRANGE("Carryovercost!Carryovercost"); 

 Distance[terminal, customer] := EXCELRANGE("Distance!avstand"); 

 

variables 

 InvT[period,terminal] EXPORT TO EXCELRANGE("Scenario_5.xlsx", 

"InvT!Invt"); 

 InvF[period] EXPORT TO EXCELRANGE("InvF!Invf"); 

 Y[period,terminal] EXPORT TO EXCELRANGE("Y!Y"); 

 TimeUsed[period] EXPORT TO EXCELRANGE("TimeUsed!TimeUsed"); 
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 C_in[period,terminal] EXPORT TO EXCELRANGE("in!in"); 

 C_out[period,terminal] EXPORT TO EXCELRANGE("out!out"); 

 TimeD[period, terminal] EXPORT TO 

EXCELRANGE("CountingTime!Countingtime"); 

 Z[period, terminal] EXPORT TO EXCELRANGE("Z!Z"); 

 PDem[period,terminal,customer] EXPORT TO 

EXCELRANGE("PDem!Pdem"); 

 ProdCap[period] EXPORT TO EXCELRANGE("ProdCap!ProdCap"); 

 

binary variables 

 X[period,terminal] EXPORT TO EXCELRANGE("X!X"); 

 C[period,terminal] EXPORT TO EXCELRANGE("C!Cvar"); 

 P[period,terminal,customer] EXPORT TO EXCELRANGE("P!P"); 

 

model 

 min totalcost EXPORT TO EXCELRANGE("ObjFunc.xlsx", "Scenario_5")  

   = (sum(period, terminal: X[period,terminal]*Setupcost)) 

   +(sum(period,terminal: C[period,terminal]*COcost)) 

   +(sum(period: InvF[period]*HCF)) 

   +(sum(period,terminal: InvT[period,terminal]*HCT)) 

   +(sum(period,terminal,customer: 

P[period,terminal,customer]*Distance[terminal,customer]*1)); 

 

subject to 

 

conprodcap1[period]:  ProdCap[period] <= ProdCap2[period]; 

 

defineinandout[period,terminal]:  C_out[period,terminal] + (if period<19 then 

C_in[period,terminal] else 0 endif) = C[period,terminal]; 

 

maxin[period,terminal]: C_in[period,terminal] <= 0.98; 

 

maxout[period,terminal]: C_out[period,terminal] <= 0.98; 
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nomorethanone[period]:  sum(terminal: C[period,terminal]) <= 1; 

 

maxoneXandC[period,terminal]:  X[period,terminal] + C_out[period,terminal] + 

C_in[period,terminal] <= 1.98;  

 

setuplogic[period, terminal]: Y[period,terminal] <= X[period,terminal]*VCap; 

 

setuplogictwo[period,terminal]: Z[period,terminal] <= C[period,terminal]*VCap; 

 

notin[terminal]: C_in[1,terminal] = 0;  

 

notout[terminal]: C[19,terminal] = 0; 

 

cangototwo[period,customer]: sum(terminal: P[period,terminal,customer]) <= 2; 

 

setuplogiclostsales[period,terminal,customer]: PDem[period,terminal,customer] 

<= P[period,terminal,customer]*D[period,customer]; 

 

mustmeetdemand[period,customer]:  D[period,customer] = sum(terminal: 

PDem[period,terminal,customer]); 

 

InventoryBalanceT[period, terminal]:  InvT[period,terminal] = Y[period,terminal] 

+ Z[period,terminal] - (sum(customer: PDem[period,terminal,customer])) + (if 

period>1 then InvT[period-1,terminal] else InitInvT[terminal] endif); 

 

MaxInvT[period, terminal]: InvT[period,terminal] <= InvCapT[terminal]; 

 

MinInvT[period,terminal]: InvT[period,terminal] >= SS[terminal]; 

 

InventoryBalanceF[period]: InvF[period] = ProdCap[period] - (sum(terminal: 

Y[period,terminal])) - (sum(terminal: Z[period,terminal])) + (if period>1 then 

InvF[period-1] else InitInvF endif); 
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MaxInvF[period]: InvF[period] <= InvCapF; 

 

TimeUsedPerWeek[period]: TimeUsed[period] = (sum(terminal: 

X[period,terminal]*Time[terminal])) + (sum(terminal: 

C_out[period,terminal]*Time[terminal])) + (sum(terminal: 

C_in[period,terminal]*Time[terminal])); 

 

maxtimecanuse[period]: TimeUsed[period] <= Limit; 

 

Showtime[period,terminal]: TimeD[period,terminal] = 

(X[period,terminal]*TimeC[period,terminal]) + 

(C_out[period,terminal]*TimeC[period,terminal]) + 

(C_in[period,terminal]*TimeC[period,terminal]); 
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Appendix 2: Results for Model 0: 

 
Inventory levels: 

 

 

Lot sizes (Y and Z): 

 

Week/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

1 1 832 1 733 1 850 87 1 353 3 709 1 118 977 4 000

2 1 734 1 559 4 741 1 572 1 238 2 903 428 300 5 000

3 1 548 1 323 4 580 271 3 896 2 188 3 045 3 131 2 950

4 1 361 1 149 4 461 1 027 3 288 3 685 2 171 2 650 3 950

5 1 233 829 4 297 2 106 2 927 2 606 4 589 2 060 4 950

6 974 3 532 4 297 3 081 2 720 4 115 3 807 1 344 2 900

7 598 2 993 4 110 3 977 2 274 2 431 3 216 3 569 3 900

8 3 439 2 313 3 921 2 470 4 971 4 066 2 778 2 911 1 900

9 3 099 4 206 3 478 3 992 4 390 2 517 2 034 5 000 210

10 2 984 3 550 3 316 1 873 3 337 3 748 1 474 4 068 4 210

11 2 690 2 624 2 819 2 612 5 000 4 848 774 3 167 2 347

12 2 322 1 467 5 000 3 377 3 878 3 234 126 2 266 3 804

13 1 954 3 310 4 688 4 123 2 756 1 620 2 478 1 365 1 823

14 1 660 2 384 4 438 4 935 1 818 3 329 1 990 644 2 823

15 1 259 1 184 4 251 5 000 918 2 038 1 048 2 744 3 773

16 3 876 3 279 3 943 2 390 3 236 994 501 2 145 1 773

17 3 625 2 686 3 741 3 680 2 789 3 033 142 1 753 3 050

18 3 480 2 343 3 624 2 690 2 389 2 637 2 934 4 526 4 000

19 3 335 5 000 3 507 4 700 1 989 2 241 2 726 4 299 5 000

Week/Terminal T1 T2 T3 T4 T5 T6 T7 T8

1 -                 -                 -                 -                 -                 3 000             -                 -                 

2 -                 -                 3 000             3 000             -                 -                 -                 -                 

3 -                 -                 -                 -                 3 000             -                 3 000             3 000             

4 -                 -                 -                 3 000             -                 3 000             -                 -                 

5 -                 -                 -                 3 000             -                 -                 3 000             -                 

6 -                 3 000             -                 3 000             -                 3 000             -                 -                 

7 -                 -                 -                 3 000             -                 -                 -                 3 000             

8 3 000             -                 -                 -                 3 000             3 000             -                 -                 

9 -                 2 963             -                 3 000             -                 -                 -                 2 677             

10 -                 -                 -                 -                 -                 3 000             -                 -                 

11 -                 -                 -                 3 000             2 863             3 000             -                 -                 

12 -                 -                 2 493             3 000             -                 -                 -                 -                 

13 -                 3 000             -                 2 981             -                 -                 3 000             -                 

14 -                 -                 -                 3 000             -                 3 000             -                 -                 

15 -                 -                 -                 3 000             -                 -                 -                 3 000             

16 3 000             3 000             -                 -                 3 000             -                 -                 -                 

17 -                 -                 -                 3 000             -                 2 723             -                 -                 

18 -                 -                 -                 -                 -                 -                 3 000             3 000             

19 -                 3 000             -                 3 000             -                 -                 -                 -                 
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Time Used: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week

1 59

2 119

3 140

4 127

5 115

6 155

7 122

8 153

9 150

10 59

11 166

12 119

13 143

14 127

15 122

16 122

17 127

18 101

19 96



GRA 19002 Master Thesis    01.09.2011 

Page 87 

Appendix 3: Results for Model 0 with extension 1: 

 

Inventory levels: 

 

 

Lot sizes (Y and Z): 

 

 

Week/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

1 1 832             1 733             4 835             3 087             1 353             709                 1 118             977                 1 015             

2 1 734             1 559             4 726             4 572             1 238             2 386             428                 2 832             -                 

3 1 548             4 323             4 565             3 271             896                 1 671             3 045             2 663             950                 

4 1 361             4 149             4 446             4 027             3 288             168                 2 171             2 182             1 950             

5 1 233             3 829             4 282             2 106             2 927             2 089             4 589             1 592             2 950             

6 974                 3 532             4 282             3 081             2 720             598                 3 807             3 876             3 900             

7 3 598             2 993             4 095             977                 5 000             1 914             3 216             3 101             2 174             

8 3 439             2 313             3 906             2 470             4 697             3 549             2 778             2 443             3 174             

9 3 099             1 243             3 463             992                 4 116             5 000             2 034             4 855             4 124             

10 2 984             3 587             3 301             1 873             3 063             3 231             4 474             3 923             2 124             

11 2 690             2 661             2 804             2 612             4 863             1 331             3 774             3 022             3 124             

12 2 322             4 504             2 492             3 377             3 741             2 717             3 126             2 121             1 074             

13 4 928             3 347             2 180             4 142             2 619             1 103             2 478             1 220             2 100             

14 4 634             2 421             1 930             1 954             4 681             2 812             1 990             499                 3 100             

15 4 233             1 221             1 743             2 019             3 781             1 521             1 048             2 599             4 050             

16 3 850             316                 1 435             2 409             3 099             3 477             501                 5 000             2 050             

17 3 599             2 723             4 233             3 699             2 652             2 793             142                 4 608             50                   

18 3 454             2 380             4 116             2 709             2 252             2 397             2 934             4 381             4 000             

19 3 309             2 037             3 999             4 719             4 852             2 001             2 726             4 154             5 000             

Week/Terminal T1 T2 T3 T4 T5 T6 T7 T8

1 -                 -                 2 985             3 000             -                 -                 -                 -                 

2 -                 -                 -                 3 000             -                 2 483             -                 2 532             

3 -                 3 000             -                 -                 -                 -                 3 000             -                 

4 -                 -                 -                 3 000             3 000             -                 -                 -                 

5 -                 -                 -                 -                 -                 3 000             3 000             -                 

6 -                 -                 -                 3 000             -                 -                 -                 3 000             

7 3 000             -                 -                 -                 2 726             3 000             -                 -                 

8 -                 -                 -                 3 000             -                 3 000             -                 -                 

9 -                 -                 -                 -                 -                 3 000             -                 3 000             

10 -                 3 000             -                 3 000             -                 -                 3 000             -                 

11 -                 -                 -                 3 000             3 000             -                 -                 -                 

12 -                 3 000             -                 3 000             -                 3 000             -                 -                 

13 2 974             -                 -                 3 000             -                 -                 -                 -                 

14 -                 -                 -                 -                 3 000             3 000             -                 -                 

15 -                 -                 -                 3 000             -                 -                 -                 3 000             

16 -                 -                 -                 3 000             -                 3 000             -                 3 000             

17 -                 3 000             3 000             3 000             -                 -                 -                 -                 

18 -                 -                 -                 -                 -                 -                 3 000             -                 

19 0                     0                     0                     3 000             3 000             0                     0                     0                     
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Period Overlapping Setups: 

 

 

Time Used: 

 

 

 

Week C α β α*Time β*Time

1 1 0,00 0,98 0,0 66,6

2 1 0,02 0,02 1,4 1,0

3 1 0,98 0,98 50,0 46,1

4 1 0,02 0,02 0,9 0,8

5 1 0,98 0,06 38,2 2,8

6 1 0,94 0,02 44,2 1,4

7 1 0,98 0,02 66,6 1,2

8 1 0,98 0,19 57,8 13,0

9 0 0,81 0,00 55,0 0,0

10 1 0,00 0,98 0,0 27,4

11 1 0,02 0,98 0,6 38,2

12 1 0,02 0,98 0,8 27,4

13 0 0,02 0,00 0,6 0,0

14 1 0,00 0,02 0,0 0,8

15 1 0,98 0,98 38,2 50,0

16 1 0,02 0,10 1,0 5,3

17 1 0,90 0,02 45,7 0,6

18 1 0,98 0,98 27,4 46,1

19 0 0,02 0,00 0,9 0,0

Week

1 118

2 129

3 127

4 70

5 100

6 100

7 162

8 130

9 168

10 142

11 107

12 155

13 124

14 60

15 159

16 134

17 168

18 74

19 108
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Appendix 4: Results for the final model: 

 
Inventory levels: 

 

 

Lot sizes (Y and Z): 

 

 

Week/Terminal T1 T2 T3 T4 T5 T6 T7 T8 Factory

1 1 832 1 733 1 850 87 1 353 3 709 1 118 3 977 1 000

2 1 734 1 559 1 741 1 572 1 238 2 903 428 3 300 5 000

3 1 548 1 323 1 580 3 271 3 896 2 188 3 011 3 131 2 984

4 4 361 1 149 1 461 1 027 3 288 3 168 2 137 2 650 4 501

5 4 233 3 829 1 297 2 106 2 927 2 089 4 555 2 060 2 501

6 3 974 3 532 4 297 81 2 720 598 3 773 4 344 3 451

7 3 598 2 993 4 110 428 2 274 1 914 3 182 3 569 5 000

8 3 439 2 313 3 921 1 858 4 971 3 549 2 744 2 911 3 063

9 3 099 1 243 3 478 3 380 4 390 5 000 5 000 2 323 1 013

10 2 984 3 587 3 316 4 261 3 337 3 231 4 440 1 391 2 013

11 2 690 2 661 2 819 5 000 2 137 1 331 3 740 3 490 3 013

12 2 322 1 504 2 507 2 765 4 015 2 717 3 092 2 589 3 963

13 1 954 3 347 2 195 3 530 2 893 4 103 2 444 1 688 1 963

14 1 660 2 421 1 945 4 342 4 955 2 812 1 956 967 2 963

15 4 259 1 221 1 758 1 407 4 055 4 521 1 014 3 067 913

16 3 876 3 316 1 450 1 797 3 373 3 477 467 2 468 1 913

17 3 625 2 723 4 248 87 2 926 2 793 108 5 000 2 989

18 3 480 2 380 4 131 2 037 2 526 2 397 2 900 4 773 3 999

19 3 335 2 037 4 014 4 047 2 126 5 000 2 692 4 546 5 000

Week/Terminal T1 T2 T3 T4 T5 T6 T7 T8

1 -                 -                 -                 -                 -                 3 000             -                 3 000             

2 -                 -                 -                 3 000             -                 -                 -                 -                 

3 -                 -                 -                 3 000             3 000             -                 2 966             -                 

4 3 000             -                 -                 -                 -                 2 483             -                 -                 

5 -                 3 000             -                 3 000             -                 -                 3 000             -                 

6 -                 -                 3 000             -                 -                 -                 -                 3 000             

7 -                 -                 -                 2 451             -                 3 000             -                 -                 

8 -                 -                 -                 2 937             3 000             3 000             -                 -                 

9 -                 -                 -                 3 000             -                 3 000             3 000             -                 

10 -                 3 000             -                 3 000             -                 -                 -                 -                 

11 -                 -                 -                 3 000             -                 -                 -                 3 000             

12 -                 -                 -                 -                 3 000             3 000             -                 -                 

13 -                 3 000             -                 3 000             -                 3 000             -                 -                 

14 -                 -                 -                 3 000             3 000             -                 -                 -                 

15 3 000             -                 -                 -                 -                 3 000             -                 3 000             

16 -                 3 000             -                 3 000             -                 -                 -                 -                 

17 -                 -                 3 000             -                 -                 -                 -                 2 924             

18 -                 -                 -                 2 940             -                 -                 3 000             -                 

19 -                 -                 -                 3 000             -                 2 999             -                 -                 
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Period Overlapping Setup: 

 

 

Time Used: 

 

Week C α β α*Time β*Time

1 1 0,00 0,98 0,0 52,9

2 1 0,02 0,98 1,1 66,6

3 1 0,02 0,02 1,4 0,8

4 1 0,98 0,98 38,2 57,8

5 1 0,02 0,02 1,2 0,6

6 0 0,98 0,00 27,4 0,0

7 0 0,00 0,00 0,0 0,0

8 0 0,00 0,00 0,0 0,0

9 1 0,00 0,91 0,0 62,0

10 1 0,09 0,98 6,0 27,4

11 1 0,02 0,98 0,6 66,6

12 0 0,02 0,00 1,4 0,0

13 1 0,00 0,98 0,0 66,6

14 0 0,02 0,00 1,4 0,0

15 0 0,00 0,00 0,0 0,0

16 0 0,00 0,00 0,0 0,0

17 0 0,00 0,00 0,0 0,0

18 1 0,00 0,98 0,0 46,1

19 0 0,02 0,00 0,9 0,0

Week

1 112

2 68

3 117

4 151

5 117

6 132

7 127

8 166

9 168

10 101

11 121

12 99

13 154

14 108

15 168

16 96

17 105

18 114

19 128
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