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Abstract

The Mean Magnitude of Relative Error, MMRE, is probably the most widely used evaluation

criterion for assessing the performance of competing software prediction models.  It seems

obvious that the purpose of MMRE is to assist us to select the best model.  In this paper, we

have performed a simulation study demonstrating that MMRE does not select the best model.

The consequences are dramatic for a vast body of knowledge in software engineering. The

implications of this finding are that the results and conclusions on prediction models over the

past 15-25 years are unreliable and may have misled the entire software engineering

discipline.  We therefore strongly recommend not using MMRE to evaluate and compare

prediction models.  Instead, we recommend using a combination of theoretical justification of

the models we propose together with other metrics proposed in this paper.

Index terms

Mean magnitude of relative error, simulation, regression analysis, prediction models,

software engineering.
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1. Introduction

Software cost estimates and defect rate estimates are important deliverables of software

projects.  As a consequence, researchers have proposed and evaluated a plethora of prediction

systems.  There are a number of empirical studies including studies on generic model-based

methods [12][14][18][28][30][38] as well as on specific model-based methods.  The latter

methods include CART (Classification and Regression Trees) [4][5][7][35][50][48], OSR

(Optimized Set Reduction) [2][3][29], Stepwise ANOVA (Analysis of Variance) [35], OLS

(Ordinary Least Squares) regression (more than 30 studies, see [10] for an account), Robust

regression [23] [24] [26] [40] [44] [45], Composite Estimation models (like COBRA) [4],

Analogy-based models  [19] [27] [41] [42] [49] [51] [55] [48] and, finally, artificial neural

network-based models [47] [50].  (We have adopted the classification scheme proposed in the

Encyclopedia of Software Engineering [10] except possibly for neural networks.)

The most widely used evaluation criterion to assess the performance of software

prediction models is the Mean Magnitude of Relative Error (MMRE) [10].  This is usually

computed following standard evaluation processes such as cross-validation [6].  Conte et al.

[13] consider MMRE ≤ 0.25 as acceptable for effort prediction models.   There exist a number

of alleged reasons to use MMRE.  The claimed advantages include the following:

1. Comparisons can be made across data sets [8][48].

2. It is independent of units. Independence of units means that it does not matter whether

effort is reported in workhours or workmonths.  An MMRE will be, say, 10% whatever

unit is used.

3. Comparisons can be made across prediction model types (on the same data set) [13] e.g.

compare a CART model with an artificial neural net model.

4. It is scale independent.  Scale independence means that the expected value of MRE does

not vary with size.  In other words, an implicit assumption in using MRE as a measure of

predictive accuracy is that the error is proportional to the actual size (effort) of the project

[54].  For example, a 1 person-month error for a 10 person-month project and a 10

person-month error for a 100 person-month will result in equal MREs (10% for both

projects).
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The only claim that is true is claim 2. Claims 1 and 4 are untrue.  We have strong evidence

that MRE is a decreasing function of effort [53].  That means that MRE is not independent of

scale, thus refuting claim 4.  Furthermore, it follows that a measure that decreases with

project size cannot be used to compare MMRE across data sets, thus refuting claim 1 (unless

the projects in the two data sets are of similar size).  This can be understood by considering

two data sets A and B.  Suppose that data set A consists of small projects whereas B consists

of large projects.  Given everything else equal, MMRE(B) will very likely be smaller than

MMRE(A).  Therefore, a prediction model evaluated on data set B will be identified as better

than a competing model evaluated on data set A.

In this paper, we challenge and present evidence to refute claim 3.  We show that claim 3

is untrue because when MMRE is used for comparison of two prediction models, we are at

great risk of identifying a false model as better than a true model.  We perform a simulation

study that demonstrates that MMRE does not tend to prefer the true model to any other

model.  On the contrary, MMRE will tend to prefer a model that underestimates to the true

model.  That is, MMRE will be lower (i.e. “better”) for a fluke model than for a correct

model even when the correct model happens to be the true model.  Miazaki et al. [40] pointed

this out a while ago, but neither they nor anybody else have seriously questioned the far

reaching implications of this fact.  The very serious implication of this fact is that MMRE is

an unreliable measure that is not suitable for evaluating which prediction model is best.

The consequences are dramatic for a vast body of knowledge in software engineering in

that the results and conclusions on prediction models over the past 15-25 years are unreliable

and thus, have not added as much value as we have believed to this important branch of

software engineering.  Actually, our situation is much worse.  The use of MMRE may have

misled us and actually hindered progress.  MMRE should therefore not be used to compare

and evaluate prediction models (unless one can present good reasons for using it other than

the common justification that “It is widely used in SE”).

Actually, we are not aware of MMRE being used to evaluate prediction models (like

regression analysis, CART, etc.) in disciplines other than computer science and software

engineering.  We are, however, aware of its use in time series analysis.  See for example

Makridakis et al. [37].
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2. Illustrating the problem

To illustrate the problem of MMRE, let us consider two prediction models A and B,

respectively.  If MMRE of model B is significantly lower than MMRE of model A, one

would conclude that model B is better than model A  (B is “more accurate” than A in current

software engineering terminology).  MRE is the basic metric in MMRE and is defined as

follows [13] (where y  = actual, 
∧

y  = prediction).

y

yy
MRE

∧

−
=

To be able to draw the correct conclusion with regard to whether model A or model B is

best, it is crucial that the model evaluation metric selects the model that is closest to the true

model most of the time.  (The true, or population, model is the model we would obtain if our

data set comprised all the relevant past and future data points, e.g. the population of all past

and future software projects that are similar to the project to be predicted).  This seems like a

reasonable, common sense requirement of an evaluation criterion.  Otherwise, the evaluation

criterion may lead you to wrongly choose model B when model A ought to have been chosen.

Consider the two models A and B in Figure 1.  Model A is fitted to the data by OLS log-

linear regression.  (The data is the Finnish data set, see [32] for details on the data).  Next,

assume that model B is fitted by some other method (Say, the novel method “SuperX” which

we have recently developed and which we believe holds great promise.)  We observe that

model B has the same slope as A but a different intercept than A.  (Model B Constant=0.7,

Model A Constant=1.7, see Table 1and Table 2, respectively).  Thus, the intercept of model B

is underestimated (compared with A).

By visual examination, A seems to represent the central tendency of the data reasonably

well, at least far better than model B.  Since A has been fitted using OLS, the estimates from

A equal the expected value (or mean).  Also, model A is a good regression model in terms of

the commonly used criteria SE (standard error) and R2 (See Table 3).   Both coefficients of

model A are significant (p<0.10).
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Regression Plot
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Figure 1.  Two regression models A and B

Nevertheless, in terms of MMRE, model B is preferred to model A (Table 3).  (MRE may

be calculated using the formula derived in Appendix 1.)  As a consequence, we would be

misled by MMRE to identify model B as better (or more “accurate”) than model A.

Obviously, this is a serious flaw of the evaluation criterion MMRE when it is used to select

between competing prediction systems.  As an evaluation criterion, it therefore clearly does

not comply with common sense (nor with statistical science) with regard to identifying which

model is the better one.

Table 1.  Model A (fitted by OLS regression)

Predictor Coef SE Coef T P

Constant 1.7 0.99 1.7 0.096

ln(FP) 1.05 0.16 6.8 0.000

Table 2.  Model B

Predictor Coef

Constant 0.7

ln(FP) 1.05

Table 3.  MMRE, SE and R2 of models A and B

Model N MMRE SE R2

A 38 0.79 0.79 0.56

B 38 0.59 N/A N/A
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In this paper, we have performed a simulation study demonstrating that MMRE

unfortunately is an unreliable measure that indeed leads us to draw wrong conclusions with

respect to the question "which prediction model is to be preferred".

3. Related work

There are two categories of work that may be considered related to this study: studies on

evaluation metrics as well as simulation studies.

Evaluation of the evaluation metrics themselves seems to have received little attention

since Conte, Dunsmore and Chen [13] publicised MMRE and other measures. The only

related work we are aware of is Miazaki et al. [40], Kitchenham et al. [31], Foss et al. [20],

and Stensrud et al. [53].  Miazaki et al. acknowledge that MMRE is lower for models that

underestimate, but they have not demonstrated the implications of this fact. Kitchenham et al.

take a different approach.  They attempt to understand what MMRE (and other measures)

really measure.  Stensrud et al. found that there is a negative relationship between MRE and

effort implying that MMRE is not reliable when comparing values across different data sets.

None of them have investigated the reliability of MMRE when used as a criterion to select

between competing prediction systems.

Regarding simulation studies in software engineering, several papers have recently used

simulation in software engineering: Rosenberg [46], El Emam [22], Briand and Pfahl [9],

Angelis and Stamelos [1], Strike et al. [54], Shepperd and Kadoda [48], and Pickard et al.

[45].  Therefore, simulation is becoming an accepted research method in software

engineering.

4. Alternative evaluation metrics

In this section, we present other potential evaluation metrics that we evaluate in this study.

Another measure akin to MRE, the magnitude of error relative to the estimate (MER), has

been proposed by Kitchenham et al. [31].   Intuitively, it seems preferable to MRE since it

measures the error relative to the estimate.  MER is a measure of the dispersion of the

variable 
∧

yy  if the mean of 
∧

yy  is approximately 1.   They further pointed out that

researchers should look at the full distribution of the variable and not just the dispersion.

MER is defined as
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We use the notation MMER to denote the mean MER.

Another, and simple, measure of residual error is the standard deviation (SD).  It is

computed as follows.

1
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We also propose and evaluate two other measures.  They are the relative standard

deviation (RSD) and the logarithmic standard deviation (LSD).  RSD is defined as follows.

1

2

−













 −

=

∑
∧

n

x

yy

RSD
i

ii

The variable x is Function Points in our case. The rationale behind RSD is to measure the

dispersion relative to the x value (e.g. FP) rather than relative to the y value (effort) to avoid

one of the problems with MMRE.  One of MMRE’s problems is that small actuals (small y’s)

will have a (too) large influence on the mean MRE since a number divided by a small number

tends to be a large number.  In addition, we have shown that MRE is not independent of size.

Rather, it decreases with size [53].  Contrary to MRE, SD increases with size because

software project data sets are often heteroscedastic.  As opposed to MRE and SD, RSD is

almost independent of size.

LSD is defined as follows.
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The term s2 is an estimator of the variance of the residual ei where ei is given by

iii yye
∧

−= lnln

The rationale behind LSD is as follows.  Data sets with a large heteroscedasticity like the

DMR data set (Table 4) will be very influenced by the large projects.  Thus, the usual SD is

more sensitive to large projects than to small projects, and it may therefore not be a stable,
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reliable measure for such data sets.   On the other hand, LSD lends itself well to data sets that

comply with a log-linear model because the residual error is independent of size (i.e.

homoscedastic) on the log scale.  Since we apply a log-linear transformation to the DMR data

set, LSD potentially ought to be a more reliable measure than SD.  (The reason for the -s2/2

term will become clearer in section 5.2.  See also Appendix 2.)

Finally, we evaluate the mean of the balanced relative error (BRE) and the inverted

balanced relative error (IBRE) proposed by Miazaki et al. [40].

y
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The mean of the absolute values of BRE and IBRE are termed MBRE and MIBRE,

respectively.

5. Simulation Method

Since the 1950’s, various computer simulation techniques have become increasingly

important research tools across a wide range of sciences.  Software packages based on these

techniques are also widely used in more applied fields such as engineering, finance, or

environmental management, often in connection with computerised databases and electronic

gathering devices.

There are several advantages of simulation compared with using real data.  One advantage

is that we can create a large number of samples rather than having to use only one, single

sample.  Thus, we obtain the distributions for statistical parameters that are estimated (the

estimators).  Using a single sample of real data, we can obtain the distribution only when it

can be calculated analytically. In cases where we cannot calculate the distribution
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analytically, we would obtain one single value for the estimator, not its distribution.  In such

cases, simulation adds value.  It should be obvious that we obtain more information and can

draw more reliable conclusions based on a distribution than based on a single value.

Another advantage of simulation is that we know the true answer.  For example, we may

study missing data techniques by removing data from a complete (simulated) data set in a

controlled manner and study the effects of the missing data techniques by comparing results

with the true, complete data set.  Strike et al. [54] have used this approach.

Still another advantage with simulation is that it enables the studying of phenomena that

are too complex to describe and solve analytically, e.g. the behaviour of oil reservoirs.

In this study, we use simulation (combined with regression models) to investigate MMRE

and alternative evaluation metrics.  Using simulation, we demonstrate that, in many cases,

MMRE likely will fail to select the best prediction model among competing models.  The

simulation study therefore is a more conclusive demonstration of the conjecture stated in

sections 1 and 2 and illustrated in Figure 1.

5.1 Data “template”

It is important that a simulation method for generating data generates data that are as close as

possible to actual, and representative, software data sets.  In this study, we have used the

Desharnais (DMR) data set as a model for our simulation model.  The Desharnais data set

exhibits properties that are representative of other data sets of software projects with respect

to (non-)linearity and heteroscedasticity.  (Several software data sets are presented in e.g.

[53]).  In addition, it is a reasonably large sample.  (It contains 81 projects, see Table 4).  For

more details on DMR, see [15].  The DMR data come from a single company but have used

three different language types.   (For some kind of analysis it may therefore require

partitioning based on the language type.  For this analysis it is however unnecessary to

partition the data into more homogeneous subsets since it is only used as model for

generating a simulation model).  The projects span from 1116 to 23940 workhours.

Overall, we believe that a simulation model approximating the DMR data set should be

close to reality and representative of software project data sets.  (On the other hand, data sets

of defect rates may exhibit different characteristics from those of project effort.  The

simulation model on this study is therefore not necessarily a good approximation of the

former data sets.)
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Table 4.  Descriptive statistics for DMR data set

Variable N Mean Median StDev Min Max

FP Adj 81 289 255 186 62 1116

Effort 81 5046 3647 4419 546 23940

5.2  Model specification

It is common, and a reasonable starting point, to assume a linear model of the following form.

(Recent research, using genetic algorithms as a flexible method of model fitting, did not find

any significant deviations from a linear model [16].)

uFPeff +⋅+= βα  (1)

If we apply model (1) to the DMR data set [15], we obtain the following OLS linear

regression model

FPeff ⋅+−= 6.1740   (2)

Table 5.  The linear model (2)

Predictor Coef SE Coef T P

Constant -40 620 -0.06 0.949

FP 17.6 1.8 9.73 0.000

1000 500   0

20000

10000

    0

FP Adj

E
ffo

rt
(h

rs
)

S = 2999,72      R-Sq = 54,5 %      R-Sq(adj) = 53,9 %

Effort(hrs) = -39,8589 + 17,5744 FP Adj

Regression Plot

Figure 2.  DMR data set: FP versus Effort

On closer inspection of the DMR data set in Figure 2, we observe that it seems reasonably

linear but exhibits a pronounced heteroscedasticity (increasing variance).  OLS regression
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analysis assumes that the data are homoscedastic (equal variance).  Model (2) is therefore not

sufficiently correct.  We therefore need to transform the data in an attempt to make them

better comply with the assumptions of the OLS method, in particular the homoscedasticity

assumption.  There exist several alternatives for transforming the data.

One alternative is to perform a log-linear regression where we assume that the relationship

between effort and FP is of the form

IFPeeff ⋅= βα )(  (3)

where I  is lognormal with mean equal to 1.  Thus, ueI =  with u  normally distributed. It

has been proved that if 2)( σ=uVar  and 
2

)(
2σ

−=uE , then 1)()( == ueEIE  ([17], vol. 5, p.

134).

Stating (3) in the form

ueFPeeff ⋅⋅= βα )(  (3b)

and taking the logarithm of equation (3b), we obtain

uFPeff ++= )ln()ln( βα  (4)

A plot of the transformed data when applying model (4) is presented in Figure 3.

Inspecting the plot, the data exhibit a reasonable homoscedasticity and linearity.

7654
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ln(FP adj)

ln
(E

ffo
rt

)

S = 0,419332      R-Sq = 69,0 %      R-Sq(adj) = 68,6 %

ln(Effort) = 2,89011 + 0,993120 ln(FP adj)

Regression Plot

Figure 3.  DMR data set:  ln(FP) versus ln(Effort)

Applying model (4) to the DMR data set, we get the following OLS regression model (5)

or (6) or in table form in Table 6.

)ln(943.003.3)ln( FPeff ⋅+= , SD=0.6000  (5)

Backtransforming (5), we get
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943.0943.003.3 )(6972.20)( FPFPeeff ⋅=⋅=   (6)

Table 6.  The log-linear model (5) (6)

Predictor Coef SE Coef T P

Constant 3.03 0.59 5.11 0.000

ln(FP) 0.943 0.11 8.77 0.000

Comparing (1) with (3), we can state that in (1) we believe in a linear relationship between

effort and FP whereas we in (3) we believe in an exponential relationship between these two

variables.  We observe, however, that model (6) fitted to the DMR data set is not particularly

exponential since the exponent is close to 1 (0.943 and with a standard error of 0.11, see

Table 6).  From this, we cannot draw any conclusions regarding returns to scale (i.e. whether

to assume increasing, decreasing, like COCOMO [12], or constant returns or scale.  See [43]

for an account of returns to scale).  However, none of the two models reject the assumption of

constant returns to scale.  Therefore, a linear model seems to be a good first order

approximation of reality.

Given that the data seem reasonably linear, we could have used model (1) except for the

fact that the data are heteroscedastic.  Therefore, it is interesting to investigate a third model

that is linear rather than log-linear but corrects the heteroscedasticity of model (1).

uFPFPeff )()( +⋅+= βα  (7)

In model (7), we assume a linear relationship between FP and effort as we do in equation

(1), but unlike (1), we transform the data in an attempt to obtain a more constant variance.

Equation (7) may be restated as

u
FPFP

eff
++⋅= βα

)(
1

)(
  (8)

Thus, in (8), 
)(FP

eff
 is the dependent variable and 

)(
1

FP
 is the independent variable.  The

OLS regression model applying (8) on the DMR data is

)(
1

1279.16
)( FPFP

eff
⋅+=   (9)

The standard deviation of the residual in (9) is 8.4.  Model (9) may alternatively be stated

as

)(9.16127 FPeff ⋅+=   (10)
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Table 7.  Model (9) (10)

Predictor Coef SE Coef T P

Constant 127 298 0.43 0.671

FP 16.9 1.8 9.6 0.000

A plot of model (9) is provided in Figure 4.  In model (9), the residual, u, seems less

heteroscedastic than the residual of model (1).  Unfortunately, it is not perfectly

homoscedastic either.  This is observed by comparing the plots of Figure 2 and Figure 4.

Compared with the log-linear model (3), model (9) seems no better.   In addition, comparing

Table 6 and Table 7, we observe that the intercept of the log-linear model (3) has a higher t-

value than the intercept of model (9), and that the slope coefficients have similar t-values.

Overall, the log-linear model seems the best choice.

In the simulation study that follows, we have therefore opted for model (3), the log-linear

model.  The log-linear model also has an additional benefit compared with the two other

models in that it corrects heteroscedasticity as well as forces the line through the origin. (That

is, when zero FP is delivered, zero effort is expended.)

0,0150,0100,0050,000

40

30

20

10

0

1/FP adj

E
ffo

rt
/F

P
 a
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Figure 4.  DMR data set:  1/FP versus Effort/FP

We find it useful to have performed and reported this explorative exercise because there,

unfortunately, is no strong theory to guide us in software engineering.  We have therefore

chosen (3) based on empirical evidence of the DMR data set.  This empirical evidence

weakly suggests a multiplicative model rather than an additive model.
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5.3 Simulation model and procedure

Let us assume that we have estimated the regression parameters based on a large sample (or

alternatively, suppose that we happen to know the population) and that we therefore know the

true (or population) regression model.  Assume that the true model is exponential of the form

(3) and with coefficients and standard deviation (ó) identical to model (5):

uFPeff +⋅+= )ln(943.003.3)ln( ,

ó = 0.6000  (11)

Model (11), i.e. the regression model plus the error term and the standard deviation figure,

is our simulation model describing the population.  The parameters describing the population

should describe aspects of the population that are relevant to the simulation study.  For this

study, it is relevant to include a model for the variance of the population.  The error term, u,

accounts for the stochastics (e.g. variables not captured in our model).  Some projects use

more effort, and some less effort, than the expected effort based on FP counts.  u is normal

with mean equal to –ó2/2 and variance equal to ó2 ([17] vol. 5, p. 134).  This simulation

model generates data sets with characteristics similar to the DMR data set (and presumably

similar to other software project data sets).

If the population is given by model (11), we may simulate sampling from this population.

Let us assume that we have conducted 30 projects of different size, say, iFPi ⋅= 50 , i=1,2,

….30.  Then, the smallest project will have FP=50 and the largest in the sample will have

FP=1500.  (This is close to the span of the DMR data set, see Table 4.  Only, we draw 30

rather than 81 observations.  This because many software data sets have around 30

observations.)  For each project i, we draw a random number ui from a normal distribution

with mean equal to –0.18 (-ó2/2) and standard deviation (ó) equal to 0.6000.  (This is

standard functionality in statistical packages e.g. Minitab [39]: Menu tree:

Calc.random.normal).  Thus, we loop from i=1,2, ….30 and generate FPi each time using the

formula iFPi ⋅= 50 .  Next, we compute Efforti using model (11) with FPi as input as well as

input of an ui value.  This procedure gives us a data set of 30 observations with characteristics

similar to the DMR data set.  In this way, we may create as many samples of 30 observations

as we wish.  For the simulation study, we created 1000 samples of 30 observations each.  We

observe that the simulation procedure is a reverse procedure of the ordinary regression

analysis procedure.  (In regression analysis we start with the observations and estimate the
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regression model whereas in this simulation we start with a know population regression

model and create a number of observations).

6. Simulating competing models

Let us assume that we have created a variety of prediction models based on a variety of

procedures and based on samples drawn from the population described by the simulation

model (11).  (These procedures could have been classification and regression trees,

estimation by analogy, neural nets or some novel method X.)  For simplicity, assume that we

have created four different log-linear models based on different samples and different

methods X, Y and Z as follows

943.050.2 )(FPeeff ⋅=   (12)

920.003.3 )(FPeeff ⋅=   (13)

943.050.3 )(FPeeff ⋅=   (14)

970.003.3 )(FPeeff ⋅=   (15)

We observe that (12) has a smaller intercept than the true model (6) but equal β.  That is,

model (12) underestimates.  We should therefore expect it to be considered as superior to the

true model terms of MMRE since MMRE favours models that underestimate.  Model (13)

has intercept equal to the true model whereas the slope is smaller than the slope of the true

model.  Thus, model (13) also underestimates, and we should therefore expect also this model

to be identified as superior to the true model in terms of MMRE.  Model (14) has a greater

intercept than the true model and equal slope.  We should therefore expect this model to be

identified as inferior to the true model in terms of MMRE.  Model (15) has a greater slope

than the true model and equal intercept.  We should therefore expect also this model to be

identified as inferior to the true model in terms of MMRE.

7. Research procedure

The research procedure simply consisted of creating 1000 samples based on the simulation

model (11).  Thereafter, we computed MMRE, MdMRE, MMER, SD, RSD, LSD, MBRE

and MIBRE values for the five models (true, 12, 13, 14 and 15) on all the 1000 samples.  We

compared models pairwise with the true model.  For each pairwise comparison, we counted

the number of times each model obtained the best MMRE, MdMRE, MMER, SD, RSD LSD,



Discussion Paper 3/2002 Norwegian School of Management BI
ISSN: 0807-3406 Department of Economics/Department of 

Leadership and Organizational Management
URL: www.bi.no

16

MBRE and MIBRE values, respectively.  For example, suppose we compare the true model

and model (12) on 1000 samples by computing MMRE for each model on each sample.

Suppose the results are that (12) obtains the lowest (best) MMRE on 900 of the samples and

the true model obtains the lowest MMRE on the remaining 100 samples.  Then, we report

900 for model (12) and 100 for the true model.   This should be interpreted as follows: When

MMRE is used to select between competing prediction systems, the estimated probability that

we select (12) is 0.9 whereas the estimated probability of selecting the true model is 0.1.

MRE may be computed using the formula (A3) in Appendix, or it may be computed

directly using the multiplicative form of the function.  Similar formulas may be used to

compute the other measures (not reported).

ResultsTable 8 and Table 9, we have reported the number of times each model obtains the

best score (i.e. lowest MMRE, etc.).  We reiterate that a sensible evaluation criterion ought to

have a high probability of identifying the true model as best.

Focussing on MMRE in the four tables, we observe that MMRE identifies models that

underestimate as superior to the true model and to models that overestimate.  MdMRE

exhibits a pattern similar to MMRE, however less clear-cut.  MMER identifies the true model

as best in three out of four cases.  It is therefore not sufficiently consistent in identifying the

true model as best.  SD identifies the true model as best in all cases and is therefore

consistent.  RSD also identifies the true model as better than the four other models and is

therefore consistent, too.  Compared with SD, RSD also identifies the true model as best with

a higher probability than SD.   LSD, too, consistently identifies the true model as best with a

reasonably high probability (>0.7).  MBRE and MIBRE perform similarly to MMER.  They

both identify the true model as best in three out of four cases.

To conclude, MMRE, MdMRE, MMER, MBRE and MIBRE are substantially more

unreliable as evaluation criteria than SD, RSD and LSD.  All of the latter three criteria are

consistent, and RSD and LSD seem slightly better than SD.  It seems obvious that a good

selection criterion ought to prefer the true model, the truth, most of the time.  (Ideally, it

ought to prefer the truth all of the time, but this is, of course, infeasible for evaluation criteria

based on statistical methods.)
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Table 8.   Results of true model vs. model (14)

True Model (14)

Best MMRE 1000 0

Best MdMRE 996 4

Best MMER 590 410

Best SD 943 57

Best RSD 981 19

Best LSD 964 34

Best MBRE 1000 0

Best MIBRE 998 2

Table 9.   Results of true model vs. model (15)

True Model (15)

Best MMRE 1000 0

Best MdMRE 870 130

Best MMER 260 740

Best SD 734 266

Best RSD 765 235

Best LSD 746 254

Best MBRE 988 12

 Best MIBRE 924 76

8. Discussion

In this section, we discuss the simulation study and the proposed evaluation measures.  We

also discuss alternative ways to evaluate prediction models.

8.1 Simulation study

Regarding the simulation study, we generated 1000 samples.  This is common in simulation

studies.  Each sample contained 30 observations.  This is a sample size that reasonably well

reflects typical software project sample sizes.  See e.g. [53].  We did not perform significance

tests of the difference in MMRE (and of the other criteria) values.  We feel that this was not

necessary to prove our point, namely that MMRE, MdMRE and MMER are unreliable and

inferior to a simple statistic like SD.  Our point is just that, using these metrics, there is a high

probability of preferring a bad model to a good model.
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We also compared two models at a time.  In most SE studies, a new, proposed model is

compared against a baseline model like OLS regression.  Therefore, our pairwise

comparisons reflect the majority of SE studies.  There are, however, cases where more than

two models are compared simultaneously.  This would require a different set-up of the

simulation study.

8.2 Evaluation metrics

As for the evaluation measures proposed in this paper, we observe the following.

RSD.  We observe that RSD is limited to models with a single predictor variable.  In many

software studies this is, however, not a serious limitation since it is common to create

prediction models based on FP and effort.  More important, we can provide a rationale for

choosing this metric as well as an interpretation of its meaning.  As for the rationale, let us

assume that we have the following model:

εβα xxy ++=   (RSD1)

where  ε  is normally distributed: 0)( =εE  and 2)var( σε = .  This model will generate

data where the variance increases with x .  Dividing (RSD1) by x gives:

εβα ++⋅=
xx

y 1
  (RSD2)

The error term in this regression model (RSD2), ε , is normal: 0)( =εE  and 2)var( σε = .

OLS will, therefore, be an efficient estimating method. Let α̂  and β̂  be estimates of α  and

β . Our prognosis (sample prediction model) for effort is then:

xy βα ˆˆˆ +=

But then:

βα ˆ1
ˆ

ˆ
+=

xx
y

x
y

x
y ˆ

−  is, therefore, and estimate, e , of the error term ε .  Since we also have that

x
yy

x
y

x
y

e
ˆˆ −

=−=

RSD is, therefore, an estimate of the standard deviation of the error term ε  in the

regression equation.  Thus, RSD is a relevant measure of how good the prediction model is.
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Of course, it can be objected that the model we simulate is exponential whereas RSD is

based on an additive model.  However, these two models are very close to each other (The

exponent is 0.943 which is very close to 1).  Therefore, RSD is an appropriate measure in this

single-predictor case. The simulation study also demonstrates that RSD is well behaved, but

we do not conjecture that it is the ideal metric under all circumstances.

It remains to give RSD an interpretation making sense since x and y are measured in

different units (hours vs. FPs).  We can interpret 
x
y

 as the effort per FP, that is to say, the

productivity.  If  α  is close to zero or if the project is large (in terms of x), we observe that

x
y

 will approximate β .

Finally, we would like to add that we have used RSD to compare models on the same data

set.  We believe it generally is inappropriate to compare prediction models across different

data sets, in particular if the projects in the data sets are of different size, say, one data set

consists of small projects and another data set consists of large projects.

LSD is useful for comparing exponential models because the residual error will be

independent of size (i.e. constant expected value) on the log scale.  As long as we log

transform the data sets, LSD is appropriate both to select between competing models as well

as to assess absolute dispersion (on the log scale).  LSD may, however, be inappropriate if a

linear scale is assumed.

MMER does not perform particularly well in this study.  In theory, however, MMER

might perform well for data sets exhibiting a more pronounced heteroscedasticity than the

DMR data.  (We have so far, however, not identified any software project data sets with more

heteroscedasticity than the DMR data set.  See [53].)  Like SD, and unlike MMRE, it favours

models with a good fit to the data, and unlike MMRE, it is not sensitive to small actuals.

Therefore, given the hypothetical choice between MMRE and MMER, we argue that MMER

is to be preferred.

Among all the measures evaluated in this study, MMRE is probably the worst choice.  It

is unreliable both on normal scales as well as on log scales.  (Because MRE varies with size

on both scales.)  It clearly favours models that underestimate, and it is extremely sensitive to

small actuals.

As an aside, we also observe that MMRE does not take the number of observations, N,

into account.  Common-sense dictates that we generally should have more confidence in a
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model based on 100 observations than a model based on two observations.  The latter model

would likely obtain a better MMRE but would, nevertheless, inspire less confidence, in

general.

9.  Conclusion

MMRE has for many years been, and still is, the de facto criterion to select between

competing prediction models in software engineering.  It is therefore important that we can

rely on MMRE in selecting the best model among the choices.  What then is best?

  Econometrics [25] provides us with one possible answer to this question: It proposes that

the best model is the model constructed with the most efficient fitting method, a fitting

method being, say, OLS or LAD.

(Efficient is a reserved word in statistics meaning best unbiased.  That is, an efficient

method provides    estimators (estimates of the coefficients) with smaller variance than any

competing method (therefore best) and a point estimate equal to the mean (therefore

unbiased).  In short, an efficient method results in a model closer to the truth than any

competitor models.)

According to econometrics, it is the characteristics of the data set that decides which

method is efficient.  For example, given that the OLS assumptions are fulfilled, the OLS

method will be efficient.  On the other hand, if the kurtosis is high, LAD will be more

efficient than OLS.  Thus, we have to have theories (hypotheses) as well as data to defend our

use of a particular type of fitting method (e.g. OLS, LAD) and model characteristics (e.g.

linear, exponential).

 In the following, we divide our conclusions in two categories, “conclusive” conclusions

and speculative conclusions, respectively.  The conclusive conclusions that we can draw

directly from the empirical results are the following.

1. MMRE will always select a model that provides an estimate below the mean (obtains a

low MMRE) to a model that predicts the mean (obtains a high MMRE).  That is to say,

MMRE will consistently choose a biased model to an unbiased model.  Given that we

prefer information on a precisely defined statistic as the mean to some non-defined,

optimistic prediction somewhere between the mean and zero effort, we may strongly

conclude that MMRE is completely inappropriate as a model selection criterion.  Worse,

it is dangerously misleading.
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2. LSD is appropriate to evaluate exponential models.  Given that other SE data sets exhibit

characteristics similar to the DMR data set, exponential models fit well with reality.

3. RSD is also appropriate to evaluate models that fit with data similar to the DMR data, that

is to say, data that are fairly linear as well as heteroscedastic.  However, RSD is limited to

data with a single predictor variable.

4. Although we have not shown it, we have theoretical reasons to suspect that SD is

appropriate to evaluate linear models with no heteroscedasticity.

5. SD, RSD and LSD are the only criteria that consistently select the true model with a

probability p>0.5.

6. The other metrics, MMER, MBRE and MIBRE, are unreliable, too.  Although, from a

theoretical perspective, we would prefer MMER to MMRE.

From conclusion 1, we may infer that the conclusions drawn in all software engineering

studies based on MMRE with respect to which model is best, are of limited value, indeed.

This includes tens of papers over the last 20 years or so, and it includes very recent papers.

From conclusions 1-6, we may also derive a more speculative conclusion.

7. Since we observe that all the metrics (including SD, LSD and RSD) suffer from either a

flaw or a limitation, we may speculate that there may probably not exist a universal,

“silver bullet” metric that allows us to compare apples and oranges with the same ruler,

that is to say, a metric that, in a simple manner, allows us to compare a variety of models

like linear models, exponential models, higher order functions (like arbitrary function

approximators), CART, OSR, estimation by analogy, CBR, neural nets, etc.  Specifically,

and contrary to what has been advocated in SE studies, MMRE is definitely not this

sought after, universal metric.

Speculation 7 suggests that we may have to look in other directions than solely seeking

single-mindedly for the ultimate model evaluation criterion to solve our problems in SE, the

replacement for MMRE, so to speak.  In the next section, we outline some possible directions

for future research on evaluating prediction models.

10. Future directions for evaluating prediction models

It is said that it is easy to criticize but difficult to invent.  As we have criticised MMRE and

advised the reader not to use it, we anticipate the reader’s next question is: “MMRE is bad,

and MMER, RSD and LSD have limitations, too, so what am I then to do?  How am I to
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evaluate prediction models?”  In this section we attempt to provide a partial answer

acknowledging that it is not completely satisfactory.  Providing a more satisfactory answer is

a topic for future research now that we have given conclusive evidence of the flaws of current

evaluation practices in software engineering.

To provide a partial answer, we first need to address a basic question: what is a prediction?

Or rather, what do we want it to be?  To us, it makes sense that the answer is: the expected

value (the mean).  Given that we accept this answer, we should proceed to evaluate prediction

models theoretically before proceeding to empirical investigations.

First of all, we may screen prediction models into two broad categories based on their

theoretical properties: those that predict the mean and those that do not, respectively.  (The

latter typically lack a theory and therefore provide a number without any information on how

to interpret this number: is it the mean, the median, the most optimistic value, the most

pessimistic, or just some none-defined quantity?)  The models in the first category are further

scrutinized whereas second category models may be put on the wait list until it is

demonstrated that they predict the mean (or some other well-defined measure).

Next, to select among models in category one, we probably need recourse to statistical

concepts like efficiency (See also e.g. [25], Appendix A.7 for a definition of the term

efficiency).  Given theoretical assumptions and/or empirical evidence of the data, we may

select the model obtained with an efficient method for data with this kind of characteristics.

For example, regression methods come in a large variety including OLS and LAD.  LAD is

more efficient than OLS on data exhibiting high kurtosis.  If we, therefore, have theoretical

arguments or empirical evidence to advance the hypothesis that SE project data exhibit high

kurtosis, we have justified using LAD instead of OLS.  Note that we would then choose LAD

instead of OLS based on a priori assumptions and not choose it just because it happened to

perform better in terms of some evaluation metric on a single data set that may be more or

less representative of the population.

In a similar manner, we believe that arguments need to be advanced in favour of methods

like CART, neural nets, CBR, etc.  Specifically, we believe it is insufficient to justify these

methods solely by empirical evidence, especially when the evaluation criterion is the flawed

MMRE measure.

We also believe we have to justify the functional form of the models by theoretical

arguments in addition to empirical studies.  After all, when we use FP as predictor variable
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for effort, we assume there is a relationship between FP and effort of the form: more FP

implies more effort.

Therefore, a linear relationship may be a good first order approximation for many SE

datasets spanning over a limited range in project effort.  When we depart from a linear

relationship to an exponential relationship, we must justify it by hypotheses in favour of

variable (increasing or decreasing) returns to scale.

If we use higher order polynomials such as so called arbitrary function approximators, we

need to provide some theoretical foundation for these, too.  Specifically, we believe that it is

completely insufficient to argue for using an arbitrary function approximator model providing

a “serpent” like function merely by reporting a seemingly good (low) MMRE figure on a

single data set.

In our view, this is what makes the difference between being a naïve empiricist and a

sophisticated empiricist.  The latter advances theories or hypotheses before proceeding to

experiment.  He does not merely observe and report in a naïve way.  This attitude is in

concordance with modern philosophy of science [11].

Actually, philosophy of science may guide us some more on this matter.  They also state

that a good hypothesis must be falsifiable, the more the better.  Applying the criterion of

falsifiability, we clearly see that a hypothesis like “There is a linear relationship between FP

and effort” is a lot more falsifiable than the hypothesis “There is an arbitrary relationship

between FP and effort”.  In fact, the latter cannot be falsified (or disproved), and it is,

therefore, not a bold conjecture as the falsificationists urge us to advance.

 To summarise, it seems that empirical software engineering has been conducted in

primarily a naïve empiricist fashion.  It seems that we ought to develop our discipline into a

more sophisticated form of empiricism to improve our profession.

Our partial answer above also presupposes that we deal with a large enough amount of

data to use statistical methods.  (This is also implicitly assumed when using MMRE as

evaluation criterion as the MMRE of one data point is meaningless.)   We have stressed the

need for theory and clear hypotheses in empirical software engineering.  In addition, we

should, of course, continue the search for better empirical evaluation criteria.  The criteria we

have proposed in this paper (RSD, LSD and SD) is a contribution towards this aim.

Finally, we would like to utter some opinions on how to improve the discipline of software

cost estimation although, strictly speaking, it is probably beyond the scope of this paper.
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We believe we generally need a stronger emphasis on expert opinion in research on cost

estimation.  Some research (e.g. [34] [42]) plus anecdotal evidence as well as personal

experience support the belief that human judgement adds substantial value in project cost

estimation.

We also believe that further improvement must come primarily by improving the data

quality and quantity.  We should aim our research at improving the data quality of our data

sets by investigating more and better predictor variables (cost drivers) in the spirit of the

COCOMO work [12] and of Stensrud [52] and by using methods for specifying software data

sets in a standardised manner as proposed by Kitchenham et al. [33].  Researchers should

therefore spend more time on the tedious task of gathering more and better data rather than by

devising new, exotic functional forms and data fitting methods for predicting cost and

defects.
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Appendix 1. Calculation of MRE in Log-linear Regression Models

This appendix shows how the formula for calculating MRE is derived when one applies a

log-linear regression model to predict effort.  Let y  be the actual and 
∧

y  be the prediction.

Further, let the log-linear population model be

uXy lnlnlnln ++= βα

Then, the sample model is

Xbay lnln +=
∧

The residual is given by

^

lnln yyresidual −=

which is equal to

)ln( ∧=
y

y
residual

This may be transformed to

y
y

e residual

∧

− =

Thus,

y
yy

e residual

∧

− −
=−1  (A1)

By definition, MRE is

y
yy

MRE

∧

−
=   (A2)

 From (A1) and (A2) we may restate MRE as

residualeMRE −−= 1   (A3)
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Appendix 2.  The issue of -ó2/2

In sections 5.2 and 5.3, we state that the error term of the exponential model (3), u, is

normal with mean equal to 
2

2σ
− and equal variance 2σ .  Therefore, when we apply OLS to

the log-transformed regression equation

uxy ++= βαln ,

 we obtain the estimator of α , *α̂ , where









−=






 ∧

2
*

2σ
ααE .

Thus, *α̂  is not an unbiased estimator of α .  We would have to add 
2

2s
 to obtain an

unbiased estimator, 
∧

α , for α    ( 2s  is an estimator for 2σ ) with 
∧

α  thus given as

2
*ˆˆ

2σ
αα +=

To obtain unbiased predictions, we ought to use the unbiased estimator 
∧

α .  However, we

have not used the models to make any predictions in this paper.  On the contrary, we have

used the true multiplicative model (3) solely to generate data samples.
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