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Abstract

The Satorra Bentler (SB) and the Browne ADF chi-square statistics are used for testing structural

equation models with non-normal data. The relationships between the SB and ADF statistics and kurtosis

are developed and it is shown that the weighted deviations of the "population" true second-order moments

and the �tted second-order moments for these statistics tend to decrease with increasing kurtosis if the

model does not hold. The results predict that high kurtosis can lead to loss of power. The results are

obtained without simulation.
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1 Introduction

Structural equation modeling is widely used for studying relationships between observed and unobserved

(latent) variables, particularly in the social and behavioral sciences, see e.g., Hershberger (2003).

Various test statistics are used for testing structural equation models. One such test statistic is obtained

as n times the minimum of the log-likelihood �t function under multivariate normality, where N = n+1 is

the sample size, see e.g.,Jöreskog (1969). Another test statistic is n times the minimum of the generalized

least squares (GLS) �t function, see Jöreskog & Goldberger (1972) and Browne (1974).These test statistics

are here denoted c1 and c2, respectively.

If the model holds and the observed variables have a multivariate normal distribution both c1 and c2

have an approximately �2d distribution (d is the degrees of freedom) when n is large.

If the observed variables are non-normal, Satorra & Bentler (1988) proposed another test statistic c3

(often called the SB rescaled statistic) which is c1 or c2 multiplied by a scale factor, often called the Satorra-

Bentler scaling correction, which is estimated from the sample and involves an estimate of the asymptotic

covariance matrix (ACM) of the sample variances and covariances.

Although the asymptotic distribution of c3 is not known in general, the asymptotic distribution of c3

under the null hypothesis, and the �2d distribution agree in mean (Satorra & Bentler (1994)). Still under the

null hypothesis and if the distribution of the data is elliptical, Satorra and Bentler (1994, p. 414) conclude

"... the scaling correction provides an exact asymptotic chi-square goodness-of-�t statistic." Empirical

results suggests that c3 can also follow a chi -square distribution under certain robustness assumption (See

e.g.,Yuan & Bentler, 1998 and Yuan & Bentler, 1999).

The test statistic c3 is considered as a way of correcting c1 or c2 for the e¤ects of non-normality. In fact

the Satorra-Bentler correction can be applied to any member of the Swain family (Swain, 1975). See also

Satorra (2003, pp.61-62) for a discussion of the application of the scaling correction. In this paper however,

c3 will be the Satorra-Bentler correction applied to c2 .

Yet another test statistic, the ADF-statistic, here denoted c4 was proposed by Browne (1984). This
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is a test statistic valid even under non-normality. Browne (1984) showed that c4 has an asymptotic �2d

distribution under certain standard conditions.

In practice, c3 is often used as it seems to perform better than c4 particularly if N is not very large, see

e.g., Hu, Bentler, & Kano (1992). Since c3 and c4 depends on the ACM and the ACM depends on kurtosis,

c3 and c4 are a¤ected by kurtosis in the observed variables.

In this paper we develop the relationship between c3 and c4 and kurtosis and we show that on average

these test statistics tend to decrease with increasing kurtosis. The practical consequence of this is that

models that do not hold tend to be accepted by these tests if kurtosis is large. Although the results

developed here can be demonstrated by simulating and analyzing random samples, we will use a di¤erent

approach. Simulation studies depend on rather arbitrary conditions of the design of the simulation and

on how random variates are generated. For example, simulation studies depend on speci�c distributional

assumption of the data generating process. By contrast our results are obtained without simulating random

variables and they are valid under fairly general conditions.

Curran, West and Finch (1996) presented a simulation study of the SB and ADF test statistics where

they concluded: �The most surprising �ndings are related to the behavior of the SB and ADF test statistics

under simultaneous conditions of misspeci�cation and multivariate non-normality (Models 3 and 4). The

expected values of these test statistics markedly decreased with increasing non-normality"(Curran, West

and Finch, 1996, p.25). Given some assumptions, this paper provides an possible explanation for the

seemingly loss of power in such a situation.

2 The Distinction between the The Data Generating Process and The
Assumed Model

In this paper we study the behavior of the SB and ADF statistics under the combination of kurtosis and

misspeci�cation. To do this we consider the general factor analysis model :
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x = �x� + � ; (1)

where x is a k � 1 random vector of observables, �(l � 1) and �(k � 1) are uncorrelated random vectors

of latent variables with covariance matrices � and ��, respectively, assumed to be positive de�nite. The

matrix �x is a (k � l) matrix of unknown factor loadings. We also assume that E(�) = 0, E(�) = 0; and

V ar(�i) = 1; i = 1; 2; :::l: A method for studying this model is simulation, where one generates "sample

data" from a "true con�rmatory factor analysis model"

x = ��x� + �; (2)

where the matrices ��; �� and ��
� are �xed at convenient values. The "star" indicate population values.

For generating non-normal sample data there are several approaches e.g., see Fleishmann (1978), Vale and

Maurelli (1983) and Ramberg et al. (1979) to mention some. Since ��and ��
� are positive de�nite there

exists a (l � l) matrix T1and a (k � k) matrix T2 such that T1T01 = �� and T2T02 = ��
� . One way to

simulate data is to calculate x = ��x�+ �; where � = T1v1 and � = T2v2 and the l� 1 vector v1 and the

k� 1 vector v2 are vectors of independent drawings from a distribution having �nite moments up to order

four, and with mean vector 0 and variance and covariance matrix I. The covariance matrices for � and �

will then be �� and ��
� ; respectively. The asymptotic covariance matrix (ACM) of the sample variances

and covariances will depend on the kurtosis of the elements vi of the vectors v1and v2. The elements vi

can all have di¤erent values of kurtosis (see e.g.Mattson 1997). However, we use a di¤erent approach than

simulation: We calculate the asymptotic covariance matrix from the population (true model) instead of

generating a large sample and then estimate the asymptotic covariance matrix from this sample. In the

following we outline this procedure which is similar to simulation (for very large N). Instead of referring to

the term "true model", we will refer to the Data Generating Process (DGP).

Let (2) be the Data Generating Process (DGP). Following the derivations above, we write DGP on a

compact form:

Partition v0 = (v01 v
0
2); then DGP can be represented by

x = ��x� + � =
�
��xT1 T2

�� v1
v2

�
= Av : (3)
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The elements of v are independent but this does not imply that the elements of � = T1v1 are independent.

But it does imply that � and � are independent vectors. In the following we drop the "stars" used to

indicate the data generating process when there is no chance of mixing it up with the assumed model (see

below). It is only the DGP, where all the parameters are �xed, which is written in the compact form

x = Av . The assumed model, i.e., the model to be tested where normally there are restrictions on or

among the parameters, is not written in the compact form.

Browne & Shapiro (1988) considered the following general structure for an observable k � 1 random

vector x:

x = �+

gX
i=1

Aivi; (4)

where � is a constant vector, Ai is a constant k�mi matrix and the vi are mutually independent mi � 1

vector variates for i = 1; 2; : : : ; g.

Our DGP is a special case of (4), namely when � = 0 and each vi is a scalar random variable. Then Ai

is a column vector ai and (4) can be written

x = Av ; (5)

where A = [a1;a2; : : :ag] and v is a g � 1 ( where g = k + l) vector of independent random variables

having �nite moments up to order four. Equation (5) describes the data generating process (DGP), that

generates the observables. It is convenient to write DGP as (5) as one can induce non-normality in the

xi-variables by varying the kurtosis of the vi-variables and calculate the asymptotic covariance matrix as

a function of the kurtosis (see equations 10 and 12) .

The assumed model (AM), i.e., the model to be estimated and tested, is di¤erent from the DGP. We

say that AM holds if AM and DGP are structurally identical i.e., when AM is identically speci�ed as the

DGP, but di¤ers from DGP only by the fact that all parameters in DGP are �xed at the "true" values.

Otherwise the AM does not hold. In this paper we are interested in the e¤ects of kurtosis on the test

statistics that are used for testing the AM. However, instead of analyzing c3 and c4 from random samples,

we investigate what will happen to ( c3n ) and (
c4
n ) when n!1. This is done by studying miss-�t measures

of the weighted deviations of the "true" �0 and the �tted �(�0) moments , denoted C3 and C4 respectively
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.

Satorra (1989, 2003) developed a robustness theory for structural equation models where he assumed

population drift (see eg., Browne, 1984; Wald, 1943). We do not make this assumption in this paper.

Generally the kurtosis of the observed variables xi is not identical to the kurtosis of the variables vi.

Even if there is no exact overlap with models given by (5) and the LISREL models, the results derived

in this paper should be valid for any structural equation model con�ned to the class of models given by

equation (5) where the elements of v; for the DGP, are independent. This assumption should cover many

situations arising in simulation studies e.g,. for a CFA-model given by (3), where � = T1v1 and � = T2v2

and the vector v1 and the vector v2 are vectors of independent drawings from a distribution having �nite

moments up to order four, and with mean 0 and variance 1.

In the next section we consider three examples: In example A we study an exploratory factor analysis

model as the AM. In examples B and C, AM is a con�rmatory factor analysis model. The AM, in both

cases, are two di¤erent, structurally misspeci�ed versions of DGP.

3 Three Examples

Consider the following three examples, here illustrated with k = 6. Section 7 illustrates these examples

numerically.

Example A Researcher A is interested in exploratory factor analysis and believes that there are two

latent factors. However, he/she realizes that there may be several minor factors a¤ecting the observed

variables and these may contribute to minor correlations between the observed variables, see e.g., Tucker,

Koopman, & Linn (1969) or MacCallum & Tucker (1991). Let the DGP be of the form (2), where the

elements of � are independent i.e,. � = v1 and � = B�v2, where the elements v2 are independent. B� is

not a diagonal matrix. The DGP may then be represented by

x = ��xv1 +B
�v2 = (�

�
x B

�)

�
v1
v2

�
= Av: (6)

5



The covariance matrix of �, ��
� = B

�B�0, ��x consists of the factor loadings of the major factors and

B� consists of the factor loadings of the minor factors.

Then the matrix A may be represented by

A =

0BBBBBB@
��11 ��12 b�13 b�14 b�15 b�16 b�17 b�18
��21 ��22 b�23 b�24 b�25 b�26 b�27 b�28
��31 ��32 b�33 b�34 b�35 b�36 b�37 b�38
��41 ��42 b�43 b�44 b�45 b�46 b�47 b�48
��51 ��52 b�53 b�54 b�55 b�56 b�57 b�58
��61 ��62 b�63 b�64 b�65 b�66 b�67 b�68

1CCCCCCA ; (7)

where the ���s are factor loadings on the major factors (stars are used to indicate the true, �xed ��s ) and

the b��s are factor loadings on the minor factors. The b��s are small relative to the ���s. The AM is the

model (1) with

�x =

0BBBBBB@
�11 �12
�21 �22
�31 �32
�41 �42
�51 �52
�61 �62

1CCCCCCA ; (8)

and with the elements of � uncorrelated, i.e., with �� diagonal. For identi�cation of the AM we �x

�12 = 0. The AM is misspeci�ed because the elements of B�v2 in DGP are correlated, contrary to what

is assumed in exploratory factor analysis where the factors �1 and �2 are supposed to account for the

correlations between the x-variables.

Example B Researcher B is interested in con�rmatory factor analysis and speci�es AM as a model of

the form (1) with two correlated factors �1 and �2. Let � be the correlation between �1 and �2. The AM is

�x =

0BBBBBBBB@

�11 0
�21 0
�31 0
0 �42
0 �52
0 �62

1CCCCCCCCA
;

� =

�
1
� 1

�
;

�� = diag(�1; �2; �3; �4; �5; �6):

Suppose the true mechanism (DGP) that generates the data is one where ��32 6= 0 in ��x. Let

T1 =

�
1 0

��
p
1� ��2

�
;
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T2 = diag(
q
��1;
q
��2;
q
��3;
q
��4;
q
��5;
q
��6):

Then T1T01 = �
�, T2T02 = �

�
� , and

A = (��xT 1 T2) =

0BBBBBBB@

��11 0
p
��1 0 0 0 0 0

��21 0 0
p
��2 0 0 0 0

��31 + �
�
32�

� ��32
p
1� ��2 0 0

p
��3 0 0 0

��42�
� ��42

p
1� ��2 0 0 0

p
��4 0 0

��52�
� ��52

p
1� ��2 0 0 0 0

p
��5 0

��62�
� ��62

p
1� ��2 0 0 0 0 0

p
��6

1CCCCCCCA
:

In this case, model AM is misspeci�ed because ��32 6= 0. We investigate what happens when ��32 increases.

Example C Researcher C estimates a model (AM) of the form (1) with one factor. However, the true

state of a¤airs is that there are two factors with correlation �� 6= 0 and �� < 1 . The DGP is the same

as in Example B, but with ��32 = 0. We investigate what will happen when �� increases i.e., when the

misspeci�cation decreases.

4 The Asymptotic Covariance Matrix

Let �0 be the covariance matrix of the data generating process and let S be a sample covariance matrix

estimated from a random sample ofN = n+1 independent observations of x. Let s = (s11; s21; s22; : : : ; skk)0

be a vector of order 1
2k(k + 1) � 1 of the non-duplicated elements of S. Let k

? = 1
2k(k + 1). Similarly,

let �0 be a vector of order k? of the non-duplicated elements of �0. S converge in probability to �0 as

n ! 1, i.e., s p�! �0. It follows from the multivariate Central Limit Theorem (see e.g., Anderson, 1984,

p.81, Theorem 3.4.3) that

n
1
2 (s� �0)

d�! N(0;
); (9)

where d�! denotes convergence in distribution. Browne & Shapiro (1988, Equation 2.7) give 
 for x in (4)

as


 = K0

(
2(�0 
�0) +

gX
i=1

(Ai 
Ai)Ci(A
0
i 
A0

i)

)
K; (10)

where �0 =
gP
i=1

(Ai�iA
0
i); and �i is the covariance matrix of vi and where K is the matrix Kk of order

k2 � k? de�ned in Browne (1974, Section 2) or in Browne (1984, Section 4), and 
 denotes the Kronecker

product. The matrix Ci is the fourth order cumulant matrix of vi, i = 1; 2; : : : ; g, where g = k + l:

7



The mean vector of x in (5) is 0 and, since the elements of v are independent with unit variances, the

covariance matrix of x is

�0 =

gX
i=1

(aia
0
i) = AA

0 : (11)

Let �4i = E(v
4
i ). The matrix Ci in (10) is the 1� 1 matrix with element 
2i = �4i � 3, the fourth order

cumulant or kurtosis of vi. Then (10) can be written in the following form


 = K0

(
2(�0 
�0) +

gX
i=1

(ai 
 ai)(ai 
 ai)0
2i

)
K : (12)

Let G = [(a1 
 a1); (a2 
 a2); : : : ; (ag 
 ag)] and let M = diag(
21; 
22; : : : ; 
2g). G is of order k2 � g

and M is of order g � g. Then


 = K0[2(�0 
�0) +GMG0]K : (13)

If vi is normally distributed, then �4i = 3 and 
2i = 0. Then the corresponding diagonal element of M is

zero. If vi is normally distributed for all i, then M = 0 so that (13) reduces to


 = K02(�0
�0)K : (14)

It is convenient to use the notation 
NNT for the matrix in (13) and the notation 
NT for the matrix in

(14). Thus, from (13) it follows that


NNT = 
NT +K
0GMG0K : (15)

A special case of (13) is when all elements of v have the same kurtosis so that 
2i = 
2, say, which is the

same for all i. Then M = 
2I.

Let WNT and WNNT be consistent estimates of 
NT and 
NNT; respectively. For example, let the

elements of the matricesWNT andWNNT be

wNTghij = sgishj + sgjshi; (16)

wNNTghij = mghij � sghsij ; (17)

where

mghij = (1=n)
NX
a=1

(zag � �zg)(zah � �zh)(zai � �zi)(zaj � �zj) : (18)

Note thatWNT andWNNT are estimated without the use of the model.
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5 Three Test Statistics

Consider a general model �(�), where � is a parameter vector of order t < k�. The GLS �t function of

Jöreskog & Goldberger (1972) is

F [S;�(�)] =
1

2
tr
�
S�1 [S��(�)]

	2
: (19)

Following Browne (1974), and since

W�1
NT =

1

2
[K0(S
 S)K]�1 = 1

2
D0(S�1 
 S�1)D ;

where D = K(K0K)�1, this can also be written

F [s;�(�)] =
1

2
[s� �(�)]0D0(S�1 
 S�1)D [s� �(�)] : (20)

The �t function F is to be minimized with respect to the model parameters �. Let b� be a minimizer of
F [s;�(�)] and let �0 be a minimizer of F [�0;�(�)]. We assume that �0 is unique and, since the model

does not hold, we have F [�0;�(�0)] > 0.

The test statistic c2 referred to in the introduction is n times the minimum value of F in (19) or (20).

Following Browne (1984), equations 2.20b and 2.20a), this can also be written as

c2 = n(s� b�)0 hW�1
NT �W

�1
NT
b�( b�0W�1

NT
b�)�1 b�0W�1

NT

i
(s� b�) (21)

= n(s� b�)0 b�c( b�0
cWNT

b�c)
�1 b�0

c(s� b�); (22)

where b� = �(b�), b�c is an orthogonal complement to the matrix b� = @�=@� evaluated at b�.
The test statistic c3 referred to in the introduction is

c3 =
d

h
c2; (23)

where d is the degrees of freedom and

h = tr
nh
W�1

NT �W
�1
NT
b�( b�0W�1

NT
b�)�1 b�0W�1

NT

i
WNNT

o
(24)
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= tr
nh b�c( b�0

cWNT
b�c)

�1 b�0
c

i
WNNT

o
(25)

h = tr[( b�0
cWNT

b�c)
�1( b�0

cWNNT
b�c)]: (26)

The test statistic c4 referred to in the introduction is

c4 = n(s� b�)0 b�c( b�0
cWNNT

b�c)
�1 b�0

c(s� b�): (27)

Still with b� evaluated at the GLS estimator b�, it follows from Browne (1984, Proposition 4) that c4 has

an asymptotic �2d distribution if the model holds. This is valid also if b� is evaluated at the ML estimatorb�:Some computer programs for structural equation modeling (e.g., LISREL) uses �̂ instead of s in (16),
where �̂ is the vector of the non-duplicated elements of �(b�). If the (assumed) model is misspeci�ed,WNT

is not a consistent estimate of 
NT but of


AMNT = K0[2(�(�0)
�(�0)]K: (28)

If the (assumed) model does not hold, 
AMNT 6= 
NT.

The three test statistics c2, c3, and c4 are all of the form nĈ, where Ĉ converge in probability to a

constant C, say. To evaluate C, we replace s by �0, b� by �(�0), and b�c by �0c, where �0c is evaluated

at �0. Furthermore,WNT andWNNT are replaced by 
NT and 
NNT. Then we obtain the de�nitions

C2 = (�0 � �(�0))0�0c(�
0
0c
NT�0c)

�1�0
0c(�0 � �(�0): (29)

C3 =
d

H
C2: (30)

H = tr[(�0
0c
NT�0c)

�1(�0
0c
NNT�0c)]: (31)

C4 = (�0 � �(�0))0�0c(�
0
0c
NNT�0c)

�1�0
0c(�0 � �(�0): (32)

If the model holds, then �0 = �(�0) and C2, C3, and C4 are all zero. If the model does not hold, then

Ci > 0; i = 1; 2; 3 and nCi ! +1 if n ! +1. De�ning Ci = p lim( cin ) requires a less casual de�nition

than the one given here, we therefore de�ne Ci , as mis-�t measures of weighted deviations of the "true"

�0� and �tted �(�0) moments. Notice that Ci plays the same role as F0 (F0 = minF [�0;�(�0)], the
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minimum value of the �t function when the model is �tted to the population covariance matrix) does when

the "chi-square" is n times the minimum value of a suitable F .

In the following sections we investigate what happens to C3 and C4 when the model does not hold and

kurtosis increases.

6 The E¤ect of Kurtosis in DGP

In this section we give a formal proof on how the kurtosis in the asymptotic covariance of the form (10)

a¤ect C3 and C4.

6.1 The SB-Test

Assuming that �0c has rank d, we obtain H as

H = tr[(�0
0c
NT�0c)

�1(�0
0c
NNT�0c)] : (33)

The in�uence of kurtosis on H is only via the diagonal matrix M. All other matrices in (15) are inde-

pendent of kurtosis. From (15) we have

�0
0c
NNT�0c =�

0
0c
NT�0c +�

0
0cK

0GMG0K�0c : (34)

Hence,

(�0
0c
NT�0c)

�1(�0
0c
NNT�0c) = Id + (�

0
0c
NT�0c)

�1PMP0 ; (35)

where Id is the identity matrix of order d and

P =�0
0cK

0G : (36)

Taking the trace of (35), gives

H = d+ tr(QM) ; (37)

where

Q = P0(�0
0c
NT�0c)

�1P : (38)

Q is symmetric and of order g � g. Since M is diagonal,

H = d+

gX
i=1

qii
2i : (39)
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Q is positive semide�nite and if Q 6= 0, qii > 0 for at least one i. Thus, if 
2i !1 for all i, it follows that

H !1 and C3 ! 0. If 
2i = 
2 for all i, then

H = d+ (trQ)
2 (40)

increases linearly with 
2. It is also interesting to note that if 
2i < 0 for all i, then H < d implying

C3 > C2:

The case of Q = 0 will imply C3 = C2:The fact that Q = 0 can be a consequence of P = 0. From

calculation involving some simple examples we have observed the following: If we are in the case of

Asymptotic Robustness (AR), (See eg., Satorra, 2003), and the assumed models holds, then P = 0 and

hence Q = 0:On the other hand if AR is not present neither Q or P is the zero matrix.

Next consider the case whenWNT is not a consistent estimate of 
NT but of 

AM
NT in (28). Then

H = tr[(�0
0c


AM
NT �0c)

�1(�0
0c
NNT�0c)]

= tr[(�0
0c


AM
NT �0c)

�1(�0
0c
NT�0c +�

0
0cK

0GMG0K�0c)]

= m+ tr[(�0
0c


AM
NT �0c)

�1PMP0] ;

where

m = tr[(�0
0c


AM
NT �0c)

�1(�0
0c
NT�0c)] ; (41)

Then

H = m+ tr(QAMM); (42)

where

QAM = P0(�0
0c


AM
NT �0c)

�1P: (43)

QAM is positive semide�nite and if QAM 6= 0, qAMii > 0 for at least one i. Thus, if 
2i !1 for all i, it

follows that H !1 and C3 ! 0.

6.2 The ADF-Test

Olsson et al. (2003) showed that F0 is a non-increasing function of kurtosis when b� is evaluated at the
WLS estimator b�: The proof presented here is more general since it does not restrict only to the WLS
estimator, but include ML, GLS and ULS as well.
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For the proof of C4 we make use of 3 lemmas, they are presented without any proofs since they are only

simple extensions of Theorem 23 and 24 in Magnus & Neudecker (1999, p.22).

Lemma 1: Let A be a positive semide�nite matrix of order p� p and B a matrix of order q � p. Then

BAB0 is positive semide�nite.

Lemma 2: Let E and F be positive semide�nite matrices of order p � p with E � F and let B be a

matrix of order q � p. Then BEB0 � BFB0.

Lemma 3: Let A and B be positive de�nite matrices of order p� p. If A � B then B�1 � A�1.

Theorem 1: The ADF statistic, here denoted C4; will either decreases or remain constant when 
2i

increases for any i.

Proof: Let 
 = (
21; 
22; : : : ; 
2g)
0. Thus, 
 contains the diagonal elements of M. Consider C4(
) in

(32) as a function of 
 and let 
(1) and 
(2) be two vectors such that 
(1)i � 
(2)i ; i = 1; 2; : : : ; g. We will

show that C4(
(1)) � C4(
(2)).

C4(
) in (32) depends on kurtosis only via the matrix 
NNT. Olsson et.al. (2003, Proposition 1) showed

that


NNT(

(1)) � 
NNT(
(2)): (44)

From Lemma 2 it follows that

�0
0c
NNT(


(1))�0c ��0
0c
NNT(


(2))�0c: (45)

Then from Lemma 3 we have

(�0
0c
NNT(


(1))�0c)
�1 � (�0

0c
NNT(

(2))�0c)

�1: (46)

Let u =�0
0c[�0 � �(�0)]. Using Lemma 2 again shows that

u0(�0
0c
NNT(


(1))�0c)
�1u � u0(�0

0c
NNT(

(2))�0c)

�1u : (47)

Hence, C4(
(1)) � C4(

(2)), i.e., C4 either decreases or remains constant when 
2i increases for any i.

The illustrative examples in Section 7 shows that C4 can decrease with increasing kurtosis.
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6.3 Conclusion

We have shown that C3 decreases towards zero when 
2i increases towards in�nity for all i. Note that 
2i

increases for all i, but they can increase at di¤erent rate. We have also shown that C4 either decreases or

remains constant when 
2i increases for any i. For C3; this rests on the fact that the scaling correction

d
H approaches zero when 
2i increases towards in�nity for all i . As noted in the intoduction the Satorra-

Bentler correction can be applied to any member of the Swain family (Swain, 1975), C3 decreases towards

zero e.g., for ML, GLS and ULS. These results are valid for any structural equation model as long as the

elements of the vector v for the DGP are independent, conditions that holds in most simulation studies.

A practical consequence is that misspeci�ed models can be accepted if kurtosis is large. Andreassen,

Lorentzen & Olsson (2006) reported a signi�cant drop in the chi-square statistic when they compared the

Normal theory chi-square with the ADF- and SB - statistics (ML- Chi-square = 1769.36, SB-Chi-square =

1212.51 and ADF-Chi-square = 518.94). They studied a simpli�ed model (misspeci�ed) of a Satisfaction

Model in marketing using a large data set from a satisfaction survey. The number of observed variables

in the model was 21, degrees of freedom was 182 and the univariate kurtosis was ranging from -0.5 up to

10.5.

This seemingly low power is not due to the statistics but to their application to misspeci�ed models in

combination with data with high kurtosis. We think that researchers should be aware of this.

7 Numerical Examples and illustrations

In this section we illustrate the three examples in Section 3 numerically. Since we are studying C3 and C4;

the sample size N = n+ 1 is out of the consideration. But to get LISREL run we have to specify a value

for N. In the three following examples N = 101 for convenience. This is arbitrary.
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7.1 Example A

For Example A we take A in (5) as

A =

0BBBBBB@
:9 :0 :5 :2 :1 :2 :2 :2
:7 :2 :2 :5 :2 :2 :2 :1
:8 :2 :2 :2 :5 :2 :3 :2
:3 :6 :2 :1 :2 :5 :2 :2
:2 :7 :2 :2 :2 :2 :5 :2
:2 :6 :1 :2 :2 :3 :2 :5

1CCCCCCA ; (48)

and, to begin with, we take vi to have the kurtosis 
2i = 
2, the same for all i.

From A we compute �0 = AA0. Matrix �(�0) and �0c are obtained by �tting the two-factor model to

�0: The parameter �12 is �xed at zero to make the two-factor model identi�ed.

Using �0, �(�0), and �0c all the matrices required to compute C2, C3, and C4 can be computed as

functions of 
2. Table 1 gives the values of C2, C3, and C4 for 
2 = �2; 0; 20; 30; 50. In the �gures the

values can be observed over the interval 0 � 
2 � 50: For convenience, the values of C2, C3, and C4 have

been multiplied by 100.

(INSERT TABLE 1 ABOUT HERE)

Table 1 shows that: C2 does not depend on kurtosis. If 
2 = 0, then C2 = C3 = C4. If 
2 < 0, then

C2 < C3 and C2 < C4.

If 
2 > 0, then C2 > C3 and C2 > C4.

Both C3 and C4 decreases monotonically with increasing values of 
2 and C3 decreases faster than C4.

These characteristics can also be seen in Figure 1 which shows C2, C3, and C4 as smoothed functions of


2 over the interval 0 � 
2 � 50.

(INSERT FIG. 1 ABOUT HERE)

We also consider a case when only one of the vi have a kurtosis. For example, let 
21 � 0 and 
2i = 0

for i = 2; 3; : : : ; 8. The resulting C3 and C4 are given in Table 2. As in the previous case both C3 and C4

decreases monotonically with increasing values of 
2; and C4 appears to decrease slightly faster than C3.

We also observe that the decrease is very small.

(INSERT TABLE 2 ABOUT HERE)
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Example B

For Example B we take �� = 0:6 so that
p
1� ��2 = 0:8 and A in (5) as

A =

0BBBBBBB@

:9 :0 :5 :0 :0 :0 :0 :0
:8 :0 :0 :5 :0 :0 :0 :0

:7 + ����32
��
�
32

p
1� ��2 :0 :0 :5 :0 :0 :0

:6�� :6
p
1� ��2 :0 :0 :0 :5 :0 :0

:7�� :7
p
1� ��2 :0 :0 :0 :0 :5 :0

:8�� :8
p
1� ��2 :0 :0 :0 :0 :0 :5

1CCCCCCCA
; (49)

where ��32 = 0:1; 0:3; 0:5. With �0 = AA0 we �t a two-factor con�rmatory factor model with �32 = 0:

Matrices �(�0) and �0c can be obtained as before.

(INSERT TABLE 3 ABOUT HERE)

Table 3 gives values of C3 for di¤erent values of �
�
32 and increasing values of 
2.

It is seen that: C3 increases with increasing values of �32.For each value of �32, C3 decreases monotonically

with increasing values of 
2.

Table 4 gives values of C4 for di¤erent values of �32 and increasing values of 
2.

(INSERT TABLE 4 ABOUT HERE)

Again we see that:C4 increases with increasing values of �32.For each value of �32, C4 decreases monoton-

ically with increasing values of 
2.

Comparing Tables 3 and 4 it seems that C4 decreases faster than C3 with increasing values of 
2. This

holds for all three values of �32. The same characteristics can be seen in Figure 2 and Figure 3 which give

C3 and C4, respectively, as smoothed functions.

Since the starting point at 
2 = 0 for each value of �32 is the same in Figures 2 and 3 it is clear that

C4 decreases much faster than C3, and one might think that all three curves goes asymptotically to zero

when 
2 ! +1.

(INSERT FIG 2 AND FIG 3 ABOUT

HERE)

7.2 Example C

In example C we take A as in Example B but with ��32 = 0. The DGP is a two-factor model with

correlation �� < 1. The AM is a one-factor model which is the same as DGP with �� = 1. We investigate
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what happens if �� increases.

Matrices �0; �(�0) and �0c can be obtained as before.

Table 5 and 6 give values of C3 and C4 for increasing values of �
� and increasing values of 
2.

We see that: Both C3 and C4 decrease with increasing values of �
�.For each value of ��, both C3 and

C4 decreases monotonically with increasing values of 
2.

(INSERT TABLE 5 AND TABLE 6 ABOUT

HERE)

Comparing Tables 5 and 6 it seems that C4 decreases faster than C3 with increasing values of 
2. This

holds for all three values of ��.

Figure 4 shows C3 as a smoothed function of 
2 for �
� = 0:5; 0:7; 0:9 and Figure 5 shows C4 as a smoothed

function of 
2 for the same value of �
�. It is seen that C4 decreases much faster than C3. At 
2 = 50, C4

takes almost the same value for all three values of ��. For the most severely misspeci�ed model, i.e., when

�� = 0:5, C3 drops 61.5% while C4 drops 93.5% when 
2 goes from 0 to 50. On the other hand, when

�� = 0:9, C3 drops only 27.6% while C4 drops 77.5% when 
2 goes from 0 to 50.

(INSERT FIG 4 AND FIG 5 ABOUT

HERE)

8 Discussion and Further Research

We have shown that the population value of the scaling correction of the mean corrected SB statistic

decreases towards zero with increasing kurtosis. Furthermore, we have shown that C4 is a non-increasing

function (i.e., either decreases or remains constant) of kurtosis. Thus, it is reasonable to conjecture that

the test statistics c3 and c4 under e.g., an elliptical distribution will loose power as a function of increas-

ing kurtosis in large samples. Our illustrating examples indicate that the decrease is stronger the more

misspeci�ed the model is. This holds in all situations. Although the data generating process that we

have chosen is similar to procedures used in simulation studies, our results have been obtained without

simulations. But, the results are in line with the results in the simulation study reported by Curran, West
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and Finch (1996), and they are also supported by a simple simulation example in this paper.

It is not unreasonable that the results also are valid for more general processes. Further research should

also include situations where 
2i ! 1 only for subsets of the vector v: In the examples (A, B and C)

we have calculated the matrix Q (see equations 45 and 46). In example A, where ��� is not a diagonal

matrix it is hard to see any clear structure in the matrix Q: But in examples B and C, where ��� is

diagonal, Q(8 � 8) is of the form Q =

�
E 0
0 0

�
and E is (2 � 2). In e.g., example B when ��32 = 0:5,

E =

�
0:00274 0:01608
0:01608 0:09445

�
. From equation (46) it is relatively easy to observe that C3 is hardly a¤ected

by the kurtosis in position v1;much more by the kurtosis in position v2; but nothing from positions v3 to

v8. It would be of interest to focus on the relationship between the data generating process, the assumed

model and the general structure of Q. Referring to Satorra (1989, 2003) and beeing in an asymptotic

robustness situation and assuming that AM holds we conjecture that the matrix P of the form (36) is the

zero matrix implying that Q = 0:
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2 C2 C3 C4
-2 6.48 7.07 6.92
0 6.48 6.48 6.48
20 6.48 3.55 4.71
30 6.48 2.89 4.26
50 6.48 2.11 3.62

Table 1: Values of C2 , C3 , C4 for increasing values of 
2
All numbers have been multiplied by 100


21 C3 C4
-2 6.4824 6.4824
0 6.4821 6.4821
10 6.4806 6.4803
30 6.4777 6.4767
50 6.4748 6.4732

Table 2: Values of C3 , C4 for increasing values of 
21
All numbers have been multiplied by 100

��32

2 0.1 0.3 0.5
-2 1.18 7.30 13.26
0 1.18 7.20 12.94
10 1.16 6.65 11.53
50 1.10 5.09 8.05

Table 3: Values of C3 for di¤erent values of �32 and increasing values of 
2
All numbers have been multiplied by 100
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��32

2 0.1 0.3 0.5
-2 1.20 8.31 16.06
0 1.18 7.20 12.94
10 1.05 4.33 6.56
30 0.87 2.41 3.30
50 0.74 1.67 2.21

Table 4: Values of C4 for di¤erent values of �32 and increasing values of 
2
All numbers have been multiplied by 100

��


2 0.5 0.7 0.9
-2 31.81 22.72 7.45
0 29.72 21.73 7.34
10 22.57 17.83 6.82
30 15.20 13.12 5.97
50 11.46 10.38 5.31

Table 5: Values of C3 for di¤erent values of � and increasing values of 
2
All numbers have been multiplied by 100

��


2 0.5 0.7 0.9
-2 70.14 35.84 8.51
0 29.78 21.73 7.34
10 7.68 7.32 4.35
30 3.15 3.09 2.39
50 2.01 1.94 1.65

Table 6: Values of C4 for di¤erent values of � and increasing values of 
2
All numbers have been multiplied by 100

C 2

C 3

C 4

0 1 0 2 0 3 0 4 0 5 0 6 0
2

1

2

3

4

5

6

7

Figure 1: C2 , C3 and C4 as functions of 
2
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Figure 2: C3 as a function of 
2 for �
�
32 = 0:1; 0:3; 0:5

Figure 3: C4 as a function of 
2 for �
�
32 = 0:1; 0:3; 0:5
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Figure 4: C3 as a function of 
2 for �
� = � = 0:5; 0:7; 0:9

Figure 5: C4 as a function of 
2 for �
� = � = 0:5; 0:7; 0:9
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