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Residuals and the residual-based statistic for

testing goodness of fit of structural equation

models

Abstract

The residuals obtained from fitting a structural equation model are

crucial ingredients in obtaining chi-square goodness-of-fit statistics for the

model. We present a didactic discussion of the residuals, obtaining a

geometrical interpretation by recognizing the residuals as the result of

oblique projections. This sheds light on the concept of degrees of freedom

of the model. We use a simple example to illustrate the theory and also

to provide simulations of residuals in three dimensions. We then explain

the rationale behind the formula for the residual-based test statistic. The

formula for the statistic is deduced using linear algebra and large-sample

theory. Details are provided so that this material can be used in graduate

instruction.

Keywords: Goodness-of-fit, residuals, degrees of freedom, residual-

based statistic

1 Introduction

Given a proposed covariance structure model a basic question that needs

to be answered is: Does the model fit the data that we observe? There

are various competing ways to measure the goodness of fit of a model,

and most of them are based on the discrepancies between observed values

and the values predicted under the proposed model. Such discrepancies

between observed and estimated values are called residuals:

residual = observation − fitted value.

For covariance structure models, the observations are the covariances and

variances of the observed variables. Various versions of the residual sum

of squares give rise to competing χ2 measures of model fit.

In the first part of this article we study the residuals from a geometric

point of view. The residual vector is shown to be the result of projecting

the observed vector onto a subspace. In other words, estimation of the

model constrains the residuals to live in a linear subspace. The dimension
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of this subspace represents the degrees of freedom of the model, giving an

interesting interpretation of this concept. These results are quite general

and are valid for all consistent estimation methods like unweighted and

generalized least squares (ULS and GLS) or normal-theory based maxi-

mum likelihood (ML) estimation. Notation and definitions are illustrated

with the use of a simple example that is used throughout this paper. This

example is a toy model which is far too small to be anything close to

what a substantive researcher may use, and it is intended solely for in-

structional purposes. The smallness of the model ensures that there are

only three residuals, two variances and one covariance. This allows us to

visualize the residuals in three dimensions, and simulated residuals gives

us a visual confirmation of the projection theory.

In the second part we give a didactic presentation of an important

but relatively unknown type of χ2 goodness-of-fit statistics in structural

equation modeling (SEM), namely the residual-based statistic TB intro-

duced by Browne (1984). The residual-based test statistic is not as well

known as the minimum fit function (MFF) value statistic obtained by

multiplying the minimum fit function value by the number of cases minus

one. The most prominent MFF statistic is the normal theory maximum

likelihood (ML) statistic TML. The MFF test statistic is asymptotically

distributed as a chi-square provided the data at hand meets the distribu-

tional assumptions, e.g. normality, of the estimation method. However, in

situations where the estimation method is not correctly specified for the

data, the MFF statistic may not be asymptotically distributed as a chi-

square distribution. For instance, when data are not normally distributed,

TML will most likely not approximate a chi-square distribution, even for

large sample sizes (see Yuan, Bentler, and Zhang (2005) for a clear pre-

sentation of the univariate case). In contrast, the residual-based statistic

TB can be used in conjunction with the ML estimates, and it will approx-

imate a chi-square distribution even for non-normal data, for sufficiently

large sample sizes. That is, an important application of residual-based

tests is in situations where non-optimal estimators have been used and a

test statistic with a known (asymptotic) distribution is required. See e.g.,

Savalei and Bentler (2009); Cai and Lee (2009) for recent examples of the

utility of residual-based test statistics in a two stage procedure designed

to handle missing data. The mathematically inclined reader may consult

Shapiro (2007) for a thorough tutorial on statistical inference in covariance

structure analysis. A comprehensive overview of estimation methods and

test statistics for mean and covariance structures can be found in Yuan

and Bentler (2007).

Residual-based test statistics are routinely used to evaluate whether a

model is valid or not. However, the formula for the residual-based statistic

is quite complicated. In our experience many students and researchers

have difficulties in understanding the formula, as it is given by a matrix

algebra expression and involves linear algebraic concepts. Our aim is to

work out the construction of TB in detail and explain how it is used to

test the fit of the proposed model. In this we broadly follow the seminal
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work in Browne (1984).

In the following we introduce notation and definitions. Suppose x

is a stochastic p-vector of observed variables with population covariance

matrix Σ. Let the free parameters in the proposed model be contained

in the q-vector θ. A structural equation model then implies a certain

parametrization Σ(θ) of the covariance matrix of the observed variables.

The null hypothesis states that the model is correctly specified, meaning

that there are parameter values such that the model-implied covariance

matrix equals the population covariance matrix. This is written as

H0 : Σ(θ) = Σ for some θ.

In other words, we say that the model holds if there exists a parameter

value θ0 such that Σ(θ0) = Σ. In the following we assume that θ0 is

unique, i.e. that the model is identified. We also assume that the function

Σ(.) is continuously differentiable.

Since the sample covariance matrix S and the model-implied covari-

ance matrix Σ(θ) are symmetric, the elements below the diagonal in these

matrices are duplicates of elements above the diagonal. A more econom-

ical way to work S and Σ(θ) is to restrict attention to only the non-

redundant elements. This is done by forming a column vector from the

elements above and including the diagonal taken columwise. If A is a

p × p symmetric matrix, there are p∗ = p(p + 1)/2 such non-rendundant

elements. Let vech(·) denote this operator that transforms the matrix

A into a p∗-vector vech(A). Now we define σ(θ) = vech(Σ(θ)) and

s = vech(S) and note that σ(θ) and s are both p∗-vectors.

To exemplify the general notation and theory covered in this article,

let us introduce a very simple model for didactic purposes.

Figure 1 here.

Example. Consider the factor model whose path diagram is given in fig-

ure (1). The observed variables are contained in the 2-vector x = (x1, x2)′.

The model specifies that x can be regressed upon a single latent variable

(factor) F . The structural equations are

x1 = λF + δ1

x2 = λF + δ2 (1)

where the factor loadings are identical. In this model we assume that

var(F ) = 1, cov(F, δi) = 0 and var(δi) = 1 for i = 1, 2 and that

cov(δ1, δ2) = 0. Hence our model contains only one free parameter,

namely the factor loading λ, and we have p = 2, p∗ = 2·3/2 = 3 and q = 1.

As the reader may verify using basic covariace algebra, the model-implied
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covariance matrix and its reduced vector form are given by

Σ(λ) =

(
λ2 + 1 λ2

λ2 λ2 + 1

)

σ(λ) = vech (Σ(λ)) =

 λ2 + 1

λ2

λ2 + 1

 . (2)

This paper is organized as follows. In the first part we study the

residuals in covariance structure analysis. Next we simulate the residuals

with finite samples for a very small model, and obtain visual confirmation

of the residual theory. Next we use the theory to construct the residual-

based statistic TB , before we round off with concluding remarks.

2 The residuals

In this part we give a general treatment of the asymptotic behavior of the

residuals. The results are valid for all consistent estimation methods.

The asymptotic distribution of the sample covari-
ance matrix

A central element in estimating and testing a model is the covariance ma-

trix of the observed variables. We are therefore interested in assessing the

sampling distribution of s. In many situations the finite-sample distribu-

tion of s is not known, but may be approximated by considering what

happens as n → ∞. As the sample size increases the stochastic vector s

converges in probability to the population vector σ = vech(Σ):

s
P−→ σ,

where
P−→ denotes convergence in probability. Informally this means that

for large sample sizes s is almost certainly almost equal to σ. Hence

for infinite sample size the random nature of s vanishes and it converges

toward the constant σ. However, by magnifying s by a factor
√
n the re-

sulting vector has a non-degenerate limiting distribution. That the factor√
n is of right size can be seen by noting that the variance of

√
n(s−σ) is

independent of n. In more technical terms it follows from the multivariate

central limit theorem (e.g., Anderson, 2003, Theorem 3.4.3) that

√
n(s− σ)

d−→ N(0,Γ). (3)

The symbol
d−→ denotes convergence in distribution. In other words, ex-

pression (3) states that in infinite samples the product
√
n(s−σ) follows

a normal distribution. For a thorough treatment of asymptotic statistics

in general, the reader may consult Vaart (2000), while Satorra (1989) con-

tains a self contained but mathematically advanced review of asymptotic

theory for test statistics in SEM.

4



The asymptotic covariance matrix Γ in (3) is assumed to be non-

singular. This matrix holds crucial information about the asymptotic

distribution of s and it is central in designing well-behaved estimators

and goodness-of-fit tests in SEM. Software packages in SEM calculate

estimates of Γ based on the raw data as a necessary ingredient for robust

inferences. If the observable vector x is normally distributed, to calculate

Γ one can use the following well-known formula: Γ = 2K′p(Σ ⊗ Σ)Kp.

Here the matrix Kp is a p2×p∗ matrix with elements 0, 1
2

or 1 as shown in

Section 2 in Browne (1974). For more about the matrix Kp and related

matrices, see p. 46 in Magnus and Neudecker (1999).

Example (continued). In the previous section we introduced a simple

factor model example with two observable variables contained in the 2-

vector x = (x1, x2)′. We will assume that x is the product of the following

data-generating process:

x1 = F + δ1

x2 = F + δ2 (4)

where the random variables F , δ1 and δ2 are i.i.d. standard normal vari-

ables. The reader may verify that this implies that x has the following

population covariance matrix:

Σ =

(
2 1

1 2

)
, and hence σ =

 2

1

2

 .

Comparing (4) with (1) it is clear that the model is correctly specified.

To be precise, by setting the free parameter λ in the model to λ0 = 1 the

model-implied covariance matrix in (2) equals the population covariance

matrix above: σ(1) = σ.
The formula Γ = 2K′p(Σ ⊗ Σ)Kp applied here yields

Γ = 2

 1 0 0 0

0 0.5 0.5 0

0 0 0 1

(( 2 1

1 2

)
⊗
(

2 1

1 2

))
1 0 0

0 0.5 0

0 0.5 0

0 0 1


=

 8 4 2

4 5 4

2 4 8

 ,

and we have the following version of (3), where sij denotes the sample

covariance between xi and xj:

√
n

 s11
s12
s22

−
 2

1

2

 d−→ N

0,

 8 4 2

4 5 4

2 4 8

 .

Minimum distance estimation

An intuitive way of estimating the population parameters θ0 is to somehow

minimize the distance between the observed covariances s and the model-

implied covariances σ(θ̂n). The minimum distance (MD) estimator θ̂n of
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θ0 is defined as the minimizer of the quadratic form

F (θ | Vn) = (s− σ(θ))′ Vn (s− σ(θ)) (5)

where Vn converges in probability to a positive definite matrix V . In most

cases Vn is a stocastic matrix that is evaluated on the basis of the sample

at hand. We follow Satorra (2003) and use the term ‘minimum distance’

for the discrepancy function in (5). Other authors (e.g., Shapiro, 2007)

refer to this function as a generalized least squares discrepancy function.

Most estimation methods in current use for covariance structure anal-

ysis are MD estimators. As shown in Browne (1974), even maximum like-

lihood estimation can be thought of as MD estimation. Browne (1984)

later showed that any MD estimator is consistent:

θ̂n
P−→ θ0, (6)

and that
√
n(θ̂n − θ0) is multivariate normal with zero mean vector. To

obtain MD estimators which have minimal standard errors we need to be

careful about the choice of the weight matrix Vn. We say that the MD

estimator is correctly specified for the data at hand if

Vn
P−→ Γ−1. (7)

This condition ensures that the estimator is asymptotically efficient, mean-

ing that the asymptotic covariance matrix of the estimator attains its

lower bound within the class of MD estimators.

Table 1 here.

In Table 1 the weight matrix Vn associated with some common esti-

mation methods is listed. The matrix K−p is a left inverse of Kp. Note

that unweighed least squares estimation (ULS) does not satisfy property

(7), since Vn is a constant in ULS estimation. This implies that ULS esti-

mates are not asymptotically optimal, in the sense that for infinite sample

size there are other estimators with lower standard errors than the ULS

estimator. However, as we shall see, the ULS estimator does not impair

the asymptotic (infinite sample) behaviour of the residual-based statistic

for testing goodness-of-fit compared to other asymptotically optimal es-

timators. Provided that the data are multivariate normally distributed

general least squares (GLS) and maximum likelihood (ML) estimation

satisfy property (7) and are asymptotically optimal in the sense of having

minimum standard errors. The estimator θ̂ in the ML estimator weight

matrix is the minimizer of the likelihood function.

The weight matrix Â used in the asymptotically distribution-free (ADF)

estimation method of Browne (1984) involves calculating fourth-order

central sample moments. Â−1 satisfies property (7) for the wide range of

distributions with finite fourth-order moments. But although consistent

for a variety of distributions of the data, Â−1 has a slow rate of conver-

gence. The high variability of the ADF estimator renders it useful only

for medium to large sample sizes.
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The asymptotic distribution of MD estimators

For finite samples the distribution of the MD estimator θ̂n is very difficult

to calculate exactly. However, we shall see that the MD estimator is

asymptotically normally distributed.

A central matrix is the the Jacobian matrix of partial derivatives of

the function σ(θ), i.e. the p∗ × q matrix

∆(θ) ≡
(
∂σi(θ)

∂θj

)
i≤p∗, j≤q

The notation “≡” means “equal by definition”. Note that ∆(θ) can be

evaluated at different values of the parameter vector θ. To simplify nota-

tion we will write ∆0 and ∆̂ for ∆(θ0) and ∆(θ̂n), respectively. Likewise,

we write σ0 and σ̂n for σ(θ0) and σ(θ̂n). Using elements of matrix calcu-

lus and asymptotic arguments as shown in appendix A, we get the follow-

ing result on the asymptotic distribution of the MD estimator (Browne,

1984, Proposition 2):

Theorem 1. Suppose θ̂n is a MD estimator and that (3) holds. Then

√
n(θ̂n − θ0)

d−→ N (0,Ω) .

If the estimator is correctly specified as given by (7) then

Ω = ΩOPT = (∆′0Γ
−1∆0)−1. (8)

If the estimator is not correctly specified, then

Ω = ΩSW = (∆′0V∆0)−1∆′0V ΓV∆0(∆′0V∆0)−1.

So for any MD estimator
√
n(θ̂n − θ0) is multivariate normal with a

null mean vector and covariance matrix given by ΩSW above. The matrix

ΩSW is commonly known as a sandwich- type covariance matrix, giving

rise to robust ”sandwich” standard errors. Standard error estimates of the

MD estimator can now be obtained from the square roots of the diagonal

elements of Ω̂. When the estimator is correctly specified ΩSW reduces to

ΩOPT . In that case the estimator is optimal in the sense that it has the

lowest possible variance among all MD estimators.

Example (continued). In our factor model θ is simply the loading pa-

rameter λ and ∆(θ) = ∆(λ) = (2λ, 2λ, 2λ)′ . Clearly it follows from the

data-generating process (4) that λ0 = 1 so ∆0 = (2, 2, 2)′. The asymptotic

covariance matrix in (8) is

ΩOPT =

(2 2 2)

 8 4 2

4 5 4

2 4 8

−1 2

2

2



−1

= [1.125]

and we have a univariate case of Theorem 1:

√
n(λ̂n − 1)

d−→ N (0, 1.125) .
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The asymptotic distribution of the residual vector

A key component in all goodness-of-fit chi-square statistics is the residual

vector √
n(s− σ̂n).

Intuitively the residual gives a measure of the goodness of fit of the model:

If the model is good, then σ̂n should be quite close to s, whereas for a

less good model it would be further away.

Note that the residual is model-dependent while this is not the case

for
√
n(s − σ0), whose asymptotic distribution is solely a function of Γ.

The crucial insight - we relegate the mathematical details to appendix B

- is that there is a close link between
√
n(s− σ̂n) and

√
n(s− σ0):

√
n(s− σ̂n)

a
= P ·

√
n(s− σ0). (9)

Here
a
= denotes ”asymptotic equivalent to”, which informally means that

the left-hand and right-hand sides are virtually equal for large sample

sizes. The matrix P is in general given by

P ≡ I −∆0(∆′0V∆0)−1∆′0V (10)

and it defines a linear transformation of a special kind, namely a projec-

tion. Hence the relation in (9) states that for large samples, the residual

vector
√
n(s − σ̂n) is basically the result of projecting

√
n(s − σ0) onto

a subspace of lower dimension. Figure 2 gives a visual representation of

the projection, where the residual vector is seen as the result of projecting√
n(s− σ0) onto a lower-dimensional subspace X.

Figure 2 here.

It is interesting to note that the sampling distribution of the vector√
n(s − σ0) spans all directions in the space Rp∗ in which it lives, while

the residual vector for large samples tend to lie in a lower-dimensional

subspace of Rp∗ . In statistical terms we say that the asymptotic distribu-

tion of
√
n(s− σ̂n) is degenerate. The dimension of the lower-dimensional

space is equal to the degrees of freedom of the model, i.e. p∗ − q. Infor-

mally one could say that for each free parameter in the model, the residual

looses one degree of freedom. Define the null space of a matrix A as the

set of vectors x such that Ax = 0, and the range of a matrix A as the

set of vectors y such that y = Ax for some vector x. Then the full result

is given in the following theorem.

Theorem 2. Assume that the model holds. Then
√
n(s− σ̂n)

a
= P ·

√
n(s− σ0), (11)

where the p∗×p∗ matrix P defined in (10) represents an oblique projection

onto the p∗ − q-dimensional subspace

X = Nullspace(∆′0V )

along the subspace

Y = Range(∆0).
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Example (continued). In our example we have p∗−q = 2 so the residual

resides asymptotically in a subspace of dimension 2, i.e. a plane. For

correctly specified MD estimation we have

∆′0Γ
−1 = (2 2 2)

 8 4 2

4 5 4

2 4 8

−1

=

(
1

9

2

9

1

9

)

and therefore X consists of all 3-vectors x such that
(
1
9

2
9

1
9

)
· x = 0.

In other words, X is the plane defined by

x1 + 2x2 + x3 = 0.

In the next section we give a visual representation of this plane.

A remark on nested models. A model A is said to be nested in the

parameter sense within a model B if the freely estimated parameters in

model A is a subset of the freely estimated parameters in model B. Hence

one can go from model B to model A by adding restrictions on some of the

free parameters in B. For such nested models there exists an interesting

relation between the subspaces XA and XB .

Proposition 1. Suppose model A is parameter nested within model B,

and that both models are correctly specified. Then XB ⊂XA.

The proof can be found in appendix C.

3 Visualization of simulated residuals

In this section we study simulations based on our simple one-factor model

and a related model. The fact that these models include only p = 2

manifest variables and consequently that p∗ = 3 allows us to visualise the

residual vector
√
n(s−σ̂n) in 3-dimensional space. We focus on visualizing

the residuals in relation to the subspace X as defined in Theorem 2. Our

goal is to visually test how good an approximation equation (11) is across

various models, estimation methods and sample sizes.

Three factors are incorporated into the design of the simulation study:

model, estimation method and sample size. The model described in fig-

ure (1) will be referred to as Model 1, while a less restricted model will

be referred to as Model 2.

Because ML and GLS are the most popular methods they were chosen

as estimation methods. Sample sizes of 50, 250 and 1000 were investigated

in the study. These sample sizes vary from a minimum requirement for

SEM analysis through typical sample sizes for SEM and up to a large

sample size. Simulation of random samples and estimation were done

using the Lisrel/Prelis package (Joreskog, Sorbom, Du Toit, & Du Toit,

2000).

The random sample was generated according to the data-generating

process described in the example on page 5. We remark that this ensures

that our models are correctly specified and that the normality assumption
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on the observables holds. For each sample size we generated 100 sample

covariance matrices. The random samples were then used to fit our two

models, and obtain the fitted residuals. This resulted in 100 residual

3-vectors for each model, estimation method and sample size. These 3-

vectors were then imported into the Matlab package for visualization of

the 100 residuals in a three-dimensional scatterplot. In the scatterplots

we also plotted the subspace X referred to in Theorem 2.

In Figure 3 the 3D scatterplot is given for the residuals when the

sample size of the 100 simulated datasets is n = 250. The GLS estimation

was employed on Model 1. In Figure 3(a) one can see the plane X from

an oblique angle. The residuals are scattered not far off the plane, as

expected. However it is difficult to discern the precise location of the

residuals, and an edge-on view as in Figure 3(b) offers a better picture of

how the residuals are placed relative to the plane X.

Figure 3 here.

Therefore the edge-on view is used in the following figures. However,

to get a proper idea of the distribution of the residuals one should rotate

the scatterplot. We provide rotation clips for the figures presented here

at http://home.bi.no/a0510192/wald.

Model 1

As was seen in the example on page 9, for Model 1 X = X1 is the

plane defined by x + 2y + z = 0. In general, for no estimation method

will equation (11) hold exactly for a finite sample size. However, in our

particular case with Model 1 and maximum likelihood (ML) estimation,

it is remarkable that the residuals fit tightly onto the plane for all sample

sizes. This is shown in part F of the appendix.

For GLS estimation, however, as was seen in Figure 3, equation (11)

does not hold for finite sample sizes. Figure 4 gives edge-on views of the

GLS residuals for n = 50 and n = 1000. As expected, we see that for the

larger sample size the residuals tend to lie closer to X1.

Figure 4 here.

Model 2

In this model the constraint λ1 = λ2 is removed from Model 1. Model 2

has q = 2 free parameters, namely λ1 and λ2, and hence 3−2 = 1 degrees

of freedom. Model 2 is depicted in figure (5).

Figure 5 here.

For Model 2 the subspace X2 = Nullspace(∆′0Γ
−1) is one-dimensional,

i.e. X2 is a line through the origin. For Model 2 we have

∆′0Γ
−1 =

 2 0

1 1

0 2

′ 8 4 2

4 5 4

2 4 8

−1

=
1

9

(
2 1 −1

−1 1 2

)
,
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and henceX2 is the intersection of the two planes defined by 2x+y−z = 0

and −x + y + 2z = 0. In other words X2 is the line that passes through

the origin trough the point (1 ,−1, 1). Note that this line X2 is contained

in the plane X1 as predicted by the the discussion on page 9, since Model

1 is nested in Model 2.

Figure 6 here.

Figures 6(a) and 6(b) gives the ML residuals for n = 50 and n = 250,

and we see that the residuals are closer to X2 for the larger sample size,

as predicted by equation (11). In figures 6(c) and 6(d) we see the same

pattern for the GLS residuals. Based on these samples it is not possible

conclude which estimation method gives residuals closest to X2.

4 The residual-based test statistic

With Theorem 2 giving the asymptotic behavior of the residuals, we are

now ready to study the residual-based test statistic. We first present a

crucial proposition on the distribution of quadratic forms and then review

the classical Wald test.

Wald’s classical method for simple hypotheses

Let us first state a well-known property of quadratic forms. Let y =

(y1, . . . , yd) denote a random d-vector which is distributed according to the

d-variate normal distribution, denoted by N(µ,Σ), where µ is the mean

vector and the covariance matrix Σ is nonsingular. Since Σ−1 is positive

definite there exists a matrix, denoted by Σ−
1
2 , such that Σ−

1
2 Σ−

1
2 =

Σ−1.Now,

(y− µ)′Σ−1(y− µ) = (y− µ)′Σ−
1
2 Σ−

1
2 (y− µ) = z′z,

where the standardized vector z = Σ−
1
2 (y − µ) is normally distributed

with zero mean and covariance matrix Σ−
1
2 ΣΣ−

1
2 = I. The right-hand

side z′z = Σz2i is a sum of d independent squares of standard normal vari-

ables zi. Such a sum of independent squared standard normal variables

is per definition distributed as a chi-square with d degrees of freedom,

denoted by χ2(d), and we can state the following proposition:

Proposition 2. Suppose that y is a d-vector which is distributed as

N(µ,Σ) where Σ is nonsingular. Then the quadratic form

(y− µ)′Σ−1(y− µ)

is distributed as χ2(d).

The residual-based goodness-of-fit statistic used in SEM is based on

the same idea used by Wald (1943) for testing simple hypotheses. Wald’s

method in its simplest form is used to test whether a q-dimensional popu-

lation parameter θ is equal to some constant θ0, i.e. to test the hypothesis
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H0 : θ = θ0. Let n denote the sample size and suppose θ̂n is an estima-

tor for θ. We have indexed the estimator by the sample size n since

Wald’s method only attains its desired properties for large samples, i.e.

as n → ∞. A crucial assumption is that the estimator is asymptotically

normal. That is, the assumption is

√
n(θ̂n − θ0)

d−→ N(0,Ω), (12)

where Ω is the nonsingular asymptotic covariance matrix of
√
n(θ̂n−θ0).

To construct a measure of the discrepancy between θ0 and the estimated

θ̂n let us start with a consistent estimator Ω̂n of Ω. In many cases Ω can

be consistently estimated from the information matrix. The continuous

mapping theorem in large-sample theory (e.g., Vaart, 2000, Theorem 2.3)

states that if zn is a sequence of random vectors that converges in distri-

bution to z, then for a continuous function g it holds that g(zn) converges

in distribution to g(z). It then follows from Proposition 2 that

n(θ̂n − θ0)′Ω̂−1
n (θ̂n − θ0)

d−→ χ2(q).

Therefore, if H0 holds, then Wn = n(θ̂n − θ0)′Ω̂−1
n (θ̂n − θ0) is asymptot-

ically χ2-distributed with q degrees of freedom. Wald’s method is simply

to use the scalar Wn as a measure of discrepancy between the observed

value θ̂n and the proposed value θ0. Values of Wn that exceed the crit-

ical value lead to the rejection of the null hypothesis. The critical value

can be found, since the (asymptotic) distribution of Wn is known to be

chi-square if the null hypothesis holds.

Wald’s method can be used in conjunction with different estimation

methods. ML estimation is a popular choice, but the only requirement for

the method to be asymptotically valid is that the estimator approaches

normality, i.e. that (12) holds. It has been noted that for small samples

the estimator may be far from normally distributed. See Fears, Benichou,

and Gail (1996) and Pawitan (2000) for situations where the Wald test

exhibits poor power.

In structural equation modeling the null hypothesis is not of the simple

form H0 : θ = θ0. Rather H0 states that the model is well-specified,

meaning that there exists a parameter vector θ0 such that the model-

implied covariance matrix Σ(θ0) equals the population covariance matrix

Σ. Hence Wald’s original method is not directly suitable to test goodness

of fit in SEM. In the following section we will show how Wald’s idea of

using an estimator that satisfies (12) to obtain a chi-square test statistic

can be extended to construct a goodness of fit test for SEM.

Derivation of the residual-based test statistic

As described in Theorem 2, the residual is a p∗-vector that asymptotically

lies in a subspace of lower dimension. Moreover, since the residual in (11)

is a linear transformation of
√
n(s−σ0), which is asymptotically normally

distributed by assumption (3), the residual is also asymptotically normally
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distributed. However, this normal distribution is degenerate, since the

asymptotic covariance matrix of
√
n(s−σ̂n) is singular; it has rank p∗−q.

This means that the assumption of nonsingularity made in Proposition

2 is not met. However, this can be remedied by linearly mapping the

residual onto the lower-dimensional space Rp∗−q. This operation involves

the notion of orthogonal complement.

Given an estimate θ̂n the corresponding Jacobian ∆̂ = ∆(θ̂n) is as-

sumed to be of full column rank, namely q. An orthogonal complement of

∆̂ is a p∗ × (p∗ − q) matrix ∆̂c of full column rank such that ∆̂′c∆̂ = 0.

This basically means that any column of ∆̂c is orthogonal to any column

of ∆̂. If we now multiply the residual by ∆̂′c on the left-hand side we get

the following vector of dimension p∗ − q:
√
n∆̂′c(s− σ̂n).

The main observation now is that, in contrast to
√
n(s− σ̂n), this vector

has asymptotically a non-degenerate normal distribution. This makes it

possible to apply Proposition 2, since the asymptotic covariance matrix of√
n∆̂c(s − σ̂n) is non-singular, i.e. invertible. The algebraic details can

be found in the appendix, part D. Consequently from Proposition 2 with√
n∆̂′c(s − σ̂n) taking the role of y we obtain the main result (Browne,

1984, Proposition 4):

Theorem 3. Suppose our model is correct and that we estimate θ0 by any

(not necessarily correctly specified) MD estimator. Let Γ̂ be a consistent

estimator of Γ. Then the residual-based statistic

TB = n(s− σ̂n)′ ∆̂c (∆̂′cΓ̂∆̂c)
−1 ∆̂′c (s− σ̂n) (13)

is asymptotically distributed as the χ2 distribution with p∗ − q degrees of

freedom.

We stress that the residual-based test statistic is asymptotically a chi-

square regardless of the estimation method employed. Hence it is robust

to non-normality even when used in conjunction with normal-theory based

estimators like ML and GLS. Remark also that although the orthogonal

complement matrix ∆̂c is not unique, the value of TB in (13) does not

depend on the choice of ∆̂c. See appendix part D for details.

Finally, we now use Theorem (3) to deduce the asymptotic distribution

of the MFF statistic

nF̂ = nF (θ̂n | Vn)

where θ̂n is the minimizer of F as given in (5). Note that main difference

between the formulas in (13) and (5) is the presence of the orthogonal

complement matrix. However, when the estimator θ̂n is obtained by min-

imizing F this presence is redundant:

(s− σ̂n)′Vn(s− σ̂n) = (s− σ̂n)′∆̂c(∆̂
′
cV
−1
n ∆̂c)

−1∆̂′c(s− σ̂n). (14)

A proof of (14) can be found in part E of the appendix. Therefore,

Theorem (3) implies the following corollary:

13



Corollary 1. Suppose the MD estimation of (5) is correctly specified.

Then nF̂ is asymptotically distributed as the χ2 distribution with p∗ − q
degrees of freedom.

Consequently, with ML and GLS estimation the minimum fit function

is asymptotically a chi-square for normal data. For non-normal data how-

ever, it can be shown that the minimum fit function is asymptotically a

weighted sum of chi-squares. To partly remedy this departure from the

reference chi-square distribution, Satorra and Bentler (1994) proposed a

scaling of the minimum fit function that is asymptotically correct in mean

for non-normal data.

Psychological data are often non-normal, in fact Micceri (1989) in-

vestigated 440 large-sample achievement and psychometric measures, and

found all to be significantly nonnormal at the α = 0.01 significance level.

So there is definitely a need for test statistics that do not require the as-

sumption of multivariate normality. The residual-based statistic TB is a

candidate for such a test statistic, but is relatively unknown. The reason is

that the few simulation studies (e.g., Bentler & Yuan, 1998, 1999; Nevitt

& Hancock, 2004) in SEM literature indicates that TB performs poorly

for small to moderate sample sizes. It tends to overreject true models.

This issue has been studied in several articles by Bentler and Yuan (1999,

1998) which propose several corrections to TB for small sample sizes.

5 Concluding remarks

In this paper we have studied the residual-based statistic TB for goodness-

of-fit in covariance structure analysis. TB may be used as an asymptoti-

cally distribution free statistic with a theoretical elegance not found with

other test statistics like nF̂ : it follows a known sampling distribution

without assuming multivariate normality of the data. In fact, we have

showed that TB is asymptotically distributed as a chi-square with p∗ − q
degrees of freedom. This holds in general for any MD estimation method,

correctly specified or not. To explain why this holds we have focused

on the residual vector
√
n(s − σ̂n) and demonstrated that it is asymp-

totically degenerate, i.e. although the residual is a p∗-vector it tends to

reside in a p∗ − q dimensional subspace when the sample size increases.

The treatment of the residuals is general in nature and helps understand

the concept of degrees of freedom. We have proved that the residuals

are constrained by MD estimation to asymptotically live in a subspace of

dimensionality equal to the degrees of freedom of the model.

To exemplify the theory and to visualize the residual vectors we study

a very simple model with only two observed variables. With two observed

variables the residual vector resides in three-dimensional space and is read-

ily available for visualization. In the simulation study the two observed

variables follow a multivariate normal distribution. However, the theoret-

ical results in this paper do not assume normality, in fact we only rely on

very weak distributional assumptions.
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Our discussion and results are based on the assumption that the model

holds. This assumption simplifies the technical arguments, but it is often

criticized for being unrealistic. In reality any model will at best approxi-

mate the process which underlies the generation of observed variables. To

somehow ease the assumption of a well-specified model one could apply

the device of a sequence of local alternatives to the null hypothesis, i.e. a

sequence of population covariance matrices that converges to a population

covariance matrix in which the model holds. This relaxed assumption of

the correctness of the model is employed in Browne (1984), with analysis

following largely the same lines as carried out in this exposition. The main

conclusion is that TB is then asymptotically distributed as a non-central

chi-square with p∗ − q degrees of freedom.
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Appendix

We make the mild assumption that
√
n(θ̂n−θ0) is bounded in probability.

That is, we assume that for all ε > 0 there exists a number M such that

P (‖
√
n(θ̂n − θ0) ‖> M) < ε for all n.

A: Proof of Theorem 1

Let the gradient of F (θ | Vn) be denoted by

Ḟ (θ | Vn) ≡
(
∂F (θ | Vn)

∂θ1
, . . . ,

∂F (θ | Vn)

∂θq

)′
,

We assume that ∆0 and ∆̂ have full rank.

Applying the chain rule in matrix calculus (e.g., Magnus & Neudecker,

1999) the gradient can be expressed as

Ḟ (θ | Vn) = −2∆(θ)′Vn (s− σ(θ)) . (15)

Since θ̂n is the MD estimator we have Ḟ (θ̂n | Vn) = 0 and

0 = ∆̂′Vn (s− σ̂n) = ∆̂′Vn (s− σ0 − (σ̂n − σ0))

which we rewrite as

∆̂′Vn(σ̂n − σ0) = ∆̂′Vn(s− σ0). (16)

On the left-hand side, Taylor expansion of σ(θ) at θ0 gives

σ̂n − σ0 = ∆0(θ̂n − θ0) + r(θ̂n − θ0) (17)

where the remainder function r satisfies limu→0 r(u)/‖u‖ = 0 for a q-

vector u and the Euclidean norm ‖ ·‖ (see Magnus and Neudecker (1999)

for multivariate Taylor expansion). After multiplying (16) with
√
n and

combining with (17) we get

∆̂′Vn(∆0

√
n(θ̂n − θ0) +

√
nr(θ̂n − θ0)) = ∆̂′Vn

√
n(s− σ0). (18)

For the last term on the left-hand side it holds that

√
nr(θ̂n − θ0) =

√
n‖θ̂n − θ0‖

r(θ̂n − θ0)

‖θ̂n − θ0‖
P−→ 0

since
√
n(θ̂n − θ0) is bounded in probability. Therefore

∆̂′Vn∆0

√
n(θ̂n − θ0)

a
= ∆̂′Vn

√
n(s− σ0), (19)

where
a
= stands for “asymptotically equivalent”, meaning that the dif-

ference between the left- and right hand sides converges in probability

towards zero. Let us assume that the estimator is correctly specified, i.e.

that V = Γ−1. Since ∆̂
P→ ∆0 we can replace ∆̂ by ∆0 in (19) and

left-multiply by (∆′0Vn∆0)−1 to obtain

√
n(θ̂n − θ0)

a
= (∆′0Γ

−1∆0)−1∆′0Γ
−1√n (s− σ0) . (20)
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Now if x is a random vector with covariance matrix C, then y = Bx has

the covariance matrix BCB′. So it follows from (20) that the covariance

matrix of
√
n(θ̂n − θ0) converges in probability towards

ΩOPT = (∆′0Γ
−1∆0)−1∆′0Γ

−1·Γ·
(
(∆′0Γ

−1∆0)−1∆′Γ−1)′ =
(
∆′0Γ

−1∆0

)−1

for correctly specified MD estimation. The result for ΩSW is obtained by

replacing Γ−1 in (20) by V .

B: Proof of Theorem 2

We assume that the model holds and focus on the asymptotic distribution

of √
n(s− σ̂n) =

√
n(s− σ0)−

√
n(σ̂n − σ0). (21)

Using (17) again, together with the succeeding argument about the dis-

appearance of the remainder gives us the asymptotic equivalence

√
n(σ̂n − σ0)

a
= ∆0

√
n(θ̂n − θ0)

and combining this with equations (21) and (20), where we replace Γ−1

in (20) by V , it follows that

√
n(s− σ̂n)

a
= (I −∆0(∆′0V∆0)−1∆′0V ·

√
n(s− σ0)

= P ·
√
n(s− σ0)

where

P ≡ I −∆0(∆′0V∆0)−1∆′0V (22)

is a projection matrix. This follow from the fact that P is idempotent,

i.e. P 2 = P , which can be shown by straighforward calculation.

The range X of P consists of exactly those vectors x such that Px =

x:

(I −∆0

(
∆′0V∆0

)−1
∆′0V )x = x

⇐⇒ ∆0

(
∆′0V∆0

)−1
∆′0V x = 0

⇐⇒ ∆′0V x = 0,

where we have used that V is nonsingular and that ∆0 has full column-

rank q. Hence, P is the projection onto the subspaceX = Nullspace(∆′0V )

along the subspace

Y = Range(∆0

(
∆′0V∆0

)−1
∆′0V ) = Range(∆0).

The last identity again follows from the fact that ∆0 has full rank. The

dimension of X is p∗ − q since ∆′0V represents a linear transformation

from Rp∗ onto Rq of rank q. The theorem follows.

As a final note, it is not suprising that the residual asymptotically

resides in the subspace X in light of equation (15). That equation states

that the residual vector is in the nullspace of the matrix ∆̂′nVn, which

converges in probability to ∆′0V .
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C: Nested models

Suppose Model B has the free parameters θ1, . . . , θq, γ1, . . . γr. In Model

A this parameter set must satisfy r equality constraints, and we assume

that each equality constraint can be written as γj = cj(θ1, . . . , θq) for

j = 1, . . . , r where the cj are continuously differentiable functions. For

instance, cj(θ1, . . . , θq) = θi means that the free parameter γj in Model B

is in Model A restricted to be equal to the parameter θi. The restrictions

that makes Model A nested within Model B is therefore represented by

the differentiable mapping c from Rq into Rq+r defined by:

(θ1, . . . , θq) 7→ (θ1, . . . , θq, c1(θ1, . . . , θq), . . . , cr(θ1, . . . , θq)).

Now let θ01, . . . , θ
0
q , γ

0
1 , . . . γ

0
r be the unique parameter values such that

σB(θ01, . . . , θ
0
q , γ

0
1 , . . . γ

0
r ) = σ0. Since Model A is correctly specified

cj(θ
0
1, . . . , θ

0
q) = γ0

j for j = 1, . . . , r. Note that for Model A σA is the

composite function of the Model B σB and the function c:

σA(θ1, . . . , θq) = σB(c(θ1, . . . , θq)).

Hence, the multivariable chain rule can be applied (see p.91 in (Magnus

& Neudecker, 1999)):

∆0A = ∆0B ·Dc(θ01, . . . , θ0q), (23)

where Dc is the differential of c. Now, if z ∈ XB , then ∆′0BΓ−1z = 0,

so Γ−1z is orthogonal to the column space of ∆0B . By (23) this column

space contains the column space of ∆0A and hence Γ−1z is orthogonal to

the column space of ∆0A. Therefore ∆′0AΓ−1z = 0 and z ∈ XA, and

(2) follows.

D: Proof of Theorem 3

From (11) and ∆̂c
P−→∆0c we get

√
n∆̂′c(s− σ̂n)

a
= ∆̂′c

(
I −∆0

(
∆′0V∆0

)−1
∆′0V

)√
n(s− σ0)

a
= ∆′0c

(
I −∆0

(
∆′0V∆0

)−1
∆′0V

)√
n(s− σ0)

=
√
n∆′0c(s− σ0). (24)

By assumption (3)
√
n∆′0c(s−σ0) is asymptotically normally distributed,

and its asymptotic covariance matrix is ∆′0cΓ∆0c. It therefore follows

from (24) that
√
n∆̂′c(s− σ̂n) is also asymptotically normally distributed:

√
n∆̂′c(s− σ̂n)

d−→ N(0,∆′0cΓ∆0c). (25)

Now Proposition 2 is applicable, since the asymptotic covariance matrix

∆′0cΓ∆0c is non-singular, i.e. invertible. This non-singularity stems from

the fact that ∆0c has full rank, and that Γ is positive definite. Conse-

quently from Proposition 1 with
√
n∆̂c(s − σ̂n) taking the role of y we

obtain our main result.
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To see that the choice of orthogonal complement does not change the

value of TB , note that any two orthogonal complement matrices ∆1
c and

∆2
c can be related by a non-singular p∗−q by p∗−q matrixQ: ∆1

c = ∆2
c ·Q.

Using this relation and with the aid of basic matrix algebra it follows that

∆1
c(∆1

c
′
Γ∆1

c)−1∆1
c
′

= ∆2
c(∆2

c
′
Γ∆2

c)−1∆2
c
′
.

E: Proof of equation (14)

Without loss of generality we assume that the column vectors in the or-

thogonal complement has been normalized: ∆̂′c · ∆̂c = I. If the estimator

θ̂n is obtained by minimizing F , then the gradient in (15) must be zero:

∆̂′ ·Vn (s− σ̂n) = 0. This implies the existence of a p∗− q vector u such

that Vn (s− σ̂n) = ∆̂c · u. Next observe that

∆̂′cV
−1
n ∆̂c · ∆̂′cVn(s− σ̂n) = ∆̂′cV

−1
n ∆̂c∆̂

′
c∆̂c · u

= ∆̂′cV
−1
n ∆̂cu = ∆̂′cV

−1
n Vn (s− σ̂n)

= ∆̂′c(s− σ̂n).

It follows that
(
∆̂′cV

−1
n ∆̂c

)−1

· ∆̂′c(s− σ̂n) = ∆̂′cVn(s− σ̂n), and we get

(s− σ̂n)′∆̂c · (∆̂′cV −1
n ∆̂c)

−1∆̂′c(s− σ̂n) = (s− σ̂n)′∆̂c · ∆̂′cVn(s− σ̂n)

= (s− σ̂n)′∆̂c∆̂
′
c∆̂cu

= (s− σ̂n)′∆̂cu

= (s− σ̂n)′Vn (s− σ̂n) .

F: ML residuals for Model 1

Suppose the sample covariance matrix is S =

(
a b

b c

)
, and consider

the well-known maximum-likelihood fit function:

FML = ln |Σ(λ)|+ tr(SΣ−1(λ)) + C.

Differentiating with respect to λ gives

dFML

dλ
=

8λ3 + (4− 2a− 2c− 4b)λ

(2λ2 + 1)2
.

It follows that the ML estimate λ̂ satisfies

λ̂2 =
a+ 2b+ c− 2

4

and replacing this in the residual gives

s− σ̂n =

 a

b

c

−
 λ̂2 + 1

λ̂2

λ̂2 + 1

 =
1

4

 3a− 2b− c− 2

−a+ 2b− c+ 2

−a− 2b+ 3c− 2

 .
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Clearly this vector satisfies x+ 2y + z = 0, proving that the ML residual√
n(s− σ̂n) lies in the plane for any sample size n.
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x1

F

x2

δ1 δ2

λ λ

Figure 1: A simple factor model.
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ULS 2−1K−p (I ⊗ I)K−p
′

GLS 2−1K−p (S−1 ⊗ S−1)K−p
′

ML 2−1K−p (Σ(θ̂)−1 ⊗Σ(θ̂)−1)K−p
′

ADF Â−1

Table 1: Vn for four estimators
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0

X

Y

√
n(s− σ0)

√
n(s− σ̂)

Figure 2:
√
n(s− σ̂n) is the projection of

√
n(s− σ0).
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(a) Oblique perspective. (b) Edge-on perspective.

Figure 3: Model 1: GLS residuals for n = 250.
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(a) n = 50. (b) n = 1000.

Figure 4: Model 1: GLS residuals.
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x1

F

x2

δ1 δ2

λ1λ1 λ2

Figure 5: Model 2.
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(a) ML n = 50. (b) ML n = 250.

(c) GLS n = 50. (d) GLS n = 250.

Figure 6: Residuals for Model 2.
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