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Abstract

Forecasting economic behaviour is an important problem with practical
implications for a number of scientific disciplines, including microeconomics,
macroeconomics, marketing and economic psychology. The ability to predict
the economic agent’s choice is a coveted goal for both social scientists and mar-
ket practitioners. In our time, such studies are conducted with field investiga-
tions or laboratory experiments. However, the traditional statistical techniques
used to build explanatory models with predictive power are of limited capability
and have inherent structural deficiencies. Here we show that an artificial neural
network of the ARTMAP family forecasts far better than the state-of-the-art
multinomial regression the economic decisions of the participants in a labora-
tory experiment resembling real markets. We found that when the number of
options among which one must choose is four, and hence any systematic predic-
tive success above 25% is valuable, Fuzzy ARTMAP achieved 42.28%, while the
most popular logit regression model reached 37.87%. This result demonstrates
the greater capability of the neural classifier to utilize correlated input factors,
which remain underused by regression analysis. Yet, prediction rates such as
the attained here are still very low, and could hardly be raised by more sophis-
ticated statistical techniques, but should rather be improved by incorporating
more in-depth psychological knowledge about the decision-maker.

Key words: multinomial logit model, logistic regression, ARTMAP neu-
ral network, economic choice, econometrics, prediction

Introduction. Finding accurate methods for predicting economic choice is
a topic with implications for micro- and macroeconomics, marketing and other
related fields. Currently, multinomial logit, probit and tobit models are the
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statistical tools most widely used to explain and predict qualitative response
variables, and hence agents’ choices [1]. However, all these methods have limi-
tations, stemming from the assumptions upon which they rest. A related issue
is the rapid decrease of predictive efficiency with the increase of categories to be
chosen above two or three. In addition, in that case the number of model param-
eters grows exponentially and some of them may not be statistically significant
and may bias the predictive accuracy, yet they cannot be discarded from models
with even the minimal structure.

On the other hand, some relatively recent statistical classification techniques
can offer much desired flexibility to econometrics, especially with regard to choice
prediction. Such is the large group of artificial neural networks, including those
from the ARTMAP family [2–4]. The latter stand somewhat apart from the
mainstream of the field, but continue to attract attention from researchers in
need of robust classification methods.

Here we present an economic experiment investigating the role of consumer
satisfaction in choosing a supplier of a fictitious good. Our objective was to
identify the limits of predictability of human decisions by the multinomial logit
model and the Fuzzy ARTMAP neural classifier – two algorithms, representative
each in its class. We could have used a more recent ARTMAP variant, but decided
against it: the relatively small number of empirical observations at our disposal
would not have allowed for minor algorithmic differences to make an impact.

The participants in the experiment had to choose one among four suppliers in
twenty rounds of a utility-maximizing game. Thus the two classification methods
competed in surpassing a prior probability of 0.25. In the next sections, we
provide details on the experimental design and administration, and then discuss
the classifying algorithms’ performance.

The main goal of our experiment was to investigate the complex relationship
between consumer satisfaction or dissatisfaction with a supplier of a good, and the
decision to stay with or abandon that supplier in the future. A number of factors
could play a role here. Apparently, the emotion of (dis)satisfaction – as provoked
on the spot – is a powerful motivator of economic choice; in addition, it may be
blended with past experiences with the same business partner, or influenced by
attractive offers from other competitors. These factors formed the backbone of
our hypothesis, later tested with the two algorithms.

Experiment. The experimental design accounted well for the factors de-
scribed above. It put the participant in a situation to choose one offer among
four and then bear the consequences, which were either unfulfilled promises on
behalf of the suppliers, or exceeded expectations in terms of delivered good. That
good was called omnium bonum (“good for everybody”, in Latin). It had to be
fictitious to avoid mental associations with real goods or services that could skew
each participant’s motivation. No transaction costs were involved in abandoning
one supplier for another.
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Supplier A

Offer: 100 units of omnium bonum

Supplier D

Offer: 120 units of omnium bonum

Supplier C

Offer: 160 units of omnium bonum

The omnium bonum actually

delivered will be 95 units

Supplier B

Offer: 140 units of omnium bonum

I Choose

C

I Choose

A

I Choose

D

I Choose

B

Omnium bonum accumulated

So far: 530 units

Fig. 1. Experimental screen of the software application. Initially, four offers were
available and then the participant chose Supplier C with a mouse click. The actual

quantity was delivered and then added to the total quantity accumulated so far

Figure 1 shows the computer screen in front of the participant. Initially,
only the offers are on display, but immediately after a choice with a mouse click,
the actual ‘delivery’ takes place. The new omnium bonum units are added to
the total sum in the bottom-left corner, and then the arrow button must be
clicked to proceed. A new screen (not shown here) appears and asks for the
participant’s self-assessed disappointment or satisfaction with the transaction in
a Lickert scale [5]. After an answer, the round is over and the next one begins.

As it is shown in Figure 2, each supplier differs from the other three by
the units of omnium bonum it offers and delivers, whereby the riskiest one (C)
is also the most rewarding. All quantities are chosen so that all four suppliers
remain competitive, and each of them is likely to form a distinct image in the
eyes of the participant. The experiment was conducted in May 2010 with 34
students from the Faculty (School) of Economics and Business Administration at
Sofia University, who gained additional credit points for a decision making-course.
More details about the experimental design, setting and procedure are provided
in [6].
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Fig. 2. An essential idea of the experimental design: the more omnium bonum is
offered (and delivered) on average, the greater the risk of delivery, as measured by

the standard deviation

Results and discussion. We applied multinomial logistic regression (multi-
nomial logit models) to try to understand and predict our participants’ choices.
Initially, a set of potentially significant independent factors was identified based
on general economic and psychological considerations. Then they were tested
one at a time as possible predictors in logit models. Eventually, two candidate
variables emerged for a final selection. Both involved analytical transformations
of the variable DS (disappointment/satisfaction with the acquisition of omnium
bonum in the current round), and both achieved 46.47% rate of success in pre-
dicting people’s choices in a calibration sample (to be explained below). However,
the two variables were highly correlated and therefore could not be a part of the
same model. We solved the problem by applying the standard econometric tech-
nique to form a compound variable by summing them up. Thus, the right-hand
side of the final logit model contained a single factor – a sum of two quantities,
and was this

(1) DSs(max(t(s = c))1,t−1) + avg(DSs)
1,t−1|avg(DSs)

1,t−1|.
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T a b l e 1

Prediction rates of supplier choices

Prediction rate

Prediction method

Number of

independent

variables

Number of

estimated

parameters

Calibration

sample:

first 12

rounds

(n = 340)

Test

sample:

last 8

rounds

(n = 272)

No method

(Pure guessing)
n. a. n. a. 0.25a 0.25a

Multinomial Logit

Model – Augmented
26 81b 0.5618 0.3713

Multinomial Logit

Model – Minimal
4 15c 0.4794 0.3787

Fuzzy ARTMAP

neural network
36 ∼ 102–103 0.9971 0.4228

aTheoretical estimate;
bOnly 29 are significant at the 0.05 level;
cOnly 7 are significant at the 0.05 level.

Here the subscript s = A, B, C, D designates the supplier of omnium bonum.
Note that eq. (1) is in fact a vector of four elements because there are four
suppliers. That model achieved 47.94% rate of success in predicting people’s
choices in a calibration sample – slightly better than the two that gave rise to it.

The expression in eq. (1) is not straightforward to interpret, but an intuitive
understanding is still possible. The quantity DSs(max(t(s = c))1,t−1) is the satis-
faction (or disappointment) experienced by the participant the last time supplier
s was chosen (s = c), no matter how far in the previous rounds this had hap-
pened. Notation max(t(·)) stands for ‘most recent’ dealing with s. Superscript
1, t− 1 indicates that the game is at moment t and all preceding choices from the
first to the penultimate round are considered. In other words, the term accounts
for the fact that people do remember how they felt about supplier s the last time
they made a deal with it.

The second term in eq. (1) is the average DS associated with the s-th supplier
thus far in the game, multiplied by its absolute value. As an effect, this operation
amounts to taking the square of the variable with preserving its algebraic sign,
and therefore can account for both disappointment and satisfaction, whichever
is relevant at the moment. Essentially, the two terms in eq. (1) tell us about
the most recent and the average emotion a supplier has induced in a customer.
This combination looks plausible in general, and relates well with Redelmeier
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T a b l e 2

Variables and parameters in Multinomial Logit Model – Minimal

Variable Supplier
Regression

coefficient
p-value

Intercept A −0.0268 0.9041

DSA(max(t(A))1,t−1) + avg(DSA)1,t−1|avg(DSA)1,t−1| 0.0722 0.0274

DSB(max(t(B))1,t−1) + avg(DSB)1,t−1|avg(DSB)1,t−1| A 0.0162 0.6189

DSC(max(t(C))1,t−1) + avg(DSC)1,t−1|avg(DSC)1,t−1| 0.0080 0.7361

DSD(max(t(D))1,t−1) + avg(DSD)1,t−1|avg(DSD)1,t−1| −0.0752 0.0064

Intercept B 0.4412 0.0286

DSA(max(t(A))1,t−1) + avg(DSA)1,t−1|avg(DSA)1,t−1| 0.0045 0.8830

DSB(max(t(B))1,t−1) + avg(DSB)1,t−1|avg(DSB)1,t−1| B 0.0833 0.0019

DSC(max(t(C))1,t−1) + avg(DSC)1,t−1|avg(DSC)1,t−1| 0.0033 0.8710

DSD(max(t(D))1,t−1) + avg(DSD)1,t−1|avg(DSD)1,t−1| −0.0338 0.1744

Intercept C 0.9879 0.0000

DSA(max(t(A))1,t−1) + avg(DSA)1,t−1|avg(DSA)1,t−1| 0.0089 0.7510

DSB(max(t(B))1,t−1) + avg(DSB)1,t−1|avg(DSB)1,t−1| C −0.0046 0.8635

DSC(max(t(C))1,t−1) + avg(DSC)1,t−1|avg(DSC)1,t−1| 0.0563 0.0061

DSD(max(t(D))1,t−1) + avg(DSD)1,t−1|avg(DSD)1,t−1| −0.0528 0.0249

and Kahneman’s discovery [7] that humans remember easily their last emotion
in an experience, and also form a relatively good average estimate of its inten-
sity. Finally, the use of eq. (1) in the actual econometric model implies that the
greater the satisfaction, the greater the probability for a choice to be repeated is.
Other, more ‘economic’ variables, such as the difference between promised and
delivered omnium bonum were highly correlated with DS, and so could not be
used alongside the quantities from eq. (1).

We have put the compound variable from eq. (1) in two different models –
one model with it as a single predictor, and another including additional indepen-
dent variables possibly adding explanatory power. Both models were calibrated
with a subsample of the participants’ responses from the first 12 rounds (cali-
bration sample), and then tested with the last eight rounds’ data (test sample).
As it is shown in Table 1, the two models performed similarly in testing, with
the more parsimonious (Multinomial Logit Model – Minimal) predicting slightly
better (37.87%). Obviously the large number of insignificant coefficients in the
‘Augmented’ model was the price it paid for better accounting for the calibration
sample.

Coming back to the ‘Minimal’ model, it is noteworthy that although it has
the smallest possible number of predictive variables – just one, as given by eq. (1),
it must spawn and multiply to account for the total number of choice categories
in the experiment (Table 2, Column 1). In particular, with m = 4 options to

420 G. Mengov, N. Georgiev



be chosen, the minimal number of independent variables is four. The latter
must enter m(m− 1) equations and, if intercepts are included, there are m2 − 1
parameters to be estimated. That is how, with a choice of one among four, a logit
model with a single predictive variable implies 15 parameters.

It turns out (Table 2) that about half of the parameters in the most parsi-
monious model are statistically insignificant but there is nothing to do about it.
This example reveals an important deficiency of the econometric technique – the
minimal structure of the equation is fixed, and if there are statistically insignif-
icant parameters in it, they cannot be discarded. Adding further factors causes
an outburst in their number, as the ‘Augmented’ variant in Table 1 shows.

On the other hand, neural networks in general and ARTMAP in particular
contain far more parameters than most regression models, making the goal for
statistical significance impossible and irrelevant. The network algorithm forms
clusters of the input patterns as they arrive and links them to the correct output
categories. Depending on the ART parameter values, dozens or hundreds of input
clusters may be created to develop a refined reflection of the multidimensional
input space. In the training process, they get connected to the output clusters
which in our case represent the four suppliers.

As it is shown in Table 1, the neural network precision, as given by the rate
of correct prediction in the calibration sample, approaches 100%. The real test of
course is with a sufficiently large test sample. By that standard, neural models
have historically fared better than their more rigid statistical ‘cousins’, and the
present example is no exception. As it can be seen from Table 1, the neural
network recognized properly 339 of all 340 records in the calibration sample, and
then predicted correctly 42.28% of the 272 choices in the test sample.

Several circumstances have contributed to the Fuzzy ARTMAP advantage
of about four and a half percentage points over the logit model (Table 1). First,
there is no structural limitation for the number of independent variables – as
no statistical significance is pursued, they can be many. We achieved our best
result with 36, but variants with other sets performed similarly. Second and
related, collinearity is not an issue as neural networks have shown to be tolerant
to correlating factors influencing the dependent variable. Finally, the algorithm’s
flexibility allows for finding the optimal quality of input pattern recognition –
neither too coarse, nor too refined.

Conclusions. We have shown that a modern classification tool like Fuzzy
ARTMAP can raise the accuracy of choice prediction with four options from 0.25
to 0.42. Perhaps this is the limit of statistical classification and no further model
sophistication would lead to improvement. But, to see our result in the opposite
perspective, more than half of all guesses were still wrong. This shows that indeed,
the task of forecasting people’s decisions must be approached with due modesty.
Maybe the right way forward would be to implement a more theoretical approach,
and to account for more of the psychological mechanisms behind choice.
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