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Abstract

This paper shows that portfolio constraints have important implications for manage-

ment compensation and performance evaluation. In particular, in the presence of portfolio

constraints, allowing for benchmarking can be bene�cial. Benchmark design arises as an al-

ternative e¤ort inducement mechanism vis-a-vis relaxing portfolio constraints. Numerically,

we solve jointly for the manager�s linear incentive fee and the optimal benchmark. The size of

the incentive fee and the risk adjustment in the benchmark composition are increasing in the

investor�s risk tolerance and the manager�s ability to acquire and process private information.
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Management Compensation and Market Timing under Portfolio Constraints

1 Introduction

In this paper, we study the e¤ect of relative (to a benchmark) performance evaluation on the

provision of incentives for the search for private information under moral hazard when managers

face exogenous portfolio constraints that limit their ability to sell short and purchase on margin.

The Investment Company Act of 1940 restricts the investment activities of mutual funds.1

Beyond regulation, there exist statutory restrictions on the fund�s leverage. The general consen-

sus is that �the maximum leverage ratio allowed for mutual funds is 1.5 to 1 and most operate

with less. Funds are strictly limited in the extent to which they can borrow, sell securities

short, purchase securities on margin, or invest in certain derivatives.�2 In this paper we focus

on the two most prevalent restrictions: short-sales and margin purchases. Almazan et al (2004)

document that, according to the self-reported information that funds must submit to the SEC

in Form N-SAR, approximately 70% of mutual funds explicitly state that short-selling is not

permitted. This �gure rises to above 90% when the restriction is on margin purchases.3

Constraints on short-selling and margin purchases are exogenous in our model.4 We claim

that portfolio constraints have important implications for management compensation and perfor-

mance evaluation. Our main contribution is to show that, in the presence of portfolio constraints,

allowing for benchmarking can be bene�cial. Benchmark design arises as an alternative e¤ort

inducement mechanism vis-a-vis relaxing portfolio constraints. Numerically, we solve jointly for

the manager�s linear incentive fee and the optimal benchmark. As an additional result, the

paper shows that when the benchmark composition is endogenously determined, the principal�s

optimal benchmark choice will not necessarily coincide with the benchmark that maximizes the

fund�s Information Ratio (excess return per unit of tracking error volatility).

We propose a two-period, two-asset (the market and a risk-less bond) model. The principal

in our model represents the fund investors. The agent would be the fund management company.

The management company is hired by investors to take portfolio decisions. In exchange, it

receives a management fee. The management fee includes a basic fee and a performance based

incentive fee, possibly benchmarked to a given portfolio return. The basic fee should be inter-

preted as a �at percentage fee which depends in a predictable way on the fund�s size (assets

under management) and past performance. It is, therefore, implicitly and explicitly unrelated

1Another historically relevant regulation, repealed in the Taxpayer Relief Act of 1997, was the �short-short�
rule that indirectly limited funds�ability to use short sales and derivatives. Regulation T by the Fed limits the
initial margin to 50% of the purchase price of securities that can be purchased on margin.

2�Why Mutual Funds Do Not Pose Systemic Risks,� Paul Schott Stevens President and CEO Investment
Company Institute (ICI), 16th Annual Investment Company Directors Conference, 2009.

3Of course, investors can e¤ectively leverage their portfolios above those limits by investing in derivatives,
hence limiting the impact of explicit constraints on short-selling and margin purchase. According to the evidence
reported in Almazan et al (2004) for funds domiciled in the US, from 1994 through 2000, on average, less than
1% of funds who could invest in options and less than 15% of funds who could invest in futures did actually invest
in the corresponding derivatives. Although these percentages vary across years and fund�s age, the general tenor
is that unconstrained funds made limited use of derivatives investment during this period.

4The literature review in section 2 describes brie�y several papers that explain empirically and theoretically
how portfolio constraints may arise optimally.
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to future performance. In other words, a higher basic fee implies that managers with higher

reservation utility (arguably, those with a better record and/or working for bigger funds) will

receive a higher compensation.5 According to the current US regulation (see Thomas and Jaye

(2006)) the incentive fee adjustment is symmetric around the benchmark; it is also expressed as

a percentage of the fund�s assets under management. In our model, both the incentive fee and

the benchmark composition will be determined endogenously.

A number of new insights arise after introducing portfolio constraints. First, looking at

the manager�s e¤ort and portfolio choice problem, we show that the active portfolio and e¤ort

decisions (hence, performance) depend on both the incentive fee and the benchmark composi-

tion. The relationship between the manager�s e¤ort and the incentive fee has been studied by

Gómez and Sharma (2006). The relationship between the e¤ort decision and the benchmark

composition, however, contrasts with the well-known �irrelevance result� in Stoughton (1993)

and Admati and P�eiderer (1997): the manager�s e¤ort is independent of the incentive fee and

the benchmark composition; it only depends on the manager�s e¤ort disutility. Under portfolio

constraints, we show that benchmarking turns out to be equivalent to making portfolio con-

straints e¤ectively less binding, increasing the marginal utility of e¤ort. We derive explicitly the

e¤ort maximizing benchmark�s composition as a function of the market moments, the portfolio

constraints, and the manager�s risk-aversion coe¢ cient. We show that the irrelevance result in

Admati and P�eiderer (1997) arises only in the limit, when there are no portfolio constraints.

To understand the model�s intuition, consider a manager who is totally constrained in her

ability to sell short and purchase at margin. Under moral hazard, the manager�s optimal portfolio

can be decomposed in two components: her unconditional risk-diversi�cation portfolio plus her

active or �timing� portfolio.6 Benchmarking will be immediately re�ected in the manager�s

unconditional portfolio: the manager replicates the benchmark, e¤ectively, the �riskless�asset in

relative terms. The timing portfolio depends on the manager�s costly e¤ort to improve her timing

ability through superior information. For an uninformed manager, this portfolio would be zero.

For a hypothetical perfectly informed manager, it would push the optimal total portfolio to either

boundary: 100% in the risky asset if the market risk premium is forecasted to be positive; 100%

in the bond otherwise. As e¤ort increases, and depending on the composition of the benchmark,

either the lower bound (limiting short selling) or the upper bound (limiting margin purchases)

will be, marginally, more likely to be binding. Ex-ante, when the manager takes his optimal

e¤ort decision, he will take into account this likelihood. Why would he exert more (costly)

e¤ort when he cannot trade accordingly due to the existing portfolio constraints? The amount

of e¤ort, relative to the unconstrained case, will be lower. What is the role of the benchmark

and how how can it help to alleviate the e¤ort underinvestment? By choosing the appropriate

benchmark composition, portfolio constraints are e¤ectively relaxed. Intuitively, the benchmark

5The basic fee may have sometimes two components, depending on the average fund family size and the fund�s
speci�c size. Moreover, this fee may decrease in a concave way with the size of the fund. For an empirical
investigation of the e¤ect of this concavity on the fund�s performance and volatility, see Deli (2002) and Massa
and Patgiri (2009).

6Since the manager needs to choose between a well-diversi�ed market portfolio and the risk free asset, active
management in our model is analogous to timing ability. Hence, we use the two terms interchangeably. Appendix
A extends the model by introducing a second risky asset and stock picking or selectivity ability on the side of the
manager.
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that leaves, in expected terms, both constraints equidistant would maximize the marginal utility

of e¤ort, hence increasing e¤ort expenditure. This midpoint is shown to depend on the portfolio

constraints and the usual components in the manager�s portfolio decision: the stock return

moments, the manager�s risk aversion and the contract�s incentive fee. When the portfolio space

is unconstrained, so is the timing portfolio. The unconstrained manager�s e¤ort decision is, in

fact, independent of the incentive fee since he controls the actual size of the portfolio investment;

the manager�s optimal e¤ort depends only on his e¤ort disutility. Benchmarking the manager�s

incentive fee fails to induce any additional e¤ort on the unconstrained manager.

Turning to the investor�s problem, she has to decide the benchmark composition and the fee

structure. The investor is confronted with a trade-o¤: on the one side, by benchmarking the

manager�s compensation and increasing the explicit incentive fee, she may increase the manager�s

e¤ort expenditure, as discussed before. On the other side, benchmarking the manager distorts

the optimal risk-sharing properties of the original, unconstrained �rst-best contract where only

risk sharing dictates the optimal compensation. The investor�s optimal decision regarding the

size of the incentive fee and the benchmark composition will depend crucially on her risk aversion

relative to the manager�s risk aversion. The more risk tolerant the investor, relative to the

manager, the higher the incentives of the former to induce higher e¤ort by the latter, even if it

is at the expense of forcing the manager to take more risk than it would be, otherwise, optimal.

This is consistent with the intuitive idea of avoiding �closeted�passive managers who �peg�their

portfolios to the benchmark without exerting enough e¤ort. Obviously, the more risk tolerant

the investor relative to the manager, the more relevant this problem becomes.

If portfolio constraints are removed, we converge to the standard Admati and P�eidederer

(1997) irrelevance result: benchmarks are suboptimal. This is due to the inability of the investor

to induce higher e¤ort on the manager by changing either the incentive fee or the benchmark

composition. In practical terms, this means that we should expect lower or no benchmarking at

all when the manager�s investment options are largely unconstrained. The numerical results for

the optimal contract under moral hazard and portfolio constraints con�rm this intuition. The

optimal incentive fee and benchmarking, relative to the �rst-best, unconstrained case, increase

as the investor becomes less risk averse than the manager. At the same time, the e¤ort under-

investment and the utility loss (in the form of variation in the Certainty Equivalent Wealth) if

the investor keeps the �rst best, zero-benchmark contract under portfolio constraints increases

when the manager becomes relatively more risk averse than the investor.

The empirical implications of our model are consistent with the evidence documented for

mutual funds and pension funds. Elton, Gruber and Blake (2003), �nd evidence of superior per-

formance among US mutual funds with explicit incentive fees, as compared with similar funds

without explicit incentive fees. This is consistent with the incentives for active management

(higher e¤ort) provided by explicit incentive fees for constrained, risk-averse mutual fund man-

agers. Deli (2002) studies the advisory contracts of a sample of over 5,000 funds in the US.

Only 365 of those funds use contracts that contain some adjustment besides the percentage of

assets (�at fee) provision. Among them, funds with explicit incentive fees linked to relative

performance. He �nds that funds that invest primarily in equity securities and that show higher

turnover are more likely to have an incentive fee adjustment. This is consistent with our model.
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Arguably, funds investing primarily in equity attract less risk averse investors. Our model

predicts that as the investor (relative to the manager) becomes less risk averse, incentives fees

and relative (benchmarked) performance adjustment should become more relevant. Deli (2002)

argues that higher portfolio turnover may re�ect more information-based trading. Our numerical

results suggest that, other things equal, as the manager�s e¤ort disutility decreases (re�ecting

greater managerial ability in information acquisition), incentive fees and benchmarking should

increase. Finally, Blake, Lehmann, and Timmermann (2002), show that UK pension funds are

largely unconstrained in their portfolio choice. At least in the short term, their fees are directly

related to the fund value they achieve in absolute terms, and not relative to any predetermined

benchmark. This is consistent with the suboptimality of benchmarks in the absence of portfolio

constraints. It is important to notice that, according to our model, the di¤erent typology of

contracts (incentive fee and benchmark composition) in response to risk aversion and managerial

ability would not arise without the concurrence of moral hazard and portfolio constraints.

The rest of the paper is organized as follows. Next we review the related literature. Section 3

introduces the model. The standard unconstrained results are reviewed in section 3.1 while the

e¤ect of portfolio constraints are analyzed in section 3.2. In section 4, we derive the composition

of the e¤ort-maximizing benchmark portfolio. Section 5 studies the principal�s problem. A

numerical solution to the investor�s optimal contract (including the benchmark) is presented in

section 6. Section 7 concludes the paper. Appendix A introduces a second asset and allows for

stock-picking ability on the manager�s side. Qualitatively, our results are shown to be robust to

this extension. All proofs are presented in Appendix B.

2 Related Literature

The extant literature has tried to understand why portfolio constraints exist in the �rst place.

In a model with asymmetric information and moral hazard, Dybvig, Farnsworth, and Carpenter

(2010) show that trading constraints (albeit of a di¤erent form to those studied in this paper,

as explained below) may be necessary to elicit truthful revelation of the manager�s private

information. Almazan et al (2004) present evidence consistent with portfolio constraints being

used as an alternative to monitoring the manager�s activities when other mechanisms (outside

directors on the board, less experienced managers or when the fund is managed by an individual

rather than a team) are absent. Interestingly, they �nd no signi�cant portfolio performance

across funds with di¤erent levels of portfolio restrictions. They claim that this is evidence

in favor of portfolio constraints as part of the optimal compensation contract. Grinblatt and

Titman (1989) and Brown, Harlow, and Starks (1996) argue that cross-sectional di¤erences in

constraint adoption might be related to characteristics that proxy for managerial risk aversion.

Agarwal, Boyson, and Naik (2009) show that hedged mutual funds mimicking hedge funds�

investment strategies perform better than traditional mutual funds, on account of having more

�exibility due to lesser portfolio constraints. Finally, portfolio constraints have been shown to

be important in explaining the cross-sectional stock return anomalies (see Nagel (2005)).

The design of fund management compensation schemes has elicited interest amongst both

practitioners and researchers. The academic literature has focused on two broad areas: how
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contract design a¤ects the risk-taking behavior of managers and their incentives to gather pri-

vate information. Roll (1992) was the �rst to illustrate the undesirable e¤ect of relative (i.e.,

benchmarked) portfolio optimization in a partial equilibrium, single-period model. In particular,

he shows that the manager�s active portfolio is independent of the benchmark composition and

that this leads the manager to take systematically more risk than the benchmark. Despite the

sub-optimal risk allocation, the portfolio optimization literature takes as given that the man-

ager minimizes tracking error volatility subject to an excess return and studies how di¤erent

constraints on the portfolio�s total risk (Roll (1992)), tracking error (Jorion (2003)), and Value-

at-Risk (VaR) (Alexander and Baptista (2008)) may help to reduce excessive risk taking. Bajeux

et al (2007) study the interaction between tracking error and portfolio weight constraints. Inter-

estingly, Jorion (2003) writes (footnote 7, page 82): �in practice, the active positions will depend

on the benchmark if the mandate has short-selling restrictions on total weights.� Our model

formalizes this intuition and shows that, in the presence of portfolio constraints, the manager�s

active portfolio depends on the benchmark composition. More importantly, for the constrained

manager, the tracking-error minimization mandate arises endogenously through the manager�s

relative incentive fee.

Another strand of the literature has focused on the e¤ect of a performance-related incentive

fee on managers� incentive to search for private information. Examples include Bhattacharya

and P�eiderer (1985), Stoughton (1993), Heinkel and Stoughton (1994) and Gómez and Sharma

(2006). In particular, our paper makes a contribution to the literature on optimal benchmarking.

We do so by imposing certain limits to the scope of our contract. For instance, inspired by the

current regulation for mutual funds incentive fees in the US, we take as given the nature of the

fee structure, a linear fulcrum (symmetric) structure around the benchmark, and concentrate

on the benchmark design under portfolio constraints. After the seminal work of Starks (1987)

comparing symmetric and asymmetric incentive fees, several papers have dealt with the question

of the optimal fee structure. Das and Sumdaram (2002), for instance, follow a di¤erent approach

to our paper: the benchmark is exogenously given and the object of study is the design of the

fee structure (fulcrum versus asymmetric). They show that, as expected, asymmetric incentive

fees induce adverse incentives for extra risk taking, consistently with their convex design. On

the other side, in a context with asymmetric information about the manager�s quality (adverse

selection problem), asymmetric fees may prove to be a less onerous mechanism to screen out more

skilled managers. Similarly, Cuoco and Kaniel (2011) take the benchmark portfolio composition

as given and study the impact of both fulcrum and asymmetric fees on the price and volatility

of assets included in the benchmark. Fulcrum fees induce a positive price e¤ect and a negative

Sharpe ratio e¤ect on the assets included in the benchmark. The e¤ect of asymmetric contracts

on both prices and Sharpe ratios is more ambiguous. Other papers studying the e¤ect of portfolio

delegation on equilibrium prices include Brennan (1993) and Gómez and Zapatero (2003).

The question of benchmark optimality is present in Ou-Yang (2003). This paper studies

a standard portfolio delegation problem in continuous time. The author derives the optimal

benchmark endogenously. He shows that, contrary to the usual convention of a static, buy-

and-hold benchmark, the optimal benchmark is dynamic and actively managed. Unlike in our

model, there is no moral hazard problem and the manager�s portfolio choice is unconstrained.
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Li and Tiwari (2009) also deal with the question of optimal benchmarking. These authors

study the optimal compensation of a manager in a portfolio delegation problem under moral

hazard including, potentially, a non-linear option-type incentive fee. The fundamental di¤erence

between their model and ours is the existence of the option-like compensation component. This

component may help to overcome the e¤ort under-investment problem documented by Stoughton

(1993) and Admati and P�eiderer (1997). The benchmark design is shown to be crucial for this

result. In particular, the benchmark has to be chosen to accurately re�ect the investment style

of the manager. Unlike in their paper, in our model there is no asymmetric component. The

reason for the benchmark design in our model comes from the existence of portfolio constraints,

which are absent in Li and Tiwari (2009).

There are two closely related papers in this literature that deserve special attention. The

�rst paper, Basak, Pavlova, and Shapiro (2008) focuses on incentives arising from performance-

�ow relation. In their dynamic model, the manager�s compensation is a function of the fund�s

�ow. The adverse risk incentives arise due to the documented convex relationship between the

fund�s relative performance and net �ows.7 If the fund underperforms a reference benchmark

by more than a given threshold (the benchmark restriction), the contract is terminated. This

is akin to a portfolio insurance constraint against unbounded portfolio losses. Provided that

the benchmark is not too risky, increasing the manager�s maximum allowed loss is shown to be

e¤ective in curbing the manager�s adverse incentives for excessive risk taking and aligning the

interest of the manager with that of the investor. In our model, the manager is compensated

with an explicit, linear incentive fee proportional to the portfolio�s relative performance. Our

focus is not on curbing adverse risk incentives but on providing the manager with incentives for

collecting unobservable information. Thus, we do not model explicitly convex payo¤s but rather

impose exogenous portfolio constraints that may arguably arise endogenously in a model with

limited liability like in Basak, Pavlova, and Shapiro (2008).

The second paper is Dybvig, Farnsworth, and Carpenter (2010). In their model, the manager

is o¤ered a �nite menu of allowable portfolio strategies and sharing rules for each possible signal

realization. Further, they assume a mixture model whereby the joint density function of the

manager�s signal and the market state are a¢ ne in the manager�s e¤ort choice. This setting

allows the authors to solve the problem, in principle, for any general sharing rule, not just a¢ ne

rules. We, instead, take the linear contract observed in practice as given. The fundamental

di¤erence between their paper and ours hinges on the nature of the constraints. In their model,

trading constraints arise when the signal realization is not observable by the investor. Truthful

revelation is at the core of their trading constraints. The optimal contract rewards the manager

for reporting �extreme signals.� In other words, it is necessary to induce the manager to act

aggressively on extreme information. In our model, explicit portfolio constraints (in the form

of observable short-selling and margin purchase limits) are exogenous. They are motivated by

adverse risk-incentives and monitoring costs. More importantly, constraints have the opposite

e¤ect: they limit the manager�s incentive to exert e¤ort. The benchmark�s role (ultimately,

7See, for instance, Gruber (1996), Chevalier and Ellison (1997), Sirri and Tufano (1998), Basak, Shapiro, and
Tepla (2006) and Basak, Pavlova, and Shapiro (2007). Del Guercio and Tkac (2002) show that the sensitivity of
�ow to performance in the pension fund industry is less convex than in the mutual fund industry.
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its composition) is to alleviate such a limitation by indirectly relaxing the impact of those

constraints. The tradeo¤ between this e¤ort enhancing mechanism and the distortion in risk

sharing determines the optimal benchmark.

3 The model

The manager and the investor have preferences represented by exponential utility functions:

Ua(W ) = �exp(�aW ) and Ub(W ) = �exp(�bW ), respectively. Throughout the paper, we
will use a > 0 (b > 0) to denote the manager (investor) as well as his (her) absolute risk

aversion coe¢ cient. The investment opportunity set consists of two assets: a risk-free asset

with gross return R and a stock with stochastic excess return x normally distributed with mean

excess return � > 0 and volatility �. These two assets can be interpreted as the usual �timing

portfolios� for the active manager: the bond and the stock market portfolio (or any other

stochastic timing portfolio). Appendix A extends the model by including a second risky asset.

The investment horizon is one period. Payo¤s are expressed in units of the economy�s only

consumption good. All consumption takes place at the end of the period. The manager�s com-

pensation has two components: a basic fee, F , de�ned as a percentage of the fund�s assets under

management W0, and typically known as �fraction of the fund;� and an explicit performance-

based incentive fee, A 2 (0; 1], also de�ned as a percentage of funds under management and
related to the fund�s return relative to that of a prede�ned benchmark portfolio.

After learning the contract, the manager decides whether to accept it or not. If rejected, the

manager gets his reservation value. If he accepts the contract, then he puts some (unobservable)

e¤ort e > 0 in acquiring private information (not observed by the fund�s investor) that comes

in the form of a signal

y = x+
�p
e
�;

partially correlated with the stock�s excess return. The noise term has a standard normal

distribution � � N (0; 1). For simplicity, we assume E(x�) = 0.
The greater the e¤ort the more precise the manager�s timing information. Conditional on

the manager�s e¤ort, the stock�s excess return is normally distributed with conditional mean

return E(xjy) = �+ey
1+e and conditional precision Var�1(xjy) = 1

�2
(1 + e). Hence, e can also

be interpreted as the percentage (net) increase in precision induced by the manager�s private

information. Notice that, in case e = 0, the conditional and unconditional distributions coincide:

there is no relevant private information.

E¤ort is costly. The monetary cost of e¤ort disutility is a percentage V (D; e) = D
2 e

2 of the

fund�s net asset value W0. D > 0 represents a disutility parameter.8

3.1 Unconstrained Portfolio Choice

Based on the conditional moments, the manager makes his optimal portfolio decision: he will

invest a percentage � in the stock and the remaining 1� � in the risk-free bond. Therefore, the
8Appendix B shows that the results in the paper generalize to a broader set of convex disutility functions.
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portfolio�s return will be Rp = R + �x. De�ne the benchmark�s return as RH = R +Hx with

H as the benchmark�s policy weight : the proportion in the benchmark portfolio invested in the

risky stock. For analytical tractability, the parameter H can take any value in the real line. It

should be interpreted as the relative weight of the risk-adjustment in the benchmark used for

measuring the fund�s performance in the explicit incentive fee. H = 0 would be equivalent to

no benchmarking. The higher H in absolute value, the bigger the case for benchmarking the

manager�s performance.

Given a contract (F;A;H), the conditional end-of-the-period wealth for the manager and the

investor are given, respectively, by Wa(�) =W0(F +A(Rp�RH)) and Wb(�) =W0Rp�Wa(�).

The portfolio�s net return is given by Rp �RH = ��x with �� = � �H, the net investment in the
risky stock.9

Rearranging terms, we can write the manager and the investor �nal wealth as follows:

Wa(��) = W0(F +A��x); (1)

Wb(��) = W0(RH + (1�A)��x� F ): (2)

After these de�nitions, the conditional utility function for the manager and the investor can

be expressed, respectively, as

Ua
�
Wa(��)

�
= �exp

�
�aWa(��) +W0V (D; e)

�
;

Ub
�
Wb(��))

�
= �exp

�
�bWb(��)

�
:

In this setting, the Arrow-Pratt risk premium for the manager will be, AW0
aAW0
2
��
2
�2. Thus,

aAW0 represents the manager�s relative risk aversion coe¢ cient. For simplicity, and without loss

of generality, we normalize W0 = 1.

We shall proceed backwards. First, for every signal realization y, we will obtain the optimal

portfolio choice �(y). Then, after recovering the manager�s unconditional indirect utility func-

tion, we will tackle the manager�s e¤ort decision. Given y, the unconstrained manager�s optimal

net portfolio solves

��(y) = argmax��
�
E(Wa(��)jy)� (a=2)Var(Wa(��jy))

	
;

which yields the optimal portfolio

�(y) = H +
�

aA�2
+

ey

aA�2
: (3)

The manager�s optimal portfolio has three components: the total benchmark�s investment

in the risky stock, H; the unconditional optimal risk-return trade-o¤, �
aA�2

and, depending on

9Sometimes the benchmark may include a minimum excess return � > 0 such that RH = R+ � +Hx. Notice
that this is equivalent to de�ning F = F 0 � A� in equations (1) and (2). Solving for F and A, F 0 is obtained as
a function of � .
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the manager�s signal y and his e¤ort expenditure, e, the timing portfolio, ey
aA�2

.10 Replacing

�(y) in the manager�s expected utility function and integrating over the signal y we obtain the

manager�s (unconditional) expected utility:

EU(Wa(e)) = �exp (�(1=2)(�2=�2)� aF + V (D; e)) g(e); (4)

with g(e) =
�

1
1+e

�1=2
. At the optimum, the marginal utility of e¤ort must be equal (�rst-order

condition) to its marginal disutility:11

Ve(D; eSB ) =
1

2(1 + eSB )
: (5)

We call this solution the second best e¤ort.12 The convexity of the manager�s disutility of e¤ort

function guarantees that the necessary condition (5) is also su¢ cient for optimality. Clearly, the

manager�s second best e¤ort choice (hence the quality of his private information) is independent

of the benchmark composition, H, and percentage incentive fee A. This is the same result as in

Proposition 3 in Admati and P�eiderer (1997). E¤ort only depends on the manager�s disutility

coe¢ cient, D.

3.2 Constrained Portfolio Choice

We depart now from the Admati and P�eiderer (1997) setting by introducing portfolio con-

straints explicitly in the model. Assume that the manager cannot short-sell or purchase on

margin. Let m � 1 denote the maximum trade on margin the manager is allowed: m = 1 means

that the manager is not allowed to purchase the risky stock on margin; for any m > 1 the

manager can borrow and invest in the risky stock up to m � 1 dollars per dollar of the fund�s
current net asset value. Let s � 0 denote the short-selling limit: s = 0 means that the manager
cannot sell short the risky stock; for any s > 0 the manager can short up to s dollars per dollar

of the fund�s current net asset value. In terms of the manager�s portfolio choice problem, this

implies m � � � �s or, equivalently, m�H � �� � �(H + s).

The manager then solves the following constrained problem

��(y) = argmaxm�H�����(H+s)
�
E(Wa(��)jy)� (a=2)Var(Wa(��)jy)

	
:

Call �m � 0 and �s � 0 the corresponding Lagrange multipliers, such that �m(m �H � ��) =
�s(��+H+s) = 0. There are three solutions. If neither constraint is binding, �m = �s = 0, then

the interior solution follows: ��(y) = �+ey
aA�2

. Alternatively, there are two possible corner solutions:

�rst, if the short-selling limit is binding, �m = 0 and �s = E(xjy) + aA(H + s)Var(xjy) < 0. In
such a case, �� = �(H + s). In the second corner solution, the margin purchase bound is hit:

�s = 0 and �m = �E(xjy) + aA(m�H)Var(xjy) < 0. In such a case, �� = m�H.
10Notice that this corresponds exactly to the optimal portfolio choice (4) in Admati and P�eiderer (1997) in

the presence of a risk-free asset (�c = 0).
11The subscripts e and ee denote, respectively, �rst and second derivative with respect to e¤ort.
12The �rst best e¤ort is the e¤ort the unconstrained manager would exert under no asymmetric information,

that is, in the absence of moral hazard.
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Solving for the optimal portfolio �(y) as a function of the signal realization we obtain that,

in the case of no timing ability (e = 0), � = H + �
aA�2

provided �
�
s+ �

aA�2

�
� H � m� �

aA�2
.

For the case when e > 0 we obtain:

�(y) =

8>>>>>><>>>>>>:

�s if y < ��
eLs;

H + �
aA�2

+ ey
aA�2

otherwise,

m if y > �
eLm:

(6)

We call

Ls(H) = 1 + (H + s)
� �

aA�2

��1
;

Lm(H) = (m�H)
� �

aA�2

��1
� 1;

the leverage ratios. These ratios represent the net (relative to the benchmark) maximum leverage

from selling short (H+s) or trading at margin (m�H) as a proportion of the manager�s optimal
unconstrained portfolio when e = 0 and H = 0.

Looking at the way the leverage ratios change with benchmarking, we observe that @
@HLs =� �

aA�2

��1
> 0 and @

@HLm = �
� �
aA�2

��1
< 0. That is, Ls (Lm) increases (decreases) with H.

Moreover, given the (risk-adjusted) market premium �=�2, the marginal change in Ls (Lm)

increases (decreases) with the manager�s relative risk aversion aA.

Equation (6) shows how the constraints and benchmarking interact to provide incentives for

e¤ort expenditure. To see the intuition, let us focus �rst on the short-selling constraint. Let us

assume for the moment that there exists no limit to margin purchases (m ! 1) and that no
short position can be taken (s = 0). Under these assumptions, and after exerting e¤ort e, the

manager receives a signal y and makes his optimal portfolio choice:

�(y) =

8><>:
0 if y < ��

eLs

H + �+ey
aA�2

otherwise;

with Ls = 1+H
� �
aA�2

��1. When H = 0, all signals y < ��
e lead to short-selling. Imagine now

that the manager is o¤ered a benchmarked contract, with H > 0 the benchmark�s proportion

invested in the risky stock. In this case, the short-selling bound is only hit for smaller signals

y < ��
eLs. In general, increasing H leads to a �wider range�of implementable signals relative

to the case of no benchmarking (H = 0). Since the e¤ort decision is taken prior to the signal

realization, the fact that more signals are implementable under benchmarking (H > 0) increases

the marginal expected utility of e¤ort. The size of this incremental area grows with HaA. Hence,

we expect the impact of benchmarking to be relatively higher for more risk averse investors.

Alternatively, assume there is no benchmarking (H = 0) but the short-selling limit is ex-

panded from s = 0 to s = H. Figure 1 shows that, ceteris paribus, the e¤ort choice of the

manager will coincide with the e¤ort put under benchmarking: given that s = 0, benchmarking

11



the manager�s portfolio return (H > 0) is, in terms of e¤ort inducement, equivalent to relaxing

the short-selling bound from 0 to H. In other words, in the absence of margin purchase con-

straints, the manager�s e¤ort depends on s+H; benchmarking the manager�s performance and

relaxing his short-selling constraints are perfect substitutes for e¤ort inducement. The higher s,

the lower the marginal expected utility of e¤ort induced by benchmarking. In the limit, when

the short-selling bounds vanish (s!1), we converge to the unconstrained scenario in Section
3.1 where benchmarking was shown to be irrelevant for the manager�s e¤ort decision.

These two new results show that when the manager is constrained, intuitively, e¤ort will

su¤er. Leaving aside the risk-sharing argument and focusing on e¤ort inducement, we show

that the investor has two options: either to relax the constraint or to modify the benchmark

composition. The former may not be an option, due to regulation or to other concerns that

justify the existence of the constraint in the �rst place. Our model shows that the benchmark

design o¤ers the investor an additional �degree of freedom:� she may keep constraints in place

while partially alleviating the e¤ort-underinvestment problem. In particular, if the manager�s

short-selling ability is restricted, the investor may �nd it convenient to �neutralize�in part this

constraint by increasing the benchmark�s risk. How responsive the manager�s e¤ort decision is

with respect to changes in the benchmark composition will depend on how close his unconditional

portfolio is to the benchmark. This is why we expect that any change in the benchmark will

have a greater e¤ect the more risk averse the manager is.

Let us focus now on the margin purchase constraint. Assume s ! 1 and m = 1. This

implies that the manager can short any amount but cannot trade on margin: for �very good�

signals the manager can only invest up to 100% of the fund�s net asset value in the risky stock.

His optimal portfolio (as a function of the signal) will be:

�(y) =

8><>:
1 if y > �

eLm,

H + �+ey
aA�2

otherwise,

with Lm = (1 � H)
� �
aA�2

��1 � 1. Lm is decreasing in H. Decreasing H in the manager�s

compensation just makes the portfolio constraint �less binding,� i.e., binding only for bigger

signals. For instance, moving from a benchmarked contract (H > 0) to a non-benchmarked

contract (H = 0) would increase the manager�s e¤ort: signals that were not implementable under

benchmarking become now feasible. Symmetric to the short-selling constraint, the expected

impact on e¤ort expenditure would be analogous if benchmarking were not removed (H > 0)

and the constraint on margin purchases made looser: fromm = 1 tom = 1+H. Therefore, in the

absence of short selling constraints, the manager�s e¤ort depends on m�H: benchmarking the
manager and tightening the margin purchase constraint are perfect substitutes for the manager�s

e¤ort (dis)incentive. Again, the impact of benchmarking increases, in absolute terms, with the

manager�s relative risk aversion, aA. In the limit, when the manager faces no margin purchase

constraint (m!1), the benchmark composition is irrelevant for the manager�s e¤ort decision.
Notice that the intuition in the case of constraints to margin purchases works symmetrically

to the short selling case: the investor may now give more incentives to the manager by either

12



relaxing the constraint or, alternatively, reducing the risk exposure of the benchmark. By

tilting the benchmark towards the risk free bond, the manager gets extra incentives to play

more aggressively on �positive� (excess return) signals that would, otherwise, hit the margin

constraint. This increases the marginal utility of e¤ort, hence, e¤ort expenditure.

In summary, by modifying the benchmark portfolio composition we observe two opposing

e¤ects: for the short selling constrained manager, increasing the benchmark�s percentage invested

in the risky stock (H) induces the manager to put more e¤ort. In contrast, for the manager

constrained in his ability to purchases at margin, increasing that percentage lowers the e¤ort

incentives. Thus, when (as for most mutual fund managers) both short selling and margin

purchase are constrained, the trade-o¤ between these two e¤ects yields the e¤ort-maximizing

benchmark. This is the question we investigate in the next section.

4 The e¤ort-maximizing benchmark

To analyze the composition of the e¤ort-maximizing benchmark, we proceed as follows. Propo-

sition 1 introduces the manager�s unconditional expected utility under short selling (0 � s <1)
and margin purchase (1 � m < 1) constraints for all possible values of H in the real line. In

Proposition 2, we show the existence of a continuous and di¤erentiable e¤ort function, e(H),

that yields a unique e¤ort choice for each value of H. The function attains a global maximum

at H� = m�s
2 � �

aA�2
:

Before introducing the constrained manager�s unconditional expected utility we need some

notation. Let �(�) denote the cumulative probability function of a Chi-square variable with one
degree of freedom: �(x) =

R x
0 �(z) dz; with

�(z) =

(
1p
2�
z�1=2 exp(�z=2) when z > 0;

0 otherwise.

Proposition 1 Given the �nite portfolio constraints s � 0 and m � 1, the risk-averse man-

ager�s expected utility is EUa (Wa(e)) = �exp(�(1=2)�2=�2�aF +V (D; e)) � g(e; Ls; Lm) with
the function g(e; Ls; Lm) de�ned in Appendix B.

The manager�s expected utility function is weighted sum of his unconstrained expected utility

(4), independent of H, and his expected utility function when the portfolio hits either the short-

selling constraint bound, exp
�
(��Ls)

2

2

�
, or the margin purchase bound, exp

�
(��Lm)

2

2

�
. When

the manager is constrained, the benchmark composition (i.e., the value of the parameter H)

a¤ects the quality of the timing signal through the e¤ort choice.

Corollary 1 The function g(e; Ls; Lm) is decreasing with respect to e¤ort for every contract
(F;A;H).

Notice that functions g(e; Ls; Lm) and ge(e; Ls; Lm) are symmetric with respect to H around

H� = m�s
2 � �

aA�2
, the center of the interval [�(s+ �

aA�2
);m� �

aA�2
]. To see this, let � represent

the deviation in the benchmark portfolio�s percentage invested in the risky asset above (� > 0)
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or below (� < 0) the reference value H�. It can be shown that Ls(H� + �) = Lm(H� � �) for all
� 2 <. Replacing the latter equality in the functions g and ge, the symmetry is proved.

We call eTB the third best e¤ort that maximizes the constrained manager�s expected utility

function in Proposition 1:

eTB = argmaxe�(1=2)exp(�(1=2)�2=�2 � aF + V (D; e)) � g(e; Ls; Lm): (7)

From (7) it is obvious that, unlike in the unconstrained scenario, the manager�s optimal e¤ort

depends on H (through Ls and Lm). We want to study how the third best e¤ort changes with

H. In particular, whether there exist an e¤ort-maximizing compensation benchmark.

The following proposition presents general conditions on the e¤ort disutility function and

the range of the parameter H for which there exists a well behaved e¤ort function, that is, a

function that yields, for each H, the utility maximizing third best e¤ort (7). More importantly,

the same conditions are shown to be su¢ cient for the existence of H� that elicits the highest

e¤ort from the manager. The value of H� is explicitly derived as a function of the manager�s

portfolio constraints on short selling, s, and margin purchase, m; his relative risk aversion, aA;

and the market portfolio moments, � and �2.

Proposition 2 For all H 2 [�(s+ �
aA�2

);m� �
aA�2

] there exists a unique function e(H), con-

tinuous and di¤erentiable, such that e(H) = eTB . Let H
� = m�s

2 � �
aA�2

. Then, e(H�) > e(H)

for all H 6= H� 2 [�(s+ �
aA�2

);m� �
aA�2

]:

Corollary 2 Provided it exists, the e¤ort function e(H) is increasing in H for all H < �(s+
�

aA�2
) and decreasing in H for all H > m� �

aA�2
. Moreover, the e¤ort function is symmetric in

H around H�, i.e., e(H� + �) = e(H� � �) for all � 2 <.

Another way to interpret the e¤ort maximizing benchmark composition H� is by looking at

the fund�s Information Ratio. The Information Ratio (relative performance per unit of tracking

error volatility) increases with the manager�s e¤ort for every signal y.13 Figure 2 shows the

Information Ratio as a function of the signal y and given e¤ort e. Notice that, when e = 0, the

Information Ratio coincides with the Sharpe Ratio for every signal y. When e increases, the slope

increases in absolute value, making the Information Ratio greater for every signal y. As e!1,
in the limit, the Information Ratio also tends to in�nity. For y = �, the Information Ratio

becomes ��
p
1 + e. Averaging across y, the expected Information Ratio is greater than �

�

p
1 + e

since for all y < ��
e ; the Information Ratio �bounces back�: the manager would short the risky

asset. Proposition 2 shows that given the contract (F;A), the constrained manager�s expected

Information Ratio reaches a maximum at H�. Whether this level of e¤ort that maximizes the

Information Ratio is optimal or not for the investor will be analyzed in section 6.

So far we have shown that under portfolio constraints, by choosing the appropriate bench-

mark, e¤ort expenditure can be maximized. The following proposition shows that, for any given

13For a given signal y, the Information Ratio is de�ned as IR(y) = E(��(y)xjy)
SD(��(y)xjy) . The unconditional Information

Ratio will be IR(e) =
R
< IR(y)dF (y) =

R
<

j�+eyj
�
p
1+e

dF (y) > �
�

p
1 + e, with F (�) the normal distribution function

for the signal y.
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contract and any portfolio composition, the e¤ort choice for the constrained manager is smaller

than for the unconstrained manager.

Corollary 3 For any given contract (F;A;H) and �nite manager�s risk aversion, a, the con-
strained manager�s third best e¤ort eTB < eSB . In the limit, when the portfolio constraints

vanish, the third best e¤ort and the second best e¤ort coincide.

In other words, the model predicts that, other things equal, unconstrained managers will

outperform constrained managers regardless of the composition of the benchmark used in the

compensation of constrained managers. This prediction is consistent with Agarwal, Boyson,

and Naik (2009) who �nd that relatively unconstrained hedged mutual funds and hedge funds

outperform constrained traditional mutual funds. However, the prediction of our model is in

contrast with the e¤ect of the benchmarking restriction documented in Basak, Pavlova, and

Shapiro (2008). In their model, constraining the manager may be bene�cial for the investor

in curbing adverse risk incentives. In our case, these constraints do not arise endogenously. A

crucial di¤erence between their model and ours lies in the convexity of the manager�s compen-

sation. We conjecture that this convexity may play a crucial role in deriving explicit portfolio

constraints endogenously.

We conclude this section by studying two special cases of the more general constrained

problem. As illustrated in the examples in Section 3.2, when the manager is only short selling

constrained (i.e., unlimited margin purchases), increasing the benchmark investment in the risky

asset, H, gives the manager more incentives to exert greater e¤ort. In the case of unlimited

short selling and constrained margin purchases, the result is symmetric: e¤ort decreases with

H. In either case, there is no e¤ort maximizing benchmark composition. The following corollary

summarizes these �ndings.

Corollary 4 When the manager can purchase at margin with no limit but faces a short selling
bound, the e¤ort function is monotonically increasing in H. Symmetrically, when the man-

ager can sell short with no restriction but faces limited margin purchase, the e¤ort function is

monotonically decreasing with H.

5 The principal�s problem

The investor�s optimal contract (F;A;H) maximizes her expected utility subject to the man-

ager�s incentive compatibility and participation constraints. For simplicity, and without loss of

generality, we normalize the manager�s reservation value to �exp(�(1=2)�2=�2). For a given
contract (F;A;H), the manager�s (conditional) wealth is given as a percentage, equation (2), of

the fund�s net asset value.

The constrained manager, after accepting the contract, decides how much e¤ort to exert.

Subsequently, he receives the signal y and invests a proportion �(y) as in (6) in the risky asset.

Let t(A) = b(1�A)
aA and T (A) = (2 � t(A))t(A). The investor�s expected utility is introduced in

the following proposition.
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Proposition 3 Given the portfolio constraints s � 0 and m � 1, the expected utility of the risk-
averse investor is EUb(Wb(e)) = �exp(b(F �R)� (1=2)�2=�2)� v(e; Ls; Lm) with the function
v(e; Ls; Lm) de�ned in Appendix B.

The investor must choose the optimal linear contract, which includes the optimal �at fee

and the incentive fee, F and A, respectively, and the optimal benchmark, H, subject to the

participation constraint �exp(�(1=2)�2=�2�aF+V (a; e))�g(e; Ls; Lm) � �exp(�(1=2)�2=�2):
Clearly, neither e¤ort nor H or A are a function of F . This, along with the fact that the left-

hand side is increasing in F and the investor�s utility is decreasing in F , implies that under

the optimal contract, the participation constraint is binding. In other words, managers with

higher reservation utility (arguably, with a better record and/or working for bigger funds) will

receive a higher �at fee. The investor�s expected utility thus can be expressed as a function of

the contract (A;H), and the manager�s level of e¤ort, e:

EUb(Wb(e)jA;H) = �exp(�bR� (1=2)�2=�2 + (b=a)V (D; e))� g(e; Ls; Lm)b=av(e; Ls; Lm): (8)

We want to study how the portfolio constraints and the presence of moral hazard a¤ect

the investor�s optimal contract. We distinguish four cases depending on whether the manager�s

e¤ort is publicly observable or not (moral hazard) and whether the manager is constrained or

unconstrained in his portfolio choice.

Assume �rst that the manager�s portfolio is unconstrained. If the manager�s e¤ort decision

is observable, the investor maximizes her expected utility with respect to A, H, and e¤ort. We

call this the �rst best scenario. We show then that the optimal contract is given by the �rst best

incentive fee, AFB = b=(a + b), and zero benchmarking, H = 0. Notice that this corresponds

exactly to Proposition 1 in Admati and P�eiderer (1997) in the presence of a risk-free asset.

The function v(e; Ls; Lm) becomes g(e). The investor chooses the �rst best e¤ort level, eFB ,

that solves

max
e
EUb(Wb(e)jAFB; 0) = �exp

�
�bR� (1=2)(�=�)2 + (b=a)V (D; e)

�
g(e)

a+b
a :

This results in the �rst order condition:

Ve(D; eFB ) =
1 + a=b

2(1 + eFB )
=

1=AFB

2(1 + eFB )
:

Notice that the higher the manager�s risk aversion (relative to the investor�s risk aversion),

a=b, the lower the optimal incentive fee, AFB , and, consequently, the higher the investor�s

participation in the fund�s return, 1�AFB . Hence, the investor becomes more interested in the

manager�s signal precision: the marginal utility of e¤ort increases and so does eFB .
14

In the case when the manager�s e¤ort decision is not observable, the investor�s problem

consists in �nding the optimal split that maximizes (8) subject to the manager�s optimal e¤ort

14Here we are assuming that D is independent of a. In case e¤ort�s marginal disutility were increasing in a, the
net e¤ect on the �rst best e¤ort would be unclear.

16



condition. Assume �rst that there exist no portfolio constraints. We call this scenario the second

best. As shown in Section 3.1, the manager�s second best e¤ort, eSB , is independent of A and H.

This result is consistent with Stoughton (1993) and Admati and P�eiderer (1997). The investor

will choose the same contract as in the �rst best case: (AFB ; 0). The second best e¤ort satis�es

the optimality condition (5):

Ve(D; eSB ) =
1

2(1 + eSB )
:

Comparing the latter two conditions, it is obvious that eFB > eSB for all a=b > 0. That

is, the second best e¤ort coincides with the �rst best e¤ort the investor would choose herself in

the limit when b ! 1 (or, a ! 0) and, consequently, AFB ! 1. This would be equivalent to

a swap contract between the manager (who takes all portfolio risk) and the investor (who gets,

in exchange, a �at fee, F < 0, from the manager). Notice that the manager�s marginal utility

of e¤ort is, in the second best case, independent of a=b, A or H. Moreover, the cost (in terms

of e¤ort expenditure) of moral hazard increases with a=b: the investor would want to increase

the manager�s e¤ort but the second best contract fails to induce it. This failure will be partially

o¤set in the presence of portfolio constraints where both the incentive fee and the benchmark

composition play a role in inducing greater e¤ort by the manager.

Intuitively, looking at the �rst best e¤ort choice (observable by the investor, hence enforce-

able) we see the investor�s tradeo¤: risk-sharing versus e¤ort inducement. The more risk-averse

the investor is relative to the manager (higher AFB ) the more concerned she (the investor) is

about risk-sharing relative to e¤ort inducement. The manager�s marginal utility of e¤ort (a

function of 1=AFB ) decreases, and so does e¤ort expenditure. On the contrary, as the investor�s

risk aversion decreases relative to the manager�s (lower AFB ), the more focused the investor

becomes on the e¤ort inducement problem relative to risk sharing. In this case, the manager�s

marginal utility of e¤ort increases, and so does e¤ort.

In the second best case, the investor cannot observe the e¤ort choice anymore. The manager

is unconstrained in his portfolio choice. This means that he (the manager) decides the scale of

the �nal investment, regardless of how much he participates in the �nal output (he can always

sell short or purchase at margin as much as needed to �accommodate� any sharing rule A).

Hence, the investor has lost her ability to leverage the manager�s e¤ort up to the �rst best level.

Notice that the marginal utility of e¤ort in the second best case is a percentage 0 < AFB < 1 of

the �rst best marginal utility. The more risk tolerant the investor with respect to the manager,

the more severe the latter�s e¤ort underinvestment relative to the �rst best and, as shown next,

the stronger the case for incentive fees and benchmarking in the contract design.

We turn now to the case in which the manager�s portfolio is constrained. Assume �rst

that the manager�s e¤ort is observable. We show that the contract (AFB ; 0) is still optimal.

The function v(e; Ls; Lm) becomes g(e; Ls(0); Lm(0)). In this constrained �rst best scenario, the

investor chooses the constrained �rst best e¤ort level, ec
FB
, that maximizes EUb(Wb(e)jAFB ; 0) =

�exp
�
�bR� (1=2)(�=�)2 + (b=a)V (D; e)

�
g(e; Ls(0); Lm(0))

a+b
a :

Ve(D; e
c
FB
) = (1 + a=b)

ge
g
(ec

FB
; Ls(0); Lm(0)):
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Notice that, as expected, portfolio constraints decrease the optimal e¤ort choice: eFB > e
c
FB
.

Assume now that the manager�s e¤ort is not observable. We call this scenario the third best.

The manager�s third best e¤ort satis�es (7). Section 3.2 shows that e¤ort is increasing in A and

reaches an absolute maximum at H�. We show that the contract (AFB ; 0) is no longer optimal.

These results are presented in the following proposition.

Proposition 4 Absent any portfolio constraint, the contract (AFB ; 0) is optimal, both for the

public information case as well as under moral hazard.

Under portfolio constraints and no moral hazard, the contract (AFB ; 0) is still optimal. When

the e¤ort decision is not observable by the investor and hence there exists moral hazard, the

contract (AFB ; 0) is suboptimal.

The implication of this proposition is that, to justify a benchmark di¤erent from the risk-

free asset (or, in its absence, the minimum variance portfolio), both moral hazard and portfolio

constraints must coexist. The following table summarizes the four possible scenarios and the

optimal contract (A;H) in each of them:

E¤ort E¤ort

observable unobservable

Unconstrained FIRST BEST (FB) SECOND BEST (SB)

portfolio (AFB ; 0) (AFB ; 0)

Constrained CONSTRAINED FB (CFB) THIRD BEST (TB)

portfolio (AFB ; 0) (ATB ;HTB )

We are interested in studying the optimal contract in the third best scenario, (ATB ;HTB ). In

spite of the simpli�cations, we cannot solve analytically for the general optimal contract under

moral hazard and portfolio constraints. In the next section, we present a numerical solution to

the problem.

6 A numerical solution of the third best contract

Let us recall that the e¤ort disutiliy function is given by V (D; e) = D
2 e

2. Throughout the

numerical analysis, we take the market excess return � = 6% and the market volatility � = 18%,

both on an annual basis. We assume the manager is fully constrained, that is, s = 0 and m = 1.

For this exercise, the manager�s risk aversion coe¢ cient a takes values a = f2; 3; 4; 5; 6g; the
investor�s risk aversion coe¢ cient b = 4. The e¤ort disutility parameter D = 1. All the results,

as percentage �gures, are reported in Table 1.

[INSERT TABLE 1 HERE]

Panel A shows, for comparison purposes, the �rst best incentive fee, AFB = b=(a + b), and

e¤ort, eFB , for each value of the manager�s risk aversion coe¢ cient. Recall that the �rst best

contract is unbenchmarked (HFB = 0). The �rst best scenario assumes no portfolio constraints
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and no moral hazard. As expected, the incentive fee decreases as the manager�s risk aversion

increases. On the other side, the �rst best e¤ort increases: as the investor retains a higher

percentage of the portfolio�s return, the marginal utility of e¤ort increases. The second best

e¤ort is constant for all a and equal to eSB = 36:60%. Notice that, as predicted in section 5,

the e¤ort underinvestment increases as the investor becomes more risk tolerant relative to the

manager.

Panel B presents the optimal third-best contract that maximizes the investor�s certainty

equivalent wealth (CEW) under portfolio constraints. This contract is obtained as follows. For

each value of the manager�s risk aversion coe¢ cient, a, we calculate the manager�s third best

e¤ort e¤ort (7) and the investor�s CEW corresponding to the expected utility (8) for a grid of

values for A and H. A changes from 0.01 through 1 at intervals of length 0.01. Likewise, H

changes from �( 0:06
aA0:182

) through 1� 0:06
aA0:182

at intervals of length 0:01.

As expected, the incentive fee ATB decreases as the manager�s risk aversion increases. More

interestingly, for any value of the manager�s risk aversion coe¢ cient a, the constrained third best

incentive fee is always higher than the corresponding unconstrained, �rst best incentive fee, AFB .

This con�rms that under both moral hazard and portfolio constraints, the explicit incentive fee,

A, plays an additional role beyond pure risk sharing: namely, inducing the manager to put more

e¤ort. The optimal benchmarking, HTB , is higher than zero and increasing in a; the higher

the manager�s risk aversion relative to the investor�s, the more relevant benchmarking becomes.

The intuition for this result is as follows: when the investor�s risk aversion is relatively low with

respect to the manager�s risk aversion (b lower than a), the investor keeps a higher percentage

of the portfolio�s relative performance. In other words, the e¤ort inducement argument becomes

relatively more important for the investor. Under portfolio constraints, benchmarking may help

to alleviate the manager�s underinvestment in e¤ort. At the same time, recall from section

3.2 that the e¤ort-inducement impact of benchmarking as an alternative to relaxing portfolio

constraints becomes stronger as the manager�s risk aversion increases. Therefore, we expect

the e¢ cacy of benchmarking in e¤ort inducement to increase as the investor becomes more

risk-tolerant relative to the manager.

This is con�rmed in Panel C where we report the third best e¤ort and the percentage

increase in the third-best e¤ort relative to the e¤ort under the suboptimal �rst best contract

(the e¤ort the manager would put if he is o¤ered the �rst best contract). This percentage can

be interpreted as the increase in the signal precision due to optimal benchmarking; it more than

doubles from 6.61% for a = 2 to 15.03% for a = 6. Intuitively, constrained, risk-averse managers

have incentives to passively (i.e., zero e¤ort) track the benchmark portfolio at the expense of the

investor�s utility. Our model suggests that, under portfolio constraints, benchmarked incentive

fees are a useful mechanism to turn the passive manager into an active (i.e., positive e¤ort)

portfolio manager. As the investor�s risk aversion decreases relative to the manager�s (that

is, for higher a), the higher the impact of incentive fees and optimal benchmarking on e¤ort

expenditure.
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Panel D studies the e¤ect of changing the manager�s risk aversion on the investor�s CEW.15

This percentage can be interpreted as the excess risk-free return that would yield the same

expected utility to the investor as granting the manager the third best contract and letting him

choose the random portfolio. We observe that the investor�s expected utility increases with the

manager�s risk aversion (e¤ectively as the investor becomes more risk tolerant relative to the

manager). More interestingly, the increase in utility relative to the suboptimal, unbenchmarked

�rst best contract more than triples from 0.5% for a = 2 to 1.74% for a = 6. This can be

interpreted as a cost (forgone return) of the suboptimality of the �rst best contract under moral

hazard and portfolio constraints.

In section 4, we de�ned H� as the e¤ort maximizing benchmark composition under portfolio

constraints. Panel E studies whether this benchmark is optimal for the investor. We report

H� as in Proposition 2 evaluated at the third best incentive fee ATB . Notice that the e¤ort

maximizing benchmark is di¤erent from the third best optimal benchmarkHTB . In our numerical

example, H� implies shorting the risky asset. This is a direct consequence of the manager�s

preferences: the unconditional (zero information) portfolio �=aA�2 involves investing above

50% in the risky stock for all the risk aversion coe¢ cients under consideration. The portfolio

is bounded between zero and one. To induce the highest e¤ort incentives on the manager,

the benchmark has to �compensate� for the high risk exposure of the unconditional portfolio,

hence resulting in an e¤ort-maximizing benchmark that shorts the risky stock. As the investor

becomes relatively less risk averse with respect to the manager, the investor�s share in the

portfolio payo¤ increases and the distance between the e¤ort maximizing benchmark and the

optimal third best benchmark shrinks. This is an important implication of our model: depending

on the investor�s risk aversion relative to the manager, the investor may optimally forgo higher

e¤ort inducement on the manager by moving away from the highest e¤ort benchmark H� and

therefore, the highest Information Ratio. The intuition behind this result lies in the balance

between the incentives for e¤ort expenditure (which increases the investor�s expected utility)

and the distortion that benchmarking introduces by leading to a suboptimal risk sharing (Roll�s

critique to benchmarking). When the investor is more risk averse than the manager (in our

example, for a = 2 and a = 3), the investor�s part in the portfolio�s return (1�A) decreases and
so does her marginal utility from the manager�s e¤ort. The investor�s concern about risk sharing

dominates the role of the benchmark in providing managerial e¤ort incentives. As the manager

becomes more risk averse than the investor (a = 5 and a = 6), the di¤erence between the optimal

third best benchmark and the e¤ort maximizing benchmark decreases. As a consequence, given

the third best incentive fee ATB , the third best e¤ort approaches the highest e¤ort under portfolio

constraints e(ATB ;H
�), also reported in Panel E.

In unreported exercises, we repeat Table 1 for values of the e¤ort disutility parameter D = 2

and D = 3. Qualitatively, the results and conclusions are the same. Holding the manager�s risk

15Given the investor�s utility function, Ub(W ) = �exp(�bW ), the certainty equivalent wealth of the expected
utility u is given by the inverse of this function, C(u) = �ln(�u)=b. Clearly, for any two values of the investor�s
expected utility, u1 and u2, u1 > u2 if and only if C(u1) > C(u2). In concrete, given equation (8), for a
given expected utility value u = �exp(�bR � (1=2)�2=�2 + (b=a)V (D; e)) � g(e; Ls; Lm)b=av(e; Ls; Lm). Then,
C(u)�R = (1=2b)�2=�2 � (1=a)(V (D; e) + lng(e; Ls; Lm))� (1=b)lnv(e; Ls; Lm). We call CEW (u) = C(u)�R,
the excess risk-free return (above the bond�s return, R) that leaves the investor indi¤erent.
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aversion constant, e¤ort and utility (CEW), as expected, decrease as D increases. The increment

of the incentive fee with respect to the unconstrained �rst best share is lower the higher D. At

the same time, benchmarking (the size of HTB ) decreases with D while the distance with respect

to the e¤ort maximizing benchmark H� widens up. All these results, intuitively suggest that as

the manager�s ability to obtain and process private information decreases (higher D), incentive

fees and benchmarking become more costly and less relevant in e¤ort inducement. The role of

the incentive fee as a risk sharing mechanism grows relative to e¤ort inducement.

7 Conclusion

This paper investigates the e¤ort inducement incentives of (potentially benchmarked) linear

incentive fee contracts. Incentives arise explicitly via the compensation of the manager. The

investor has to decide simultaneously the incentive fee (the manager�s participation in the dele-

gated portfolio�s return) and the benchmark composition.

The contribution of our paper to the literature on management compensation comes from

the fact that we incorporate portfolio constraints explicitly in the model. These constraints are

exogenous in our model and could be motivated by regulation or, as suggested by Almazan et

al (2004), as alternative monitoring mechanism in a broader equilibrium model.

Under portfolio constraints and moral hazard, our model derives a new set of predictions.

Incentive fees should be higher in the presence of portfolio constraints. Moreover, the optimal

composition of the benchmark is not exogenous to those constraints.16 When the benchmark

design is endogenous, maximizing the Information Ratio may turn suboptimal for the fund in-

vestor: depending on the investor�s risk aversion (relative to the manager�s) the increase in the

manager�s timing ability may not compensate for the excessive risk exposure. Only when the

investor is su¢ ciently risk tolerant and the manager�s ability high enough, maximizing the Infor-

mation Ratio becomes optimal for the investor. These results are in contrast with the predictions

from the unconstrained setting in Adamati and P�eiderer (1997), where benchmarking is sub-

optimal. When portfolio constraints are removed, the model predicts that the manager�s e¤ort

is unrelated to the incentive fee and the benchmark composition, a well-known result in the lit-

erature. These results are consistent with the prevalence of absolute return (non-benchmarked)

compensation schemes among hedge fund managers, arguably much less constrained than mutual

fund managers. They are also consistent with the prevalence of incentive fees among funds that

invest predominantly in equity versus debt (catering to more risk tolerant investors) and funds

that show higher turnover (managers trading more aggressively on their private information).

There are two possible, related extensions of our model worth mentioning. The �rst exten-

sion would include implicit incentive fees. To what extent implicit incentives (driven by �ow-

performance sensitivity) and explicit incentives act as complements or substitutes is still an open

question. Del Guercio and Tkac (2002) compare the �ow-performance sensitivity across mutual

16Almazan et al (2004) �nd that portfolio constraints are not relevant in explaining the cross section performance
of mutual funds. There is, however, no distinction in their tests between funds with and without explicit incentive
fees. Elton, Gruber, and Blake (2003) do �nd superior performance among incentive fee funds, however, they do
not study how constrained the funds are.
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and pension funds in the US. They �nd important di¤erences between both industries: relative

performance measures like tracking error and style-adjusted returns are more closely related to

�ow among pension funds; �ow in the mutual fund industry is likely to be more closely related

to absolute returns. Regarding the �ow-performance sensitivity, they �nd a lower explanatory

power of quantitative performance measures in explaining �ow in the pension fund industry,

relative to the mutual fund industry. Taking this evidence together, if implicit and explicit

incentive fees act as substitutes, we would expect a higher weight of implicit, performance-�ow

driven incentives in the mutual fund industry than in the pension fund industry. In other words,

explicit incentive fees might play a bigger role in pension fund industry relative to the mutual

fund industry. Additionally, and by the same substitution argument, explicit benchmarking (as

studied in our model) would be more prevalent in the mutual fund industry than in the pen-

sion fund industry where performance-�ow incentives are more sensitive to relative performance

rather than absolute performance. Consistently, the evidence reported in Deli (2002) and Elton,

Gruber, and Blake (2003) con�rms that only a small percentage of mutual funds use explicit

incentive fees, all of which are benchmarked. Golec (1992) and Golec and Starks (2004) mention

that explicit incentive fee contracts are more prevalent among pension funds than mutual funds,

although there is no reference to the structure, benchmarked or not, of these incentive fees.17

The second extension is related to the assumed piece-wise linearity of the incentive fee. The

interaction between convex implicit or explicit fees for the manager and portfolio constraints is

left for future research.
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Estimates from the Numerical Exercise
Manager�s risk aversion coe¢ cient a
2 3 4 5 6
Panel A: The �rst best contract

AFB 66.67 57.14 50.00 44.44 40.00
eFB 50.00 56.06 61.80 67.26 72.47

Panel B: The third best contract
ATB 73.66 65.14 58.00 54.44 51.00
HTB 06.31 07.24 10.17 10.97 11.48

Panel C: The third best e¤ort
eTB 10.96 13.77 15.53 17.36 18.75
�eTB 06.61 08.42 08.52 12.36 15.03

Panel D: The third best CEW
CEW (ATB ;HTB ) 01.65 02.35 02.67 02.85 02.97
�CEW (ATB ;HTB ) 00.49 00.75 00.91 01.39 01.74

Panel E: E¤ort maximizing H�

H� -75.70 -44.76 -29.82 -18.03 -10.52
e(ATB ;H

�) 12.56 14.85 16.41 17.97 19.19

Table 1: Panel A reports the unconstrained, �rst best incentive fee AFB and e¤ort eFB
in the absence of moral hazard. (ATB ;HTB ) in Panel B represents the optimal third best
contract. Panel C shows eTB , the constrained, third best e¤ort exerted by the manager;
�eTB = eTB=e(AFB ; 0) � 1 represents the percentage increase in e¤ort under the optimal
third best contract relative to the suboptimal �rst best contract (AFB ; 0). CEW (ATB ;HTB )
in Panel D is the investor�s Certainty Equivalent Wealth (CEW) under the third best contract;
�CEWTB = CEW (ATB ;HTB )=CEW (AFB ; 0)� 1 is the corresponding increase in CEW under
the optimal third best contract relative to the suboptimal �rst best contract (AFB ; 0). The
e¤ort maximizing benchmark composition H� is presented in Panel E together with e(ATB ;H

�),
the highest e¤ort under portfolio constraints when the manager receives an incentive fee ATB .
The unconstrained, second best e¤ort under moral hazard is independent of a and equal to
eSB = 36:60. The investor�s risk aversion coe¢ cient is b = 4. � = 0:06, � = 0:18, D = 1, m = 1,
s = 0. All �gures as percentages.
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Appendix A: Introducing stock-picking ability

In this paper, for the sake of simplicity, we have assumed that there exists one single risky asset

and that the manager can only show timing ability.

In this section we will explore how the introduction of a second risky asset and the existence

of stock-picking ability may a¤ect our main conclusions. Assume that there are two risky assets

and a risk-less bond. Let the risky assets excess return be denoted by (x; z). x denotes the excess

return on a well diversi�ed, timing portfolio representing the fund�s investment objective. z is the

excess return on another security or portfolio with unconditional risk premium �z and volatility

�z. By investing in security z the manager expects to obtain a risk-adjusted excess return �z at

the expense of increasing the portfolio�s diversi�able risk by �z. We follow the �portfolio model�

of timing and selectivity in Admati et al (1986). Assets x and z are independent and normally

distributed:  
x

z

!
� N

  
�x

�z

!
;

 
�2x 0

0 �2z

!!
:

The manager and the investor have the same preferences as in the simpler single risky asset

model. Likewise, the contract o¤ered to the manager has the same structure and parameters,

namely, (F;A;H). After learning the contract, the manager puts some non-observable e¤ort. In

this setting, we distinguish between two types of e¤ort and, accordingly, two types of managerial

skills. On the one side, the manager may invest e¤ort to learn about the performance of the

securities in the fund�s objective investment opportunity set. This e¤ort is represented by

ex � 0. If the manager puts some e¤ort ex > 0, according to the model in Section 3.1, the

manager�s investment in the timing portfolio in t�1 should increase with the portfolio�s realized
performance in t. Independently, the manager may invest to identify a mispriced security. The

more he learns about this security, the higher the excess return per unit of idiosyncratic risk.

Notice that this formulation is equivalent to the factor structure in Admati and P�eiderer (1997)

with the timing portfolio playing the role of the common factor and the selectivity portfolio

representing the idiosyncratic term.18

If the manager accepts the contract, he decides both levels of e¤ort in acquiring private (non

observable) information that materializes in two independent signals:

yx = x+ �xp
ex
�x;

yz = z + �zp
ez
�z:

Noise terms follow a standard normal distribution. Following the traditional approach in the

literature, we assume that selectivity information is independent of market timing information.

This implies that both noise terms are orthogonal to x and z and uncorrelated. In other words,

by observing the market timing private signal, the manager learns nothing about stock picking

and vice-versa. Moreover, assume that E(i �i) = E(�x �z) = 0 for i = fx; zg:
The greater the e¤ort, the higher the corresponding�s signal�s precision. Conditional on the

18 In their model, the manager only obtains information (puts e¤ort) about the idiosyncratic term.
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manager�s e¤ort and the signal realization, the timing portfolio�s excess return is normally dis-

tributed with mean excess return E(xjyx) = �x+ex yx
1+ex

and conditional precision Var�1(xjyx) = 1
�2x
(1 + ex).

Analogously, the conditional excess return on the selectivity security will be normally distributed

with mean excess return E(zjyz) = �z+ez yz
1+ez

and conditional precision Var�1(zjyz) = 1
�2z
(1 + ez).

Given our assumptions, the conditional returns are uncorrelated.

E¤ort is costly. We rede�ne the e¤ort disutility function V (D; e) = Dx
2 e

2
x +

Dz
2 e

2
z to ac-

commodate the manager�s timing and selectivity abilities. This implies that market timing and

selectivity e¤ort disutility are independent.19

We now revisit the unconstrained portfolio choice in Section 3.1. Based on the conditional

moments, the manager decides what percentage of the fund�s net asset value to invest in the

timing portfolio, �x and what percentage to invest in the individual security �z; the remaining,

1� �x � �z is invested in the risk-free bond. Let � = (�x; �z)0. Therefore, the portfolio�s return
will be Rp = R+ (x; z)�.

The benchmark is de�ned as a portfolio of the risk-free rate, the timing portfolio and the

selectivity security with proportions (1�Hx �Hz;Hx;Hz) and return RH = R+Hx x+Hzz.
The portfolio�s net return over the benchmark is given by Rp � RH = (x; z)�� with �� =

(�x � Hx; �z � Hz)0. Given the signal realization (yx; yz) and following the same procedure as
in Section 3.1, we obtain the unconstrained conditional portfolio ��(y) = 1

aA

�
�x+ex yx

�2x
; �z+ez yz

�2z

�0
and the manager�s unconditional expected utility:

EU(Wa(e)) = �exp (�(1=2)(�2x=�2x)� (1=2)(�2z=�2z)� aF + V (D; e)) g(ex)g(ez);

with g(ei) =
�

1
1+ei

�1=2
. Equation (5) shows the the optimal second best e¤ort ei with i =

fx; zg. Timing and selectivity e¤ort choices are independent of the contract and the benchmark
composition. They only depend on the e¤ort disutility parameters in D. This is the well-known

non-incentive results in Admati and P�eiderer (1997).

We now tackle the constrained portfolio choice. Let si and mi, with i = fx; zg denote
the corresponding portfolio constraints for the timing and selectivity assets, respectively. The

portfolio constraints need not coincide for both assets. Let us recall that portfolio constraints

are exogenous in our model. They are motivated by regulatory or statutory constraints aiming

at protecting investor�s risk-exposure or, alternatively, to costly monitoring mechanisms over the

manager�s unobservable actions. The percentage invested in each asset, �i(yi), will be a function

of the timing signal yi for i = fx; zg. �i(yi) coincides with portfolio (6) in Section 3.2 where,
given our assumptions on the information structure, the portfolio constraints (mi; si), the asset

moments (�i; �i), the signal yi, the e¤ort choice ei and the benchmark composition Hi are now

asset speci�c.

Averaging across yx and yz, we obtain the manager�s unconditional expected utility EU(Wa(e)) =

�exp(�(1=2)(�2x=�2x)� (1=2)(�2z=�2z)� aF + V (D; e)) g(ex; Lsx ; Lmx) g(ez; Lsz ; Lmz); with g(ei; Lsi ; Lmi)

the asset speci�c equivalent to Proposition 1. Proposition 2 and corollaries 2 through 4 hold for

19See Van Nieuwerburgh and Veldkamp (2008) and Kacperczcyk, Van Nieuwerburgh, and Veldkamp (2009) for
a model with strategic choice of learning and its implications for timing and selectivity skills.
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each asset. That is, both for timing and selectivity skills, the unbounded second best e¤ort is

greater than the constrained third best e¤ort and they coincide in the limit, as the correspond-

ing portfolio limits vanish. Notice that the explicit e¤ort maximizing benchmark composition

(H�
x;H

�
z ) will depend on the asset moments and the speci�c portfolio constraints on each asset.

Moreover, the e¤ort function for each signal will be a function of the proportion held in the same

stock in the benchmark: ex(Hx) for the timing portfolio and ez(Hz) for the selectivity asset.

Let us turn now to the principal�s problem. Analogously to the reformulation of the man-

ager�s expected utility function in the presence of selectivity ability, the investor�s expected utility

function in Proposition 3 becomes EUb(Wb(e)) = �exp(b(F �R)� (1=2)�2x=�2x� (1=2)�2z=�2z)�
v(ex; Lsx ; Lmx) v(ez; Lsz ; Lmz) with the function v as de�ned in the Appendix B.

Appendix B shows that the results in Proposition 4 hold in the presence of selectivity in-

formation. Concretely, the contract (AFB ; 0) is shown to be suboptimal. Since the third best

e¤ort function for each signal is independent of the benchmark component for the other signal,

the numerical results with respect to the optimal benchmark composition and its relation to the

portfolio constraints in Section 6 will remain qualitatively unchanged.

Appendix B: Proofs

Proof of Proposition 1

Replacing (6) in the manager�s utility function:

EU (Wa(y)) = �exp(�aF + V (D; e)) �8>>>>>><>>>>>>:

exp
�
(H + s)aAE(xjy) + (1=2)((H + s)aA)2Var(xjy)

�
if y < ��

eLs

exp
�
�(1=2)E2(xjy)=Var(xjy)

�
otherwise

exp
�
�(m�H)aAE(xjy) + (1=2)((m�H)aA)2Var(xjy)

�
if y >�

eLm:

Multiplying the previous expression by the density function of the signal variable, y, we

obtain:

�exp(�(1=2)(�2=�2)� aF + V (D; e))
�

e

1 + e

�1=2 1p
2��

�8>>>>>>>>>><>>>>>>>>>>:

exp
�
(��Ls)

2

2

�
exp

�
�(1=2) e

1+e

� y
� �

�
�Ls

�2� if y < ��
eLs

exp
�
�(1=2)e

� y
�

�2� otherwise

exp
�
(��Lm)

2

2

�
exp

�
�(1=2) e

1+e

� y
� +

�
�Lm

�2� if y >�
eLm:
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Replace k = e
1+e

� y
� �

�
�Ls

�2 if y < ��
eLs; k =

e
1+e

� y
� +

�
�Lm

�2 if y > �
eLm, and k = e

� y
�

�2
otherwise. Integrating over k and given the de�nition of �(�), we obtain the the manager�s
unconditional expected utility function g(e; Ls; Lm) = (1=2)�

exp
�
(��Ls)

2

2

�h
1 + �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1� �

�
1+e
e

��
�Lm

�2�i
if H < �

�
s+ �

aA�2

�
;

exp
�
(��Ls)

2

2

�h
1� �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Ls)

2

e

�
+�

�
(��Lm)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1� �

�
1+e
e

��
�Lm

�2�i
if �

�
s+ �

aA�2

�
� H � m� �

aA�2
;

exp
�
(��Ls)

2

2

�h
1� �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1 + �

�
1+e
e

��
�Lm

�2�i
if H > m� �

aA�2
: QED

Proof of Corollary 1

The �rst derivative of the function g(e; Ls; Lm) with respect to e¤ort is ge(e; Ls; Lm) = �1
4

�
1
1+e

�3=2
�
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�
�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
if H < �

�
s+ �

aA�2

�
�
�

�
(��Ls)

2

e

�
+�

�
(��Lm)

2

e

��
if �

�
s+ �

aA�2

�
� H � m� �

aA�2

�
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
if H > m� �

aA�2
;

By de�nition, jLmj > jLsj for all�1 < H < �
�
s+ �

aA�2

�
such that

�
�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
>

0; likewise jLsj > jLmj for all 1 > H > m� �
aA�2

such that
�
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
> 0.

QED

Proof of Proposition 2

Let us de�ne J (e; Ls; Lm) = Ve(D; e)� g(e; Ls; Lm)+ ge(e; Ls; Lm): The function J 2 C1 for all
(e;H). The third best e¤ort in (7) satis�es:

J (eTB ; Ls; Lm) = 0; (B1)

Je(eTB ; Ls; Lm) > 0: (B2)

The implicit function theorem allows us to solve �locally�the equation; that is, for all (ê; Ĥ)

that satisfy (B1) and (B2), e¤ort e can be expressed as a function of H in a neighborhood of

(ê; Ĥ).

More formally: for all (ê; Ĥ) that satisfy (B1) and (B2) there exists a function e(H) 2 C1

and an open ball B(Ĥ), such that e(Ĥ) = eTB and J (e(H); Ls; Lm) = 0 for all H 2 B(Ĥ).
Taking the derivative of J (eTB ; Ls; Lm) with respect to H:20

eH(H) = �JH(eTB ; Ls; Lm)� J �1e (eTB ; Ls; Lm):

Taking the second derivative of (B1) with respect to e:

gee(e; Ls; Lm) =
1

2

�
1

1 + e

�3=2(3
2

�
1

1 + e

�"
�

 ��
�Ls

�2
e

!
+�

 ��
�Lm

�2
e

!#
+

1

e2

"
�

 ��
�Ls

�2
e

!
�
��
�
Ls

�2
+ �

 ��
�Lm

�2
e

!
�
��
�
Lm

�2#)
> 0:

Condition (B2) can be written as Vee(D; e) > �ge
g (e; Ls)�Ve(D; e)�

gee
g (e; Ls): �

ge
g (e; Ls) <

1
2(1+e) and

gee
g (e; Ls) � 0. In our case, Vee(D; e) = D, Ve(D; e) = De. Then, (B2) is satis�ed for

all H 2 [�
�
s+ �

aA�2

�
;m� �

aA�2
].21

20The subscript H denotes �rst derivative with respect to H. The subscript eH denotes cross derivative with
respect to e and H.
21 In general, this condition is satis�ed for all disutility functions V (D; e) convex enough.

31



The sign of eH(H), therefore, depends on the sign of JH(e; Ls; Lm) = Ve(D; e)�gH(e; Ls; Lm)+
geH(e; Ls; Lm).

From Corollary 1,

geH(e; Ls; Lm) = �
�

1

1 + e

�3=2
e�1=2

aA�p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
(B3)

for all H 2 <.
Let us de�ne the gamma function �(u) =

R1
0 tu�1exp(�t)dt for u > 0. The incomplete

gamma function is given by �(u; v) =
R1
v tu�1exp(�t)dt for v > 0. From (B1),

gH(e; Ls; Lm) =

aA�p
�
�

�
1

2
;
1 + e

e

��
Lsexp

�
(��Ls)

2

2

�
� Lmexp

�
(��Lm)

2

2

��
� (B4)�

e

1 + e

�1=2 2aA�p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
:

By de�nition, Ls(H� + �) = Lm(H� � �), for all � 2 <. For all 0 < � < m+s
2 , Ls(H� � �) <

Lm(H
� � �) and Ls(H� + �) > Lm(H� + �). Let L�s = Ls(H

�) and L�m = Lm(H
�). For � = 0,

L�s = L�m. Therefore, eH(H) > 0 for all �
�
s+ �

aA�2

�
� H < H� and eH(H) < 0 for all

H� < H � m� �
aA�2

; eH(H�) = 0. Since the function e(H) is continuous and di¤erentiable, it

follows that H� is a local maximum in the interval
�
�
�
s+ �

aA�2

�
;m� �

aA�2

�
. Q.E.D.

Proof of Corollary 2

Let H < �
�
s+ �

aA�2

�
. Then, Ls < 0 and Lm > 0 and jLsj < jLmj. From (B1),

gH(e; Ls; Lm) =

aA�Lsexp

 ��
�Ls

�2
2

!�
1 + �

�
1 + e

e

��
�
Ls

�2��
�

aA�Lmexp

 ��
�Lm

�2
2

!�
1� �

�
1 + e

e

��
�
Lm

�2��
� (B5)

�
e

1 + e

�1=2 2aA�p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
< 0

From (B3), geh(e; Ls; Lm) < 0. It follows that eH(H) > 0 for all H < �
�
s+ �

aA�2

�
.

Let H > m� �
aA�2

. Then, Ls > 0 and Lm < 0 and jLsj > jLmj. From (B1),
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gH(e; Ls; Lm) =

aA�Lsexp

 ��
�Ls

�2
2

!�
1� �

�
1 + e

e

��
�
Ls

�2��
�

aA�Lmexp

 ��
�Lm

�2
2

!�
1 + �

�
1 + e

e

��
�
Lm

�2��
�

�
e

1 + e

�1=2 2aA�p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
> 0:

From (B3), geh(eTB ; Ls; Lm) > 0. It follows that eH(H) < 0 for all H > m� �
aA�2

. Q.E.D.

Proof of Corollary 3

Let H 2
�
�
�
s+ �

aA�2

�
;m� �

aA�2

�
. We re-write the function J (e; Ls; Lm) as:

J (e; Ls; Lm) =
�
Ve(D; e)�

1

2(1 + e)

��
1

1 + e

�1=2 "
�

 ��
� (Ls)

�2
e

!
+�

 ��
� (Lm)

�2
e

!#

+Ve(D; e)

(
exp

 ��
� (Ls)

�2
2

!
�
"
1� �

 ��
� (Ls)

�2
e

(1 + e)

!#

+exp

 ��
� (Lm)

�2
2

!
�
"
1� �

 ��
� (Lm)

�2
e

(1 + e)

!#)
:

Evaluating this function at the second best e¤ort and given (5) we obtain

J (eSB ; Ls; Lm) =

Ve(D; eSB )

(
exp

 ��
� (Ls)

�2
2

!
�
"
1� �

 ��
� (Ls)

�2
eSB

(1 + eSB )

!#
(B6)

+exp

 ��
� (Lm)

�2
2

!
�
"
1� �

 ��
� (Lm)

�2
eSB

(1 + eSB )

!#)
> 0:

This implies that EeUa(Wa(eSB )) = �exp(�(1=2)�2=�2�aF+V (D; eSB ))�J (eSB ; Ls; Lm) <
0:

Therefore, for the constrained manager, the marginal utility of e¤ort at eSB is negative. Since

eTB is unique and the function is continuous in e, given conditions (B1) and (B2), it follows

that eSB > eTB for all H 2
�
�
�
s+ �

aA�2

�
;m� �

aA�2

�
. Given Corollary 2, this result holds for

all H 2 <. Next we show that

lim
z!1

�
exp (z=2)�

�
1� �

�
z
1 + e

e

���
= 0: (B7)

Re-writing (B7) and applying L�Hôspital�s rule we get:
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lim
z!1

1� �
�
z 1+ee

�
exp (�z=2) = lim

z!1
exp(�z=2e)

z1=2
= 0:

Therefore, given (B6) and (B7), J (eSB ; Ls; Lm) tends to zero when m and s tend to in�nity.

In the limit, the constrained manager�s marginal expected utility of e¤ort becomes zero at eSB ,

EeUa(Wa(eSB )) = 0. Q.E.D.

Proof of Corollary 4

Lemma 1 For all 0 < x <1, 12 (1� �(x))� �(x) < 0.

Proof: See Lemma 1 in Gómez and Sharma (2006)

Let m ! 1 and 0 � s < 1. We call gH(e; Ls) = limm!1 gH(e; Ls; Lm) and geh(e; Ls) =

limm!1 geh(e; Ls; Lm). From (B5), gH(e; Ls) < 0 for H < �
�
s+ �

aA�2

�
. For H > �

�
s+ �

aA�2

�
,

gH(e; Ls) = 2a�Ls � exp
�
(��Ls)

2

2

�n
1
2

h
1� �

�
1+e
e

��
�Ls

�2�i
��
�
1+e
e

��
�Ls

�2�o
< 0; given Lemma 1.

Therefore, gH(e; Ls) < 0 for all H 2 <. From (B3), geh(e; Ls) < 0 for all H 2 <. Thus,
eH(H) > 0 for all H 2 <. Following the same procedure, it is trivial to show that eH(H) < 0
for all H 2 < when s!1 and 1 � m <1. Q.E.D.

Proof of Proposition 3

Replacing (6) in the investor�s utility function:

EU (Wb(y)) = �exp(b(F �R)) �8>>>>>>><>>>>>>>:

exp
�
�b(H � (1�A)(s+H))E(xjy) + (b2=2)(H � (1�A)(s+H))2Var(xjy)

�
if y < ��

eLs

exp
�
�b
�
H + (1�A)�+ey

aA�2

�
E(xjy) + (b2=2)

�
H + (1�A)�+ey

aA�2

�2
Var(xjy)

�
otherwise

exp
�
�b(H + (1�A)(m�H))E(xjy) + (b2=2)(H + (1�A)(m�H))2Var(xjy)

�
if y >�

eLm:

Multiplying the previous expression by the density function of the signal variable y, we

obtain:
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EU (Wb(y)) = �exp(b(F �R)� (1=2)�2=�2)
�

e

1 + e

�1=2 1p
2��

�8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

exp

 �
�
�
(1+t(A)(Ls�1)�bH �2

�
)
�2

2

!
�

exp
�
� e
2(1+e)

�
y
� �

�
�

�
1 + t(A)(Ls � 1)� bH �2

�

��2�
if y < ��

eLs

exp
�
1
2
1
1+e

�
�
�

�
t(A)� 1 + bH �2

�

��2�
exp

 
�2

2�2
e
1+e

�
T (A)�1�bH(t(A)�1)�

2

�

�2
1+eT (A)

!
�

�
1

1+T (A)e

�1=2
exp

0@� e(1+eT (A))
2(1+e)

 
y
� +

�
�

T (A)�1�bH(t(A)�1)�
2

�

1+eT (A)

!21A otherwise

exp

 �
�
�
(t(A)(1+Lm)�1+bH �2

�
)
�2

2

!
�

exp
�
� e
2(1+e)

�
y
� +

�
�

�
t(A)(1 + Lm)� 1 + bH �2

�

��2�
if y >�

eLm:

Replace k = e
1+e

8>>>>>><>>>>>>:

�
y
� �

�
�

�
1 + t(A)(Ls � 1)� bH �2

�

��2
if y < ��

eLs

(1 + eT (A))

 
y
� +

�
�

T (A)�1�bH(t(A)�1)�
2

�

1+eT (A)

!2
otherwise�

y
� +

�
�

�
t(A)(1 + Lm)� 1 + bH �2

�

��2
if y >�

eLm:

Integrating over k and given the de�nition of �(�), the unconditional utility function becomes
EUb(Wb(e)) = �exp(b(F �R)� (1=2)�2=�2)� v(e; Ls; Lm) with v(e; Ls; Lm) = (1=2)�

exp

0@�
�
�
(1+t(A)(Ls�1)�bH �2

�
)

�2
2

1A�1 + �� 1+e
e

�
�
�
(1 + 1+t(A)e

1+e
(Ls � 1)� e

1+e
bH �2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(A)� 1 + bH �2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (A)�1�bH(t(A)�1)�

2

�

�2
1+eT (A)

1A� 1
1+T (A)e

�1=2
�
�

�
1+e

e(1+T (A)e)

�
�
�

�
1+T (A)e
1+e

(1 + Lm)� 1� e
1+e

bH(t(A)� 1)�2
�

��2�
�

�

�
1+e

e(1+T (A)e)

�
�
�

�
1 + 1+T (A)e

1+e
(Ls � 1) + e

1+e
bH(t(A)� 1)�2

�

��2��
+

exp

0@�
�
�
(t(A)(1+Lm)�1+bH �2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
( 1+t(A)e

1+e
(1 + Lm)� 1 + e

1+e
bH �2

�
)
�2��

:

if H < �
�
saA+eb(1�A)

A(a�eb) + (1 + e) �
A(a�eb)�2)

�
;
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exp

0@�
�
�
(1+t(A)(Ls�1)�bH �2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
(1 + 1+t(A)e

1+e
(Ls � 1)� e

1+e
bH �2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(A)� 1 + bH �2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (A)�1�bH(t(A)�1)�

2

�

�2
1+eT (A)

1A� 1
1+T (A)e

�1=2
�
�

�
1+e

e(1+T (A)e)

�
�
�

�
1+T (A)e
1+e

(1 + Lm)� 1� e
1+e

bH(t(A)� 1)�2
�

��2�
�

�

�
1+e

e(1+T (A)e)

�
�
�

�
1 + 1+T (A)e

1+e
(Ls � 1) + e

1+e
bH(t(A)� 1)�2

�

��2��
+

exp

0@�
�
�
(t(A)(1+Lm)�1+bH �2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
( 1+t(A)e

1+e
(1 + Lm)� 1 + e

1+e
bH �2

�
)
�2��

:

if �
�
saA+eb(1�A)

A(a�eb) + (1+e)�

A(a�eb)�2)

�
� H < �

�
saA+eb(1�A)(2�t(A))
aA+eb(1�A(2�t(A))) +

(1+e)�

(aA+eb(1�A(2�t(A))))�2

�
;

exp

0@�
�
�
(1+t(A)(Ls�1)�bH �2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
(1 + 1+t(A)e

1+e
(Ls � 1)� e

1+e
bH �2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(A)� 1 + bH �2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (A)�1�bH(t(A)�1)�

2

�

�2
1+eT (A)

1A� 1
1+T (A)e

�1=2
�
�

�
1+e

e(1+T (A)e)

�
�
�

�
1 + 1+T (A)e

1+e
(Ls � 1) + e

1+e
bH(t(A)� 1)�2

�

��2�
+

�

�
1+e

e(1+T (A)e)

�
�
�

�
1+T (A)e
1+e

(1 + Lm)� 1� e
1+e

bH(t(A)� 1)�2
�

��2��
+

exp

0@�
�
�
(t(A)(1+Lm)�1+bH �2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
( 1+t(A)e

1+e
(1 + Lm)� 1 + e

1+e
bH �2

�
)
�2��

:

(B8)

if �
�
saA+eb(1�A)(2�t(A))
aA+eb(1�A(2�t(A))) +

(1+e)�

(aA+eb(1�A(2�t(A))))�2

�
� H < maA+eb(1�A)(2�t(A))
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aA+eb(1�A(2�t(A))) �

(1+e)�

(aA+eb(1�A(2�t(A))))�2 � H < maA+eb(1�A)
A(a�eb) � (1+e)�

A(a�eb)�2 ;
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if H > maA+eb(1�A)
A(a�eb) � (1+e)�

A(a�eb)�2 . Q.E.D.

Proof of Proposition 4

Assume �rst that the manager�s e¤ort choice is publicly observable. Given equation (8), the

investor chooses the contract (A;H) that satis�es the �rst order optimality condition:

@

@i
EUb(Wb(e)jA;H) = �exp

�
�bR� (1=2)(�=�)2 + (b=a)V (D; e)

�
� (B9)�

b

a
g(e; Ls; Lm)

b=a�1gi(e; Ls; Lm)v(e; Ls; Lm) + g(e; Ls; Lm)
b=avi(e; Ls; Lm)

�
= 0;

for i = fA;Hg. We distinguish two cases: with and without portfolio constraints.
Without portfolio constraints, s ! 1 and m ! 1. The manager�s expected utility (4) is

independent of A and H. The investor�s expected utility in (B8) becomes:

v(e) = exp

 
1
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1

1 + e

�
�

�

�
t(A)� 1 + bH �

2

�

��2!
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0B@ �2

2�2
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1 + e

�
T (A)� 1� bH(t(A)� 1)�2�

�2
1 + eT (A)

1CA� 1

1 + T (A)e

�1=2
:

By de�nition, t(AFB ) = T (AFB ) = 1; tA(AFB ) =
a+b
ab ; TA(AFB ) = 0. Then, it follows

immediately that vi(ejAFB ; 0) = 0; i = fA;Hg, for any e¤ort e. Hence, the contract (AFB ; 0) is

(�rst order condition) optimal.

With portfolio constraints, notice �rst that g(e; Ls; LmjAFB ; 0) = v(e; Ls; LmjAFB ; 0). Let

us analyze now the partial derivatives of function v and g with respect to A and H. Taking the

derivative of (B8) with respect to H and evaluating it at the contract (AFB ; 0) yields:
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:

Equation (B4) evaluated at (AFB ; 0) becomes:
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:

Taking the derivative of (B8) with respect to A and evaluating it at the contract (AFB ; 0),

we obtain:

vA(e; Ls; LmjAFB ; 0) =
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:

Equation (B4) at (AFB ; 0) can be rewritten as follows:
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:

From the former equations, gi(e; Ls; LmjAFB ; 0) = �a
b vi(e; Ls; LmjAFB ; 0) for i = fA;Hg

Evaluating the optimality condition (B9) at (AFB ; 0) and given the partial derivatives for v and

g, it follows that the contract (AFB ; 0) satis�es the �rst order optimality condition in the absence

of moral hazard.

We turn now to the case of moral hazard. Without portfolio constraints (second best sce-

nario), the manager�s e¤ort (5) is independent of A and H. Hence, as we just showed, the

contract (AFB ; 0) is optimal. Under portfolio constraints (third best scenario), the third best

e¤ort, eTB , is a function of A and H. The �rst order condition for optimality requires that

@

@i
EUb(Wb(eTB )jA;H) =

@

@i
EUb(Wb(eTB )jA;H) +

@

@e
EUb(Wb(e)jA;H)

@

@i
eTB (A;H) = 0;

(B11)

for i = fA;Hg: We have just proved that @
@iEUb(Wb(e)jAFB ; 0) = 0 for all e¤ort. By de�ni-

tion, @@e EUb(Wb(e)jAFB ; 0)je=e
TB
= �exp

�
�bR� (1=2)(�=�)2 + (b=a)V (D; eTB )

�
b
ag(eTB ; Ls(0); Lm(0))

b=a

�
�
J (eTB ; Ls(0); Lm(0)) + a

b ge(eTB ; Ls(0); Lm(0))
�
:Given (B1), the later equation can be rewrit-

ten as: �exp
�
�bR� (1=2)(�=�)2 + (b=a)V (D; eTB )

�
g(eTB ; Ls(0); Lm(0))

b=age(eTB ; Ls(0); Lm(0)) >

0 given Proposition 1 and Corollary 1.

From Proposition 2 and Corollary 2, for all A 2 (0; 1], @
@H eTB (A;H) > 0 (< 0) for H < H�

(H > H�); @
@H eTB (A;H) = 0 for H = H�. Hence, @

@H eTB (AFB ; 0) = 0 only for H� = 0. We

investigate now whether @
@AeTB (AFB ;H

� = 0) = 0.

JA(eTB ; Ls; LmjAFB ;H
� = 0) = Ve(D; eTB )gA(eTB ; Ls; LmjAFB ;H

� = 0)+geA(eTB ; Ls; LmjAFB ;H
� =

0). Ve(D; eTB ) > 0. From (B11) and given Lemma 1, gA(eTB ; Ls; LmjAFB ;H
� = 0) < 0. From

Corollary 1, geA(eTB ; Ls; LmjAFB ;H
� = 0) < 0. Given (B2), J �1e (eTB ; Ls; LmjAFB ;H

� = 0) >

0. Therefore, @
@AeTB (AFB ;H

� = 0) = �JA(eTB ; Ls; LmjAFB ;H
� = 0)�J �1e (eTB ; Ls; LmjAFB ;H

� =

0) > 0. Thus, the contract (AFB ; 0) is suboptimal.

When we introduce selectivity information in Appendix A, the �rst order condition (B9)

under public information becomes:
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@i
EUb(Wb(e)jA;Hx;Hz) = �exp

�
�bR� (1=2)(�x=�x)2 � (1=2)(�z=�z)2 + (b=a)V (D; e)
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�
g(ex; sx;mx)

b=av(ex; Lsx ; Lmx)
�
= 0;

for i = fA;Hx;Hzg. Notice that g(ej ; Lsj ; Lmj jAFB ) = v(ej ; Lsj ; Lmj jAFB ) for j = fx; zg.
Moreover, the cross derivatives of g(ex; �) -alternatively g(ez; �)- and v(ex; �) -alternatively, v(ez; �)-
with respect to Hz -alternatively, Hx- are zero. Hence, the same arguments used above to prove

the (�rst order) optimality of the contract (AFB ; 0) when e¤ort is observable hold, both with

and without portfolio constraints, in the presence of selectivity information.

In the case of moral hazard, when both e¤ort choices are not observable, the �rst order

condition (B11) becomes @
@iEUb(Wb(eTB )jA;Hx;Hz) = @

@iEUb(Wb(eTB )jA;Hx;Hz)+
@
@eEUb(Wb(e)jA;Hx;Hz)

�
@
@iexTB (A;Hx);

@
@iezTB (A;Hz)

�
= 0, for i = fA;Hx;Hzg and eTB =

(exTB ; ezTB ). Evaluated at the �rst best contract (AFB ; 0),
@
@iEUb(Wb(eTB )jA;Hx;Hz) =

�exp
�
�bR� (1=2)(�x=�x)2 � (1=2)(�z=�z)2 + (b=a)V (D; eTB

�
g(exTB ; Lsx ; Lmx)
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a=b��
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@
@iexTB (A;Hx) + gez(ezTB ; Lsz ; Lmz)g(exTB ; Lsx ; Lmx)

@
@iezTB (A;Hz)

�
;

for i = fA;Hx;Hzg. Following the same arguments as in the case without selectivity we
conclude that the �rst best contract is suboptimal. Q.E.D.
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Figure 1: We assume that short-selling is totally forbidden (s = 0) and there is no limit to
margin purchase (m ! 1). For simplicity, let A = 1. After putting e¤ort e the manager
receives a signal y and makes her optimal portfolio �. When H = 0 (bottom portfolio line), all
signals y < ��

e lead to short-selling. When H > 0 (upper portfolio line), the short-selling bound
is hit for signals y < ��

eLs: In both cases, the region of these non-implementable portfolios
is marked by the thick line. Under benchmarking (H > 0) there is an incremental area for
implementable signals relative to the case of no benchmarking. The size of this area, Ha

e=�2
;

increases with benchmarking (H) and the manager�s risk aversion (a); it has probability mass
equal to the shaded area in the density function plot.
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Figure 2: This �gure represents the Information Ratio as a function of the signal y and given
e¤ort e. Notice that, when e = 0, the Information Ratio coincides with the Sharpe Ratio for all
signal y. When e increases the slope increases in absolute value, making the Information Ratio
higher for all signal y. As e!1, in the limit, the Information Ratio also tends to in�nity. For
y = �, the Information Ratio becomes ��

p
1 + e. Averaging across y, the expected Information

Ratio is higher than �
�

p
1 + e since for all y < ��

e ; the Information Ratio �bounces back:�the
manager would short the risky asset.

42


