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Abstract. We provide a framework for motivating and diagnosing the functional form in

the structural part of nonlinear or linear structural equation models when the measurement

model is a correctly specified linear confirmatory factor model. A mathematical population

based analysis provides asymptotic identification results for conditional expectations of a

coordinate of a endogenous latent variable given exogenous and possibly other endogenous

latent variables, and theoretically well-founded estimates of this conditional expectation are

suggested. Simulation studies show that these estimators behave well compared to presently

available alternatives. Practically, we recommend the estimator using Bartlett factor scores

as input to classical non-parametric regression methods.
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1. Introduction

Structural equation models (SEMs) describe how an endogenous latent random vector η is

influenced by an exogenous random vector ξ as well as coordinates of η, where (ξ′, η′) belong to

a randomly chosen person in a population. Usually, both vectors are latent and continuous. The

added complexity of this latency may explain the current sparsity of tools for motivating and

diagnosing the functional form of this influence. This paper provides a population based the-

oretical foundation for non-parametrically estimating the functional forms of the relationships

between the coordinates of (ξ′, η′)′ that is based on Bartlett (1937) factor scores computed from

the observables measuring η and ξ. The population based perspective of the paper means that

we ignore sampling error for mathematical convenience, which correspond roughly to assuming

that the sample-size is large.

Even from a population perspective, the factor scores, say, ξ̈ and η̈, approximate the latent

variables ξ and η respectively with high precision only when the number of observable variables

that measure them is sufficiently high (Krijnen, 2004, 2006a, 2006b). For a low number of

measurement variables, each individual factor score may still be a low precision approximation

to the corresponding true latent variable. This is sometimes called factor indeterminacy (see

e.g. Grice, 2001). Still, this paper shows that trend estimates based on factor scores can work
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well in realistic conditions, and that what matters most for the quality of the trend estimate

is the number of measurement variables dx of ξ. Loosely speaking, the reason for this is as

follows: The trend estimate is based on averaging observations of η̈ for a given local range of

observations of ξ̈. This approximates the true trend defined as averages of observations of η

for a given local range of observations of ξ. The averaging of η̈ cancels completely out the

mean zero approximation error η̈ − η, but the same effect is not present for the local range of

observations of ξ̈ as an approximation to the local range of observations of ξ, which improves

only as dx increases.

With the caveat that individual factor scores may be rough approximations to the latent

variables, scatter plots of factor scores with trend estimates can still motivate and diagnose

functional forms in SEMs in much the same way as scatter plots and superimposed trends

are commonly used in applied regression analysis (see, e.g., Fox & Weisberg, 2011; Weisberg,

2005). While some specification tests or tests for quadratic and interaction terms for linear

SEM exists (Büchner & Klein, 2020; Nestler, 2015), trend estimates of the functional form

in SEMs are useful also for linear SEM, as traditional covariance based tools such as the chi

square goodness of fit test and its robustified variants may have zero power towards non-linear

alternatives (Mooijaart & Satorra, 2009).

In this paper, ξ and η are assumed to be latent and measured via a correctly specified linear

factor model, as specified shortly. This means that we consider diagnostics or motivation of the

measurement model as outside the scope of the present paper.

We will later assume that the error terms of the factor model and the factors are independent,

and that the factors are continuous variables. This can only happen if the observed variables are

continuous (see Appendix G in the online supplementary material). While treating ordinal data

as continuous is sometimes justified under additional assumptions (Foldnes & Grønneberg, 2022;

Grønneberg & Foldnes, 2022), this paper only deals with continuous observations. Ordinal

data models, such as item response theory or threshold models, are outside the scope of the

present paper.

The trend estimates we consider are non-parametric regressions for the structural connections

between the coordinates of (ξ′, η′)′. If Eη exists, then the conditional expectation E[η|ξ] exists

(see Appendix K in the online supplementary material for a review of conditional expectations),

which implies that

(1) η = H(ξ) + ζ, ζ := η − E[η|ξ], H(x) = E[η|ξ = x], E[ζ|ξ] = 0.

Recall that E[ζ|ξ] = 0 implies Cov (ϕ(ξ), ζ) = 0 for all functions ϕ (see Appendix K). This is

stronger than merely assuming Cov (ξ, ζ) = 0, but weaker than independence between ζ, ξ as

this is equivalent to Cov (ϕ(ξ), %(ζ)) = 0 for any functions ϕ, %.

In eq. (1), we considered the total effect of ξ onto η (for an overview of linear mediation

analysis see MacKinnon, Fairchild, & Fritz, 2007). By the same reasoning, we can consider

each coordinate ηj of η separately, conditioning ηj not just on ξ, but instead on both ξ and the

connections from η substantive knowledge dictates influences ηj . If the substantive knowledge

is correct, a proposition usually not fully identified from data alone (Bollen, 1989; Jöreskog,
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Olsson, & Wallentin, 2016), this non-parametrically estimates the trend of a full SEM. This

approach, which we call the component-wise approach, is more fully described and exemplified

in Appendix B in the online supplementary material.

Algorithmically, the only difference between the component-wise approach and the reduced

form approach considered in eq.(1) is the names of the variables involved. To reduce the

notational burden of the paper, we will therefore focus the main text on estimating H in the

reduced form representation of eq. (1). While the component-wise approach is of higher practical

interest in most cases, its mathematics is exactly the same as the reduced form approach if we

re-label the variables.

To illustrate the difference between the component-wise and reduced form approaches, con-

sider the simple system

η1 = ξ2
1 + z1, η2 = η1 + ξ1 + z2 = ξ1 + ξ2

1 + z1 + z2.

For this illustration assume that the error terms z1, z2 and the exogenous variable ξ1 are zero

mean and independent. We first consider η1. In both the component-wise and the reduced

form approaches, we consider E[η1|ξ1] = ξ2
1 , showing that z1 is also the error term induced by

the conditional expectation representation, i.e., z1 = ζ1 := η1 − E[η1|ξ1]. We then consider on

η2. In the component-wise approach, we calculate E[η2|η1, ξ1] = η1 + ξ1, which is linear. The

error term z2 is then the error term induced by this conditional expectation calculation, i.e.,

z2 = η2−E[η2|η1, ξ1]. From the expanded system shown at the end of the above display, we also

deduce the reduced form trend E[η2|ξ1] = ξ1 + ξ2
1 , which is quadratic, with an induced error

term ζ2 := z1 + z2 = η1 − E[η2|ξ1]. We see that in both cases, we detect a non-linear trend in

the system. With structural knowledge, we are able to further detect that the non-linear trend

affects only η1 directly. More comprehensive examples and analytical examples are provided in

Appendix B in the online supplementary material.

Our suggested empirical approach is based on plotting factor scores together with a non-

parametric estimate of H to motivate or diagnose the functional form of a SEM. The non-

parametric estimate will be rough, and is in most cases best suited as a guide to model formu-

lation and diagnostics – not as a standalone estimation technique. See Appendix A in the online

supplementary material for a simple numerical illustration. Once an appropriate parametric

model is identified, it is then estimated via standard techniques such as the classical linear

approach, the latent moderated structured equations approach (LMS, Klein & Moosbrugger,

2000) or the unconstrained product indicator approach (UPI, Kelava & Brandt, 2009; Marsh,

Wen, & Hau, 2004). A literature review of available estimation methods is found in Appendix

C in the online supplementary material. This approach follows common practice in the applied

regression literature (see e.g. Fox & Weisberg, 2011; Weisberg, 2005), where non-parametric

estimates are used to guide parametric modeling.

Plotting factor scores for model motivation and diagnostics has roots going back to R. Mc-

Donald (1967) who worked with nonlinear factor models. In the context of SEM, Bauer, Bal-

dasaro, and Gottfredson (2012) appear to be the first to suggest adding trend estimates to

this plot, and Bauer et al. (2012) also showed through simulation that this gives reasonable
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results. Our paper provides the theoretical underpinnings of the method, as well as substantial

simulation work to further assess the performance of the method.

Another approach to model diagnostics in SEM is residual analysis. Bollen and Arminger

(1991) define residuals for linear SEM via factor score based estimators of the error terms of the

measurement model and the structural model. Raykov and Penev (2014) show via simulation

that plotting coordinates of residuals from a structural model against each other can be used to

detect unaccounted for structural trends. While a formal analysis of these procedures would be

intimately connected to the contributions in the present paper, residual analysis is a complex

topic, and we consider it outside the scope of the present paper.

For mathematical convenience our analysis is limited to population quantities, and we deal

only with the consistency of estimates of H. Inference for H is not considered in the paper,

though standard bootstrap approaches may be applicable. Our paper also provides insights

into what types of non-parametric regression methods should be used through a theoretical

analysis, and a comprehensive simulation study.

Our focus is on non-parametric estimators of H that make no parametric assumptions on H

and no parametric assumptions on the distributions of η and ξ. As reviewed in Appendix I in

the online supplementary material, there are many ways to estimate H, but to the best of our

knowledge, the only presently available non-parametric estimators for H are in the presently

understudied papers of Kelava, Kohler, Krzyżak, and Schaffland (2017) and Kohler, Müller,

and Walk (2015). Since no implementation of the estimator of Kohler et al. (2015) is available,

we do not consider it in our paper. We do, however, compare our suggested methods with the

computationally demanding method of Kelava et al. (2017). Out of the methods we compare,

our simulations indicate that inputting Bartlett scores into simple LOESS or spline methods

work best, on average. This is computationally practically instantaneous.

As mentioned above, we assume ξ and η are measured through correctly specified linear

factor models: Let f = (ξ′, η′)′ where ′ is vector transposition. We let dimensions of a random

vector, say V , be denoted as dV . We observe a sample of size n from the random vector

z = (x′, y′)′ which follows the factor model

(2) z̃ := z − µ = (x̃′, ỹ′)′ = (x′ − µ′x, y′ − µ′y)′ = Λf + ε, f = (ξ′, η′)′, ε = (ε′x, ε
′
y)′,

where µ = (µ′x, µ
′
y)′ is the expectation of z, where Λ is a non-random (dξ + dη) × (dx + dy)

matrix, and where ε consists of measurement errors. Precise assumptions on the factor model

will be given later.

Identifying a correct measurement model is a difficult, though standard problem. The as-

sumption of a correctly specified and linear measurement model is made by all standard non-

linear as well as linear structural equation models (see, e.g., Brandt, Cambria, & Kelava, 2018;

Croon, 2002; Devlieger & Rosseel, 2017; Holst & Budtz-Jørgensen, 2020; Kelava & Brandt,

2009; Kelava et al., 2017; Kenny & Judd, 1984; Klein & Moosbrugger, 2000; Kohler et al.,

2015; Lee, Song, & Tang, 2007; Marsh et al., 2004; Jöreskog, 1969; Mooijaart & Bentler, 2010;

Mooijaart & Satorra, 2012; Rosseel & Loh, 2022; Skrondal & Laake, 2001; Wall & Amemiya,
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2000, 2001, 2003). In Appendix F in the online supplementary material, we show that the tech-

niques presented in the present paper are also compatible with certain non-linear measurement

models that can be re-written as linear measurement models, that we can derive analytically

how measurement model misspecification influences estimates of H, and that numerical ex-

periments shows that the proposed methodology is not overly sensitive to minor measurement

model misspecification.

In this paper, we only consider additive measurement error, both in the structural and

measurement part of the model. Our approach centers around approximating the conditional

expectation function H, which enters in an additive relationship to ζ. For distributions of

(ξ′, η′)′ with errors entering non-additively, this need not be the right perspective for studying

trends. See Appendix J in the online supplementary material for a simple example.

1.1. Inputting Factor Scores to Non-Parametric Regression Methods, a Literature

Review and an Overview of our Theoretical Contributions. Traditional parametric

regression methods among factor scores has been studied in several papers, among them Croon

(2002); Devlieger, Mayer, and Rosseel (2016); Devlieger and Rosseel (2017); Hoshino and Bentler

(2011); Skrondal and Laake (2001) as well as the more recent SAM (structural after measure-

ment) approach of Rosseel and Loh (2022). Also PLS-SEM and some of its variants (Dijkstra &

Henseler, 2015; Sarstedt, Ringle, & Hair, 2021) are based on regression methods among factor

scores (Yuan & Deng, 2021).

In contrast, inputting factor scores into non-parametric regression methods is a far less well-

studied problem. The first paper we have found on this is Bauer et al. (2012). Bauer et al.

(2012) have two proposals for diagnostics and model formulation in NLSEM: The first proposal

is to input factor scores to non-parametric regression estimators, which is the research area this

paper continues. The second proposal is to consider structural equation mixture models, which

we consider outside the scope of the present paper. While structural equation mixture models

has its own literature, see e.g. the references within Bauer et al. (2012), inputting classical

scores, such as the Bartlett (1937) or Thurstone (1935, Thomson, 1934) factor scores, into non-

parametric regression methods has as far as we know not been analyzed theoretically in the

literature previously.

In Kelava et al. (2017) and Kohler et al. (2015), the authors propose to estimate H non-

parametrically by a similar procedure as Bauer et al. (2012), except that instead of classical

factor scores, they generate mathematically complex non-linear factor scores which are inputted

into non-parametric regression procedures. Their papers include theoretical results proving that

as the sample size n increase, these methods are consistent.

A foundational result for linear factor scores is that for convergence in probability (and mean

square) towards the true latent variables in addition to n→∞, also the number of measurement

per latent variable are required to increase indefinitely (Guttman, 1955; Krijnen, 2004, 2006a,

2006b; Schneeweiss & Mathes, 1995; Williams, 1978). This has the important implication that

in general, non-parametric regression methods based on factor scores will not be consistent in

estimating the true trend as n→∞, but will also require a sufficient number of measurements

of the latent variables.
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In the present paper, we show that under weak conditions, only dx, the number of measure-

ments of ξ, has to be sufficiently high to approximate H. We propose two kinds of theoretical

approaches to the problem, both justified only for dx sufficiently high, though both are shown

to work well in simulations also for small dx, such as dx = 3: We provide conditions so that the

population versions of a class of factor scores fit into the problem of non-parametric regression

with normal measurement error in the covariate. The normality of the measurement error is

not based on parametric distributional assumptions on the variables in the model but is derived

from a central limit theorem. We also provide conditions for when population versions of factor

scores can be used to approximate H through a direct application of non-parametric regression

estimates, such as the LOESS estimate (Cleveland, 1979, 1981) or smoothed splines (Chambers

& Hastie, 1992). In our simulations, this second alternative, which is the computationally and

mathematically simplest method of all considered, usually has best performance, also when

taking into account the computationally complex method of Kelava et al. (2017).

In this paper, we do not consider the method proposed in Kohler et al. (2015), as no imple-

mentation of this method appears to be available. Kelava et al. (2017) provides a Matlab (The

MathWorks Inc., 2023) implementation of their algorithm, which we use in our simulations.

Their non-linear factor scores minimize a loss function defined in terms of unspecified constants

called probability weights. The performance of their method depends on the choice of these

probability weights as well as which non-parametric regression method is used in the second

stage, where the provided implementation used B-splines (De Boor, 1978). We take the choice

of probability weights as given in the implementation of Kelava et al. (2017). In the choice

of a second stage non-parametric method, we consider both the B-splines method analyzed in

Kelava et al. (2017), as well as LOESS or smoothed splines as implemented in R (R Core Team,

2023). The latter appears to give better performance than the B-spline option.

The asymptotic approach we consider is to let the number of items go to infinity, where we

for simplicity consider an infinite sample size. A joint asymptotic analysis where the number of

observations and items increase jointly is considered outside the scope of the present paper. Such

an analysis would be mathematically considerably more complex than the analysis undertaken

in the present paper.

An asymptotic approach with a growing number of items is standard in the related research

field of factor panel data models. There, a common asymptotic approach is to let both the

panel width and length increase. In this large literature, with contributions from econometrics,

statistics and related fields, factor scores or its analogues are considered, see e.g. Fan, Masini,

and Medeiros (2023) and the references therein. As far as we know, non-parametric regression

among factor scores has not been considered in that literature.

1.2. The Structure of the Paper. This paper has four main contributions. First, we estab-

lish the conditions under which the conditional expectation of η given ξ, denoted as H, can be

identified using population factor scores. Second, we prove some basic results on affine factor

scores that are suitable for such an analysis. Third, we show new asymptotic results, which

include the consistency of Bartlett scores in the mean square, the normality of the measurement

error of factor scores as estimates to the factors, and conditions when conditional expectations
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based on factor scores with decreasing measurement error converge to the conditional expec-

tation based on factors. These first three contributions are found in Section 2. Fourth, we

suggest non-parametric methods based on Bartlett factor scores in Section 3, and in Section 4

we evaluate them together with the Kelava et al. (2017) procedure through a simulation study.

Finally, we discuss the findings from the simulation study and give concluding remarks. More

technical details and a fuller discussion of some conclusions from the simulation study are de-

ferred to an online appendix. All proofs and source code for our numerical analysis are also

found in the online supplementary material.

2. Identification of H based on Population Factor Scores

We here investigate when H is identified in the population, and we base our analysis on a

class of factor scores. Identification in this context means that under the stated assumptions,

we are able to pin-point what H is based on the distribution of population versions of factor

scores. The measurement part of the model in eq. (2) is a confirmatory factor model, whose

parameters are identified only up to unit of measurement transformations of the factors (for an

overview and historical references, see Chapter 14.2 in Anderson, 2003). We will shortly assume

that the parameters of the factor model in eq. (2) are identified, which means that the unit of

measurement is chosen, either by standardizing the factors, or fixing appropriate elements of Λ

to 1, or some combination thereof. As shown in the Appendix H in the online supplementary

material, conditional expectations are well-behaved with regards to changes of the units of

measurement, and, therefore, standard practice for setting the units of measurement can be

followed. The choice of unit of measurement will have some consequences for interpretation,

and formulas for converting between choices is found in Appendix H in the online supplementary

material. Without substantive knowledge leading to a preferred scaling method, we recommend

standardizing the factors in an empirical investigation because this is an easily interpreted

object, i.e., the conditional expectation of a standardized version of η given a standardized

version of ξ.

Conditions for the non-parametric identification of the parameters and distributions involved

in a SEM using nonlinear factor scores is given in Lemma 1 in Kelava et al. (2017). These

conditions are quite strong, and include that all coordinates of ε are independent, that ε and f

are independent, and that no cross loadings are present, meaning no observed variable measures

two latent variables simultaneously. Lemma 1 in Kelava et al. (2017) then shows that the joint

distribution of ε and f is identified. From this, we can compute the marginal distribution of ξ,

the function H(x) = E[η|ξ = x], and the distribution of the error term ζ = η−H(ξ). Therefore,

Lemma 1 in Kelava et al. (2017) identifies H.

In this section, we provide an alternative set of assumptions that asymptotically identifies

H. More precisely, we will identify H under assumptions that hold only as dx, the number of

measurements of ξ, increases indefinitely, which can be called asymptotic identification. Show-

ing asymptotic identification and not exact identification allows our results to be formulated

under much weaker conditions compared to those of Kelava et al. (2017), whose first lemma

shows exact identification for any dx, dy ≥ 3.
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Our analyses focus on population versions of a class of factor scores, which we now introduce.

Affine factor scores are of the form Az+a, where A is a df×dz matrix, and a is a df dimensional

vector. Usually, a = −Aµ and A is chosen so that Az̃ is in an appropriate sense as close to f

as possible. We will only consider such factor scores, and all references to factor scores mean

affine factor scores.

Let Φ = Cov f and Σ = Cov z. The ’regression’ factor scores (Thomson, 1934; Thurstone,

1935), also known as Thurstone factor scores, are derived using A = ΦΛ′Σ−1 and a = −Aµ.

These factor scores are optimal in the mean square sense (Neudecker & Satorra, 2003), yet

we will instead focus on the Bartlett factor score, for a theoretical reason we now explain.

As sketched in the upcoming Remark 1, Thurstone factor scores can likely we included in an

extension of the theoretical framework considered in the present paper.

As our focus is on using factor scores as input to non-parametric regression methods, we will

only consider factor scores with the property that Az̃ equals f distorted by some uncorrelated,

or more strongly, independent noise, as such factor scores will fit in with the general theory on

non-parametric regression with measurement error. By addition and subtraction of f , we may

define the df dimensional error term rA = Az̃ − f so that

(3) Az̃ = f + rA.

For this equation to be related to regression, we require at least ErA = 0 and Cov (f, rA) = 0.

In the upcoming technical conditions, we will require the additional assumption that f and rA

are independent. Since independence cannot hold if the covariance is non-zero, we investigate

this property more fully here.

The following lemma, which gathers several technical results that we need, shows that the

requirement Cov (f, rA) = 0 is equivalent to AΛ = Idf , i.e., that A is a left inverse of Λ. Interest-

ingly, this is also a central requirement in the recently developed“structural after measurement”

approach of Rosseel and Loh (2022). The lemma shows that Thurstone factor scores do not

have an uncorrelated measurement error term, but Bartlett factor scores do. Since the Bartlett

(1937) score is a generalized least squares estimate (GLS), it shares the standard optimality

properties of GLS. The optimality of Bartlett scores in the least squares sense in the class of

conditionally unbiased factor scores is well known. The following lemma shows that the class

of conditionally unbiased factor scores is the same class as factor scores with uncorrelated mea-

surement errors, and both are characterized by the previously mentioned left inverse property.

We make the following standard assumptions, whose motivation is recalled in Appendix E.1 in

the online supplementary material.

Assumption 1. Suppose eq. (2) holds and that η and ξ has at least two finite moments. Further

suppose

(1) Eε = 0, and the cross covariance matrix Cov (f, ε) = E[(f − Ef)ε′] is zero.

(2) Λ has full column rank.

(3) Φ = Cov (f) is positive definite.

(4) Ψ = Cov (ε) is positive definite.

Let G(Λ) be the set of all left-inverses of Λ. That is, A ∈ G(Λ) means AΛ = Idf .
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Lemma 1. Suppose given Assumption 1.

(1) Let A be a deterministic matrix and let rA = Az̃− f . Then Cov (f, rA) = 0 if and only

if A ∈ G(Λ). This holds also if Ψ is singular.

(2) Let A be a deterministic matrix. If E[ε|f ] = 0, then E[Az̃|f ] = f if and only if A ∈ G(Λ).

(3) The transformation matrix T = ΦΛ′Σ−1 used in the Thurstone factor score exists, but

is not in G(Λ).

(4) The Bartlett matrix ∆ = (Λ′Ψ−1Λ)−1Λ′Ψ−1 exists and is in G(Λ), and is such that for

all A ∈ G(Λ) we have that Cov (r∆)− Cov (rA) is non-positive definite.

Proof. See Section E.4.1. �

The set of left inverses of Λ is non-empty if and only if Λ has full column rank (Harville, 1997,

Lemma 8.1.1). Therefore, Assumption 1 (2) is foundational. Assumption 1 (4) can be avoided,

see e.g. eq. (7) in Wall and Amemiya (2000) and Fuller (1987) for a Bartlett formula that avoids

inverting Ψ. We will not consider singular Ψ matrices in this paper. Further, since Λ is assumed

to have full column rank, the set of left inverses G(Λ) equals the set of generalized inverses of Λ

(Harville, 1997, Lemma 9.2.8). This set can be described constructively, see Theorem 9.2.7 in

Harville (1997). Due to Lemma 1 (4), we single out the Bartlett factor score out of the elements

from G(Λ) in most of our study.

In applications, the transformation matrix A has to be estimated. This introduces estimation

error, as discussed in the upcoming Section 3. Taking this estimation error into account is

outside the scope of this paper.

Let us now consider the regression representation in eq. (3). For a given A ∈ G(Λ), such as

the Bartlett score A = ∆, we write r = rA and

(4) f̈ = (ξ̈′, η̈′)′ = Az̃ = A(Λf + ε) = f + r = (ξ′, η′)′ + (r′ξ, r
′
η)

where rξ, rη are respectively the first dξ and last dη coordinates of r, and ξ̈, f̈ are respectively

the first dξ and last dη coordinates of f̈ . From eq. (4) we reach

(5) ξ̈ = ξ + rξ, η̈ = η + rη.

Since A ∈ G(Λ), we have that r = Aε. Now, since rη is a linear transformation of r, we get

E[η̈|ξ] = E[η|ξ] as long as ε is independent to f . We therefore make the following assumption.

Assumption 2. Suppose ε is independent to f .

In the classical literature on covariance models (see e.g. the survey paper Shapiro, 2007),

the strong Assumption 2 is not made. We need this assumption, and not merely the covariance

Assumption 1 (1) to identify H. With only covariance restrictions the distribution of f, ε is not

identified (see Mardia, Kent, & Bibby, 1979, Exercise 9.2.2). Also Kelava et al. (2017) made

this assumption to identify H.

Lemma 2. Suppose given Assumption 1 and 2. For a given A ∈ G(Λ), we have that

H(x) = E[η|ξ = x] = E[η̈|ξ = x] for η̈ given by eq. (4) and eq. (5).
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Proof. See Section E.4.2. �

Under the following assumption, ξ̈ and η̈ are computable based on identifiable quantities.

Therefore, we may suppose that we observe ξ̈ and η̈ directly when analyzing identification of

H.

Assumption 3. Suppose Λ, µ, Ψ are identified from the distribution of z.

The identification of these matrices is a classical problem, and the measurement model is usu-

ally only considered valid when they are identified up to scaling of the latent variables through

the covariance matrix of z (Anderson, 2003; Bollen, 1989; Mardia et al., 1979). However, condi-

tional expectations are well-behaved with regards to changes of the units of measurement (see

Appendix H in the online supplementary material).

We are interested in identifying H(x) based on ξ̈ and η̈. Using Lemma 2, eq. (5) has the same

structure as a non-parametric regression problem with measurement noise, see e.g. Apanaso-

vich and Liang (2021); Delaigle (2014); Delaigle, Fan, and Carroll (2009), or Huang and Zhou

(2017). This appears to be noticed also by Wall and Amemiya (2000, see the discussion imme-

diately following their eq. (9)), but at the time that paper was written, no generally applicable

non-parametric regression methods with measurement error were available. These approaches

generally need a known distribution and independence conditions to hold for the measurement

error rξ, which has to be independent noise. Therefore, we make the following additional

assumptions.

Assumption 4. Suppose

(1) rξ has a known distribution.

(2) rξ and rη are independent.

We will later consider approximating the measurement error by zero, meaning we ignore

the measurement error, and will show that this approximation works as dx increases. In these

arguments we also use Assumption 4. When ignoring measurement errors, we conjecture that

exact independence can be weakened to appropriate dependence bounds. We do not investigate

this in the present paper.

The following result is the starting point of the literature on non-parametric regression with

measurement error with some papers cited above. We state the result with our notation, and

provide its short proof for completeness.

Proposition 1. Suppose given Assumption 1, 2, 3, and 4. Then H is identified.

Proof. See Section E.4.3. �

We now consider when Assumption 4 (2) can be justified. Assumption 4 (1) will be considered

in the next sub section. Since (r′ξ, r
′
η)′ = r = Aε we have rη = (0dη,dξ , Idη )Aε and rξ =

(Idξ ,0dξ,dη )Aε, where 0a,b is the a × b zero matrix. Unless strong distributional assumptions

are made, rξ and rη will not be independent unless firstly A is partitioned diagonal (thereby
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avoiding cross terms from εx and εy), and secondly εx is independent of εy. If this is the case,

i.e., if

A =

(
Ax 0dξ,dy

0dη,dx Ay

)
,

then rξ = Axεx and rη = Ayεy, and rξ will be independent to rη, as long as εx and εy are

independent.

In general, we may write Λ as a partitioned matrix

Λ =

(
Λx Λx,y

Λy,x Λy

)
where Λx is a dx × dξ matrix, Λy is a dy × dη matrix, Λx,y is a dx × dη matrix, and Λy,x is a

dy×dξ matrix. When A is a partition diagonal matrix with diagonal matrix entries Ax, Ay, we

have

(6) (ξ̈′, η̈′)′ = Az̃ = A(Λf + ε) =

(
AxΛxξ +AxΛx,yη +Axεx

AyΛyη +AyΛy,xξ +Ayεy

)
.

The matrix Ax will not in general be a generalized inverse of both Λx and Λx,y. Therefore, the

factor scores will contain residual dependency between ξ and η which distort the identification

of H as then Assumption 4 (2) no longer holds, if used directly as input to non-parametric

regression methods.

In order to fulfill Assumption 4 (2), we, therefore, do not allow cross-loadings or error

correlations between endogenous and exogenous parts of the model, that is between ξ and η.

If such are part of the model, one would have to delete corresponding observed variables in

order to directly apply our analysis. A less wasteful method might hopefully be derived as

an extension of this work, though such an extension is outside the scope of the present paper.

Within the measurement part of the endogenous and exogenous variables, cross-loadings or

error correlations are allowed. Hence, we make the following assumptions.

Assumption 5. Suppose εx and εy are independent, and that

Ψ =

(
Ψx 0dx,dy

0dy,dx Ψy

)
, Λ =

(
Λx 0dx,dη

0dy,dξ Λy

)
,

where Λx and Λy have full column ranks.

Under Assumption 1 (4), Ψx,Ψy are positive definite, as they are principle sub-matrices of

a positive definite matrix Ψ (Horn & Johnson, 2013, Observation 7.1.2). Under Assumption

5 a direct calculation shows that if Ax ∈ G(Λx), Ay ∈ G(Λy), then A =

(
Ax 0dξ,dy

0dη,dx Ay

)
∈

G(Λ). While there are also elements in G(Λ) of different forms (Harville, 1997, Exercise 9.7),

partitioned diagonal generalized inverses of Λ imply that Assumption 4 (2) holds.

Lemma 3. Suppose given Assumption 1 and 5. Suppose that A =

(
Ax 0dξ,dy

0dη,dx Ay

)
where

Ax ∈ G(Λx) and Ay ∈ G(Λy). Then rξ and rη are independent, i.e., Assumption 4 (2) holds.
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Proof. See Section E.4.4. �

Under Assumption 5, Bartlett (1937) factor scores are partitioned diagonal as shown in the

following result, and hence using Bartlett scores under Assumption 5 leads to Assumption 4

(2).

Proposition 2. Suppose given Assumption 1 and 5. Then

∆ =

(
∆x 0dξ,dy

0dη,dx ∆y

)
,

with ∆x :=
(
Λ′xΨ−1

x Λx
)−1

Λ′xΨ−1
x and ∆y :=

(
Λ′yΨ−1

y Λy
)−1

Λ′yΨ−1
y both existing. Additionally,

Cov r =

((
Λ′xΨ−1

x Λx
)−1

0dξ,dη
0dη,dξ

(
Λ′yΨ−1

y Λy
)−1

)
,

which is positive definite, and whose diagonal partitions are positive definite matrices.

Proof. See Section E.4.5. �

We now consider Assumption 4 (1). We examine two approximations for sufficiently large

dx: Firstly, that rξ is approximately zero, and secondly that rξ is approximately normal. Since

rξ will go to zero as dx increases under weak assumptions, asymptotic normality is closely

connected to techniques that treat rξ as zero, and a normality approximation can potentially

improve approximations of H. This issue will be further discussed though not resolved at the

end of Section 2.2.

2.1. Distributional Approximations of rξ as dx Increases, Part 1: Approximating

rξ by a Constant Zero Vector. We here consider Assumption 4 (1). For fixed dx, the

distribution of rξ is not identified, but under weak conditions, the distribution of rξ will go to

zero in mean square. This motivates approximating rξ by a zero vector.

Mean square convergence of factor scores have been investigated by several previous authors,

e.g. Guttman (1955); Krijnen (2004, 2006a, 2006b); Schneeweiss and Mathes (1995), or Williams

(1978). To the best of our knowledge, previous papers either assume a particularly simple

structure for the factor model, or used what may be termed abstract assumptions, such as

limiting consideration of a certain eigenvalue for a matrix which is difficult to interpret. We,

therefore, provide this conclusion based on alternative assumptions that have a more direct

asymptotic interpretation as dx →∞. We only consider the Bartlett (1937) factor scores.

Let (M)·,i be the i’th column of a matrix M , and (M)j,i be the j, i’th element of a matrix M .

When referring to eigenvalues, we refer to the eigenvalues arising from eigenvectors that are of

unit length. Also, λmax(M) and λmin(M) are the respectively largest and smallest eigenvalues

of a matrix M .

Assumption 6. Suppose

(1) for all dx, there are numbers mΨx ,MΨx > 0 such that mΨx < λmin(Ψx) ≤ λmax(Ψx) <

MΨx .
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(2) for all dx, there are numbers mΛx ,MΛx > 0 such that for all indices 1 ≤ i ≤ dξ and all

1 ≤ k ≤ dx where (Λx)k,i 6= 0, we have that mΛx < |(Λx)k,i| < MΛx .

(3) for Ni being the number of non-zero elements in (Λx)·,i that limdx→∞Ni = ∞ for

1 ≤ i ≤ dξ.
(4) for Ci,j for 1 ≤ i, j ≤ dξ with i 6= j being the number of non-zero elements in

(|(Λx)k,i(Λx)l,j(Ψ
−1
x )k,l|)1≤k,l≤dx that limdx→∞

1
Ni

∑
1≤j≤dξ,j 6=i Ci,j = 0.

Assumption 6 (1) extends Assumption 1 (4) to the asymptotic case, and can be interpreted

using the classical result that for a vector x with ‖x‖ = 1, we have λmin(Ψx) ≤ x′Ψxx ≤
λmax(Ψx). Assumption 6 (1), therefore, dictates that no linear combination with a unit squared

coordinate sum has a variance that diverges or converges to zero. This assumption requires

that the variances of εx are within a bounded interval and bounded away from zero. It, further,

places restrictions on the correlations between the elements in εx. For a familiar example, let

x = (1, . . . , 1)′/
√
dx, which is such that

∑dx
i=1 x

2
i = 1, giving x′εx =

√
dxε̄x whose variance can

neither diverge nor converge to zero if, for example, the effect of the central limit theorem for

ε̄x is to occur. Assumption 6 (2) says that the loadings of the measurement of each coordinate

of ξ (i.e., those that are non-zero) must neither vanish nor explode. Assumption 6 (3) says that

the number of measurements of each coordinate of ξ are continually increasing, thereby giving

more and more information on ξ. Assumption 6 (4) places restrictions on the increase of the

number of cross loadings and cross correlations in relation to the number of direct loadings.

Proposition 3. Suppose Assumption 1, 2, and 5 hold, and let A = ∆.

(1) Suppose Assumption 6 (1) and (2) hold and let Ni and Ci,j be defined as in Assumption

6 (3) and (4), respectively, then

max
1≤i,j≤dξ

|(Cov rξ)i,j | ≤

 min
1≤i≤dξ

Ni

m2
Λx

MΨx

−
M2

Λx

mΨx

1

Ni

∑
1≤j≤dξ,j 6=i

Ci,j

−1

.

(2) Suppose Assumption 6 holds, then limdx→∞max1≤i,j≤dξ(Cov rξ)i,j = 0.

Proof. See Section E.4.6. �

We now consider convergence of the conditional expectation of the population Bartlett factor

score η̈ given the population Bartlett factor score ξ̈. When inputting samples of these into non-

parametric regression methods, the methods consistently estimate Hdx(x) = E[η̈|ξ̈ = x] which

will not equal H(x) = E[η|ξ = x] for fixed dx. We here show that Hdx converges to H uniformly

over an appropriately chosen subset. The implication of this is that non-parametric estimators

based on population Bartlett factor scores will converge to H as the number of measurements

dx increases over the chosen set.

Since conditional expectation of a vector is defined coordinate-wise, so that e.g., E[η|ξ] =

(E[η1|ξ], . . . ,E[ηdη |ξ])′, we may without loss of generality assume that dη = 1, since all norms

on Rdη are equivalent and dη is fixed.

We have not managed to find a result that implies the appropriate convergence of these

conditional expectations, and have therefore produced the following result. It seems plausible
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that relevant, and possibly stronger results could be available in the technical probabilistic

literature. As dx increase, ξ̈ will under natural conditions be close enough to ξ for E[η̈|ξ̈ = x]

and H(x) = E[η|ξ = x] to be very close, likely also under much weaker conditions than we

identify in the upcoming result, which is based on classical approximations.

Our result requires f to have a density, and poses several regularity conditions on the density

of ξ, as well as some boundedness and smoothness conditions onH. Additionally, it requires that

rξ converges to zero in probability, which is implied by Proposition 3 and Markov’s inequality.

Let ‖a‖2 be the Euclidean norm of a vector a.

Assumption 7. Suppose

(1) dη = 1, and that f = (ξ′, η′)′ and rξ have densities with respect to Lebesgue measure

given by fξ,η and frξ respectively.

(2) sup
x∈Rdξ fξ(x) <∞, where fξ is the marginal density of ξ.

(3) there is a set S ⊆ Rdξ such that for Sρ = {x+ α(x− v) : x ∈ S, v ∈ Rdξ , ‖v‖2 < ρ, α ∈
[0, 1]} for an ρ > 0 we have that

(a) supx∈Sρ |Eω(x, rξ)| → 0 as dx →∞, where ω(x, h) = H(x− h)−H(x).

(b) supx∈Sρ |H(x)| <∞
(c) infx∈Sρ fξ(x) > 0,

(d) fξ is continuously differentiable in Sρ, and supx∈Sρ ‖f ′ξ(x)‖2 <∞.

(4) rξ converges in probability to zero as dx increases.

Assumption 7 (1) and (2) suppose the desired densities. Assumption 7 (3) (a) is the most

complex assumption, and is given in terms of a kind of modulus of continuity ofH. A verification

of this assumption for a specific class of H functions requires taking the structure of this class

into account. The assumption itself can be justified as a kind of smoothness assumption on

H. To illustrate that the assumption is reasonable, we verify it for the class of univariate

polynomials in Appendix E.2 in the online supplementary material. Assumption 7 (4) is implied

e.g. by Proposition 3. Consequently, Assumption 7 allows the proof of the following proposition

considering the convergence of Hdx to H for increasing dx. Finally, Proposition 3 implies

Assumption 7 (4).

Proposition 4. Suppose given Assumption 1, 2, 4 and 7. Let Hdx(x) = E[η̈|ξ̈ = x]

and H(x) = E[η|ξ = x]. Let | · | be any norm on the relevant Euclidean space. Then

supx∈Sρ |Hdx(x)−H(x)| → 0 as dx →∞.

Proof. See Section E.4.7. �

Remark 1. Let us re-visit the Thurstone transformation T . From Lemma 1, T /∈ G(Λ). However,

we have, say f̆ := (ξ̆′, η̆′)′ := T z̃ = (TΛ)f + Tε. Assumption 1 and 2, we have that rT = Tε

is still mean zero and independent to f . Therefore, E[η̆|ξ̆] = TyΛyE[η|ξ̆] where Ty is defined

analogously as ∆x. Since the Thurstone factor scores converge in probability (and mean square)

towards the true latent variables under weak assumptions (see e.g. Krijnen, 2006a, 2006b), we

get that TΛ → I as dy increases, and ξ̆ → ξ as dx increases. We see that the additional term
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TyΛy is due to T not fulfilling the regression equation eq.(3) with an uncorrelated error term.

Therefore consistency requires dy → ∞, in contrast to the present analysis that requires only

dx →∞.

2.2. Distributional Approximations of rξ as dx Increases, Part 2: Approximating rξ

by a Normal. We now consider approximating rξ by a normal, using a central limit theorem.

In this section we make strong assumptions to simplify the normality argument. Under approx-

imate normality, de-convolution methods can be used that take into account the distribution

of the noise in ξ̈ as an approximation to ξ. The strong assumptions of the present section are

not needed for our justification of direct non-parametric estimates of E[η̈|ξ̈ = x] as an approx-

imation to E[η̈|ξ = x] as considered in the previous sub-section, but they are needed in our

justification of non-parametric de-convolution based methods, one of which we will consider in

the main simulation study of the paper (the HZCV method).

For a partitioned diagonal A ∈ G(Λ), we have that rξ = Axεx. For sufficiently large dx,

we can expect central limit effects to justify the approximation rξ
a∼ N(0, AxΨA′x). As dx

increases, rξ will typically converge to zero in the mean square, so that AxΨA′x will tend to

zero. Therefore, a re-scaling is required to prove a formal limiting result, as is the case for

standard averages.

Let Ai,· be the i’th row of A. Let ri be the i’th coordinate of rξ. We have ri = Ai,·εx =∑dx
j=1 ai,jεx,j . When εx have independent components, the normality of ri can be analyzed via

the Lindeberg-Feller or Lyapunov central limit theorems (See e.g. Billingsley, 1995, Section 27).

In order to do this, detailed assumptions have to be made on the entries of A. To get concrete

and simple assumptions, we provide a verification of the details of this argument only for the

Bartlett factor score when the measurement model of ξ has the following simplified structure.

The following results can be generalized in many directions, and the approximate normality of

rξ holds also well outside these conditions, and will hold in most cases of practical interest.

Assumption 8. Suppose

(1) εx has independent components and Ψx is a diagonal matrix.

(2) Λx has only one non-zero element per row. Without loss of generality, we further assume

that the coordinates of x̃ are re-arranged in such a way that Λx is partitioned diagonal.

Let Ij be the coordinates of x which measures the j’th coordinate number of ξ. Under

Assumption 8, |Ij | is the number of non-zero rows in the j’th column of Λx, and (Ij)j forms a

disjoint sequence. In the result, recall that the upper left elements of Λ equal Λx, as is also the

case for Ψ and Ψx.

Lemma 4. Suppose Assumptions 1, 2, and 8. Then

(1) ∆x =

(
λji

ψjj
∑dx
k=1

λ2
ki

ψkk

)
i,j,i=1,...,dξ,j=1,...,dx

.

(2) The j’th coordinate of rξ fulfills rj =
∑
i∈Ij

λij

ψii
∑dx
k=1

λ2
kj

ψkk

εi, for j = 1, . . . , dξ.
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(3) We have that Cov rξ is the diagonal matrix with elements dii :=

(
1∑dx

k=1

λ2
ki

ψkk

)
for

i = 1, . . . , dξ.

Proof. See Section E.4.8. �

The following assumptions provide enough regularity to use the Lyapunov central limit the-

orem.

Assumption 9. Suppose

(1) for a δ > 0 we have

sup
j≥1

E

∣∣∣∣∣ εx,j√
ψjj

∣∣∣∣∣
2+δ

<∞.

(2) there are finite numbers 0 < mλ/ψ ≤ Mλ/ψ < ∞ such that
(
λ2
ji

ψjj

)
1≤i≤dξ,1≤j≤dx

⊂

[mλ/ψ,Mλ/ψ].

(3) as dx →∞, |Ij | → ∞, for j = 1, . . . , dξ.

Assumption 9 (2) places restrictions on asymptotic behavior of the coefficients in front of

εi in the expression for rj in Lemma 4. Assumption 9 (3) means that we get more and more

measurements for all coordinates of ξ.

Notice that under the simplified variance expression in Lemma 4 (3), conditions for mean

square convergence of rξ is implied by Assumption 9 (2), as the variance converges to zero as

dx increases since the sum in the expression is grater than dxmλ/ψ.

We now formalize the aforementioned central limit theorem based approximation.

Proposition 5. Under Assumption 1, 2, Assumption 8, and 9, we have

c′dxrξ
d−−−−→

dx→∞
N(0, I).

where c′dx = (
√
ndx(1), . . . ,

√
ndx(dξ)) in which ndx(i) =

∑dx
j=1

λ2
ji

ψjj
for i = 1, 2, . . . , dξ.

Proof. See Section E.4.9. �

This result does not have implications for identification, as Proposition 5 also implies that

rξ converges to zero in probability. It may be, however, that using the approximate normality

of rξ improves approximations of H based on the distribution of the population factor scores.

While we have been unable to prove this, this topic is further discussed in more technical detail

in Appendix K.3 in the online supplementary material.

3. Empirical Estimation Strategies

Section 2 treated the foundational topic of identification. We now consider empirical esti-

mates by following a plug-in procedure where ∆z is replaced by ∆̂ẑ, where ẑ = z − µ̂ replaces

all unknown parameters with parameter estimates from considering the measurement model

in eq. (2) as a confirmatory factor analysis model (CFA). This is a linear transformation of
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(z′, 1)′ where the estimation error of the standard CFA estimators are of order OP (n−1/2)

where n is the sample size (see e.g. Satorra, 1989). Therefore, the empirical Bartlett factor

score has the same structure as a residual in standard regression problems. The mathematics

behind a full asymptotic analysis of non-parametric regression methods where the covariates

have measurement error with a known distribution is highly technical already with indepen-

dent and identically distributed data (see, Delaigle et al., 2009, Section 1). In our case, we

are inputting empirical factor scores, which as mentioned above have the same mathematical

structure as regression residuals. Therefore, taking the estimation error of approximating ∆

with ∆̂ properly into account is similar to using residuals in statistical methods, which can be

mathematically complex (see, e.g., Grønneberg & Holcblat, 2019, and references therein). We

consider an analysis of this problem outside the scope of the present paper.

Next to uncertainty in the estimation of ∆̂, the choice of the non-parametric regression

method utilizing the computed factor scores will have an influence on the overall performance

in approximating H in small samples. As there are many possible methods, we restrict attention

to the most widely used methods and consider a more detailed examination outside the scope

of the current article. We discuss the properties of the Bartlett factor scores derived in the

previous section with regard to the choice in estimating H in the following.

The theoretical results of the previous sections imply that the residual r of the Bartlett

factor score is close to normal (see Section 2.2) for sufficiently large dz and converges to zero in

probability (see Section 2.1 and specifically Proposition 3). Further, the conditional expectation

of the underlying latent variables is identifiable using the Bartlett factor scores (see Proposition

1, when independence assumptions among rξ and rη hold and the distribution of rξ is known).

Most of these results depend on convergence dependent on n (the sample size) or on the number

of measurements of ξ (dx) or both. In the next section we use simulation to study the finite

sample properties of several non-parametric regression methods where we use the Bartlett factor

scores as inputs. We compare the performance of these methods using the Bartlett factor scores

with the performance of three methods using the nonlinear factor scores proposed by Kelava et

al. (2017) as inputs.

For a finite sample both n and dz are finite and dx < dz � n. Therefore, the Bartlett score

f̈ = f + r ought to have significant residual variance Var [r] > 0. In this scenario, the usage of

the Bartlett score is closely related to non-parametric regression estimation with measurement

error (Delaigle, 2014; Delaigle et al., 2009; Huang & Zhou, 2017), where the independent variable

(here ξ̈) is allowed to have a residual (here rξ). Such methods require additional assumptions.

Similarly to the arguments underlying Proposition 1, the distribution of rξ is required to be

known. However, from Proposition 5 we have that the distribution of rξ is only approximately

known as it is asymptotically normal. Unfortunately, there are no current methods available

that enable an examination of the sample distribution of the measurement errors and rξ (see

Appendix O in the online supplementary material for a discussion). We, therefore, are interested

in the performance of such a method using an approximate distribution for rξ and focus on an

adaption of the local polynomial estimator by Delaigle et al. (2009, DFC-estimator) proposed
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by Huang and Zhou (2017): the HZ-estimator (HZ for local linear estimators for solving errors-

in-variables problems, see Appendix J.3 in the online supplementary material for more details).

The HZ-estimator is less biased and more computationally stable compared to the originally

proposed DFC-estimator as also suggested by some of our preliminary analyses.

Since for increasing numbers of measurements in the exogenous part of the model, the vari-

ance of rξ decreases, measurement error in the factor scores can be ignored. There is a variety

of methods that could be used to estimate trends within data non-parametrically that do not

take measurement error into account. All results in the next sections could be influenced by

these choices. We employed two commonly used methods to estimate nonparametric trends,

namely the locally estimated scatter plot smoothing (LOESS) originating from its weighted

version (LOWESS, Cleveland, Grosse, & Shyu, 1992) proposed by Cleveland (1979, Cleveland,

1981) and a cubic smoothing spline function (Chambers & Hastie, 1992). Both methods were

also used to model the nonlinear factor scores of Kelava et al. (2017) complemented by their im-

plementation of a specific BSpline (De Boor, 1978) method in order to enable a fair comparison

between the methods and rule out any performance influences induced by the non-parametric

regression method. We do not examine the BSpline method based on Bartlett factor scores

since there is no readily available implementation except for the script of Kelava et al. (2017).

We did include it for the factor scores of Kelava et al. (2017) since it was their suggested method

to estimate the conditional expectation.

Table 1 provides a high level summary of the most important assumptions for the empirical

estimators considered. Using Bartlett factor scores together with either LOESS or Spline esti-

mates (BFS in the table) is our recommended approach and the one with the least assumptions

on the measurement model.

Table 1. Assumptions Used

Model Part BFS HZCV NLFS

measurement model
correctly specified linear measurement model z = Λf + ε

ε, f independent, Eε = 0

ε = (ε′x, ε
′
y)′ εx, εy independent coordinates of ε independent

Λ Λ =

(
Λx 0

0 Λy

)
Λ has only 1

non-zero element per row

structural model η = H(ξ) + ζ, H(x) = E[η|ξ = x], E[ζ|ξ] = 0

consistency n→∞, dx →∞ n→∞, dx, dy > 3

Note. BFS = Bartlett Factor Scores inputted into a general non-parametric trend

estimate, HZCV = cross validated HZ estimator, NLFS = Nonlinear Factor Scores.

The light gray area shows assumptions shared by all methods, the white region per-

tains to BFS, the dark gray region pertains to assumptions shared by two methods.
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4. Numerical Illustrations

All empirical analyses were done in R (R Core Team, 2023), except the nonlinear factor

scores proposed by Kelava et al. (2017) which were estimated with a modified version of

their MATLAB (The MathWorks Inc., 2023) scripts called from R including their used BSpline

method. Appendix J.2 in the online supplementary material gives detailed information on

the implementation, including the use of R-packages. A simple and practically minded nu-

merical example is provided in Appendix G in the online supplementary material. All code

and data used in the paper are available at the OSF-repository: https://osf.io/2xfh8/

?view_only=7e5595c49d5f49619b7b9d1ef8e362b2.

Within the following sections we abbreviate the Bartlett factor scores (Bartlett, 1937) by

BFS and the nonlinear factor scores by NLFS. None of the simulations are exhaustive due to the

high computational cost of the cross-validated HZ-estimator and the estimation of the NLFS.

Running the simulations of Sections 4.3 and 4.4 on a 30 core cluster took about 26 days to

complete even when limiting the number of replications to 200 per condition.

4.1. The Distribution of rξ. We here illustrate the quality of the normal approximation of

rξ. The normal approximation follows from the central limit theorem, and numerical illustra-

tions of this effect are, therefore, well known. Hence, we only consider error distributions used

in the proceeding simulation studies. We let εx have independent and identically distributed

coordinates, and have marginal distributions given either by a standardized uniform or a stan-

dardized Gamma(1, 1). The exact distribution of rξ is then known analytically (Kamgar-Parsi,

Kamgar-Parsi, & Brosh, 1995; Moschopoulos, 1985). Using these results, we produced Figure

1. In it, we see that rξ is close to normal in the uniform case for as few as 3 measurements,

while more measurements are necessary for skewed gamma distributions, where deviations are

easily seen even with 6 or 9 measurements. This indicates that approximating rξ with a normal

distribution is expected to work better for uniform errors than for gamma errors. Further, the

plot also depicts the decreasing variance of rξ with increasing dx, as indicated by narrower

distributions.

4.2. A Visual Comparison of Approximations to H. In this section we present average

approximations to the conditional expectation H(x) = E[η|ξ = x] by the use of different

methods. In order to examine the small sample and finite measurement properties of the

methods, we simulated four different trends to be estimated non-parametrically for dξ = dη = 1;

quadratic, cubic, logit and piecewise linear. We chose n = 1000, dx as 3 and 9 and all model

parameters to coincide with the assumptions needed for Lemma 4, that is, there are no cross-

loadings or residual covariances and all residuals are independent. All coefficients are chosen so

that ξ and η have zero mean and unit variance. Further, we fixed the first factor loading within

Λx and Λy to 1 (in the population and in the analyses) and the corresponding residual variances

in Ψ to .5625 to ensure that the corresponding reliability is .64. The remaining factor loadings

per latent variable and the corresponding residual variances were chosen to have reliabilities

For our simulation we used 30 processes on a shared computer cluster with 2 sockets of AMD EPYC 7452

32-core Processors @2.35 GHz (64 physical cores and 128 logical cores) and 128GB RAM.

https://osf.io/2xfh8/?view_only=7e5595c49d5f49619b7b9d1ef8e362b2
https://osf.io/2xfh8/?view_only=7e5595c49d5f49619b7b9d1ef8e362b2
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Figure 1. A comparison of the exact densities of rξ resulting from the corre-

sponding distribution of εx with the relevant normal distribution suggested as

an approximation.

that are equidistant between .64 and .25. These item-wise reliabilities are rather low, but

realistic. We wanted to choose conditions under which there is substantial noise in the data.

As this is a condition also analyzed in the following simulation study we refer to Appendix J.1

in the online supplementary material for additional information.

Figure 2 shows the average nonparametric estimation of H using either BFS or NLFS as

inputs compared with the true trend and to a linear SEM estimation averaged across 200

replications for normal ξ and gamma ε. Figure 11 in Appendix J.4 in the online supplementary

material extends Figure 2 by coverage intervals. Both figures depict the convergence towards

the true trend for increasing dx and make differences with regard to the trends evident. That is,

smoother trends, such as the quadratic trend with a constant first derivative, is approximated

with more precision from all methods compared with the other trends, which have stronger

differences with regard to their rate of change, i.e., non-constant first derivatives. All methods

appear to be less precise at the edges of the support, which is expected as there are fewer data

points present. Further, Figure 2, and 11 in Appendix J.4 in the online supplementary material

suggest that there are differences among the methods with the methods relying on the BFS

slightly outperforming the NLFS.

In order to compare computational costs, we benchmarked the methods used within Figure

2 for a cubic trend, see Appendix J.4 in the online supplementary material, Table 7. On a

standard laptop, LOESS and spline method based on BFS are extremely quick compared to

all other methods, taking much less than 1 second. The HZ-estimator using simulation based
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Figure 2. A comparison of nonparametric estimation for E[η|ξ] averaged

across 200 replications with n = 1000 for the LOESS and the smoothed spline

methods based on BFS and the NLFS, the HZ-estimator, the BSpline estimator

based on NLFS compared to the true trend and a linear SEM estimation with

different true trends (quadratic, cubic, logit and piecewise linear) and dimen-

sions dx with normal ξ and gamma distributed errors ε.



22 STEFFEN GRØNNEBERG∗ AND JULIEN PATRICK IRMER∗

cross-validated bandwidth took more than 24 minutes and the methods based on NLFS took

more than 35 minutes on average.

The nonparametric method of Kelava et al. (2017) sets the first factor loading per latent

variable to one. This is done in the following simulations to make estimates comparable. See

Appendix N in the online supplementary material for theoretical information on the scaling

issue.

4.3. Simulation Study Based on Mean Integrated Square Error for dξ = 1. We now

consider a more systematic simulation based comparison of the performance of nonparametric

estimation methods based on BFS and NLFS. We evaluate the scenarios in the previous section

in more detail, and aggregate the performance by using the mean integrated squared error

MISE = E‖H − ϕ̂‖2Aα? ,2, where ‖H − ϕ‖2Aα? ,2 =

∫
Aα?

[
H(x)− ϕ(x)

]2
dx,

where the expectation is approximated by the empirical expectation over the number of repli-

cations. The integration area is limited, as lack of data near edges inflates the mean squared

error but is of limited practical interest. We set Aα? as level sets {x : fξ(x) > c?α} where c?α is

such that P (Aα?) = 1− α?.
For our simulation study using dξ = 1 we extended the conditions of the previous Section 4.2

by a crossed design for which we manipulated the number of items dx (3, 6, 9), the distribution

of ξ (normal or uniform with mean zero and unit variance), the distribution of ε (centered

normal, centered uniform, centered gamma, see Section 4.1), and the true trends (quadratic,

cubic, logistic, piecewise linear). This resulted in a total of 72 conditions. 200 replications

were used, with a sample size of n = 1000. For a more detailed description of the simulation

conditions and the data generating process, see Appendix J.1 in the online supplementary

material. All conditions were analyzed using the following methods: linear SEM, LOESS using

BFS and NLFS, smoothed splines using BFS and NLFS, the BSpline method using NLFS

proposed by Kelava et al. (2017), and the cross-validated HZ-estimator using the BFS. In order

to compare all results with a best case scenario we also included LOESS and smoothed spline

estimation using the true latent variables f = (ξ, η)′ as inputs.

Figure 3 depicts the performance of the methods aggregated across all distributional con-

ditions and all trends. As can be expected the MISE for the linear SEM and the true latent

variables f are not affected by dx. Here, the linear SEM shows the highest and the meth-

ods based on f show the lowest MISE for all dx averaged across all distributional conditions

and trends. All other methods show a decrease in MISE for increasing dx. However, even for

dx = 9 the MISE of all methods is considerably higher compared with using the true latents f

as inputs for the nonparametric methods. This deviation quantifies approximation error aris-

ing from measurement and finite sample error. Concerning the methods of interest, for all dx

the smoothed spline using the BFS as input showed the lowest MISE followed by the LOESS

based on the BFS. Averaged across all distributional conditions and trends for dx = 3 the HZ-

estimator outperformed the methods based on NLFS. These differences disappear for dx = 6

and reverse for dx = 9 indicating that for smaller variance of rξ the HZ-estimator is less useful
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Figure 3. A comparison of the average MISE across 200 replications with n =

1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based on

different inputs (BFS f̈ , NLFS, the linear SEM, and the true latent variables f

for comparison) for different dimensions dx aggregated across all distributions

and trends used in the simulation study.

compared to the other methods. Within the methods based on NLFS, Figures 3 suggests that

the spline and BSpline approaches have smaller MISE compared to the LOESS. However, these

differences are rather small. For dx = 9 the differences between the methods using BFS and

the methods using NLFS appear to be considerably smaller than for dx = 3.

Figure 4 shows the MISE across all conditions. Table 8 and 9 in Appendix J.4 in the

online supplementary material display the corresponding numerical values depicted in Figure 4.

These supplement Figure 3 of the article by visualizing all MISE for all simulated conditions.

For instance, it is evident for some conditions with a logit trend for dx = 3, that the MISE

for methods based on NLFS was in fact higher than that of the linear SEM, indicating that

the linear approximation was closer to the true trend than the non-parametric one based on

NLFS. With increasing dx all methods showed lower MISE compared to the linear SEM. The

distribution of ξ also influences the performance of the methods. For instance, for normal ξ

and logit trend the HZ-estimator resulted in lower MISE compared to all other methods based

on factor scores. For a cubic trend this is reversed and all methods except for the linear SEM

show a lower MISE compared to the HZ-estimator. All in all, for all scenarios and all dx the

methods using the NLFS never had the smallest MISE, with the LOESS, the BSpline, and the
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smoothed spline method based on NLFS showing comparable MISE in almost all conditions.

In most cases spline and LOESS based on BFS showed the lowest MISE as already suggested

by the aggregated results in Figure 3. We note that the differences between the methods based

on BFS and NLFS are small but consistent.

Interestingly, there are conditions for which LOESS showed lower MISE for the methods

based on factor scores than the spline method, while the LOESS based on the true latent

variables showed higher MISE than using splines in all conditions. Therefore, we cannot draw

any conclusions from the performance of the methods using the true latents f as inputs and

they should only be used as a best case scenario and serve as an anchor for an expected smallest

possible MISE (as f̈ → f for dx → ∞; hence, the MISE cannot be smaller than that using

f). For ease of comparison, Figure 12 in Appendix J.4 in the online supplementary material

depicts the relative improvement of MISE in comparison to the linear SEM approximation (see

also Table 10 and 11). These relative improvements show that the logit trend was closest to

linearity since the improvement was the smallest. The cubic trend for normal ξ showed the

largest improvement, while for uniform ξ for cubic trends the improvement was comparable to

that of quadratic or piecewise-linear trends.

In order to visualize variation among the trends, Figure 13 in Appendix J.4 in the online

supplementary material depicts box plots summarizing the MISE across all distributional con-

ditions for each dx and each trend. The variation among MISE decreases with increasing dx

and is comparable among the methods based on factor scores. The methods based on the

true latent variables on average show the smallest variation. The cubic trend has the largest

variation among the MISE across the distributional conditions, but the piecewise linear trend

resulted in the largest average MISE.

To summarize, from our limited conditions within the simulation we may conclude that using

BFS either with LOESS or smoothed splines will result in the smallest MISE and, therefore,

in the best approximation of the true trend, while also being the cheapest with regard to

computation time. The HZ-estimator was only beneficial in limited conditions, while the NLFS

always showed higher MISE compared to LOESS or splines based on BFS.

4.4. Simulation Study Based on Mean Integrated Square Error for dξ = 2. In this

section we extend the previous simulation results to models with dξ = 2. As a multivariate

implementation of the HZ-estimator is still missing, we did not include it in the simulation.

Further, there are no simple multivariate extensions of the smoothed spline method, and we

discarded it within the dξ = 2 simulation study. This simulation study therefore only considers

LOESS estimates of the trend as well as the BSpline approach as implemented by Kelava et al.

(2017) for their NLFS.

We used a crossed design for which we manipulated the number of items per latent exogenous

variable ξ = (ξ1, ξ2)′, the number of measurements per latent variable dxj (3, 6, 9) for j = 1, 2,

the distribution of ξ (multivariate standard normal or normal copula with uniform marginals

with mean zero, variance 1, and correlation .5), the distribution of ε (centered normal, centered

uniform, centered gamma), and the true trends (quadratic, cubic). Further, we manipulated the

model specification, that is whether cross-relations, i.e., cross-loadings and residual covariances,
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Figure 4. A comparison of the averaged MISE across 200 replications with

n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based

on different inputs (BFS, NLFS, linear SEM, and true latent variables f for

comparison) for four models with different true trends (quadratic, cubic, logit

and piecewise linear) and dimensions dx. See Table 8 and 9 in Appendix J.4

in the online supplementary material for numerical values.
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among the measurements of ξ or within the measurements of η are present (uncrossed, crossed).

This resulted in a total of 72 conditions. We used 200 replications, and a sample size of n = 1000.

For a more detailed description of the simulation conditions and the data generating process, see

Appendix J.1 in the online supplementary material. We compared the following methods: linear

SEM, LOESS using BFS or NLFS, and the BSpline method using NLFS proposed by Kelava et

al. (2017). In order to compare all results with a best case scenario we, again, included LOESS

estimation based on the true latent variables f = (ξ′, η)′ as inputs. The NLFS proposed by

Kelava et al. (2017) assumes a linear factor model without cross-loadings or residual covariances

among the items (recall Table 1). In order to examine the effect of a misspecified measurement

model used to compute factor scores, we added Bartlett scores estimated without cross-relations

as an additional condition, to have a fair comparison between the methods, as they are then

both misspecified in these conditions. For a discussion and examples on the misspecification of

the functional form of the factor models (i.e., nonlinear factor models) see Appendix L.2 in the

online supplement, which show that misspecification is not very sensitive for minor deviations

from linearity. We call BFSuc the Bartlett scores estimated using no cross-relations in the

factor model.

Figure 5 shows aggregated MISE results aggregated across all distributional conditions,

trends, and model specifications. Similarly to the dξ = 1 case, MISE decreases for all meth-

ods based on factor scores for increasing dxj , while LOESS based on the true latents f and

the linear SEM are not affected by dxj . It stands out that LOESS based on BFS using the

correct model is not influenced by cross relations, while the NLFS as well as the BFS without

these cross-relations show largely inflated MISEs for conditions where there are in fact cross-

relations present. Still, the wrongly specified BFSuc resulted in lower MISE compared to the

methods based on the NLFS for conditions with present cross-relations. For conditions without

cross-relations the LOESS based on BFS with and without are identical and, hence, overlap

completely. The LOESS based on BFS outperforms the methods based on NLFS under all

presented conditions.

Figure 6 shows all average MISE across the 200 replications for all used conditions (see also

Table 12 and 13 in Appendix J.4 in the online supplementary material for numerical values).

From Figure 6 it is evident that there are differences in the degree of poor performance of the

method with regard to the distributions. The MISE did decrease for all methods based on

factor scores with increasing dxj , but there are conditions, where the MISE for methods using

factor scores was considerably higher than that of the linear SEM. Compared to the linear

SEM, the MISE in conditions with cross-relations was larger for BFSuc and the methods based

on NLFS for quadratic trends and especially for normal ξ with the MISE being larger than

that of the linear SEM even for dxj = 9 for quadratic trends with normal ξ. Interestingly,

with regard to measurement errors, gamma ε resulted in the lowest MISEs. In the conditions

without cross-relations still in all conditions LOESS based on NLFS outperformed the BSpline

method. Further, LOESS based on BFS is considerably lower in all conditions without cross-

relations compared to methods based on NLFS. These differences appear the smallest for cubic

trends with marginally uniform ξ with normal copula. The MISE of the methods based on
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Figure 5. A comparison of the averaged MISE across 200 replications with

n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based

on different inputs (BFS f̈ , NLFS, the linear SEM, and the true latent variables

f for comparison) for different dimensions dx aggregated across all distribu-

tions and trends used in the simulation study separated for conditions without

(uncrossed) and including cross-loadings and cross correlations in Λx,Ψx, and

Ψy. BFS and BFSuc are equivalent for uncrossed data.

factor scores was considerably higher than that of the LOESS based on f . Identically to the

simulation with dξ = 1 the MISE for the linear SEM or for the LOESS based on f was not

related to dxj . This, of course, can be expected as for these objects dxj has no influence on the

estimated parameters.

Further, Figure 16 in Appendix J.4 in the online supplementary material emphasizes that

the LOESS based on BFS is much more homogeneous in the MISE and, hence, in the perfor-

mance in approximating the true trend. Additional information on the relative improvement

in comparison to the linear SEM approximation is further given in this appendix stretching the

importance of a correctly specified (linear) measurement model (see Figure 15 and Tables 14

and 15).

To summarize, from our limited conditions within the simulation we underline the results of

the previous simulation study for dξ = 1 with even stronger evidence in favor of the LOESS
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Figure 6. A comparison of the averaged MISE across 200 replications with

n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others]

based on different inputs (BFS, NLFS, linear SEM, and true latent variables

f for comparison) for two models with different true trends (quadratic and cu-

bic), dimensions dxj , and inclusion of cross-relations (cross-loadings and cross-

correlations in Λx,Ψx, and Ψy) and distributions (row and column names refer

to marginal distributions) used in the simulation study for dξ = 2. See Table

12 and 13 in Appendix J.4 in the online supplementary material for numerical

values.
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method based on the BFS as it showed the smallest MISE in all conditions, opens the opportu-

nity to check whether the confirmatory factor analysis model used to extract the factor scores

fits the data, is flexible with regard to cross-relations and has an extremely short runtime. We

note that the differences between the methods based on BFS and NLFS are small but consis-

tent, when all assumptions for NLFS are fulfilled. The differences between the methods decline

for increasing dxj , but are never close to the performance of the LOESS based on f or to each

other. Measurement model misspecification negatively affects all methods.

5. Concluding Remarks

We may combine our foundational equations (1) and (2) to see that the full model is a

multivariate non-parametric regression problem where both the dependent variable η and in-

dependent variable ξ are observed with measurement error. In theory, this non-parametric

formulation can be worked with directly. However, the distributions of the error terms would

be unknown, and would neither be asymptotically normal nor vanishing as the number of mea-

surements increase. With stronger assumptions the distributions of these measurement errors

are identified and can be non-parametrically estimated, which would lead to methodology such

as that suggested in Kelava et al. (2017) and Kohler et al. (2015).

Our approach avoids such estimation or a-priori specification of the error distribution through

our use of factor scores. That is, we use a linearly optimal dimensionality reduction which

has the advantage that the measurement error distribution is asymptotically known, thereby

avoiding their estimation in order to non-parametrically estimate H.

Our simulation study has demonstrated that using Bartlett (1937) factor scores as inputs in

non-parametric regression methods is computationally efficient for non-parametric estimation

in NLSEM. Specifically, employing LOESS or spline approaches based on Bartlett factor scores

outperformed the other methods in nearly all conditions in our simulation study.

Our analyses have several limitations. In the theoretical contribution, the most striking

limitations are that we only study population quantities, and that we only used linear factor

scores taken from an assumed correctly specified linear factor model. Also, the assumptions of

the asymptotic results can be weakened, and the assumptions we made on the factor scores can

likely also be weakened to e.g. allow the use of Thurstone factor scores.

In the simulations, we limited attention to non-parametric estimators of H, and excluded

the semi-parametric alternatives reviewed in Appendix I in the online supplementary material.

Bauer et al. (2012) compared the performance of estimating trends using the semiparametric

latent class approach of Bauer (2005) with the approach of inputting factor scores into non-

parametric regression methods as dealt with in this paper, and concluded that the latent class

approach performed best in many settings. In further research, one could analyze the scope

of the semi-parametric methods, i.e., identify which types of trends and distributional forms

are supported in common situations (in the latent class situation this could be a small to

moderate number of latent classes and within each (ξ′, η′)′ follows a linear and normal SEM),

and compare the non-parametric approaches considered in the present paper with the semi-

parametric methods both within and outside their scope.
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Further limitations of our simulation study is that we only use a sample size of n = 1000

observations with 200 replications. Expanding the sample size could provide further insights

into the performance of the methods. Expanding the replication number would sharpen our

approximations. Furthermore, our simulation study solely considers symmetric distributions

for the latent exogenous variable ξ, and we have not varied the number of measurements for

the latent endogenous variable η.
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Throughout the appendix we use several properties of conditional expectations and measure-theory,

which are stated in Appendix K for completeness.

Appendix A. A Simple and Practically Oriented Numerical Illustration

In this section, we consider a simple simulation-based illustration using a very simple model sum-

marized in Figure 7. Example code in how to estimate the nonlinear trend using Bartlett factor scores

utilizing LOESS is given at the end of this section.

X1

X2

X3

Y1

Y2

Y3

ξ1 η1

Figure 7. An example SEM path diagram, where arrows between latent vari-

ables and manifest variables indicate linear relationships, while arrows among

latent variable indicate possible nonlinear relations. Residuals and measure-

ment errors are not shown for simplicity, but are present in the model.

The arrow between ξ1 and η1 denote an influence, and it may be non-linear. Its equation is

η1 = H(ξ1) + ζ1, ξ1,∼ N (0, 1), ζ1 ∼ N (0, .34) and independent of each other.

Linear SEM assumes H(x) = γ1x. Instead, we will assume

H(x) = −0.5 + 0.4x+ 0.5 ∗ x2

which is a clearly non-linear quadratic trend. The chosen parameters further imply Var η = 1.

The measurement model is linear, and given by

xi = λx,iξ1 + εx,i, yi = λy,iη1 + εy,i, i = 1, 2, 3.

We let λx,1 = λy,1 = 1 fixed for identification and let λx,2 = λy,2 = .65 and λx,3 = λy,3 = .5. Further

let εx ∼ N (0,Ψx) and εy ∼ N (0,Ψy), with Cov εx = Ψx = Cov εy = Ψy = diag(.5625, .5775, .75),

where diag stacks the vector onto the diagonal of a corresponding square matrix. This is the same

model setting as chosen for the simulation study, further described in Section 4 and Appendix D.

We drew a sample with sample-size n = 200. The simulated values of (η1, ξ1) are shown in Figure

8. Standard linear SEM goodness of fit measures report χ2
df=8 = 10.11, p = 0.257, RMSEA = 0.036,

SRMR = 0.030, CFI = 0.990, indicating an appropriate fit. This failure of standard linear SEM

estimations to detect non-linear deviations from the model is well-known, see e.g. Mooijaart and

Satorra (2009). The trend we have chosen for the illustration is of a simple quadratic kind. There are
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available tools to detect missing quadratic or interaction terms in SEM, such as the specification test

of Nestler (2015) or significance tests for non-linear SEM (Büchner & Klein, 2020). We here illustrate

how the non-linear trend can be detected using trend estimates based on factor scores.

−1

0

1

−1 0 1

ξ

η

Method
True

Factor
f

Figure 8. Simulated values of (η1, ξ1) with the true trend H.

The data plotted in Figure 8 will never be known to us, and we need to use the manifest variables

x1, x2, x3, y1, y2, y3 to approximate the latent variables. In Figure 9, we have plotted the Bartlett factor

scores with trend estimates using the locally estimated scatterplot smoothing (LOESS) originating from

its weighted version (LOWESS, Cleveland et al., 1992) proposed by Cleveland (1979, Cleveland, 1981),

the cross-validated adaption of the local polynomial estimator by Delaigle et al. (2009, DFC-estimator)

proposed by Huang and Zhou (2017): the HZ-estimator (HZ for local linear estimators for solving errors-

in-variables problems, see Appendix D.3 for more details) specifically tailored for Bartlett factor scores

assuming normality of the prediction residual of the score (see Section 3 for further information), and

the nonlinear factor scores of Kelava et al. (2017) complemented by their implementation of a specific

BSpline (De Boor, 1978) method. In this particular simulation, the LOESS(BFS) has the least mean

integrated square error to the true trend line H, then HZCV(BFS), and finally BSpline(NLFS).

The plotted points of Figure 9 will only be an approximation to the true latent variables f in Figure

8 due to the relation f̈ = f + r for the BFS. Individual realizations of the factors are not possible

to re-gain exactly (for an overview of factor score indeterminacy see, e.g., Grice, 2001), even in the

population. We caution against taking the individual factor scores as equal to the factors. The observed

differences between Figures 8 and 9 illustrate the type of difference one might expect in an empirical

study.

When studying the difference between the latent variables (Figure 8) and their approximation (Fig-

ure 9), it is clear that with a low sample size (n = 200) and a low number of measurement variables

(three per latent variable), there is a large degree of approximation error. Yet both LOESS(BFS)

and HZCV(BFS) clearly indicate that a non-linear trend appears needed, and that a quadratic trend
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0
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ξ⋅ BFS
^

η⋅ B
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^

Factor
BFS

Method
BSpline(NLFS)
HZCV(BFS)
LOESS(BFS)
True

Figure 9. Estimated values (η̈1, ξ̈1) using Bartlett factor scores with the

true trend H (True) and estimated trends using LOESS based on BFS

(LOESS(BFS)), BSpline estimator based on NLFS (BSpline(NLFS)), and the

cross-validated HZ-estimator based on BFS (HZCV(BFS)) for n = 200.

appears reasonable. This is less apparent based on BSpline(NLFS), which did not work well in this

particular simulation.

The following R code uses lavaan (Rosseel, 2012) to estimate LOESS(BFS) for this two factor model,

where ξ1 influences η1, all measured by three observations as represented by Figure 7. As per default

in lavaan, the latent mean per latent variable is fixed to zero, we manually overwrite this by fixing the

first manifest mean per latent variable to zero and freely estimating the latent means. This ensures

that the BFS are allowed to have means which is necessary for the nonparametric trend to converge

towards the population trend and not a linear combination thereof. The code to estimate all other

trends as well as the code resulting in the figures and the data of this section are given in the online

supplementary materials.

# fit model

model <- "

# measurement model formulation

Xi1 =~ 1*x1 + x2 + x3

Eta1 =~ 1*y1 + y2 + y3

Xi1 ~~ Eta1

# fix first intercept per latent to zero for scaling

x1 ~0

y1 ~0

# estimate latent means freely
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Xi1 ~1

Eta1 ~1

"

fit <- lavaan::sem(model, data)

BFS <- as.data.frame(lavaan::lavPredict(fit, method = "Bartlett"))

# fit LOESS(BFS)

fitLOESS <- loess(Eta1 ~ Xi1, data = BFS)

LOESS_BFS <- predict(fitLOESS)

# plot data

df <- data.frame(LOESS_BFS, BFS)

library(ggplot2)

ggplot(data = df, mapping = aes(x = Xi1, y = LOESS_BFS)) +

geom_line()+

geom_point(mapping = aes(x = Xi1, y = Eta1))

Appendix B. Non-parametric regression among factor scores for a full SEM: a

component-wise approach

For a given SEM, the non-parametric estimation methodology developed in this paper can be used to

produce component-wise estimates of the influences onto each endogenous variable in the model. This

can be achieved by taking each endogenous component of the model, and estimating non-parametrically

its regression function using all variables that influence it as explanatory variables. Since this may

include variables that are endogenous in the full system, the explanatory variables of each step in the

component-wise estimates may be a mixture of both exogenous and endogenous variables.

In this section, we consider this procedure via illustrations following the SEM given in Figure 10.

We will illustrate the differences and similarities between considering the reduced form of the SEM and

a component-wise perspective through some example calculations.

In this example model we have one exogenous variable ξ = ξ1 and three endogenous variables

η = (η1, η2, η3)′ in the full system. The reduced form representation of the whole system is the

conditional expectation of all endogenous variables given the exogenous variable ξ1 distorted by noise

ζ = (ζ1, ζ2, ζ3)′

η = (η1, η2, η3)′ = H(ξ1) + ζ, E[ζ|ξ1] = 0,

where H : R 7→ R3 is H(x) = E[η|ξ1 = x]. This reduced form representation considers how ξ = ξ1

influences η.

In contrast, we may use the structural model from Figure 10. By the existence of the conditional

expectations, we have that there exists functions H̃1, H̃2, H̃3 with

η1 = H̃1(ξ1) + ζ1, E[ζ1|ξ1] = 0,

η2 = H̃2(ξ1, η1) + ζ2, E[ζ2|ξ1, η1] = 0,

η3 = H̃3(ξ1, η1, η2) + ζ3 E[ζ3|ξ1, η1, η2] = 0,
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Figure 10. An example SEM path diagram, where arrows between latent

variables and manifest variables indicate linear relationships, while arrows

among latent variable indicate possible nonlinear relations. Residuals and mea-

surement errors are not shown for simplicity, but are present in the model.

so that

H̃1(x1) = E[η1|ξ1 = x1]

H̃2(x1, y1) = E[η2|ξ1 = x1, η1 = y1]

H̃3(x1, y1, y2) = E[η3|ξ1 = x1, η1 = y1, η2 = y2].

If we assume that all drawn errors in the path diagram indicate dependence, and missing errors

denote independence among variables, the conditional expectation of η3 further simplifies to E[η3|η1 =

y1, η2 = y2].

In general, the coordinate functions of H will not coincide with H̃1, H̃2, H̃3, both because these

functions depend on other inputs than ξ1, but also because the reduced form equation including H2

does not take into account for example the influence from η1 to η2, which is accounted for in H̃2.

In NLSEM, traditional estimators make stronger assumptions on the error terms ζj than the con-

ditional zero expectation property stated in the above display. Also independence to the variables

influencing each coordinate of η as well as other error terms are explicitly made (see, e.g., Holst &

Budtz-Jørgensen, 2020; Lee et al., 2007; Mooijaart & Bentler, 2010; Mooijaart & Satorra, 2012; Wall

& Amemiya, 2000, 2001, 2003), or implicitly made via distributional assumption, such as multivariate

normality (see, e.g., Brandt et al., 2018; Kelava & Brandt, 2009; Kenny & Judd, 1984; Klein & Moos-

brugger, 2000; Marsh et al., 2004). In this section we will assume that the regression errors ζ1, ζ2, ζ3
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are independent to what is conditioned on for ease of computation. The rational of our paper is gen-

eral (see also discussion on non-additive errors in Appendix J). Since these independence assumptions

imply that the above stated conditional expectations are zero, we may non-parametrically estimate

H̃1, H̃2, H̃3 using the techniques of the present paper.

Concretely, to estimate H̃1, we input ξ1 as the explanatory variable for η1. To estimate H̃2, we

input ξ1 and η1 as explanatory variables for η2. To estimate H̃3, we input ξ1, η1, and η2 as explanatory

variables for η3.

In each step, the assumptions of the paper have to be fulfilled. In most cases, this is the case if it

holds globally. In a few cases, we may loose identification of the covariance parameters when considering

a measurement model for a reduced equation set. We do not consider this topic systematically here.

For simplicity, the structural part of Figure 10 is recursive, hence, there are no loops and no

correlated error terms. Loops are unproblematic to take into account when considering the model

component-wise: Say there would be an arrow also from η3 to η2. Then the equation for η2 would need

to include η3, giving

η2 = H2(ξ1, η1, η3) + ζ2, E[ζ2|ξ1, η1, η3] = 0.

As for correlated errors in the structural part, we first recall why error terms defined through

conditional expectation requirements are uncorrelated with what is conditioned on. That is, recall that

ζ1, ζ2, ζ3 are defined by tautology through

ζ1 = η1 − E[η1|ξ1]

ζ2 = η2 − E[η2|ξ1, η1]

ζ3 = η3 − E[η3|ξ1, η1, η2].

Now firstly, we recall that e.g. Eζ3 = E[E[ζ3|ξ1, η1, η2]] = E0 = 0, and similarly Eζj = 0 for j = 1, 2.

Since the error terms have zero mean, we get e.g. that

Cov (ζ3, η1) = Eζ3η1 = E[E[ζ3η1|ξ1, ξ2, η1, η2]]

where here η1 is conditioned on, and can therefore be taken outside the inner expectation, giving

Cov (ζ3, η1) = E[η1E[ζ3|ξ1, η1, η2]] = 0.

Similarly, all error terms are uncorrelated with the explanatory variables within each equation.

The definition of terms in ζ = (ζ1, ζ2, ζ3)′ does not imply that they are independent nor uncorrelated.

Consider the data generating mechanism to imply a correlation among ζ and assume that the assump-

tions of the error terms hold. This then implies that the conditional expectation of the error terms

when conditioning on the same variables as when defining ζ1, ζ2, ζ3, is equivalent to the error terms

ζ1, ζ2, ζ3 because the conditional expectation is almost surely unique. Therefore, since it is possible to

have data generating mechanisms where the error terms in the structural part have correlation, also

the error terms ζ1, ζ2, ζ3 may be correlated. Therefore, the possibility of correlated errors is embedded

within the framework we work with, and cannot be specified to be the case nor chosen away, as we are

simply estimating a conditional expectation and its implied residue ζ1, ζ2, ζ3.

Consequently, residual covariation among endogenous variables can be estimated using estimates for

the residual ζ by applying its formula. We note the possible influence of approximation error and do

not consider this topic systematically here.
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We now consider a series of examples, first under model conditions, and then in the upcoming

sub-section under structural misspecification. In Section F, we consider similar issues, though under

measurement misspecification or non-linear measurement models.

Example 1. Consider the linear SEM resulting from the model in Figure 10 by setting all relations

among latent variables as linear. Hence, we get

η1 = α1 + γ1,1,1ξ1 + ζ1,

η2 = α2 + γ1,2,1ξ1 + β1,2,1η1 + ζ2

η3 = α3 + β1,3,1η1 + β1,3,2η2 + ζ3,

where we use γ for the effects of ξ to η and β for the effects among η. Further, the first index in γ and

β refers to the order of the effect. Here, only linear effects are present, hence, β1,3,1 refers to the linear

effect of η1 to η3.

Further, assume that the errors ζ1, ζ2, ζ3 have zero means, variances Eζ2
1 = ψ11,Eζ2

2 = ψ22,Eζ2
3 =

ψ33, and are mutually independent to all other error terms and ξ1. This implies that the error terms

are also independent to the explanatory variables used in the equation where the error term is written.

To see this, notice that the endogenous variables can sequentially be written in terms of ξ1 and other

error terms (first insert the equation for η1 into the equation for η2, then the equation for η2 into the

equation for η3).

Let us calculate H (with components Hj , j = 1, 2, 3) and H̃1, H̃2, H̃3. We have H1(x1) = H̃1(x1),

because this equation does not depend on any of the endogenous variables. Since E[η1|ξ1] = α1 +

γ1,1,1ξ1 + E[ζ1|ξ1] = α1 + γ1,1,1ξ1 + E[ζ1] = α1 + γ1,1,1ξ1 by the assumed independence properties for

ζ1 and it being a residual with zero mean. Therefore, H1(x1) = H̃1(x1) = α1 + γ1,1,1x1.

For η2, we have

E[η2|ξ1] = E[α2 + γ1,2,1ξ1 + β1,2,1η1 + ζ2|ξ1]

= α2 + γ1,2,1ξ1 + β1,2,1E[η1|ξ1] + E[ζ2|ξ1].

Now, we have E [η1|ξ1] = α1 + γ1,1,1ξ1, and E [ζ2|ξ1] = E [ζ2] = 0. Therefore,

E[η2|ξ1] = α2 + β1,2,1α1 + (γ1,2,1 + β1,2,1γ1,1,1)ξ1,

and, hence, H2(x1) = α2 +β1,2,1α1 + (γ1,2,1 +β1,2,1γ1,1,1)x1. For H̃2 we use Lemma 7 (p. A75) and get

E[η2|ξ1, η1] = α2 + γ1,2,1ξ1 + β1,2,1η1,

and, hence, H̃2(x1, y1) = α2 + γ1,2,1x1 + β1,2,1y1.

Finally, for the reduced form relationship between ξ1 and η3, we have

E[η3|ξ1] = α3 + β1,3,1E[η1|ξ1] + β1,3,2E[η2|ξ1] + E[ζ3|ξ1],

for which we have E[ζ3|ξ1] = 0, and, hence,

E[η3|ξ1] = α3 + β1,3,1α1 + β1,3,2α2 + β1,3,2β1,2,1α1 + (β1,3,1γ1,1,1 + +β1,3,2γ1,2,1 + β1,3,2β1,2,1γ1,1,1)ξ1.

Therefore, H3(x1) = α3+β1,3,1α1+β1,3,2α2+β1,3,2β1,2,1α1+(β1,3,1γ1,1,1++β1,3,2γ1,2,1+β1,3,2β1,2,1γ1,1,1)x1.

For H̃3, we again use Lemma 7 (p. A75) and get

E[η3|ξ1, η1, η2] = α3 + β1,3,1η1 + β1,3,2η2,

and, hence, H̃3(x1, y1, y2) = α3 + β1,3,1y1 + β1,3,2y2.



A8 STEFFEN GRØNNEBERG∗ AND JULIEN PATRICK IRMER∗

To summarize, we have that

H1(x1) = α1 + γ1,1,1x1,

H2(x1) = α2 + β1,2,1α1︸ ︷︷ ︸
α?2

+ (γ1,1,1β1,2,1 + γ1,2,1)︸ ︷︷ ︸
γ?1,2,1

x1,

H3(x1) = α3 + β1,3,1α1 + β1,3,2α2 + β1,3,2β1,2,1α1︸ ︷︷ ︸
α?3

+ (γ1,2,1β1,3,2 + γ1,1,1β1,2,1β1,3,2 + γ1,1,1β1,3,2)︸ ︷︷ ︸
γ?1,3,1

x1,

and, in contrast, for H̃j(j = 1, 2, 3) we get

H̃1(x1) = α1 + γ1,1,1x1,

H̃2(x1, y1) = α2 + γ1,2,1x1 + β1,2,1y1,

H̃3(x1, y1, y2) = α3 + β1,3,1y1 + β1,3,2y2.

Translating this into mediation analysis framework (see for an overview, MacKinnon et al., 2007),

H2, for instance, refers to the total effect of ξ1 onto η2, while H̃2 describes the effect of ξ1 to η2 above

and beyond η1 in a regression sense. Hence, γ1,2,1 within H̃2 is the unique linear relation between ξ1

and η2 above and beyond η1, while γ?1,2,1 is the total effect of ξ1 to η2, ignoring any relations mediated

by η1. �

Example 2. Consider the nonlinear SEM

η1 = α1 + γ1,1,1ξ1 + ζ1,

η2 = α2 + γ1,2,1ξ1 + β1,2,1η1 + β2,2,1η
2
1 + ζ2

η3 = α3 + β1,3,1η1 + β1,3,2η2 + β2,3,1η
2
1 + β3,3,1η

3
1 + ζ3,

as a nonlinear extension of the linear SEM of Example 1, again representing the (possible nonlinear)

relations depicted in Figure 10. We use the same notation as in Example 1, i.e., β3,3,1 is the effect

of the cubic η3
1 on η3, and, again, assume that the errors ζ1, ζ2, ζ3 have zero means, variances Eζ2

1 =

ψ11,Eζ2
2 = ψ22,Eζ2

3 = ψ33, and are mutually independent to all other error terms and ξ1.

Let us (again) calculate H (with components Hj , j = 1, 2, 3) and H̃1, H̃2, H̃3.

Identically to Example 1, we have H1(x1) = H̃1(x1) = α1 + γ1,1,1x1.

For η2, we have

E[η2|ξ1] = E[α2 + γ1,2,1ξ1 + β1,2,1η1 + β2,2,1η
2
1 + ζ2|ξ1]

= α2 + γ1,2,1ξ1 + β1,2,1E[η1|ξ1] + β2,2,1E[η2
1 |ξ1] + E[ζ2|ξ1].

Now, we have E [η1|ξ1] = α1 + γ1,1,1ξ1, and E [ζ2|ξ1] = E [ζ2] = 0. For the expectation of η2
1

conditioned on ξ1 we get

E
[
η2

1 |ξ1
]

= E
[
(α1 + γ1,1,1ξ1 + ζ1)2 |ξ1

]
= E

[
α2

1 + γ2
1,1,1ξ

2
1 + ζ2

1 + 2α1γ1,1,1ξ1 + 2α1ζ1 + 2γ1,1,1ξ1ζ1|ξ1
]

= α2
1 + γ2

1,1,1E
[
ξ2
1 |ξ1

]
+ E

[
ζ2
1 |ξ1

]
+ 2α1γ1,1,1E [ξ1|ξ1] + 2α1E [ζ1|ξ1] + 2γ1,1,1E [ξ1ζ1|ξ1]

= α2
1 + γ2

1,1,1ξ
2
1 + E

[
ζ2
1

]
+ 2α1γ1,1,1ξ1 + 2α1 · 0 + 2γ1,1,1ξ1E [ζ1|ξ1]

= α2
1 + γ2

1,1,1ξ
2
1 + ψ11 + 2α1γ1,1,1ξ1 + 2γ1,1,1ξ1 · 0

= α2
1 + ψ11 + 2α1γ1,1,1ξ1 + γ2

1,1,1ξ
2
1 .
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Hence, for E[η2|ξ1] we have

E[η2|ξ1] = α2 + γ1,2,1ξ1 + β1,2,1 (α1 + γ1,1,1ξ1) + β2,2,1

(
α2

1 + ψ11 + 2α1γ1,1,1ξ1 + γ2
1,1,1ξ

2
1

)
= α2 + β1,2,1α1 + γ1,2,1ξ1 + β1,2,1γ1,1,1ξ1 + β2,2,1α

2
1 + β2,2,1ψ11 + β2,2,12α1γ1,1,1ξ1 + β2,2,1γ

2
1,1,1ξ

2
1

= α2 + β1,2,1α1 + β2,2,1ψ11 + β2,2,1α
2
1 + γ1,2,1ξ1 + β1,2,1γ1,1,1ξ1 + 2β2,2,1α1γ1,1,1ξ1 + β2,2,1γ

2
1,1,1ξ

2
1

= α2 + β1,2,1α1 + β2,2,1ψ11 + β2,2,1α
2
1︸ ︷︷ ︸

=α?2

+ (γ1,2,1 + β1,2,1γ1,1,1 + 2β2,2,1α1γ1,1,1)︸ ︷︷ ︸
=γ?1,2,1

ξ1 + β2,2,1γ
2
1,1,1︸ ︷︷ ︸

=γ?2,2,1

ξ2
1 ,

which is a quadratic form in ξ1. We get H2(x1) = α?2 + γ?1,2,1x1 + γ?2,2,1x
2
1. In contrast, when

conditioning on ξ1 and η1, we get

E[η2|ξ1, η1] = α2 + γ1,2,1ξ1 + β1,2,1η1 + β2,2,1η
2
1 ,

so that H̃2(x1, y1) = α2 + γ1,2,1x1 + β1,2,1y1 + β2,2,1y
2
1 .

Finally, for the reduced form relationship between ξ1 and η3, we have

E[η3|ξ1] = α3 + β1,3,1E[η1|ξ1] + β1,3,2E[η2|ξ1] + β2,3,1E
[
η2

1 |ξ1
]

+ β3,3,1E
[
η3

1 |ξ1
]

+ E[ζ3|ξ1],

for which we have already derived E[η1|ξ1],E[η2
1 |ξ1], E[η2|ξ1], and have that E[ζ3|ξ1] = E[ζ3] = 0 due to

the independence of ζ3 to all other variables. Hence, we only have to calculate E[η3
1 |ξ1]:

E[η3
1 |ξ] = E

[
(α1 + γ1,1,1ξ1 + ζ1)3|ξ1

]
= E

[
α3

1 + 3α2
1γ1,1,1ξ1 + 3α2

1ζ1 + 3α1(γ1,1,1ξ1)2 + 6α1γ1,1,1ξ1ζ1 + 3α1ζ
2
1+

(γ1,1,1ξ1)3 + 3(γ1,1,1ξ1)2ζ1 + 3γ1,1,1ξ1ζ
2
1 + ζ3

1 |ξ1
]

= α3
1 + 3α2

1γ1,1,1E [ξ1|ξ1] + 3α2
1E [ζ1|ξ1] + 3α1γ

2
1,1,1E

[
ξ2
1 |ξ1

]
+ 6α1γ1,1,1E [ξ1ζ1|ξ1] + 3α1E

[
ζ2
1 |ξ1

]
+

γ3
1,1,1E

[
ξ3
1 |ξ1

]
+ 3γ2

1,1,1E
[
ξ2
1ζ1|ξ1

]
+ 3γ1,1,1E

[
ξ1ζ

2
1 |ξ1

]
+ E

[
ζ3
1 |ξ1

]
= α3

1 + 3α2
1γ1,1,1ξ1 + 3α2

1 · 0 + 3α1γ
2
1,1,1ξ

2
1 + 6α1γ1,1,1ξ1E [ζ1|ξ1] + 3α1E

[
ζ2
1

]
+

γ3
1,1,1ξ

3
1 + 3γ2

1,1,1ξ
2
1E [ζ1|ξ1] + 3γ1,1,1ξ1E

[
ζ2
1 |ξ1

]
+ E

[
ζ3
1

]
= α3

1 + 3α2
1γ1,1,1ξ1 + 3α1γ

2
1,1,1ξ

2
1 + 6α1γ1,1,1ξ1 · 0 + 3α1ψ11+

γ3
1,1,1ξ

3
1 + 3γ2

1,1,1ξ
2
1 · 0 + 3γ1,1,1ξ1E

[
ζ2
1

]
+ E

[
ζ3
1

]
= α3

1 + 3α1ψ11 + E
[
ζ3
1

]
+
(
3α2

1γ1,1,1 + 3γ1,1,1ψ11

)
ξ1 + α1γ

2
1,1,1ξ

2
1 + γ3

1,1,1ξ
3
1 .



A10 STEFFEN GRØNNEBERG∗ AND JULIEN PATRICK IRMER∗

Hence,

E[η3|ξ1] = α3 + β1,3,1 (α1 + γ1,1,1ξ1) + β1,3,2

(
α?2 + γ?1,2,1ξ1 + γ?2,2,1ξ

2
1

)
+

β2,3,1

(
α2

1 + ψ11 + 2α1γ1,1,1ξ1 + γ2
1,1,1ξ

2
1

)
+

β3,3,1

(
α3

1 + 3α1ψ11 + E
[
ζ3
1

]
+
(
3α2

1γ1,1,1 + 3γ1,1,1ψ11

)
ξ1 + α1γ

2
1,1,1ξ

2
1 + γ3

1,1,1ξ
3
1

)
= α3 + β1,3,1α1 + β1,3,1γ1,1,1ξ1 + β1,3,2α

?
2 + β1,3,2γ

?
1,2,1ξ1 + β1,3,2γ

?
2,2,1ξ

2
1+

β2,3,1α
2
1 + β2,3,1ψ11 + 2β2,3,1α1γ1,1,1ξ1 + β2,3,1γ

2
1,1,1ξ

2
1 + β3,3,1α

3
1 + 3β3,3,1α1ψ11+

β3,3,1E
[
ζ3
1

]
+ β3,3,1

(
3α2

1γ1,1,1 + 3γ1,1,1ψ11

)
ξ1 + β3,3,1α1γ

2
1,1,1ξ

2
1 + β3,3,1γ

3
1,1,1ξ

3
1

= α3 + β1,3,1α1 + β1,3,2α
?
2 + β2,3,1α

2
1 + β2,3,1ψ11 + β3,3,1α

3
1 + 3β3,3,1α1ψ11 + β3,3,1E

[
ζ3
1

]︸ ︷︷ ︸
=α?3

+

(
β1,3,1γ1,1,1 + β1,3,2γ

?
1,2,1 + 2β2,3,1α1γ1,1,1 + β3,3,1

(
3α2

1γ1,1,1 + 3γ1,1,1ψ11

))︸ ︷︷ ︸
=γ?1,3,1

ξ1+

(
β1,3,2γ

?
2,2,1 + β2,3,1γ

2
1,1,1 + β3,3,1α1γ

2
1,1,1

)︸ ︷︷ ︸
=γ?2,3,1

ξ2
1 + β3,3,1γ

3
1,1,1︸ ︷︷ ︸

=γ?3,3,1

ξ3
1 ,

where we get a constant that depends on the skewness of ζ1, i.e., the third order moment of ζ1.

Therefore, the reduced form of η3 given ξ1 is a third order polynomial in ξ1 with the form

H3(x1) = α?3 + γ?1,3,1x1 + γ?2,3,1x
2
1 + γ?3,3,1x

3
1.

This reduced form third order polynomial stands in direct conflict with the conditional expectation

given ξ1, η1, and η2, for which we immediately have that

E[η3|ξ1, η1, η2] = α3 + β1,3,1η1 + β1,3,2η2 + β2,3,1η
2
1 + β3,3,1η

3
1 ,

which does not depend on the values of ξ1 directly, but only indirectly through the values of η1 and η2.

Consequently, H̃3(x1, y1, y2) = α3 + β1,3,1y1 + β1,3,2y2 + β2,3,1y
2
1 + β3,3,1y

3
1 .

To summarize, we have that

H1(x1) = α1 + γ1,1,1x1,

H2(x1) = α?2 + γ?1,2,1x1 + γ?2,2,1x
2
1,

H3(x1) = α?3 + γ?1,3,1x1 + γ?2,3,1x
2
1 + γ?3,3,1x

3
1,

and, in contrast, for H̃j(j = 1, 2, 3) we get

H̃1(x1) = α1 + γ1,1,1x1,

H̃2(x1, y1) = α2 + γ1,2,1x1 + β1,2,1y1 + β2,2,1y
2
1 ,

H̃3(x1, y1, y2) = α3 + β1,3,1y1 + β1,3,2y2 + β2,3,1y
2
1 + β3,3,1y

3
1 .

In conclusion, we emphasize that, for instance, H3 representing the total effect of ξ1 onto η3 is a

third order polynomial in ξ1, while H̃3 does not directly depend on ξ1. Further, the total effect of ξ1

onto η2 as represented by H2 is a quadratic form in ξ1, while the direct effect of ξ1 onto η2 is linear in

the full system, denoted by the function H̃2. The reduced form representation, therefore, does not give

any insights on the directness of the effects of any explanatory variables onto the endogenous variables,

further, the functional form may vary drastically. �
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B.1. Considerations under Structural Misspecifications. Standard covariance based goodness

of fit tests can consistently (i.e., having power approaching one asymptotically) detect model misspecifi-

cation if the misspecification is linear and the degrees of freedom is at least one. In the case of non-linear

misspecifications, this need not be the case (Mooijaart & Satorra, 2009) when using classical goodness

of fit tests (SEM lacking quadratic and interaction terms can be detected using the methods of e.g.,

Büchner & Klein, 2020; Nestler, 2015). This was also illustrated in the simple simulation example

in Section A. An important application class for non-parametric trend estimates is therefore to detect

such non-linear structural misspecification when a linear model is considered. We here consider some

elementary illustrations of this issue.

Example 3. In Mooijaart and Satorra (2009), the three latent variables η1, ξ1, ξ2 were considered.

The data-generating mechanism of the structural part in their notation was

η1 = β̄0 + β̄1ξ1 + β̄2ξ2 + β̄12ξ1ξ2 + ζ,

where it was assumed that ζ was zero mean and independent to ξ1, ξ2, which means that E[ζ|ξ1, ξ2] = 0.

Therefore, this is the same error term as the one generated from the conditional expectation argument,

as this is (a.s.) unique.

Since E[η1|ξ1, ξ2] = β̄0 + β̄1ξ1 + β̄2ξ2 + β̄12ξ1ξ2. The non-parametric trend estimators would in this

case consistently estimate the function

H(x1, x2) = β̄0 + β̄1x1 + β̄2x2 + β̄12x1x2.

Therefore, the misspecification would be (asymptotically) detectable using the non-parametric ap-

proach. �

When applying non-parametric trend estimates component-wise to a full SEM, we run the risk of

being influenced by structural misspecification. In terms of the non-parametric methods, this would

mean that we approximate the conditional expectation of an endogenous variable, but that we condition

on the right variables compared to if we had knowledge of the correct structural model. Because these

conditional expectation functions always exists, it will be as far as we know impossible with presently

available tools to separate model misspecification or functional misspecification, and we believe such

separation techniques will require further assumptions than considered in the present paper. A full

discussion of the practical implications of this is outside the scope of the present paper. We only

consider the following example of this issue.

Example 4. The data generating mechanism of the example is

η1 = α1 + γ1,1,1ξ1 + ζ1,(7)

η2 = α2 + γ1,2,1ξ1 + β1,2,1η1 + β2,2,1η
2
1 + ζ2(8)

where the error terms ζ1, ζ2 have zero mean, Eζ2
1 = ψ11,Eζ2

2 = ψ22, and are independent to each other

and to ξ1.

Suppose now that we use a model that is incorrect, and omits the connection from η1 to η2. In the

model, we would therefore suppose

η1 = α1 + γ1,1,1ξ1 + ζ1

η2 = α̃2 + γ̃1,2,1ξ1 + ζ̃2.
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In the misspecified model, η2 is linear in ξ1, and lacks not only a linear influence from η1 but also the

quadratic influence from η1. The ∼ indicates that these parameters will not, in general, be the true

parameters of the original system and ζ̃2 is not the correct residual.

When non-parametrically estimating the structural specification of this system using the component-

wise approach, we would first study the first equation, which here is correctly specified. Then the next

step would consider E[η2|ξ1]. If we had knowledge of the correct structural model, we would instead

have considered E[η2|ξ1, η1]. But because of the misspecification, we do not condition on η1. We would

instead approximate E[η2|ξ1]. We now calculate this conditional expectation.

This calculation is identical to earlier calculations in Example 2, and we get

E[η2|ξ1] = α2 + β1,2,1α1 + β2,2,1ψ11 + β2,2,1α
2
1︸ ︷︷ ︸

=α?2

+ (γ1,2,1 + β1,2,1γ1,1,1 + 2β2,2,1α1γ1,1,1)︸ ︷︷ ︸
=γ?1,2,1

ξ1+β2,2,1γ
2
1,1,1︸ ︷︷ ︸

=γ?2,2,1

ξ2
1 ,

which is a quadratic in ξ1 instead of the linear function which would be expected if the structural model

was correctly specified.

Based on non-parametric estimates of E[η2|ξ1 = x], the psychometrician would therefore know that

there was a model misspecification, and that this model specification induced a square term in this

conditional expectation. With substantive knowledge, this might lead the psychometrician to identify

the correct model.

Example 5. Let us continue the previous example. Suppose now that the psychometrician does update

the model, but that based on plots of approximations of E[η2|ξ1 = x] the update does not reach the

correct model, but instead the model

η1 = α1 + γ1,1,1ξ1 + ζ1

η2 = α?2 + γ?1,2,1ξ1 + γ?2,2,1ξ
2
1 + ζ?2 .

This model is still misspecified, but the detection of this misspecification is a more subtle issue, as the

equation for η2 is now compatible with the trend observed in approximations to E[η2|ξ1 = x]

While equations of the updated model are similar to the trend in the data generating mechanism,

they are different, as the psychometrician has not included the direct effect from η1 to η2. Let us

consider this difference a bit closer: Recall that the equation system that generates the data is given

in eq. (7) and (8). In these equations, we insert the expression from η1 into η2, which gives

η1 = α1 + γ1,1,1ξ1 + ζ1,

η2 = α2 + β1,2,1α1 + γ1,2,1ξ1 + β1,2,1γ1,1,1ξ1 + β1,2,1ζ1+

β2,2,1(α2
1 + γ2

1,1,1ξ
2
1 + ζ2

1 + 2α1γ1,1,1ξ1 + 2α1ζ1 + 2γ1,1,1ξ1ζ1) + ζ2

We see that the updated model is in fact the reduced form equations. From this equation we also

deduce that

α?2 = α2 + β1,2,1α1 + β2,2,1α
2
1,

γ?1,2,1 = γ1,2,1 + β1,2,1γ1,1,1 + β2,2,12α1γ1,1,1,

γ?2,2,1 = β2,2,1γ
2
1,1,1,

ζ?2 = η2 − E[η2|ξ1] = β2,2,1(ζ2
1 − ψ11) + (β1,2,1 + 2β2,2,1α1 + 2β2,2,1γ1,1,1ξ1)ζ1 + ζ2.

We notice that ζ?2 is not equal to ζ2 in general, and is substantially different from ζ2. For example,

ζ?2 includes the term 2β2,2,1γ1,1,1ξ1ζ1 which induces a heteroskedasticity into the error, and ζ?2 also

includes a linear contribution from ζ1.
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We started out with independent error terms ζ1, ζ2, and in the reduced form expression we have

Cov (ζ1, ζ
?
2 ) = Eζ1ζ?2

= E
[
ζ1
(
β2,2,1(ζ2

1 − ψ11) + (β1,2,1 + 2β2,2,1α1 + 2β2,2,1γ1,1,1ξ1)ζ1 + ζ2
)]

= Eβ2,2,1(ζ3
1 − ψ11ζ1) + (β1,2,1 + 2β2,2,1α1 + 2β2,2,1γ1,1,1Eξ1)Eζ2

1 + Eζ1ζ2

= Eβ2,2,1ζ
3
1 + (β1,2,1 + 2β2,2,1α1 + 2β2,2,1γ1,1,1Eξ1)ψ11,

which is non-zero under most parameter configurations.

If independence between the error terms in the structural part of the model is considered part of

the model, the correlation of the error terms ζ1, ζ
?
2 can be seen as an identifiable indication that the

model is misspecified.

Appendix C. A Literature review of NLSEM

Early contributions to nonlinear factor analysis are Gibson (1959), R. McDonald (1967) and Etezadi-

Amoli and McDonald (1983), who focused on examining nonlinear relationships between measurements

and latent variables. This literature formed the theoretical background for NLSEM, which started

fully with Kenny and Judd (1984), who suggested a normal theory product indicator approach for

interaction models. This approach was extended and enhanced by relaxing certain constraints on the

latent structure in Kelava and Brandt (2009); Marsh et al. (2004); Wall and Amemiya (2001).

What may be termed distribution analytic approaches have been proposed, assuming multivariate

normality of both the latent exogenous variables and residuals (LMS, Klein and Moosbrugger, 2000,

QML, Klein and Muthén, 2007). To account for non-normal latent exogenous variables, the LMS

approach has been extended using latent classes (Kelava, Nagengast, & Brandt, 2014). In applied

research, simplified versions of LMS rely on a single indicator per latent variable was suggested (Cheung

& Lau, 2017).

Product indicator approaches traditionally rely on the first two moments of (mixed) polynomials of

the measurements. Mooijaart and Bentler (2010) extended this to third-order moments. Mooijaart and

Satorra (2012) further extended this approach to test the significance of certain moments in interaction

models.

Several Bayesian approaches have been proposed: Arminger and Muthén (1998), Lee et al. (2007),

and Kelava and Nagengast (2012) have all introduced Bayesian methods in this context. The approach

of Lee et al. (2007) can be viewed as a Bayesian counterpart to LMS, while the one of Kelava and

Nagengast (2012) can be seen as a Bayesian version of Kelava et al. (2014). Additionally, a Bayesian

lasso approach for NLSEM, designed to handle multicollinear latent exogenous variables, has been put

forth by Brandt et al. (2018).

Semi-parametric Bayesian models have been suggested: A semi-parametric Bayesian framework with

non-parametric estimates of measurement error distributions was suggested in Song et al. (2010). A

Bayesian lasso-type framework for basis function expansions of the influence from ξ to η was suggested

in Guo, Zhu, Chow, and Ibrahim (2012), which was expanded by employing a grouped lasso approach

that enables model selection (Feng, Wang, Wang, & Song, 2015). Additionally, Song, Lu, Cai, and

Ip (2013) proposed a penalized spline approach that extends a previously suggested spline method

(Song & Lu, 2010) by incorporating penalties and by modeling continuous, dichotomous, and count

data. It should be noted that these Bayesian methods, while very flexible in some parts of the model,

often impose strong distributional assumptions. In most models, the latent exogenous variables ξ,
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latent residuals ζ, and measurement errors ε are assumed to be normal, while the residuals are further

assumed to be independent.

Moreover, further semi-parametric methods incorporate latent classes (Bauer, 2005; Kelava et al.,

2014). These semiparametric methods support non-linear effects and non-normal distributional rela-

tions among the latent variables, but as far as we can tell, the space of possible non-linear trends and

distributions spanned by these techniques are unknown. For example, in Bauer (2005), there is a fixed

number of latent classes within which (η, ξ) follow a standard linear and usually normal SEM. In Kelava

et al. (2014), this is extended so that within each latent class (η, ξ) follow a parametric non-linear and

usually normal SEM. The space of possible models for each of these suggestions are likely quite large,

and the space spanned by Kelava et al. (2014) likely larger than that of Bauer (2005), but as far as

we know, there are no theoretical descriptions of these spaces, and they are not non-parametric in the

sense that they are able to estimate any structural relationship without distributional restrictions, at

least when using a finite number of latent classes.

Therefore, to the best of our knowledge, the approaches by Kohler et al. (2015) and Kelava et al.

(2017) are the only available non-parametric methods which do not impose parametric distributional

assumptions.

Two-stage estimation techniques constitute another category of NLSEM methods. These approaches

estimate a given functional form, and typically involve using instruments or estimates for the latent

variables in a first step, followed by estimating the structural part of the model in a second step. Bollen

(1995, Bollen & Paxton, 1998) proposed a two-step instrumental variable approach. Ng and Chan (2020)

introduced a simplified version of the (Skrondal & Laake, 2001) method by employing factor scores in

the initial step, which are subsequently analyzed using a simple regression model. This simplification is

derived from the more complex two-stage method of moments (2SMM) approach by Wall and Amemiya

(2000, 2003) where the uncertainty in factor score estimation during parameter estimation and inference

in the second step is accounted for. Holst and Budtz-Jørgensen (2020) proposed a semi-parametric

approach where H is non-parametrically estimated, but which assumes that the predictors follow a

normal distribution. This normality assumption is in contrast to the previously two-step approaches

which have minimal or no distributional assumptions.

Finally, extensions to non-continuous data have been proposed in parametric estimation of NLSEM

using maximum likelihood (Song & Lee, 2005), marginal maximum likelihood (Jin, Vegelius, & Yang-

Wallentin, 2020) or Bayesian techniques (Lee, Song, & Cai, 2010; Song et al., 2013) by the use of link

functions. We consider non-continuous data outside the scope of this article.

Appendix D. Additional Information on the Simulation

D.1. Data Generating Mechanisms. Here, we describe the data generating processes used in the

simulation study Sections 4.2, 4.3, and 4.4, in more detail. For some derivations of the population

values of the trends and model coefficients, we used numeric integration or symbol derivations in Maple

(Maplesoft, a division of Waterloo Maple Inc.., 2019). The Maple version was 2019.2. The Matlab (The

MathWorks Inc., 2023) version was R2023a.

D.1.1. Population Models for dξ = 1. The model parametrization of the true trends is given in Table

2. We chose ξ to be either standard normally distributed (ξ ∼ N (0, 1)) or standardized uniform

distribution (ξ ∼ unif
(
−
√

3,
√

3
)
). The residual ζ of the structural part of the model was chosen to

have the same distribution as ξ with its variance being chosen in a way so that η has a variance of

1, since η = E[η|ξ] + ζ. For the quadratic trend we choose the shape of E[η|ξ] to be identical, which
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resulted in differing residual variances, while for all other trends we kept the residual variance Var [ζ] to

be (almost) identical across the different distributions of ξ. Still, we note that the different multivariate

distributions of f = (ξ, η)′ are not directly comparable across different distributions of ξ. The trends

themselves only differed by a scaling factor (see Table 2). A visualization of the trends for normal ξ is

also given in Figure 11 (as depicted by the dashed black line).

The measurement part of the model was chosen to represent data with rather low reliability for

the model to yield considerable residual variance. See Table 2 for scale reliabilities and variances of

r for the different simulation conditions. The item-wise reliabilities (e.g., for measurement i of ξ it is

computed by (Λx)2
i1 Var [ξ]/

[
(Λx)2

i1 Var [ξ] + (Ψx)ii
]
) were chosen to be equidistant between .64 and

.25 depending on the number of items used. The first factor loadings per latent variable were fixed to

1. Hence, the factor loadings matrix Λ and the residual covariance matrix Ψ were chosen as

Ψ =

(
Ψx 0dx,dy

0dy,dx Ψy

)
, Λ =

(
Λx 0dx,dη

0dy,dξ Λy

)
for dx = 3, 6, 9 and dy = 3. For dx = 3, Λx and Ψx where chosen as:

Λx = (1, .65, .5)′, Ψx = diag(.5625, .5775, .75).

For dx = 6, Λx and Ψx where chosen as:

Λx = (1, .74, .68, .62, .56, .5)′, Ψx = diag(.5625, .4524, .5376, .6156, .6864, .75).

Table 2. Overview of the Parametrization used in the Simulation Study for dξ = 1

Trend ξ E[η|ξ] ζ Var [ζ] E[η] Var [η]

quadratic norm −.5 + .4ξ + .5ξ2 norm .34 0 1

quadratic unif −.5 + .4ξ + .5ξ2 unif .64 0 1

cubic norm −.128 + 3.2(.4ξ − .4)(.2ξ + .3)ξ norm .427 0 1

cubic unif −.4 + 10(.4ξ − .4)(.2ξ + .3)ξ unif .419 0 1

logit norm 1.776 exp(2 + 5ξ)/ [1 + exp(2 + 5ξ)]− .647 norm .5 0 1

logit unif 1.671 exp(2 + 5ξ)/ [1 + exp(2 + 5ξ)]− .615 unif .5 0 1

piecewise linear norm 2.784 [PL(ξ)− .035] norm .3 0 1

piecewise linear unif 2.745 [PL(ξ)− .026] unif .3 0 1

Note. ξ = distribution of ξ, E[η|ξ] = parametrization of the conditional expectation of η given

ξ for dη = dξ = 1, ζ = distribution of the residual ζ for η = E[η|ξ] + ζ, Var [ζ] = variance of ζ

chosen so that Var [η] = 1, with PL(ξ) being the piecewise linear function of ξ given by:

PL(ξ) :=


.5 + .5ξ, for − 1 ≤ ξ < 0,

.5− ξ, for 0 ≤ ξ < 1,

−.6 + .1ξ, for 1 ≤ ξ,

0, else.

All displayed coefficients are rounded to three decimals if more than three decimals are needed;

all decimals are given in the code accompanying the simulation study.
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Table 3. Measurement Information for dξ = 1

dx Var[rξ] Var[rη] R2
ξ R2

η ωξ ωη

3 0.352 0.352 0.740 0.740 0.710 0.710

6 0.190 0.352 0.840 0.740 0.823 0.710

9 0.129 0.352 0.886 0.740 0.873 0.710

Note. dx = number of measurements for ξ, Var[rξ]
= model implied variance of rξ, Var[rη] = model

implied variance of rη, R2
ξ = amount of explained

variance of ξ̈ by ξ, R2
η = amount of explained vari-

ance of η̈ by η, ωξ = McDonald’s coefficient of relia-

bility for measuring ξ, ωη = McDonald’s coefficient

of reliability for measuring η.

For dx = 9, Λx and Ψx where chosen as:

Λx = (1, .7625, .725, .6875, .65, .6125, .575, .5375, .5)′,

Ψx = diag(.5625, .4185937, .474375, .5273438, .5775, .6248437, .669375, .7110938, .75).

dy was held constant, hence, Λy and Ψy where chosen as for all conditions as:

Λy = (1, .65, .5)′, Ψy = diag(.5625, .5775, .75).

The measurement errors with covariance matrix Ψ were either independently normal, uniform, or

scaled gamma distributed. We did not differentiate between the exogenous and the endogenous parts

of the model.

D.1.2. Population Models for dξ = 2. The model parametrization of the true trends is given in Table 4.

We extended the univariate simulation conditions by a second exogenous variable so that ξ = (ξ1, ξ2)′.

We chose a normal copula with normal or uniform marginals. As the uniform marginal case with

normal copula is not a straight forward object, we used numerical approximations for the variance

estimation of ξ. Hence, the variance of η in that condition is not exactly 1, but close to 1. The chosen

trends are rather complex compared to simple linear trends, however, much more complex trends are

possible. Hence, this simulation study is limited.

Similarly to the dξ = 1 case, the measurement part of the model was chosen to represent data

with rather low reliability for the model to yield considerable residual variance. See Table 5 for scale

reliabilities, McDonald’s ω (R. P. McDonald, 1999), or Bollen’s ω (Bollen, 1980), and variances of r

for the different simulation conditions. The aim was to extend the univariate case by a second latent

exogenous variable with and without cross relations among the latent exogenous variables. The factor

loadings matrix Λ and the residual covariance matrix Ψ were chosen as

Ψ =

(
Ψx 0dx,dy

0dy,dx Ψy

)
, Λ =

(
Λx 0dx,dη

0dy,dξ Λy

)
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for dx = dx1 + dx2 with dx1 = dx2 = 3, 6, 9 and dy = 3. For models without cross loadings and without

residual covariances Λx simplifies to

Λx =

(
Λx1 0dx1 ,1

0dx2
,1 Λx2

)
, .Ψx =

(
Ψx1 0dx1 ,dx2

0dx2
,dx1

Ψx2

)
Hence, we state Λx1 ,Λx2 ,Ψx1 , and Ψx2 in the following. For dx1 = dx2 = 3, we have

Λx1 = Λx2 = (1, .65, .5)′, Ψx1 = Ψx2 = diag(.5625, .5775, .75).

For dx1 = dx2 = 6, we have

Λx1 = Λx2 = (1, .74, .68, .62, .56, .5)′, Ψx1 = Ψx2 = diag(.5625, .4524, .5376, .6156, .6864, .75).

For dx1 = dx2 = 9, we have

Λx1 = Λx2 = (1, .7625, .725, .6875, .65, .6125, .575, .5375, .5)′,

Ψx1 = Ψx2 = diag(.5625, .4185937, .474375, .5273438, .5775, .6248437, .669375, .7110938, .75).

dy, again, was held constant, hence, Λy and Ψy where chosen as for all conditions as:

Λy = (1, .65, .5)′, Ψy = diag(.5625, .5775, .75).

For models with cross loadings and cross correlations, we need to adapt the given matrices. Hence,

we state the elements of Λ and Ψ that needed to change for the corresponding dxj , j = 1, 2.

For dx1 = dx2 = 3, we changed the following elements in Λ to

Λ5,1 = .195,

and in Ψx to

(Ψx)6,3 = (Ψx)3,6 = .3.

For dx1 = dx2 = 6, we changed the following elements in Λ to

Λ8,1 = .222, Λ11,1 = .168,

Table 4. Overview of the Parametrization used in the Simulation Study for dξ = 2

Trend ξ E[η|ξ1, ξ2] ζ Var [ζ] E[η] Var [η]

quadratic norm .15 + .45ξ1 + .32ξ2 + .3ξ1ξ2 − .2ξ2
1 − .1ξ2

2 norm .499 0 1

quadratic unif .15 + .45ξ1 + .32ξ2 + .3ξ1ξ2 − .2ξ2
1 − .1ξ2

2 unif .499 0 1

cubic norm c(ξ1, ξ2) norm .507 0 1

cubic unif c(ξ1, ξ2) unif .605 0 .987

Note. ξ = standardized marginal distributions of ξ1 and ξ2 with normal copula with

covariance Cov [ξ1, ξ2] = .5, E[η|ξ1, ξ2] = parametrization of the conditional expecta-

tion of η given ξ = (ξ1, ξ2)′ for dη = 1, dξ = 2, ζ = distribution of the residual ζ

for η = E[η|ξ] + ζ, Var [ζ] = variance of ζ chosen so that Var [η] = 1. c(ξ1, ξ2) =

.15 + .3ξ1 + .2ξ2 + .3ξ1ξ2− .2ξ2
1 − .1ξ2

2 + .02ξ3
1 + .02ξ3

2 + .06ξ1ξ
2
2 . The variance of η is only

an approximation for the uniform marginal ξ case. All displayed coefficients are rounded

to three decimals if more than three decimals are needed; all decimals are given in the

code accompanying the simulation study.
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Table 5. Measurement Information for dξ = 2

dxj cross Var[rξ1 ] Var[rξ2 ] Cov12 Cor12 Var[rη] R2
ξ1

R2
ξ2

R2
η ωξ1 ωξ2 ωη

3 no 0.352 0.352 0.000 0.000 0.352 0.740 0.740 0.740 0.710 0.710 0.710

6 no 0.190 0.190 0.000 0.000 0.352 0.840 0.840 0.740 0.823 0.823 0.710

9 no 0.129 0.129 0.000 0.000 0.352 0.886 0.886 0.740 0.873 0.873 0.710

3 yes 0.334 0.313 -0.016 -0.048 0.388 0.749 0.761 0.720 0.710 0.728 0.657

6 yes 0.174 0.150 -0.007 -0.046 0.388 0.852 0.869 0.720 0.823 0.837 0.657

9 yes 0.117 0.099 -0.005 -0.042 0.388 0.895 0.910 0.720 0.873 0.884 0.657

Note. dxj = number of measurements for ξj , cross = indicator whether cross-loadings or cross-

correlations are present, Var[rξj ] = model implied variance of rξj , Cov12 = model implied covari-

ance of rξ, Cor12 = model implied correlation of rξ, Var[rη] = model implied variance of rη, R2
ξj

= amount of explained variance of ξ̈j by ξj , R
2
η = amount of explained variance of η̈ by η, ωξj =

McDonald’s coefficient or Bollen’s coefficient of reliability for measuring ξj , ωη = McDonald’s coef-

ficient or Bollen’s coefficient of reliability for measuring η; for j = 1, 2.

and in Ψx to

(Ψx)9,3 = (Ψx)3,9 = .21504, (Ψx)12,6 = (Ψx)6,12 = .3.

For dx1 = dx2 = 9, we changed the following elements in Λ to

Λ11,1 = .22875, Λ14,1 = .195, Λ17,1 = .16125,

and in Ψx to

(Ψx)11,11 = .3662672, (Ψx)14,14 = .539475, (Ψx)17,17 = .3662672,

(Ψx)12,3 = (Ψx)3,12 = .18975, (Ψx)15,6 = (Ψx)6,15 = .2499375, (Ψx)18,9 = (Ψx)9,18 = .3.

We further introduced a cross correlation in Ψy so that the we changed

(Ψy)2,3 = (Ψy)3,2 = .2632489.

The given cross-loadings in Λx equal the standardized cross-loadings in value, hence, standardized

cross-loadings vary between .229 and .161. The residual covariances in Ψ are chosen in a way so that

they result in residual correlations of .4. These are significant but not substantial.

From Table 4 it is evident that by introducing cross relations (i.e., cross-loadings and cross-correlations)

the resulting correlation among rξ is not large, although the cross relations are not negligible. Further,

for increasing dxj the correlation in rξ decreases slightly. It is evident that including cross relation does

have an influence on the scale reliability, computed via the extension of McDonald’s ω (R. P. McDonald,

1999) that includes cross-correlations, also called Bollen’s ω (see Bollen, 1980).

The measurement errors with covariance matrix Ψ were either multivariate normal, or they were

affine linear transformations of independent uniform or independent scaled gamma variables. We

used the singular value decomposition of Ψ in order to correlate the measurement errors with cross-

correlations: For dz i.i.d. standardized measurement errors ε̃ (e.g., standardized uniform or standard-

ized gamma(1,1)), we computed Ψ
1
2 via the singular value decomposition Ψ

1
2 = V D

1
2
ΨU
−1, where

Ψ = V DΨU
−1 is the singular value decomposition of Ψ, DΨ is the diagonal matrix containing the

singular values (eigenvalues) of Ψ and V is the orthonormal eigenvector matrix that corresponds to the
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eigenvalues. Further U−1 = V ′ for positive definite matrices and D
1
2
Ψ is the matrix that contains the

element wise square roots of the eigenvalues in DΨ. Then for

ε := Ψ
1
2 ε̃

we have

Cov [ε] = Ψ.

The marginal distributions may differ between ε and ε̃ apart from scaling. For instance, for standard-

ized uniform ε̃, ε is no longer marginally uniformly distributed, but for correlated components shows

distributions that tends towards the normal due to central limit theorem effects. The same holds true

for gamma marginals in ε compared to ε̃.

D.2. Information on R-packages used in the simulation. All empirical analyses were done in R

(R Core Team, 2023). Data were generated using R-base and stats functions for univariate distribu-

tions and mvtnorm (Genz & Bretz, 2009) and covsim (Grønneberg, Foldnes, & Marcoulides, 2022) for

specific multivariate distributions for which we wanted to control the marginal distributions and the

copula (Nelsen, 2007). The Bartlett factor score and the corresponding CFAs were estimated using

lavaan (Rosseel, 2012). The nonlinear factor scores proposed by Kelava et al. (2017) were estimated

with a modified version of their MATLAB (The MathWorks Inc., 2023) scripts called from R including their

used BSpline method. The HZ-method for local linear estimators for solving errors-in-variables prob-

lems including its simulation based cross-validation techniques for bandwidth selection is implemented

in the lpme package (Huang & Zhou, 2017). We used a slightly modified version of the cross-validation

technique by comparing its performance to a rule-of-thumb estimate for the bandwidth that was sug-

gested by Wang and Wang (2011); for further descriptions see Appendix D.3. For the LOESS and the

smoothed cubic spline function we used their widely used implementations loess and smooth.spline

within the stats package (R Core Team, 2023).

For the examination of performance, we used integration techniques to compute mean integrated

squared errors for the nonparametric trends which are further described in Section 4.3. For univariate

integrals we used the integrate function of the stats package (R Core Team, 2023) and for multi-

variate integrals we used the cubature package (Narasimhan, Johnson, Hahn, Bouvier, & Kiêu, 2023).

Additional packages for visualization and data handling are described in Appendix D.4. An overview

of all package versions is given in Table 6 in the Appendix D.4. All code can be found the online

supplementary material.

D.3. Additional Information on the Estimation of Non-Parametric Trends Used in the

Simulation Study. We here briefly describe the HZ-method of Huang and Zhou (2017) in more detail.

Translating their notation to ours, the proposed estimator is defined for the conditional expectation

E[η̈|ξ = x] = H(x), where ξ is measured with error ξ̈ = ξ + rξ, where ξ has density fξ(x) and rξ is

independent to (ξ, η̈)′ with known density frξ (x). ξ, rξ, and η̈ are assumed to be continuous. Then

H∗(w)fξ̈(w) = (Hfξ) ∗ frξ (w), where (Hfξ) ∗ frξ (w) =
∫
H(x)fξ(x)frξ (w − x)dx is the convolution

(see Delaigle, 2014). Huang and Zhou (2017) then proposed to use the Fourier inverses on both sides,

which results in φH∗f
ξ̈
(t) = φHfξ (t)φrξ (t), where φH∗f

ξ̈
(t) is the Fourier transform of H∗(w)fξ̈(w),

φHfξ is the Fourier transform of Hfξ = H(x)fξ(x). Their local polynomial estimator of order p for

H(x) is then given by
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ĤHZ(x) =
1

2πf̂ξ(x)

∫
e−itx

φĤ∗f̂
ξ̈
(t)

φrξ (t)
dt,(9)

where f̂ξ(x) is the deconvolution kernel density estimator of fξ(x) in Stefanski and Carroll (1990),

φĤ∗f̂
ξ̈
(t) is the Fourier transform of Ĥ∗(w)f̂ξ̈(w) in which Ĥ∗(w) is the pth order local polynomial

estimator of H∗(w), and f̂ξ̈(w) is the regular kernel density estimator of fξ̈(w) (see, e.g., Fan & Gijbels,

1996, Section 2.7.1). In order to estimate kernel densities a selection of a bandwidth is needed, which

can be done using simulation based cross validation techniques for bandwidth selection as proposed

by Delaigle and Hall (2008). Although the rationale of Huang and Zhou (2017) can be generalized to

multivariate ξ, an implementation for the multivariate predictor case with measurement error is still

lacking.

During preliminary analyses we noticed that the LOESS and the smoothed spline method pro-

duce numerically stable results, while the simulation based cross-validation technique necessary for

bandwidth-selection of the HZ-estimator as described in Delaigle and Hall (2008) was rather unstable:

here a k-fold cross validation sample is drawn, while the sample is refilled in each step to have a total

sample size of n (the original sample size) via simulation assuming the distribution of the residual to

be valid, as n interacts with the performance of a bandwidth. This process is done several times per

cross-validation sample, over which it is then averaged. We choose a 5-fold cross-validation approach

with 10 simulations, each. For more detail see the package documentation of the lpme package and

Delaigle and Hall (2008). The cross-validation technique in the lpme package implemented approach

(Huang & Zhou, 2017) sometimes produced bandwidth that were too small, which then resulted in

strongly oscillating estimated trends. In applied research such a scenario would be noticed by the

researchers simply by comparing the trend and the data. However, in a simulation study we needed

data driven tools that examine whether a suggested bandwidth is useful without jeopardizing the in-

terpretability of the simulation results. This is why we did not use the MISE as described in Section

4.3 to select a useful bandwidth as it cannot be computed in applied research due to the true trend

being unknown. We, therefore, used an estimate for the residual variance in the prediction of the BFS

for η (namely η̈) using the HZ-estimator. As a comparison we used the rule-of-thumb bandwidth for

nonparametric regression with measurement error as suggested in Wang and Wang (2011, see eq. (13)),

that, translated to our notation and assuming normality for rξ for dξ = 1, is given by

bwthumb :=

√
2 Var [rξ]

log(n)
.

Although the HZ-estimator using the rule-of-thumb bandwidth is very quick compared to the cross-

validation technique (see Table 7), we did not include a rule-of-thumb estimate of the HZ-estimator into

our main simulation study as the estimate for bwthumb has been criticized to not include the variance

of the latent variable (the variance of ξ̈ in our notation, the true variance of the BFS) and, therefore,

would give a biased estimate for the bandwidth (see for the Laplace case Delaigle, 2014). Probably

due to the fact that we chose all latent variables to be standardized, this rule-of-thumb estimate for

the bandwidth worked rather well. This is why we used the residual variance in prediction using

the rule-of-thumb bandwidth as a comparison for the bandwidth suggested by the cross-validation. If

the residual variance in prediction was more than 1.5 times higher for the cross-validation bandwidth

compared to the rule-of-thumb bandwidth, we redid the cross-validation step. Hence, we only used the
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cross-validation bandwidth bwcv if

Var
[
ˆ̈η − φbwcv(

ˆ̈
ξ)
]
≤ 3

2
Var

[
ˆ̈η − φbwthumb(

ˆ̈
ξ)
]
,

where ˆ̈η and
ˆ̈
ξ are the empirically estimated BFS for η and ξ, respectively, and where φbwcv(

ˆ̈
ξ) and

φbwthumb(
ˆ̈
ξ) are the nonparametric estimates for the conditional expectation based on bwcv and bwthumb,

respectively. The difference to the MISE used in simulation studies is that the difference is taken

towards an empirical estimate of η̈ and not the true conditional expectation H(x) = E[η|ξ = x]. The

re-initialization of the cross-validation step significantly increases the runtime for some replications

within our simulation study, which further explains the large variation of runtimes in Table 7 for the

HZCV method.

D.4. Additional Graphics and Tables with Additional Comments on Simulation Results.

Here we display and comment additional plots and tables. Graphs were done using either ggplot2

(Wickham, 2016) in combination with scales (Wickham & Seidel, 2022), or rgl (Murdoch & Adler,

2023) for 3D plots. We further utilized the packages forcats (Wickham, 2023) and papaja (Aust &

Barth, 2022) for data handling and table generation and the parallel package (R Core Team, 2023)

and the the pbapply package (Solymos & Zawadzki, 2023) for parallel computing. Table 6 lists all

packages used (also implicitly loaded packages) and their version number. The R version was 4.2.2.

Table 6. R package

versions used

Package Version

base 4.2.2

covsim 1.0.0

cubature 2.0.4.6

datasets 4.2.2

forcats 0.5.2

ggplot2 3.4.1

graphics 4.2.2

grDevices 4.2.2

lavaan 0.6.15

lpme 1.1.3

methods 4.2.2

mvtnorm 1.1.3

parallel 4.2.2

pbapply 1.7.0

scales 1.2.1

stats 4.2.2

utils 4.2.2

Note. Implicitly

loaded packages are

also displayed.
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D.4.1. Additionals for dξ = 1. Figure 11 extends Figure 2 with point-wise 95% coverage intervals

displaying the uncertainty of the average trends for the distributional condition with normal ξ and

gamma ε. It is evident that the linear SEM has the lowest uncertainty, but also approximates the true

trend the worst as the true trend is nonlinear. The other methods show similar uncertainty, however,

at the edges of the support the HZ methods using cross validation appears to have larger uncertainty

compared to the other methods. Still, this difference is not large.

Table 7 shows the average runtime of each factor score based methods used within Figure 2 for a

cubic trend. This bench marking was done on a 2019 16-inch MacBook Pro with an 2.6 GHz 6-Core

Table 7. Runtime for normal ξ and gamma ε with a cubic true trend for

dξ = 1

BFS HZ-estimator NLFS

dx LOESS Spline HZTH HZCV BSpline LOESS Spline

mean 3 0.12 0.10 1.90 1,754.43 2,115.55 2,115.57 2,115.56

mean 9 0.11 0.08 1.73 1,493.18 2,826.04 2,826.06 2,826.04

sd 3 0.04 0.02 0.19 732.04 259.04 259.05 259.04

sd 9 0.01 0.01 0.15 623.55 210.07 210.08 210.08

median 3 0.11 0.10 1.82 1,444.00 2,192.29 2,192.30 2,192.29

median 9 0.11 0.08 1.75 1,379.59 2,868.18 2,868.19 2,868.19

LB 3 0.09 0.07 1.61 1,148.59 1,324.85 1,324.86 1,324.85

LB 9 0.09 0.07 1.42 1,121.86 2,521.00 2,521.01 2,521.00

UB 3 0.19 0.13 2.21 3,772.66 2,308.38 2,308.40 2,308.39

UB 9 0.12 0.10 1.96 2,976.04 2,972.71 2,972.73 2,972.71

Note. Time in seconds aggregated across 32 replications, BFS = Bartlett factor

scores, NLFS = nonlinear factor scores, HZTH = HZ-estimator using rule-of-

thumb band-width bwthumb, HZCV = HZ-estimator using cross-validation for

bandwidth selection bwcv, BSpline = BSpline method for NLFS, LB = lower

bound of 95% coverage interval, UB = upper bound of 95% coverage interval.

Intel Core i7 processor and 16 GB RAM. From Table 7 it is evident that the LOESS and spline method

based on BFS are extremely quick compared to all other methods. Only the HZ-estimator using the

rule-of-thumb bandwidth on average ran for less than 2 seconds. The HZ-estimator using simulation

based cross-validated bandwidth took more than 24 minutes and the methods based on NLFS took

more than 35 minutes on average. The runtime did not increase but rather decreased with increasing

dx for methods based on BFS or the HZ-estimator but runtime did increase with dx for methods based

on NLFS. Here, runtime was more than 33% longer for dx = 9 compared to dx = 3, on average. Due

to the reinitialization of the adapted version of the cross-validation technique for the HZ-estimator as

described in Appendix D.3, the HZCV showed the largest variation in runtime with a rather skewed

distribution of runtime as suggested by the coverage intervals in Table 7.

Figure 12 emphasizes the relative improvement of MISE in comparison to the linear SEM approx-

imation given that the true trend is nonlinear (see also Table 10 and 11). It is evident that methods

based on NLFS showed an increase in MISE compared to the linear SEM in some conditions with only
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Figure 11. A comparison of nonparametric estimation for E[η|ξ] averaged

across 200 replications with n = 1000 for LOESS and smoothed spline based on

BFS and the NLFS, the HZ-estimator, the BSpline estimator based on NLFS

compared to the true trend and a linear SEM estimation with different true

trends (quadratic, cubic, logit and piecewise linear) and dimensions dx with

normal ξ and gamma distributed errors ε. Shaded areas correspond to the 95%

coverage interval computed point-wise across the 200 replications.
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Table 8. Average MISE

Population LOESS Spline Other

Trend dx ξ ε f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

quadratic 3 unif gamma 0.007 0.127 0.193 0.010 0.125 0.203 0.195 0.208 0.449

quadratic 3 unif unif 0.007 0.154 0.239 0.010 0.165 0.257 0.193 0.245 0.446

quadratic 3 unif norm 0.007 0.140 0.215 0.010 0.145 0.230 0.170 0.222 0.446

quadratic 3 norm gamma 0.004 0.139 0.225 0.006 0.139 0.228 0.113 0.234 0.558

quadratic 3 norm unif 0.004 0.190 0.308 0.006 0.195 0.312 0.119 0.330 0.560

quadratic 3 norm norm 0.004 0.168 0.275 0.006 0.170 0.275 0.118 0.288 0.560

quadratic 6 unif gamma 0.008 0.073 0.099 0.010 0.067 0.097 0.118 0.101 0.447

quadratic 6 unif unif 0.007 0.077 0.107 0.009 0.078 0.111 0.117 0.115 0.448

quadratic 6 unif norm 0.007 0.076 0.105 0.009 0.076 0.108 0.110 0.113 0.444

quadratic 6 norm gamma 0.004 0.076 0.115 0.006 0.080 0.118 0.066 0.127 0.560

quadratic 6 norm unif 0.004 0.081 0.125 0.005 0.086 0.127 0.059 0.137 0.556

quadratic 6 norm norm 0.004 0.081 0.123 0.006 0.084 0.130 0.064 0.149 0.559

quadratic 9 unif gamma 0.008 0.054 0.070 0.011 0.050 0.068 0.083 0.075 0.446

quadratic 9 unif unif 0.008 0.054 0.072 0.010 0.052 0.073 0.082 0.071 0.449

quadratic 9 unif norm 0.007 0.052 0.069 0.009 0.050 0.070 0.084 0.076 0.448

quadratic 9 norm gamma 0.004 0.054 0.079 0.006 0.057 0.083 0.053 0.096 0.557

quadratic 9 norm unif 0.004 0.051 0.071 0.006 0.054 0.074 0.045 0.083 0.556

quadratic 9 norm norm 0.004 0.050 0.074 0.006 0.053 0.075 0.047 0.089 0.557

cubic 3 unif gamma 0.032 0.480 0.638 0.011 0.455 0.642 0.681 0.667 1.130

cubic 3 unif unif 0.031 0.548 0.703 0.011 0.550 0.719 0.688 0.707 1.133

cubic 3 unif norm 0.032 0.510 0.651 0.011 0.504 0.674 0.656 0.649 1.137

cubic 3 norm gamma 0.022 0.046 0.068 0.011 0.066 0.087 0.123 0.090 0.541

cubic 3 norm unif 0.019 0.056 0.085 0.011 0.083 0.109 0.097 0.110 0.522

cubic 3 norm norm 0.019 0.051 0.077 0.011 0.078 0.101 0.100 0.095 0.515

cubic 6 unif gamma 0.031 0.311 0.394 0.011 0.256 0.356 0.438 0.366 1.131

cubic 6 unif unif 0.032 0.327 0.417 0.011 0.293 0.398 0.457 0.385 1.138

cubic 6 unif norm 0.031 0.320 0.408 0.010 0.278 0.384 0.446 0.372 1.124

cubic 6 norm gamma 0.020 0.029 0.040 0.011 0.050 0.060 0.078 0.058 0.509

cubic 6 norm unif 0.021 0.032 0.042 0.011 0.053 0.068 0.083 0.065 0.531

cubic 6 norm norm 0.020 0.030 0.042 0.011 0.050 0.069 0.076 0.065 0.508

cubic 9 unif gamma 0.031 0.234 0.296 0.010 0.173 0.242 0.362 0.255 1.125

cubic 9 unif unif 0.032 0.229 0.289 0.010 0.185 0.252 0.362 0.241 1.134

cubic 9 unif norm 0.030 0.225 0.286 0.011 0.178 0.243 0.347 0.232 1.127

cubic 9 norm gamma 0.021 0.026 0.031 0.011 0.042 0.050 0.072 0.051 0.542

cubic 9 norm unif 0.020 0.025 0.032 0.011 0.039 0.052 0.069 0.053 0.511

cubic 9 norm norm 0.019 0.025 0.028 0.010 0.040 0.047 0.066 0.052 0.513

Note. MISE to true trend averaged across 200 replications for n = 1000. ξ = distribution of ξ, ε =

distribution of ε, f = true latent variables, BFS = Bartlett factor scores, NLFS = nonlinear factor

scores, HZCV = HZ-estimator, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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Table 9. Average MISE

Population LOESS Spline Other

Trend dx ξ ε f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

logit 3 unif gamma 0.022 0.126 0.194 0.012 0.127 0.204 0.154 0.192 0.227

logit 3 unif unif 0.022 0.149 0.249 0.011 0.160 0.270 0.181 0.261 0.231

logit 3 unif norm 0.022 0.137 0.215 0.013 0.146 0.233 0.161 0.227 0.230

logit 3 norm gamma 0.023 0.201 0.337 0.012 0.192 0.326 0.151 0.331 0.307

logit 3 norm unif 0.024 0.244 0.402 0.013 0.253 0.422 0.177 0.402 0.306

logit 3 norm norm 0.022 0.239 0.373 0.013 0.250 0.398 0.174 0.388 0.309

logit 6 unif gamma 0.022 0.075 0.101 0.011 0.073 0.104 0.115 0.109 0.227

logit 6 unif unif 0.021 0.079 0.107 0.012 0.081 0.114 0.119 0.118 0.227

logit 6 unif norm 0.022 0.074 0.100 0.012 0.074 0.107 0.110 0.116 0.229

logit 6 norm gamma 0.024 0.119 0.171 0.014 0.112 0.167 0.100 0.177 0.308

logit 6 norm unif 0.024 0.124 0.177 0.013 0.124 0.186 0.105 0.188 0.305

logit 6 norm norm 0.023 0.120 0.168 0.014 0.123 0.178 0.107 0.187 0.308

logit 9 unif gamma 0.022 0.056 0.070 0.012 0.052 0.070 0.089 0.082 0.225

logit 9 unif unif 0.021 0.057 0.074 0.011 0.055 0.076 0.095 0.087 0.226

logit 9 unif norm 0.023 0.057 0.072 0.012 0.054 0.074 0.093 0.088 0.225

logit 9 norm gamma 0.024 0.086 0.112 0.013 0.078 0.110 0.081 0.121 0.308

logit 9 norm unif 0.023 0.088 0.113 0.013 0.086 0.116 0.087 0.125 0.308

logit 9 norm norm 0.023 0.080 0.106 0.014 0.080 0.111 0.081 0.126 0.304

piecewise linear 3 unif gamma 0.125 0.581 0.829 0.012 0.510 0.797 0.748 0.807 1.467

piecewise linear 3 unif unif 0.125 0.706 0.986 0.012 0.670 1.005 0.816 0.988 1.467

piecewise linear 3 unif norm 0.126 0.663 0.912 0.013 0.616 0.918 0.797 0.904 1.469

piecewise linear 3 norm gamma 0.123 0.659 0.925 0.134 0.633 0.915 0.740 0.893 1.599

piecewise linear 3 norm unif 0.125 0.812 1.119 0.138 0.783 1.109 0.787 1.103 1.603

piecewise linear 3 norm norm 0.125 0.734 1.014 0.138 0.706 1.019 0.720 1.002 1.599

piecewise linear 6 unif gamma 0.125 0.377 0.479 0.013 0.281 0.400 0.520 0.402 1.465

piecewise linear 6 unif unif 0.126 0.426 0.552 0.012 0.336 0.489 0.566 0.483 1.466

piecewise linear 6 unif norm 0.123 0.406 0.524 0.012 0.310 0.455 0.541 0.462 1.465

piecewise linear 6 norm gamma 0.124 0.418 0.548 0.139 0.386 0.523 0.550 0.526 1.597

piecewise linear 6 norm unif 0.127 0.446 0.580 0.142 0.408 0.551 0.558 0.555 1.600

piecewise linear 6 norm norm 0.126 0.440 0.569 0.142 0.399 0.536 0.537 0.543 1.602

piecewise linear 9 unif gamma 0.127 0.301 0.360 0.012 0.189 0.262 0.458 0.266 1.466

piecewise linear 9 unif unif 0.125 0.316 0.385 0.012 0.210 0.294 0.486 0.294 1.467

piecewise linear 9 unif norm 0.122 0.300 0.365 0.012 0.193 0.274 0.431 0.277 1.466

piecewise linear 9 norm gamma 0.125 0.316 0.390 0.138 0.283 0.357 0.470 0.358 1.599

piecewise linear 9 norm unif 0.126 0.327 0.398 0.141 0.291 0.366 0.499 0.381 1.598

piecewise linear 9 norm norm 0.123 0.320 0.395 0.136 0.279 0.357 0.474 0.376 1.597

Note. MISE to true trend averaged across 200 replications for n = 1000. ξ = distribution of ξ, ε = distribu-

tion of ε, f = true latent variables, BFS = Bartlett factor scores, NLFS = nonlinear factor scores, HZCV

= HZ-estimator, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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3 measurements. Further, the largest improvement in MISE occurred for a cubic trend with normal ξ,

however, when ξ was uniform the improvement in MISE for conditions with cubic trends was compara-

ble to the quadratic trend or the piecewise linear trend. This indicates that the cubic trend is not the

furthest from linearity in all conditions. The logit trend is evident to be closest to linearity in terms of

showing the smallest improvement compared to the linear SEM approximation.

The boxplots in Figure 13 emphasizes the average MISE per trend and dx for each method aggregated

across all distributional conditions. It, therefore, supplements Figure 3, by including information on

the differences across distributional conditions and distinguishes the MISE across different trends.

From Figure 13 it is evident that the methods show comparable variation in MISE, hence, comparable

heterogeneity across different distributional conditions. This variation decreases with increasing dx

and is comparable among the methods based on factor scores (i.e., LOESS or smoothed splines using

BFS or NLFS, as well as the BSpline method using NLFS and the HZ-estimator based on BFS). The

methods based on the true latent variables f on average show the smallest variation, i.e., have the

highest precision with regard to MISE. In almost all conditions either the spline or LOESS using BFS

as inputs performed best aggregated across all distributional conditions. This difference is strongest

for the logit or the piecewise linear trend. For the cubic trend differences were not as large. For the

quadratic trend the HZCV method showed good performance, also. With regard to variation: the

cubic trend showed the largest variation among the MISE across the distributional conditions, but the

piecewise linear trend resulted in the largest average MISE.

D.4.2. Additionals for dξ = 2. Figure 14 aggregates Figure 5 of the main text for the cross-relations.

Hence, the difference between performance of the LOESS based on BFS and methods based on NLFS

are averaged across the two cross-relation conditions. This averaged result shows the benefit of the

LOESS based on BFS, as within the computation of the BFS the specific structure of the model may

be tested and the BFS may be computed to include all cross-relations among the measurements.

Figure 15 shows all relative average MISE across the 200 replications for all used conditions (see

also Table 14 and 15 for numerical values) in comparison to the linear SEM. Hence this figure and

these tables show the relative improvement compared to a linear trend given that the actual trend

is nonlinear. It is evident that the trends based on NLFS result in larger MISE compared to the

linear SEM for many conditions which included cross-relations. Although being slightly less affected,

the BFSuc also showed similar problems. This emphasizes the importance of a correctly specified

measurement model.

Figure 16 emphasizes that the LOESS based on BFS is much more homogeneous in the MISE

and, hence, in the performance in approximating the true trend. Further, homogeneity increases with

increasing numbers of measurements (dxj ). The LOESS based on BFSuc was less heterogeneous across

all conditions compared to the methods based on NLFS as highlighted by the whiskers of the Box-

Whisker plots.

Figures 17 and 18 depict the three-dimensional true trend. It is evident that the third order effects

are not large as the two trends do not differ strongly. However, especially at the borders of the

support the third degree effects are visible. The blue and black lines highlight the marginal relation

between either ξ1 for given values of ξ2 or vice versa. These marginal relationships are depicted in the

following Figures to make a comparison between the non-parametric methods based on BFS or NLFS

more evident.

Figures 19, 20, 21, and 22 show the marginal relation between either ξ1 and H for ξ2 = 0,−1.6 or

for ξ2 and H for ξ1 = 0,−1.6. For the border condition, i.e., ξ1 or ξ2 being -1.6, all methods show
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Figure 12. A comparison of the relative averaged MISE in comparison to the

linear SEM approximation across 200 replications with n = 1000 for different

procedures [(B)Splines vs. LOESS vs. HZ/others] based on different inputs

(BFS, NLFS, linear SEM, and true latent variables f for comparison) for four

models with different true trends (quadratic, cubic, logit and piecewise linear)

and dimensions dx. See Table 10 and 11 for numerical values.
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Table 10. Relative average MISE in comparison to linear SEM

Population LOESS Spline Other

Trend dx ξ ε f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

quadratic 3 unif gamma 0.016 0.282 0.430 0.023 0.279 0.452 0.435 0.464 1.000

quadratic 3 unif unif 0.016 0.345 0.535 0.022 0.370 0.575 0.433 0.550 1.000

quadratic 3 unif norm 0.015 0.314 0.483 0.023 0.325 0.515 0.381 0.498 1.000

quadratic 3 norm gamma 0.007 0.250 0.404 0.010 0.250 0.409 0.202 0.419 1.000

quadratic 3 norm unif 0.008 0.338 0.549 0.011 0.349 0.557 0.213 0.588 1.000

quadratic 3 norm norm 0.008 0.301 0.491 0.012 0.304 0.491 0.211 0.515 1.000

quadratic 6 unif gamma 0.017 0.163 0.221 0.023 0.150 0.217 0.263 0.226 1.000

quadratic 6 unif unif 0.016 0.172 0.238 0.020 0.175 0.248 0.261 0.256 1.000

quadratic 6 unif norm 0.016 0.172 0.236 0.021 0.171 0.243 0.248 0.255 1.000

quadratic 6 norm gamma 0.007 0.136 0.206 0.011 0.143 0.211 0.118 0.227 1.000

quadratic 6 norm unif 0.006 0.146 0.224 0.009 0.154 0.229 0.106 0.246 1.000

quadratic 6 norm norm 0.007 0.145 0.219 0.010 0.151 0.232 0.114 0.266 1.000

quadratic 9 unif gamma 0.017 0.120 0.157 0.024 0.112 0.152 0.185 0.169 1.000

quadratic 9 unif unif 0.017 0.121 0.161 0.022 0.116 0.162 0.183 0.159 1.000

quadratic 9 unif norm 0.016 0.115 0.155 0.021 0.112 0.156 0.188 0.169 1.000

quadratic 9 norm gamma 0.007 0.096 0.141 0.010 0.102 0.149 0.095 0.172 1.000

quadratic 9 norm unif 0.007 0.091 0.127 0.010 0.098 0.133 0.080 0.149 1.000

quadratic 9 norm norm 0.007 0.090 0.133 0.010 0.095 0.134 0.085 0.160 1.000

cubic 3 unif gamma 0.028 0.425 0.564 0.010 0.402 0.568 0.602 0.590 1.000

cubic 3 unif unif 0.027 0.483 0.621 0.009 0.485 0.635 0.607 0.624 1.000

cubic 3 unif norm 0.028 0.448 0.573 0.010 0.443 0.593 0.577 0.571 1.000

cubic 3 norm gamma 0.040 0.085 0.125 0.020 0.122 0.161 0.227 0.166 1.000

cubic 3 norm unif 0.036 0.108 0.162 0.020 0.160 0.210 0.186 0.210 1.000

cubic 3 norm norm 0.038 0.099 0.150 0.021 0.152 0.196 0.194 0.185 1.000

cubic 6 unif gamma 0.027 0.275 0.348 0.009 0.226 0.315 0.388 0.324 1.000

cubic 6 unif unif 0.028 0.287 0.367 0.010 0.258 0.350 0.402 0.338 1.000

cubic 6 unif norm 0.027 0.285 0.363 0.009 0.247 0.342 0.396 0.331 1.000

cubic 6 norm gamma 0.039 0.057 0.078 0.021 0.098 0.117 0.153 0.115 1.000

cubic 6 norm unif 0.039 0.060 0.080 0.021 0.100 0.129 0.156 0.123 1.000

cubic 6 norm norm 0.040 0.060 0.082 0.022 0.099 0.136 0.151 0.127 1.000

cubic 9 unif gamma 0.028 0.208 0.263 0.009 0.154 0.215 0.322 0.227 1.000

cubic 9 unif unif 0.028 0.202 0.255 0.009 0.163 0.223 0.319 0.212 1.000

cubic 9 unif norm 0.027 0.200 0.253 0.009 0.158 0.215 0.308 0.206 1.000

cubic 9 norm gamma 0.039 0.048 0.057 0.020 0.077 0.092 0.133 0.093 1.000

cubic 9 norm unif 0.040 0.049 0.062 0.021 0.076 0.102 0.134 0.103 1.000

cubic 9 norm norm 0.037 0.049 0.055 0.020 0.077 0.091 0.130 0.101 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 replications for

n = 1000. ξ = distribution of ξ, ε = distribution of ε, f = true latent variables, BFS = Bartlett fac-

tor scores, NLFS = nonlinear factor scores, HZCV = HZ-estimator, BSNLFS = BSpline method for

NLFS, SEM = linear SEM.
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Table 11. Relative average MISE in comparison to linear SEM

Population LOESS Spline Other

Trend dx ξ ε f BFS NLFS f BFS NLFS HZCV BSNLFS SEM

logit 3 unif gamma 0.098 0.553 0.854 0.052 0.557 0.898 0.678 0.844 1.000

logit 3 unif unif 0.095 0.647 1.078 0.050 0.695 1.171 0.786 1.131 1.000

logit 3 unif norm 0.098 0.595 0.935 0.056 0.637 1.017 0.699 0.988 1.000

logit 3 norm gamma 0.074 0.656 1.097 0.040 0.623 1.060 0.491 1.077 1.000

logit 3 norm unif 0.077 0.798 1.312 0.042 0.825 1.376 0.577 1.313 1.000

logit 3 norm norm 0.072 0.774 1.210 0.044 0.811 1.289 0.562 1.258 1.000

logit 6 unif gamma 0.098 0.333 0.444 0.051 0.322 0.458 0.508 0.483 1.000

logit 6 unif unif 0.095 0.349 0.473 0.051 0.359 0.503 0.527 0.519 1.000

logit 6 unif norm 0.094 0.325 0.439 0.054 0.324 0.468 0.483 0.509 1.000

logit 6 norm gamma 0.079 0.386 0.554 0.046 0.365 0.541 0.325 0.574 1.000

logit 6 norm unif 0.077 0.407 0.581 0.044 0.408 0.611 0.343 0.617 1.000

logit 6 norm norm 0.075 0.391 0.546 0.044 0.400 0.579 0.348 0.607 1.000

logit 9 unif gamma 0.096 0.250 0.309 0.051 0.230 0.312 0.395 0.364 1.000

logit 9 unif unif 0.092 0.252 0.326 0.050 0.243 0.337 0.420 0.384 1.000

logit 9 unif norm 0.100 0.253 0.318 0.053 0.239 0.328 0.413 0.392 1.000

logit 9 norm gamma 0.077 0.278 0.365 0.041 0.255 0.356 0.263 0.392 1.000

logit 9 norm unif 0.075 0.286 0.366 0.042 0.280 0.377 0.283 0.405 1.000

logit 9 norm norm 0.077 0.262 0.349 0.045 0.262 0.364 0.265 0.413 1.000

piecewise linear 3 unif gamma 0.085 0.396 0.565 0.008 0.348 0.543 0.510 0.550 1.000

piecewise linear 3 unif unif 0.085 0.481 0.672 0.008 0.456 0.685 0.556 0.674 1.000

piecewise linear 3 unif norm 0.086 0.451 0.621 0.009 0.420 0.625 0.542 0.615 1.000

piecewise linear 3 norm gamma 0.077 0.412 0.578 0.084 0.396 0.572 0.462 0.558 1.000

piecewise linear 3 norm unif 0.078 0.507 0.698 0.086 0.489 0.692 0.491 0.688 1.000

piecewise linear 3 norm norm 0.078 0.459 0.635 0.087 0.441 0.637 0.450 0.627 1.000

piecewise linear 6 unif gamma 0.085 0.257 0.327 0.009 0.192 0.273 0.355 0.274 1.000

piecewise linear 6 unif unif 0.086 0.291 0.377 0.009 0.229 0.333 0.386 0.330 1.000

piecewise linear 6 unif norm 0.084 0.277 0.358 0.008 0.211 0.310 0.369 0.315 1.000

piecewise linear 6 norm gamma 0.078 0.262 0.343 0.087 0.242 0.327 0.344 0.329 1.000

piecewise linear 6 norm unif 0.079 0.279 0.363 0.089 0.255 0.345 0.349 0.347 1.000

piecewise linear 6 norm norm 0.078 0.275 0.355 0.089 0.249 0.334 0.335 0.339 1.000

piecewise linear 9 unif gamma 0.086 0.205 0.246 0.008 0.129 0.179 0.313 0.181 1.000

piecewise linear 9 unif unif 0.085 0.215 0.262 0.008 0.143 0.201 0.331 0.201 1.000

piecewise linear 9 unif norm 0.083 0.204 0.249 0.008 0.132 0.187 0.294 0.189 1.000

piecewise linear 9 norm gamma 0.078 0.198 0.244 0.086 0.177 0.224 0.294 0.224 1.000

piecewise linear 9 norm unif 0.079 0.205 0.249 0.088 0.182 0.229 0.312 0.238 1.000

piecewise linear 9 norm norm 0.077 0.200 0.247 0.085 0.175 0.223 0.297 0.235 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 replications for n =

1000. ξ = distribution of ξ, ε = distribution of ε, f = true latent variables, BFS = Bartlett factor scores,

NLFS = nonlinear factor scores, HZCV = HZ-estimator, BSNLFS = BSpline method for NLFS, SEM =

linear SEM.
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Figure 13. A comparison of the averaged MISE across 200 replications with

n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based

on different inputs (BFS, NLFS, linear SEM, and true latent variables f for

comparison) for different dimensions dx aggregated across all distributions used

in the simulation study described in Section 4.3.
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Table 12. Average MISE with dξ = 2 without cross-relations

Population LOESS Other

Cross Trend dxj ξ ε f BFS BFSuc NLFS BSNLFS SEM

uncrossed quadratic 3 unif gamma 0.137 0.418 0.418 0.574 0.619 0.726

uncrossed quadratic 3 unif unif 0.134 0.471 0.471 0.612 0.665 0.722

uncrossed quadratic 3 unif norm 0.140 0.484 0.484 0.622 0.659 0.730

uncrossed quadratic 3 norm gamma 0.153 0.435 0.435 0.608 0.670 0.628

uncrossed quadratic 3 norm unif 0.154 0.502 0.502 0.706 0.778 0.621

uncrossed quadratic 3 norm norm 0.157 0.517 0.517 0.711 0.752 0.625

uncrossed quadratic 6 unif gamma 0.132 0.316 0.316 0.383 0.434 0.719

uncrossed quadratic 6 unif unif 0.131 0.353 0.353 0.420 0.476 0.720

uncrossed quadratic 6 unif norm 0.136 0.358 0.358 0.435 0.485 0.714

uncrossed quadratic 6 norm gamma 0.160 0.325 0.325 0.390 0.441 0.613

uncrossed quadratic 6 norm unif 0.152 0.345 0.345 0.434 0.495 0.620

uncrossed quadratic 6 norm norm 0.163 0.362 0.362 0.443 0.523 0.618

uncrossed quadratic 9 unif gamma 0.137 0.277 0.277 0.329 0.382 0.716

uncrossed quadratic 9 unif unif 0.142 0.296 0.296 0.341 0.392 0.712

uncrossed quadratic 9 unif norm 0.132 0.292 0.292 0.344 0.399 0.711

uncrossed quadratic 9 norm gamma 0.155 0.279 0.279 0.331 0.390 0.618

uncrossed quadratic 9 norm unif 0.154 0.296 0.296 0.343 0.418 0.617

uncrossed quadratic 9 norm norm 0.158 0.289 0.289 0.340 0.406 0.613

uncrossed cubic 3 unif gamma 0.141 0.412 0.412 0.535 0.588 0.752

uncrossed cubic 3 unif unif 0.146 0.459 0.459 0.592 0.649 0.747

uncrossed cubic 3 unif norm 0.144 0.478 0.478 0.596 0.641 0.752

uncrossed cubic 3 norm gamma 0.172 0.402 0.402 0.547 0.603 0.713

uncrossed cubic 3 norm unif 0.167 0.456 0.456 0.601 0.665 0.726

uncrossed cubic 3 norm norm 0.168 0.461 0.461 0.611 0.656 0.718

uncrossed cubic 6 unif gamma 0.144 0.328 0.328 0.390 0.440 0.744

uncrossed cubic 6 unif unif 0.147 0.357 0.357 0.426 0.487 0.740

uncrossed cubic 6 unif norm 0.145 0.350 0.350 0.421 0.474 0.737

uncrossed cubic 6 norm gamma 0.166 0.297 0.297 0.358 0.436 0.707

uncrossed cubic 6 norm unif 0.170 0.339 0.339 0.402 0.464 0.716

uncrossed cubic 6 norm norm 0.169 0.324 0.324 0.403 0.462 0.709

uncrossed cubic 9 unif gamma 0.145 0.279 0.279 0.336 0.405 0.735

uncrossed cubic 9 unif unif 0.144 0.290 0.290 0.344 0.401 0.732

uncrossed cubic 9 unif norm 0.140 0.292 0.292 0.342 0.406 0.733

uncrossed cubic 9 norm gamma 0.171 0.269 0.269 0.321 0.380 0.696

uncrossed cubic 9 norm unif 0.168 0.279 0.279 0.327 0.386 0.709

uncrossed cubic 9 norm norm 0.165 0.268 0.268 0.318 0.361 0.713

Note. MISE to true trend averaged across 200 replications for n = 1000. Cross = if crossed,

then cross relations were present, ξ = distribution of ξ, ε = distribution of ε, f = true la-

tent variables, BFS = Bartlett factor scores, BFSuc = Bartlett factor scores without cross-

relations in corresponding CFA, NLFS = nonlinear factor scores, BSNLFS = BSpline method

for NLFS, SEM = linear SEM.
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Table 13. Average MISE with dξ = 2 with cross-relations

Population LOESS Other

Cross Trend dxj ξ ε f BFS BFSuc NLFS BSNLFS SEM

crossed quadratic 3 unif gamma 0.133 0.408 0.687 0.892 0.926 0.724

crossed quadratic 3 unif unif 0.134 0.467 0.780 1.001 1.048 0.722

crossed quadratic 3 unif norm 0.127 0.468 0.792 1.008 1.045 0.722

crossed quadratic 3 norm gamma 0.151 0.441 0.810 1.111 1.153 0.624

crossed quadratic 3 norm unif 0.156 0.500 0.944 1.275 1.324 0.625

crossed quadratic 3 norm norm 0.159 0.512 0.936 1.292 1.315 0.623

crossed quadratic 6 unif gamma 0.136 0.310 0.582 0.708 0.729 0.719

crossed quadratic 6 unif unif 0.138 0.334 0.622 0.758 0.786 0.716

crossed quadratic 6 unif norm 0.140 0.355 0.630 0.755 0.793 0.716

crossed quadratic 6 norm gamma 0.157 0.316 0.656 0.842 0.895 0.612

crossed quadratic 6 norm unif 0.155 0.335 0.705 0.886 0.929 0.618

crossed quadratic 6 norm norm 0.155 0.337 0.701 0.886 0.919 0.619

crossed quadratic 9 unif gamma 0.135 0.271 0.532 0.642 0.665 0.716

crossed quadratic 9 unif unif 0.134 0.278 0.538 0.654 0.694 0.713

crossed quadratic 9 unif norm 0.134 0.290 0.536 0.658 0.691 0.713

crossed quadratic 9 norm gamma 0.158 0.275 0.598 0.736 0.776 0.617

crossed quadratic 9 norm unif 0.165 0.289 0.620 0.766 0.809 0.619

crossed quadratic 9 norm norm 0.155 0.278 0.603 0.756 0.805 0.617

crossed cubic 3 unif gamma 0.138 0.414 0.641 0.724 0.764 0.745

crossed cubic 3 unif unif 0.146 0.456 0.685 0.813 0.844 0.748

crossed cubic 3 unif norm 0.143 0.475 0.709 0.814 0.849 0.747

crossed cubic 3 norm gamma 0.171 0.390 0.635 0.817 0.859 0.724

crossed cubic 3 norm unif 0.169 0.458 0.730 0.948 1.005 0.714

crossed cubic 3 norm norm 0.171 0.435 0.690 0.923 0.959 0.726

crossed cubic 6 unif gamma 0.143 0.321 0.534 0.577 0.608 0.745

crossed cubic 6 unif unif 0.145 0.341 0.564 0.609 0.640 0.743

crossed cubic 6 unif norm 0.141 0.336 0.563 0.615 0.635 0.739

crossed cubic 6 norm gamma 0.171 0.300 0.536 0.643 0.684 0.704

crossed cubic 6 norm unif 0.161 0.314 0.551 0.665 0.718 0.705

crossed cubic 6 norm norm 0.164 0.314 0.551 0.663 0.700 0.710

crossed cubic 9 unif gamma 0.140 0.281 0.486 0.525 0.561 0.741

crossed cubic 9 unif unif 0.145 0.287 0.502 0.537 0.587 0.734

crossed cubic 9 unif norm 0.145 0.286 0.503 0.536 0.569 0.738

crossed cubic 9 norm gamma 0.168 0.260 0.470 0.547 0.587 0.702

crossed cubic 9 norm unif 0.168 0.269 0.485 0.566 0.618 0.701

crossed cubic 9 norm norm 0.165 0.274 0.499 0.573 0.607 0.702

Note. MISE to true trend averaged across 200 replications for n = 1000. Cross = if

crossed, then cross relations were present, ξ = distribution of ξ, ε = distribution of ε,

f = true latent variables, BFS = Bartlett factor scores, BFSuc = Bartlett factor scores

without cross-relations in corresponding CFA, NLFS = nonlinear factor scores, BSNLFS

= BSpline method for NLFS, SEM = linear SEM.
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Table 14. Relative average MISE with dξ = 2 without cross-relations in comparison to

linear SEM

Population LOESS Other

Cross Trend dxj ξ ε f BFS BFSuc NLFS BSNLFS SEM

uncrossed quadratic 3 unif gamma 0.189 0.575 0.575 0.790 0.852 1.000

uncrossed quadratic 3 unif unif 0.186 0.653 0.653 0.848 0.922 1.000

uncrossed quadratic 3 unif norm 0.192 0.662 0.662 0.851 0.903 1.000

uncrossed quadratic 3 norm gamma 0.244 0.692 0.692 0.968 1.066 1.000

uncrossed quadratic 3 norm unif 0.248 0.808 0.808 1.136 1.252 1.000

uncrossed quadratic 3 norm norm 0.251 0.828 0.828 1.139 1.204 1.000

uncrossed quadratic 6 unif gamma 0.184 0.440 0.440 0.533 0.603 1.000

uncrossed quadratic 6 unif unif 0.181 0.490 0.490 0.584 0.660 1.000

uncrossed quadratic 6 unif norm 0.191 0.502 0.502 0.610 0.679 1.000

uncrossed quadratic 6 norm gamma 0.260 0.529 0.529 0.636 0.718 1.000

uncrossed quadratic 6 norm unif 0.245 0.557 0.557 0.699 0.797 1.000

uncrossed quadratic 6 norm norm 0.264 0.585 0.585 0.717 0.846 1.000

uncrossed quadratic 9 unif gamma 0.191 0.387 0.387 0.460 0.534 1.000

uncrossed quadratic 9 unif unif 0.200 0.416 0.416 0.479 0.550 1.000

uncrossed quadratic 9 unif norm 0.186 0.411 0.411 0.484 0.562 1.000

uncrossed quadratic 9 norm gamma 0.251 0.451 0.451 0.535 0.631 1.000

uncrossed quadratic 9 norm unif 0.250 0.480 0.480 0.556 0.678 1.000

uncrossed quadratic 9 norm norm 0.257 0.471 0.471 0.555 0.661 1.000

uncrossed cubic 3 unif gamma 0.187 0.548 0.548 0.711 0.782 1.000

uncrossed cubic 3 unif unif 0.195 0.614 0.614 0.793 0.868 1.000

uncrossed cubic 3 unif norm 0.191 0.635 0.635 0.793 0.852 1.000

uncrossed cubic 3 norm gamma 0.241 0.563 0.563 0.768 0.847 1.000

uncrossed cubic 3 norm unif 0.230 0.629 0.629 0.828 0.916 1.000

uncrossed cubic 3 norm norm 0.234 0.643 0.643 0.851 0.914 1.000

uncrossed cubic 6 unif gamma 0.194 0.441 0.441 0.524 0.591 1.000

uncrossed cubic 6 unif unif 0.199 0.483 0.483 0.575 0.658 1.000

uncrossed cubic 6 unif norm 0.197 0.475 0.475 0.571 0.643 1.000

uncrossed cubic 6 norm gamma 0.235 0.421 0.421 0.506 0.617 1.000

uncrossed cubic 6 norm unif 0.237 0.474 0.474 0.561 0.648 1.000

uncrossed cubic 6 norm norm 0.238 0.457 0.457 0.568 0.651 1.000

uncrossed cubic 9 unif gamma 0.197 0.379 0.379 0.457 0.551 1.000

uncrossed cubic 9 unif unif 0.196 0.396 0.396 0.470 0.548 1.000

uncrossed cubic 9 unif norm 0.191 0.398 0.398 0.467 0.554 1.000

uncrossed cubic 9 norm gamma 0.245 0.387 0.387 0.461 0.546 1.000

uncrossed cubic 9 norm unif 0.237 0.393 0.393 0.462 0.544 1.000

uncrossed cubic 9 norm norm 0.231 0.376 0.376 0.447 0.507 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 repli-

cations for n = 1000. Cross = if crossed, then cross relations were present, ξ = distribution

of ξ, ε = distribution of ε, f = true latent variables, BFS = Bartlett factor scores, BFSuc

= Bartlett factor scores without cross-relations in corresponding CFA, NLFS = nonlinear

factor scores, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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Table 15. Relative average MISE with dξ = 2 with cross-relations in comparison to

linear SEM

Population LOESS Other

Cross Trend dxj ξ ε f BFS BFSuc NLFS BSNLFS SEM

crossed quadratic 3 unif gamma 0.184 0.564 0.949 1.233 1.280 1.000

crossed quadratic 3 unif unif 0.185 0.647 1.082 1.387 1.452 1.000

crossed quadratic 3 unif norm 0.176 0.648 1.096 1.396 1.447 1.000

crossed quadratic 3 norm gamma 0.243 0.707 1.298 1.780 1.847 1.000

crossed quadratic 3 norm unif 0.250 0.800 1.511 2.041 2.119 1.000

crossed quadratic 3 norm norm 0.255 0.821 1.501 2.073 2.109 1.000

crossed quadratic 6 unif gamma 0.189 0.431 0.810 0.985 1.015 1.000

crossed quadratic 6 unif unif 0.193 0.467 0.869 1.059 1.098 1.000

crossed quadratic 6 unif norm 0.195 0.496 0.880 1.054 1.108 1.000

crossed quadratic 6 norm gamma 0.256 0.516 1.071 1.374 1.461 1.000

crossed quadratic 6 norm unif 0.251 0.542 1.141 1.432 1.502 1.000

crossed quadratic 6 norm norm 0.251 0.544 1.133 1.432 1.486 1.000

crossed quadratic 9 unif gamma 0.188 0.379 0.742 0.896 0.928 1.000

crossed quadratic 9 unif unif 0.188 0.390 0.756 0.918 0.974 1.000

crossed quadratic 9 unif norm 0.188 0.407 0.752 0.923 0.969 1.000

crossed quadratic 9 norm gamma 0.256 0.446 0.969 1.193 1.258 1.000

crossed quadratic 9 norm unif 0.266 0.466 1.002 1.236 1.306 1.000

crossed quadratic 9 norm norm 0.252 0.450 0.976 1.225 1.304 1.000

crossed cubic 3 unif gamma 0.186 0.555 0.861 0.972 1.025 1.000

crossed cubic 3 unif unif 0.195 0.609 0.916 1.087 1.129 1.000

crossed cubic 3 unif norm 0.191 0.635 0.949 1.089 1.137 1.000

crossed cubic 3 norm gamma 0.237 0.538 0.877 1.128 1.186 1.000

crossed cubic 3 norm unif 0.237 0.641 1.023 1.328 1.407 1.000

crossed cubic 3 norm norm 0.235 0.599 0.951 1.272 1.322 1.000

crossed cubic 6 unif gamma 0.193 0.431 0.717 0.775 0.816 1.000

crossed cubic 6 unif unif 0.195 0.459 0.759 0.819 0.860 1.000

crossed cubic 6 unif norm 0.191 0.455 0.762 0.833 0.860 1.000

crossed cubic 6 norm gamma 0.243 0.426 0.761 0.913 0.970 1.000

crossed cubic 6 norm unif 0.228 0.445 0.782 0.945 1.019 1.000

crossed cubic 6 norm norm 0.231 0.442 0.776 0.934 0.987 1.000

crossed cubic 9 unif gamma 0.189 0.379 0.656 0.709 0.757 1.000

crossed cubic 9 unif unif 0.198 0.391 0.684 0.731 0.800 1.000

crossed cubic 9 unif norm 0.196 0.387 0.682 0.727 0.771 1.000

crossed cubic 9 norm gamma 0.239 0.371 0.669 0.779 0.836 1.000

crossed cubic 9 norm unif 0.239 0.383 0.691 0.807 0.881 1.000

crossed cubic 9 norm norm 0.235 0.389 0.711 0.816 0.864 1.000

Note. Relative MISE to true trend in comparison to linear SEM averaged across 200 repli-

cations for n = 1000. Cross = if crossed, then cross relations were present, ξ = distribution

of ξ, ε = distribution of ε, f = true latent variables, BFS = Bartlett factor scores, BFSuc

= Bartlett factor scores without cross-relations in corresponding CFA, NLFS = nonlinear

factor scores, BSNLFS = BSpline method for NLFS, SEM = linear SEM.
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Figure 14. A comparison of the averaged MISE across 200 replications with

n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based

on different inputs (BFS, NLFS, linear SEM, and true latent variables f for

comparison) for different dimensions dxj aggregated across all distributions,

trends and inclusion of cross-relations (cross-loadings and cross-correlations

in Λx,Ψx, and Ψy) used in the simulation study.

poor performance in approximating the true trend. However, for ξ1 or ξ2 being 0, i.e., the center of

the distribution, the LOESS based on BFS outperforms the other methods. This difference is larger in

the conditions where cross-relations are present (see Figures 21, and 22), where also LOESS based on

BFSuc differs from LOESS based on BFS using the true model. However, LOESS based on BFSuc still

outperforms the methods based on NLFS on average. This suggests that for the presented scenarios

even a misspecified Bartlett score results in a better non-parametric estimation of the trend compared

to the methods based on NLFS. Further, the methods based on BFS show slightly less variation as

highlighted by the confidence bands in Figures 19 and 20.

To summarize, similarly to the univariate case, the non-parametric methods approach the true trend

for increasing numbers of measurements with LOESS based on BFS showing better approximations to

the true trend as already suggested by Figure 5 of the main text. However, the difference to the true

trend appears slightly larger than in the univariate case.
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Figure 15. A comparison of the relative averaged MISE compared to the lin-

ear SEM approximation across 200 replications with n = 1000 for different

procedures [(B)Splines vs. LOESS vs. HZ/others] based on different inputs

(BFS, NLFS, linear SEM, and true latent variables f for comparison) for two

models with different true trends (quadratic and cubic), dimensions dxj , and in-

clusion of cross-relations (cross-loadings and cross-correlations in Λx,Ψx, and

Ψy) and distributions (row and column names refer to marginal distributions)

used in the simulation study for dξ = 2. See Table 14 and 15 for numerical

values.
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Figure 16. A comparison of the averaged MISE across 200 replications with

n = 1000 for different procedures [(B)Splines vs. LOESS vs. HZ/others] based

on different inputs (BFS, NLFS, linear SEM, and true latent variables f for

comparison) for two models with different true trends (quadratic and cubic)

and dimensions dxj for dξ = 2 aggregated across all distributions and and

inclusion of cross-relations (cross-loadings and cross-correlations in Λx,Ψx,

and Ψy) used in the simulation study described in Section 4.4.
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Figure 17. True quadratic trend of used in the simulation study. black lines

and blue lines indicate the specific marginal relationships between H and ξ

further depicted in Figures 19, and 20.
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Figure 18. True cubic trend of used in the simulation study. black lines and

blue lines indicate the specific marginal relationships between H and ξ further

depicted in Figures 19, and 20.
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Figure 19. A comparison of nonparametric estimation for E[η|ξ] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with different true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ξ and gamma distributed errors ε and measure-

ments without cross-relations for specific values of ξ2. Shaded areas correspond

to the 95% coverage interval computed point-wise across the 200 replications.
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Figure 20. A comparison of nonparametric estimation for E[η|ξ] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with different true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ξ and gamma distributed errors ε and measure-

ments without cross-relations for specific values of ξ1. Shaded areas correspond

to the 95% coverage interval computed point-wise across the 200 replications.
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Figure 21. A comparison of nonparametric estimation for E[η|ξ] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with different true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ξ and gamma distributed errors ε and measure-

ments with cross-relations for specific values of ξ2. Shaded areas correspond to

the 95% coverage interval computed point-wise across the 200 replications.
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Figure 22. A comparison of nonparametric estimation for E[η|ξ] averaged

across 200 replications with n = 1000 for LOESS based on BFS and the NLFS,

the BSpline estimator based on NLFS compared to the true trend and a linear

SEM estimation with different true trends (quadratic, cubic) and dimensions

dxj with multivariate normal ξ and gamma distributed errors ε and measure-

ments with cross-relations for specific values of ξ1. Shaded areas correspond to

the 95% coverage interval computed point-wise across the 200 replications.



A44 STEFFEN GRØNNEBERG∗ AND JULIEN PATRICK IRMER∗

Appendix E. Technical and Mathematical Appendix

E.1. On Assumption 1. The assumption of at least two finite moments firstly implies that E[η|ξ]
exists, and secondly that the mentioned covariances are finite (by the Cauchy-Schwartz inequality).

Assumption 1 (1) is a minimum requirement for z̃ to be said to follow a factor model, as otherwise

the covariance structure is misspecified. Let G(Λ) be the set of matrices which fulfill AΛ = Idf , i.e., the

left inverses of Λ. Since a matrix has left inverses if and only if it has full column rank (Harville, 1997,

Lemma 8.1.1), G(Λ) is non-empty if and only if Λ has full column rank. Therefore, Assumption 1 (2) is

foundational. Assumption 1 (3) means that no linear combinations of f has zero variance, which would

mean that the dimensionality of f is misspecified. Assumption 1 (4) is also foundational. Suppose (4)

does not hold. Since Ψ is a covariance matrix, this means that some of its non-negative eigenvalues are

zero. Ψ is diagonalizable with Ψ = PDP ′ for a diagonal matrix D with real and ordered eigenvalues,

and P a dz × dz orthonormal matrix. Therefore, let ε̃ = P ′ε, whose last coordinates are zero, so that

Cov (ε̃) = P ′ΨP = D, and P ′z̃ = PΛf + ε̃ follows a factor model whose last coordinates have no

measurement error. Assumption 1 (4) disallows this, which under parameter identification would mean

there is no need for factor scores.

E.2. A Discussion on Assumption 7 (3) (a). Recall that Assumption 7 (3) (a) is that

supx∈Sρ |Eω(x, rξ)| → 0 as dx →∞, where ω(x, h) = H(x−h)−H(x). We here verify this assumption

in the simple class of functions H that are univariate polynomials, assuming the strong assumptions as

in Section 2.2. Extensions of this argument can be developed, but we consider this verification mainly

an illustration.

Let us start getting familiar with this assumption in some special cases for real valued coefficients ai,

for i ≥ 0. SupposeH(x) = a0+a1x is linear. ThenH(x−rξ)−H(x) = −a1rξ and so EH(x−rξ)−H(x) =

−a1Erξ = 0. Suppose then that H(x) = a0 + a1x + a2x
2 is a second degree polynomial. Then

H(x−rξ)−H(x) = −a1rξ+a2[(x−rξ)2−x2] = −a1rξ+a2(−2xrξ+r2
ξ), so that E [H(x− rξ)−H(x)] =

a2

(
−2xErξ + Er2

ξ

)
= a2 Var rξ, which goes to zero e.g. under the conditions of Proposition 3.

For both of these cases, the convergence holds irrespective of the size of Sρ, which will not be the

case in general. Indeed, let us consider a third order polynomial. Let

(10) Hp(x) =

p∑
i=0

aix
p
i , with ap 6= 0.

Then H3(x − rξ) − H3(x) = H2(x − rξ) − H2(x) + a3(x − rξ)3 − a3x
3 = H2(x − rξ) − H2(x) +

a3

(
−3x2rξ + 3xr2

ξ − r3
ξ

)
with expectation (a2 + a33x) Var rξ + a3Er3

ξ . Due to the inclusion of x, we

cannot have that supx∈Sρ |Eω(x, rξ)| → 0 if Sρ has infinite extension. For general functions, we will

therefore assume that Sρ has a finite extension, and we see from the third order case that this cannot

be weakened.

Since η, ξ has all practically relevant realizations within a region of finite extension, assuming that

Sρ has finite extension will not matter in practical applications, especially with finite sample settings.

A different proof technique could give a requirement where this is not needed, and this is considered

outside the scope of the present paper.

To finish the argument in the the third order polynomial case, if s = | sup{x ∈ Sρ}|, then using

the triangle inequality, we have supx∈Sρ |Eω(x, rξ)| = supx∈Sρ |(a2 + a33x) Var rξ + a3Er3
ξ | ≤ (|a2| +

|a3|3s) Var rξ + |a3||Er3
ξ | → 0 where Er3

ξ → 0 follows by the upcoming Lemma 5.

We now consider the general polynomial case.
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Assumption 10. Suppose

(1) dη = dξ = 1.

(2) for a p ≥ 1 we have

sup
j≥1

E |εj |
p√

ψjj
<∞.

(3) Suppose Sρ from Assumption 7 (3) has finite extension, that is there is a number MSρ > 0

such that Sρ ⊆ [−MSρ ,MSρ ].

(4) Suppose H is a polynomial of degree p, where p is the constant from (2) above.

Proposition 6. Suppose given Assumption 1, 8, 9 (2) and (3), and 10.

Then supx∈Sρ |Eω(x, rξ)| → 0 as dx →∞.

Proof. We have H = Hp as in eq. (10). Suppose p ≥ 2, as p = 1 follows as above. We have

EHp(x− rξ)−Hp(x) = E
p∑
i=0

ai(x− rξ)i −
p∑
i=0

aix
i

= E
p∑
i=0

ai[(x− rξ)i − xi]

(a)
=

p∑
i=2

aiE[(x− rξ)i − xi]

=

p∑
i=2

aiE

[(
i∑

j=0

(
i

j

)
xi−j(−1)jErjξ

)
− xi

]

(b)
=

p∑
i=2

aiE
i∑

j=1

(
i

j

)
xi−j(−1)jErjξ

(c)
=

p∑
i=2

ai

i∑
j=2

(
i

j

)
xi−j(−1)jErjξ

(a) For i = 0 we have (x − rξ)
i − xi = 0, so the i = 0 term vanishes. Also, for i = 1, we get

E(x − rξ)i − xi = x − Erξ − x = 0. Therefore, only terms with i ≥ 2 are relevant. (b) For j = 0 we

have
(
i
j

)
xi−j(−1)jErjξ = xi, which cancels by the term −xi. (c) If j = 1 then Erjξ = 0, and hence this

term vanishes.

Therefore, by Assumption 10 (3) and the triangle inequality, we have

sup
x∈Sρ

|EHp(x− rξ)−Hp(x)| ≤ sup
|x|≤MA

|EHp(x− rξ)−Hp(x)|

= sup
|x|≤MA

p∑
i=2

ai

i∑
j=2

(
i

j

)
|xi−j ||Erjξ|

≤
p∑
i=2

ai

i∑
j=2

(
i

j

)
M i−j
A E|rξ|j

Since E|rξ|i → 0 for 2 ≤ i ≤ p by the forthcoming Lemma 5, we get the desired convergence, as the

number of terms in the sum is fixed as dx increase. �
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Lemma 5. Suppose given Assumption 1, 8, 9 (2) and (3), and 10. Then E|rξ|q → 0 for any integer

2 ≤ q ≤ p.

Proof. Notice that from Assumption 8 (1), εx has independent components. This independence will

be crucial for the result.

By the Lyapunov inequality, we have E|rξ|q ≤ (E|rξ|p)q/p. Therefore, E|rξ|q → 0 for 2 ≤ q ≤ p as

long as E|rξ|p → 0, which is what we show.

We use one of the several inequalities that carry the name“the Marczinkiewicz-Zygmund inequality”,

see (Révész, 1967, Theorem 2.1.3) and the more recent refinement in Ren and Liang (2001) which gives

the soon to be stated bound for the soon mentioned constant C. It says that for independent X1, . . .

with zero mean and supi≥1 E|Xi|p <∞ for p ≥ 2 we have that that for a constant C ≤ (3
√

2)ppp/2 we

have

(11) E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ Cn(p/2)−1
n∑
i=1

E|Xi|p.

As in the proof of Proposition 5, see eq. (17) (p. A57), we get from Assumption 8 that

rξ =
1

ndx

dx∑
i=1

√
αjuj

where uj =
εj√
ψjj

αj =
λ2
ji

ψjj
and ndx =

∑dx
j=1 αj . Notice αj ≥ 0.

This gives

E|rξ|p = n−pdx E

∣∣∣∣∣
dx∑
i=1

√
αjuj

∣∣∣∣∣
p

≤ Cn−pdx d
(p/2)−1
x

dx∑
i=1

E|√αjuj |p

≤ Cn−pdx d
(p/2)−1
x

dx∑
i=1

√
αj

p

(
sup
j≥1

E |εj |
p√

ψjj

)

=

(
sup
j≥1

E |εj |
p√

ψjj

)
Cn−pdx d

(p/2)−1
x

dx∑
i=1

√
αj

p.

We now use Assumption 9 (2), i.e., that

(
λ2
j1

ψjj

)
1≤j≤dx

⊂ [mλ/ψ,Mλ/ψ] for numbers 0 < mλ/ψ ≤

Mλ/ψ <∞. This gives

ndx =

dx∑
j=1

αj ≥
dx∑
j=1

mλ/ψ = dxmλ/ψ

and
dx∑
i=1

√
αj

p ≤
dx∑
i=1

√
Mλ/ψ

p
= dx

√
Mλ/ψ

p
.

Inserting this in the series of inequalities from above gives

E|rξ|q ≤

(
sup
j≥1

E |εj |
p√

ψjj

)
Cm−pλ/ψd

−p
x d(p/2)−1

x

√
Mλ/ψ

p
dx

=

(
sup
j≥1

E |εj |
p√

ψjj

)
Cm−pλ/ψ

√
Mλ/ψ

p
d−p/2x
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Since p > 0 we have −p/2 < 0 and so the convergence is shown as d
−p/2
x → 0 for dx →∞, supj≥1 E

|εj |p√
ψjj

was assumed to be finite, and the remaining are finite constants. �

E.3. More Details on the Consequences of Asymptotic Normality of rξ Following Propo-

sition 5. Using our notation as well as the the conclusion from Lemma 2 that E[η̈|ξ = x] = H(x),

Huang and Zhou (2017) is based on the equality

H(x) =
1

2πfξ̈(x)

∫
e−itx

φHdxfη̈ (t)

φrξ (t)
dt

where Hdx(x) = E[η̈|ξ̈ = x], where φHdxfη̈ is the characteristic function of the convolution between

Hdx and fη̈, and where φrξ is the characteristic function of rξ. Except φrξ , all quantities in the above

display are identified. Proposition 5 motivates approximating φrξ by the characteristic function of a

re-scaled normal random vector, which has a known formula. To simplify notation, consider the special

case dη = dξ = 1. Then the suggested approximation is

H̆(x) =
1

2πfξ̈(x)

∫
e−itx

φHdxfη̈ (t)

φZ/cdx (t)
dt, Z ∼ N(0, 1),

which is the population version of the Huang and Zhou (2017) estimator when using it with the nor-

mality approximation from Proposition 5. However, replacing rξ with zero is shown to yield uniformly

consistent approximations of H as dx increase in Proposition 4, and so merely getting this from the

normal approximation does seem needed, as the asymptotic normality also implies that rξ converges to

zero in probability, thereby fulfilling Assumption 7 (4), which means that such a result would not give

new insight. Therefore, the possible benefits of the normality approximation would be not in terms of

asymptotic identification, but if H̆ was better than Hdx of Proposition 4 as an approximation to H.

This seems complex to investigate mathematically, especially since Z/cdx goes to zero for dx increasing,

and is considered outside the scope of the present paper.

E.4. Mathematical Results and Proofs.

E.4.1. Proof of Lemma 1.

Proof of Lemma 1. Statement 1: We have Cov (f, rA) = Cov (f,Az̃ − f) = Cov (f,Az̃) − Cov (f) =

Cov (f,AΛf+Aε)−Cov (f) = AΛ Cov (f)−Cov (f)+ACov (f, ε) = (AΛ−Idf ) Cov (f) = (AΛ−Idf )Φ.

Suppose A ∈ G(Λ). Then AΛ − Idf = 0, so that Cov (f, rA) = 0Φ = 0. Suppose Cov (f, rA) = 0.

Then 0 = (AΛ − Idf ) Cov (f) so that right multiplying both sides of the equality by Φ−1 gives 0 =

AΛ− Idf , and so A ∈ G(Λ).

Statement 2: This follows from E[Az̃|f ] = E[A(Λf + ε)|f ] = AΛE[f |f ] + AE[ε|f ] = AΛf , which

equals f if and only if A is a left inverse of Λ, i.e., A ∈ G(Λ).

Statement 3: We first show that T exists. This is implied from that Σ = Cov z = ΛΦΛ′ + Ψ is

invertible under Assumption 1 (3) and (4), as we now show. We will do this by showing that Σ is

positive definite. Let x be a non-zero dz dimensional vector. Since Ψ is positive definite by Assumption

1 (4), x′Ψx > 0. We have x′Σx = x′ΛΦΛ′x + x′Ψx = y′Φy + x′Ψx where y = Λx. If y = 0, then

x′Σx = x′Ψx > 0. If y 6= 0, then also y′Φy > 0 since Φ is positive definite by Assumption 1 (3).

Therefore, Σ is positive definite and, hence, invertible.

Let T = Cov (f)Λ′ Cov (z)−1 = ΦΛ′(ΛΦΛ′ + Ψ)−1. Now we show that T /∈ G(Λ) by contradic-

tion: Assume that T ∈ G(Λ). That is, TΛ = Idf . By Lemma 13 (p. A77), we can also write T =(
Φ−1 + Λ′Ψ−1Λ

)−1
Λ′Ψ−1. Now, we have by assumption that TΛ =

(
Φ−1 + Λ′Ψ−1Λ

)−1
Λ′Ψ−1Λ =

Idf . Right multiplying on both sides with Φ−1 + Λ′Ψ−1Λ gives Λ′Ψ−1Λ = Φ−1 + Λ′Ψ−1Λ which holds
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if and only if Φ−1 = 0, which is not the case, because Φ−1 is positive definite since Φ is positive definite

by Assumption 1 (3). This is a contradiction, so it follows that T /∈ G(Λ).

Statement 4: We first show that ∆ exists, which holds if Λ′Ψ−1Λ is invertible. We show that

Λ′Ψ−1Λ has the same rank as Ψ−1. This implies that Λ′Ψ−1Λ is invertible, because it has the same

dimensionality as Ψ−1, which is an invertible matrix by Assumption 1 (4).

Recall (Harville, 1997, Lemma 8.3.2) that for two matrices A,B of compatible dimensions, we have

that rank(AB) = rank(B) if A has full column rank, and that rank(AB) = rank(A) if B has full row

rank.

Since Ψ has full rank, since it is positive definite, Ψ−1 has full row and full column rank and

this gives rank(Ψ−1Λ) = rank(Λ). Since Λ has full column rank, Λ′ has full row rank. Therefore,

rank(Λ′Ψ−1Λ) = rank(Ψ−1Λ) = rank(Λ). The rank of Λ is df as it has full column rank and since

df < dz. Since Λ′Ψ−1Λ is a df × df matrix, it has full rank and, therefore, is invertible. Hence, the

Bartlett matrix ∆ exists.

We have that ∆ is in G(Λ) because ∆Λ = (Λ′Ψ−1Λ)−1Λ′Ψ−1Λ = Idf . The optimality property

follows from standard theory on GLS, see e.g. (Hansen, 2022, Chapter 4.6).

�

E.4.2. Proof of Lemma 2.

Proof of Lemma 2. By eq. (5), by the displayed above and the linearity of conditional expectations,

we have E[η̈|ξ] = E[η|ξ] + E[rη|ξ]. Let 0p,q be the p × q matrix of zeros and Ip be the p × p identity

matrix, we have rη = (0dη,dξ , Idη )Aε. Therefore, we have E[rη|ξ] = (0dη,dξ , Idη )AE[ε|ξ]. By Assumption

Assumption 1 (1) and Assumption 2, ε has zero mean and is independent to f = (ξ′, η′)′. It is therefore

also independent to ξ. Therefore, E[ε|ξ] = Eε = 0 and E[η̈|ξ] = E[η|ξ]. �

E.4.3. Proof of Proposition 1.

Proof of Proposition 1. For concreteness, let us choose to work with A = ∆, the Bartlett factor matrix

which under Assumption 1 exists using Lemma 1 (4), and form f̈ = (ξ̈′, η̈′)′. Consider the characteristic

function of (ξ̈′, η̈′)′, which we recall uniquely characterizes its joint distribution. For a vector t = (t′ξ, t
′
η)′

of dimension df and component dimensions dξ, dη, we have

Eeit
′(ξ̈′,η̈′)′ = Eeit

′
ξ ξ̈+it

′
η η̈ = Eeit

′
ξ(ξ+rξ)+it′η η̈ = Eeit

′
ξrξeit

′
ξξ+it

′
η η̈.

From Assumption 2, ε is independent to f . Therefore, r = Aε is also independent to f . Since rξ is just

the first dξ coordinates of r, it too is independent to f , and hence to ξ and η. By Assumption 4 (2), rξ

is also independent to rη. Therefore, rξ is independent to both ξ and η̈ = η + rη (since η̈ is a function

of η and rη). Therefore, the expectation of the product in the above display factorizes to the product

of expectations of the terms, and we get

Eeit
′
ξξ+it

′
η η̈ =

Eeit(ξ̈
′,η̈′)′

Eeit
′
ξ
rξ

.

Since the distribution of rξ is known by Assumption 4 (1), and f̈ = Az̃ has a distribution given by

A and the distribution of z̃, which is identified by Assumption 3, this shows that the distribution of

(ξ, η̈) is identified. From this distribution, we may compute E[η̈|ξ = x] which from Lemma 2 equals

E[η|ξ = x] = H(x), which is therefore identified. �
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E.4.4. Proof of Lemma 3.

Proof of Lemma 3. As in eq. (6), we have

Az̃ =

(
AxΛxξ +Axεx

AyΛyη +Ayεy

)
=

(
ξ

η

)
+

(
Axεx

Ayεy

)
= f +

(
rξ

rη

)
by the assumed Ax ∈ G(Λx) and Ay ∈ G(Λy) for rξ = Axεx and rη = Ayεy. Since we assume that εx

and εy are independent, we have that also rξ and rη are independent, as they are functions of only εx

and εy, respectively. �

E.4.5. Proof of Proposition 2.

Proof of Proposition 2. Using partition matrix rules, we have

Ψ−1 =

(
Ψ−1
x 0dx,dy

0dy,dx Ψ−1
y

)
.

Since (
Λ′x 0dξ,dy

)(0dx,dy
Ψ−1
y

)
= 0dξ,dy , and

(
0dη,dx Λ′y

)( Ψ−1
x

0dy,dx

)
= 0dη,dx ,

we get

Λ′Ψ−1 =

(
Λ′x 0dξ,dy

0dη,dx Λ′y

)(
Ψ−1
x 0dx,dy

0dy,dx Ψ−1
y

)
=

(
Λ′xΨ−1

x 0dξ,dy
0dη,dx Λ′yΨ−1

y

)
.

Since (
Λ′xΨ−1

x 0dξ,dy

)(0dx,dη
Λy

)
= 0dξ,dη , and

(
0dη,dx Λ′yΨ−1

y

)( Λx

0dy,dξ

)
= 0dη,dξ ,

we get

Λ′Ψ−1Λ =
[
Λ′Ψ−1]Λ =

(
Λ′xΨ−1

x 0dξ,dy
0dη,dx Λ′yΨ−1

y

)(
Λx 0dx,dη

0dy,dξ Λy

)
=

(
Λ′xΨ−1

x Λx 0dξ,dη
0dη,dξ Λ′yΨ−1

y Λy

)
.

Since Λx has full column rank from the last statement in Assumption 5, and Ψx is positive definite

being a principle sub-matrices of a positive definite matrix Ψ (Horn & Johnson, 2013, Observation

7.1.2), the matrix Λ′xΨ−1
x Λx is invertible by the same argument as in the proof of Statement 4 in

Lemma 1 (replacing Λ,Ψ with Λx,Ψx respectively). The same holds for Λ′yΨ−1
y Λy. Hence, both ∆x

and ∆y exist.

Also, since each non-zero partition is invertible, the partitioned diagonal matrix Λ′Ψ−1Λ can be

inverted using the partition rules, giving

(12)
(
Λ′Ψ−1Λ

)−1
=

((
Λ′xΨ−1

x Λx
)−1

0dξ,dη
0dη,dξ

(
Λ′yΨ−1

y Λy
)−1

)
,

Therefore,

∆ = (Λ′Ψ−1Λ)−1Λ′Ψ−1 =

((
Λ′xΨ−1

x Λx
)−1

0dξ,dη
0dη,dξ

(
Λ′yΨ−1

y Λy
)−1

)(
Λ′xΨ−1

x 0dξ,dy
0dη,dx Λ′yΨ−1

y

)

=

((
Λ′xΨ−1

x Λx
)−1

Λ′xΨ−1
x 0dξ,dy

0dη,dx
(
Λ′yΨ−1

y Λy
)−1

Λ′yΨ−1
y

)

=

(
∆x 0dξ,dy

0dη,dx ∆y

)
.
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As for Cov r, we calculate in general that

Cov r = Cov [∆ε] = ∆ Cov [ε] ∆′

=
[
(Λ′Ψ−1Λ)−1Λ′Ψ−1]Ψ

[
(Λ′Ψ−1Λ)−1Λ′Ψ−1]′

= (Λ′Ψ−1Λ)−1Λ′Ψ−1Ψ︸ ︷︷ ︸
=I

[(
Ψ−1)′ (Λ′)′ [(Λ′Ψ−1Λ)−1]′]

= (Λ′Ψ−1Λ)−1Λ′Ψ−1Λ︸ ︷︷ ︸
=I

[
(Λ′Ψ−1Λ)′

]−1

= (Λ′Ψ−1Λ)−1,

which together with eq. (12) gives the stated formula. This formula also shows that Cov r is positive

definite, because it is invertible as shown in the proof of Statement 4 in Lemma 1. The last statement,

that
(
Λ′xΨ−1

x Λx
)−1

and
(
Λ′yΨ−1

y Λy
)−1

are positive definite, follows since they the inverse of positive

definite matrices, as shown when we above showed that ∆x,∆y exists. �

E.4.6. Proof of Proposition 3.

Proof of Proposition 3. Statement (1): We will use the following property twice: For a symmetric

positive definite m × m matrix M , we have that max1≤i,j≤m |Mi,j | ≤ λmax(M). Since we have not

found a reference for this likely well-known result with a complete proof, we provide a proof in Lemma

12 (p. A77).

From Proposition 2 we have that Cov rξ = (Λ′xΨ−1
x Λx)−1, and that it is a positive definite matrix.

We therefore have that

(13) max
1≤i,j≤dξ

|(Cov rξ)i,j | ≤ λmax

(
(Λ′xΨ−1

x Λx)−1) =
1

λmin(Λ′xΨ−1
x Λx)

where the last step follows from the spectral decomposition theorem, see e.g. Corollary A.6.4.1 in

Mardia et al. (1979).

We now show that

λmin(Λ′xΨ−1
x Λx) ≥ min

1≤i≤dξ
Ni

m2
Λx

MΨx

−
M2

Λx

mΨx

1

Ni

∑
1≤j≤dξ,j 6=i

Ci,j

 ,

which from eq. (13) implies the conclusion of the first statement.

Now Λ′xΨ−1
x Λx has a constant dimension of dξ × dξ, and has entries of the form

(Λ′xΨ−1
x Λx)i,j = (Λx)′·,iΨ

−1
x (Λx)·,j

where (Λx)·,j is the i’th column of Λx.

We make use of the Greshgorin circle theorem (Horn & Johnson, 2013, Theorem 6.1.1), which

states that each eigenvalue λM of a dm × dm square matrix M = (mi,j)i,j is contained in the complex

plane D(mi,i, Ri) of radius Ri =
∑
i 6=j,1≤j≤dm |mi,j |. Now in our scenario the matrix M is positive

definite and we know all of the dm eigenvalues are real. Hence, all dm eigenvalues are contained in

the intervals of the form Di = [mi,i − Ri,mi,i + Ri], so that all eigenvalues are in D =
⋃

1≤i≤dm Di.

Since the radius Ri ≥ 0 for all 1 ≤ i ≤ dm, we need to consider the smallest point G within D, i.e.,

G = mind∈D = min1≤i≤dm(mi,i − Ri). If now G → ∞, then the eigenvalues of M diverge without

bound and consequently, the eigenvalues of M−1 converge to zero. Therefore, by translation to our
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notation, the smallest eigenvalue of Λ′xΨ−1
x Λx is greater than

G = min
1≤i≤dξ

(Λx)′·,iΨ
−1
x (Λx)·,i −

∑
1≤j≤dξ,j 6=i

|(Λx)′·,iΨ
−1
x (Λx)·,j |

 .

Since λmin(Ψ−1
x ) = 1/λmax(Ψx), Assumption 6 (1) implies that 1/λmax(Ψx) > 1/MΨx > 0. Since

(Λx)′·,i(Λx)·,i =
∑dx
k=1(Λx)2

k,i > 0, we have

(Λx)′·,iΨ
−1
x (Λx)·,i = ((Λx)′·,i(Λx)·,i) · [(Λx)′·,iΨ

−1
x (Λx)·,i/(Λx)′·,i(Λx)·,i︸ ︷︷ ︸

≥M−1
Ψx

]

≥M−1
Ψx

(Λx)′·,i(Λx)·,i = M−1
Ψx

dx∑
k=1

(Λx)2
k,i.

By Assumption 6 (2) and (3), there are Ni non-zero elements in this sum, and these are larger than

m2
Λx > 0. Therefore,

dx∑
k=1

(Λx)2
k,i > Nim

2
Λx ,

which further implies

(Λx)′·,iΨ
−1
x (Λx)·,i > M−1

Ψx
Nim

2
Λx .

We now bound the negative term in G from below, which means providing an upper bound for∑
1≤j≤dξ,j 6=i

|(Λx)′·,iΨ
−1
x (Λx)·,j |. From the triangle inequality, we have that

|(Λx)′·,iΨ
−1
x (Λx)·,j | = |

dx∑
k=1

dx∑
l=1

(Λx)k,i(Λx)l,j(Ψ
−1
x )k,l| ≤

dx∑
k=1

dx∑
l=1

|(Λx)k,i(Λx)l,j(Ψ
−1
x )k,l|.

Recalling that Ci,j is the number of non-zero elements in the sum, we get that

dx∑
k=1

dx∑
l=1

|(Λx)k,i(Λx)l,j(Ψ
−1
x )k,l| ≤ Ci,j max

1≤i,j≤dx
|(Λx)k,i(Λx)l,j(Ψ

−1
x )k,l|.

By Assumption 6 (2), we have that |(Λx)k,i(Λx)l,j | < M2
Λx which is fixed for all dx. Again, we

use that for a symmetric positive definite m × m matrix M , we have that max1≤i,j≤m |Mi,j | ≤
max|x|=1 x

′Mx = λmax(M). Since Ψx is a positive definite matrix, we therefore get from Lemma

12 that max1≤i,j≤dx |(Ψ−1
x )i,j | ≤ λmax(Ψ−1

x ) = 1/λmin(Ψ). Since λmin(Ψ) > mΨx > 0 we get

1/λmin(Ψ) < 1/mΨx . Therefore, we get that max1≤i,j≤dx |(Λx)k,i(Λx)l,j(Ψ
−1
x )k,l| ≤ M2

Λx/mΨx , which

gives
dx∑
k=1

dx∑
l=1

|(Λx)k,i(Λx)l,j(Ψ
−1
x )k,l| ≤ Ci,jM2

Λx/mΨx .

We therefore get that

G ≥ min
1≤i≤dξ

M−1
Ψx
Nim

2
Λx −

∑
1≤j≤dξ,j 6=i

Ci,j max
1≤i,j≤dx

|(Λx)k,i(Λx)l,j(Ψ
−1
x )k,l|


≥ min

1≤i≤dξ

M−1
Ψx
Nim

2
Λx −

∑
1≤j≤dξ,j 6=i

Ci,jM
2
Λx/mΨx


≥ min

1≤i≤dξ
Ni

m2
Λx

MΨx

−
M2

Λx

mΨx

1

Ni

∑
1≤j≤dξ,j 6=i

Ci,j

 .

This shows the first statement by inversion of both sides.



A52 STEFFEN GRØNNEBERG∗ AND JULIEN PATRICK IRMER∗

Statement (2):

Let ẽ > 0 be given. Suppose ẽ is so small that M−1
Ψx
m2

Λx/(M
2
Λx/mΨx)− ẽ/(M2

Λx/mΨx) > 0. This is

possible because M−1
Ψx
m2

Λx/(M
2
Λx/mΨx) > 0 and (M2

Λx/mΨx) > 0.

Recall that Ni > 0 and Ci,j ≥ 0 and since limdx→∞
1
Ni

∑
1≤j≤dξ,j 6=i

Ci,j = 0 for all 1 ≤ i ≤
dξ by Assumption 6 (4), we have that there exists a D > 0 so that for all dx > D we have 0 ≤
1
Ni

∑
1≤j≤dξ,j 6=i

Ci,j < M−1
Ψx
m2

Λx/(M
2
Λx/mΨx)− ẽ/(M2

Λx/mΨx) for all 1 ≤ i ≤ dξ. Therefore, recalling

that M2
Λx/mΨx > 0 for all such dx and any 1 ≤ i ≤ dξ we have

m2
Λx

MΨx

−
M2

Λx

mΨx

1

Ni

∑
1≤j≤dξ,j 6=i

Ci,j ≥
m2

Λx

MΨx

−
M2

Λx

mΨx

(
M−1

Ψx
m2

Λx/(M
2
Λx/mΨx)− ẽ/(M2

Λx/mΨx)
)

=
m2

Λx

MΨx

−M−1
Ψx
m2

Λx + ẽ

= ẽ.

Therefore, for all sufficiently large dx, we have

G ≥ min
1≤i≤dξ

Ni
(
M−1

Ψx
m2

Λx −M
2
Λx/mΨxM

−1
Ψx
m2

Λx/(M
2
Λx/mΨx)− ẽ/(M2

Λx/mΨx)
)

= min
1≤i≤dξ

Niẽ

which by Assumption 6 (3) goes to infinity. Therefore, the smallest eigenvalue of Λ′xΨ−1
x Λx goes to

infinity and, consequently, the largest eigenvalue of Cov rξ =
(
Λ′xΨ−1

x Λx
)−1

goes to zero, which further

implies

lim
dx→∞

max
1≤i,j≤dξ

Cov rξ = 0.

�

E.4.7. Proof of Proposition 4.

Proof of Proposition 4. All limits are with respect to dx →∞.

Let H̃dx(x) = E[η|ξ̈ = x]. We start by showing that Hdx(x) = H̃dx(x). We have that E[η̈|ξ̈] =

E[η + rη|ξ̈] = E[η|ξ̈] + E[rη|ξ̈].
We have that ξ̈ = ξ + rξ is independent to rη, because ξ and rξ is, which is seen as follows: By

Assumption 4 (2), we have rξ is independent to rη. We now show that also ξ is independent to rη:

Since rη is a function of ε, and ξ is a function of f , ξ is independent to rη by Assumption 2 (1) which

says that ε is independent to f .

Therefore, E[rη|ξ̈] = E[rη] = E∆ηεy = ∆ηEεy, which is zero by Assumption 1 (1).

The desired conclusion therefore follows if we show that supx∈A |H̃dx(x)−H(x)| → 0.

From Assumption 7 (1), f = (ξ′, η′)′ and rξ have densities. From Assumption 4 (1), rξ is independent

to f . Therefore, (η′, ξ̈′) = (η′, ξ′ + r′ξ)
′ has a density given by the convolution formula

(14) fξ̈,η(x, y) = fξ+rξ,η(x, y) = Efξ,η(x− rξ, y).

Recall that we without loss of generality assume dη = 1. By Assumption 7 (1), η, ξ have densities, and

therefore the conditional expectation H̃dx is given by the classical formula

H̃dx(x) =

∫ ∞
−∞

y
fξ̈,η(x, y)

fξ̈(x)
dy.
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We notice that

H̃dx(x) =

∫ ∞
−∞

y
fξ̈,η(x, y)

fξ̈(x)
dy

=
fξ(x)

fξ̈(x)

∫ ∞
−∞

y
fξ̈,η(x, y)

fξ(x)
dy

Recalling eq. (14), we have ∫ ∞
−∞

y
fξ̈,η(x, y)

fξ(x)
dy =

∫ ∞
−∞

y
Efξ,η(x− rξ, y)

fξ(x)
dy

= E
∫ ∞
−∞

y
fξ,η(x− rξ, y)

fξ(x)
dy

= EH(x− rξ),

and so for ω(x, h) = EH(x− h)−H(x)

H̃dx(x) =
fξ(x)

fξ̈(x)
EH(x− rξ)

= [EH(x− rξ)]−

(
1− fξ(x)

fξ̈(x)

)
[EH(x− rξ)]

= [EH(x− rξ)]−
fξ̈(x)− fξ(x)

fξ̈(x)− fξ(x) + fξ(x)︸ ︷︷ ︸
=Rdx (x)

[EH(x− rξ)]

= H(x) + [E (H(x− rξ))−H(x)]−Rdx(x) [E (H(x− rξ))−H(x)]−Rdx(x)H(x)

(a)
= H(x) + [E (H(x− rξ)−H(x))]−Rdx(x) [E (H(x− rξ)−H(x))]−Rdx(x)H(x)

= H(x) + [Eω(x, rξ)]−Rdx(x) [Eω(x, rξ)]−Rdx(x)H(x)(15)

(a) H(x) is non-random, therefore E (H(x− rξ))−H(x) = E (H(x− rξ)−H(x)).

In a separate step below, we show that supx∈Sρ |Rdx(x)| → 0. We now show that this leads to the

required conclusion.

From eq. (15), the triangle inequality and that supx |a(x)b(x)| ≤ (supx |a(x)|)(supx |b(x)|), we get

sup
x∈Sρ

|H̃dx(x)−H(x)|

= sup
x∈Sρ

∣∣∣∣[Eω(x, rξ)]−Rdx(x) [Eω(x, rξ)]−Rdx(x)H(x)

∣∣∣∣
≤ sup
x∈Sρ

|Eω(x, rξ)|+ sup
x∈Sρ

|Rdx(x)| sup
x∈Sρ

|Eω(x, rξ)|+ sup
x∈Sρ

|Rdx(x)| sup
x∈Sρ

|H(x)|.

The conclusion now follows: Firstly we have supx∈Sρ |Eω(x, rξ)| → 0 by Assumption 7 (3) (a). Secondly,

by the separate step proved below, we have supx∈Sρ |Rdx(x)| → 0. Thirdly, from Assumption 7 (3) (b)

we have supx∈Sρ |H(x)| <∞, so that also the last term above goes to zero.

Bounding of Rdx , step 1: We first show that supx∈Sρ |fξ(x)− fξ̈(x)| → 0, and then use this to show

that supx∈Sρ |Rdx(x)| → 0.

Let x ∈ Sρ. The density fξ̈ = fξ+rξ is given by the convolution expression

fξ+rξ (x) = Efξ(x− rξ).
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Therefore, for the indicator function I{‖rξ‖2 < ρ}, which is one iff ‖rξ‖2 < ρ and zero else, we have

sup
x∈Sρ

|fξ̈(x)− fξ(x)| = sup
x∈Sρ

|Efξ(x− rξ)− fξ(x)|

= sup
x∈Sρ

∣∣EI{‖rξ‖2 < ρ}
[
fξ(x− rξ)− fξ(x)

]
+ EI{‖rξ‖2 ≥ ρ}

[
fξ(x− rξ)− fξ(x)

]∣∣
≤ sup
x∈Sρ

∣∣EI{‖rξ‖2 < ρ}
[
fξ(x− rξ)− fξ(x)

]∣∣+
sup
x∈Sρ

∣∣EI{‖rξ‖2 ≥ ρ}[fξ(x− rξ)− fξ(x)
]∣∣,

by the triangle inequality.

We bound the two terms separately. Recall that ‖a‖2 is the Euclidean norm of a vector a.

First, suppose ‖rξ‖2 < ρ. We can then bound |fξ(x) − fξ(x − rξ)| via the mean value theorem

(e.g. Edwards, 1973, p 90, Theorem 3.4): Since fξ is continuously differentiable in Sρ by Assumption

7 (3) (d), we have for the (random, dx-dependent) line segment L(x, rξ) = {x+ α(x− rξ) : α ∈ [0, 1]}.
Then fξ(x) − fξ(x − rξ) = f ′(c)rξ where c ∈ L(x, rξ) and f ′(c) is the derivative row vector f ′(c) =

(D1f(c), . . . , Ddxf(c)) where Dj is partial derivation with respect to the j’th coordinate. This gives

|fξ(x)− fξ(x− rξ)| = |f ′(c)rξ|
(a)

≤ ‖f ′(c)‖2‖rξ‖2
(b)

≤ sup
z∈L(x,rξ)

‖f ′ξ(z)‖2‖rξ|2

(a) Cauchy-Schwartz. (b) Since c ∈ L(x, rξ).

Since ‖rξ‖2 < ρ, we have L(x, rξ) ⊆ Sρ by the definition of Sρ, and so supz∈L(x,rξ) |f ′ξ(z)| ≤
supz∈Sρ ‖f ′ξ(z)‖2 <∞ by Assumption 7 (3) (d), and consequently

(16) |fξ(x)− fξ(x− rξ)| ≤ sup
z∈Sρ

‖f ′ξ(z)‖2‖rξ‖2.

This shows that

I{‖rξ‖2 < ρ}|fξ(x− rξ)− fξ(x)| ≤ I{‖rξ‖2 < ρ}‖rξ‖2 sup
z∈Sρ

|f ′ξ(z)|,

because either ‖rξ‖2 < ρ, and then eq. (16) holds, or ‖rξ‖2 ≥ ρ, and then the indicator functions both

sizes of the inequality are zero, and equality is preserved.

This shows that

sup
x∈Sρ

|EI{‖rξ‖2 < ρ}[fξ(x− rξ)− fξ(x)]| ≤ sup
x∈Sρ

EI{‖rξ‖2 < ρ}|fξ(x− rξ)− fξ(x)|

≤ sup
x∈Sρ

EI{‖rξ‖2 < ρ}‖rξ‖2 sup
z∈Sρ

‖f ′ξ(z)‖2

=

(
sup
y∈Sρ

‖f ′ξ(y)‖2
)
EI{‖rξ‖2 < ρ}‖rξ‖2.

Recall that rξ converges in probability by Assumption 7 (4). Since the function g(x) = I{‖x‖2 <
ρ}‖x‖2 is continuous, g(rξ) converges in probability to g(0) = 0 by the continuous mapping theorem.

Since I{‖rξ‖2 < ρ}‖rξ‖2 is bounded by ρ and converges in probability to 0 as dx → ∞, the variable

therefore also converges in expectation (e.g. Theorem 6.4 in Bierens, 2004). Therefore the above display

goes to zero since supy∈Sρ ‖f ′ξ(y)‖2 <∞ by Assumption 7 (3) (d).



NON-PARAMETRIC REGRESSION AMONG FACTOR SCORES A55

We now consider supx∈Sρ |EI{‖rξ‖2 ≥ ρ}[fξ(x − rξ) − fξ(x)]|, which by the triangle inequality is

bounded by

sup
x∈Sρ

|EI{‖rξ‖2 ≥ ρ}[|fξ(x− rξ)|+ |fξ(x)]|

≤ sup
x∈Sρ

EI{‖rξ‖2 ≥ ρ}2 sup
y∈Sρ

|fξ(y)|

= EI{‖rξ‖2 ≥ ρ}2 sup
y∈Sρ

|fξ(y)|

= 2 sup
y∈Sρ

|fξ(y)|EI{‖rξ‖2 ≥ ρ}

= P (‖rξ‖2 ≥ ρ)2 sup
y∈Sρ

|fξ(y)|,

which goes to zero as dx → ∞ by the definition of convergence in probability since rξ = oP (1) by

Assumption 7 (4).

Bounding of Rdx , step 2: We now return to Rdx(x) directly, using the bound from step 1. Now

recall 0 < infy∈Sρ fξ(y) ≤ fξ(x). By Step 1, we have that for any ẽ > 0, we have that for all sufficiently

large dx, we have −ẽ < fξ̈(x) − fξ(x) < ẽ for all x ∈ Sρ. Let 0 < ẽ < infy∈Sρ fξ(y), so that

−ẽ+ infy∈Sρ fξ(y) > 0. Then

fξ̈(x)− fξ(x) + fξ(x) > −ẽ+ fξ(x) ≥ −ẽ+ inf
y∈Sρ

fξ(y) > 0

Therefore, |fξ̈(x)− fξ(x) + fξ(x)| = fξ̈(x)− fξ(x) + fξ(x), and∣∣∣∣∣ fξ̈(x)− fξ(x)

fξ̈(x)− fξ(x) + fξ(x)

∣∣∣∣∣ =
|fξ̈(x)− fξ(x)|

|fξ̈(x)− fξ(x) + fξ(x)|

≤ ẽ

−ẽ+ infy∈Sρ fξ(y)
.

Since infy∈Sρ fξ(y) > 0 by Assumption 7 (3) (c),

lim
ẽ→0+

ẽ

−ẽ+ infy∈Sρ fξ(y)
=

0

−0 + infy∈Sρ fξ(y)
= 0

and the convergence occurs at a rate that is independent of x. Therefore,

sup
x∈Sρ

|Rdx(x)| = sup
x∈Sρ

∣∣∣∣∣ fξ̈(x)− fξ(x)

fξ̈(x)− fξ(x) + fξ(x)

∣∣∣∣∣→ 0.

�

E.4.8. Proof of Lemma 4. The following proof is done for the dx measurements of ξ, as it is needed

specifically for the rationale. It can easily be extended for all dz measurements by simply replacing

dx by dz = dx + dy, dξ by df = dξ + dη, εx by ε = (ε′x, ε
′
y)′ and by enlarging Λx and Ψx by the

corresponding elements of regarding the measurements of η.

Proof of Lemma 4. From Assumption 8 we have that Cov εx = Ψx is an invertible diagonal dx × dx
matrix, which further implies Ψ−1

x is a diagonal matrix. We call ψii the residual variance of variable i,

for i = 1, . . . , dx:

Ψx := diag(ψ11, . . . , ψdxdx) =


ψ11

0
. . .

0 . . . 0 ψdxdx

 , and ,Ψ−1
x := diag

(
1

ψ11
, . . . ,

1

ψdxdx

)
,

where diag stacks the given vector into a diagonal matrix. Further, we call λij the (i, j)-entry of Λx.



A56 STEFFEN GRØNNEBERG∗ AND JULIEN PATRICK IRMER∗

From Assumption 8 (2) we have that Λx only has one non-zero element per row, which implies that

Λ′xΨ−1
x is a dξ × dx matrix that has the identical non-zero elements as Λ′x, the elements are

Λ′xΨ−1
x :=

(
λij
ψii

)
j,i,i=1,...,dx,j=1,...,dξ

.

Hence, the element (j, i) of Λ′xΨ−1
x is

λij
ψii

, where λij is either zero or non-zero. Post-multiplying

with Λx results in a diagonal dξ × dξ matrix:

Λ′xΨ−1
x Λx = diag

( dx∑
i=1

λ2
ij

ψii

)
j=1,...,dξ

 .

The off-diagonal elements are zero, since the columns of Λx are orthogonal, i.e., (Λ·,j1)′Λ·,j2 = 0, for

j1 6= j2, where Λ·,j1 and Λ·,j2 correspond to the j1-th and j2-th column of Λx, respectively. The j-th

diagonal element of Λ′xΨxΛx is the sum
∑dx
i=1

λ2
ij

ψii
, which is nonzero since Λx has full column rank.

Now, since Λ′xΨ−1
x Λx is a diagonal matrix, we have for its inverse a dξ × dξ matrix:

(Λ′xΨ−1
x Λx)−1 = diag


 1∑dx

i=1

λ2
ij

ψii


j=1,...,dξ

 .

The derived entities are used in the following proofs for the specific subsections of Lemma 4.

Statement (1): Since (Λ′xΨ−1
x Λx)−1 is diagonal and Λ′xΨ−1

x has the identical non-zero elements as

Λ′x, we have that (Λ′xΨ−1
x Λx)−1Λ′xΨ−1

x also has the identical non-zero elements as Λ′x. The elements

result as

∆x = (Λ′xΨ−1
x Λx)−1Λ′xΨ−1

x =

 λij

ψii
∑dx
k=1

λ2
kj

ψkk


j,i,i=1,...,dx,j=1,...,dξ

.

The elements of ∆x are nonzero if λij is nonzero.

Statement (2): Now, since ∆x has the same non-zero elements as Λ′x, this implies that rξ = ∆xεx

consists of elements that are independent sums. This is so since their elements are mutually independent

and Λx has only one non-zero element per row (and Λ′x only has one non-zero element per column).

For rξ := (r1, . . . , rdξ )′ we have for j = 1, . . . , dξ:

rj :=

dx∑
i=1

λij

ψii
∑dx
k=1

λ2
kj

ψkk

εi,

where εi is the i-th element of εx, for i = 1, . . . , dx, and λij is non-zero for the set of variables

measuring the j-th latent variable denoted as Ij (the item set of the j-th latent variable) with ∪dξj=1Ij =

{1, . . . , dx} and with Ij1 ∩ Ij2 = ∅ for j1 6= j2. Hence, we can write rj as

rj :=
∑
i∈Ij

λij

ψii
∑dx
k=1

λ2
kj

ψkk

εi.

Now since the Ij are disjoint, it follows from Assumption 8 that the components of rξ are indepen-

dent.
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Statement (3): We have that

Cov rξ = (Λ′xΨ−1
x Λx)−1.

from Proposition 2. We have already derived the specific shape of this object under Assumption 5.

Hence,

Cov rξ := (Λ′xΨ−1
x Λx)−1 = diag


 1∑dx

k=1

λ2
kj

ψkk


j=1,...,dξ

 .

The diagonal elements of Cov rξ are, therefore, dj :=

 1∑dx
k=1

λ2
kj

ψkk

 for j = 1, . . . , dξ.

This completes the proof of Lemma 4.

�

E.4.9. Proof of Proposition 5.

Proof of Proposition 5. Since rξ consists of independent elements from Lemma 4 (2), we may without

loss of generality consider just one of the elements, say the first, as joint convergence in distribution

of independent random variables is implied by their marginal convergence in distribution, e.g., by

the convergence of their characteristic function which is the product of their marginal characteristic

functions. To simplify notation, this argument is equivalent to dξ = 1, which we assume without loss

of generality.

By Lemma 4, we have

r1,dx =
1∑dx

k=1

λ2
k1
ψkk

dx∑
j=1

λj1
ψjj

εj =
1∑dx

k=1

λ2
k1
ψkk

dx∑
j=1

λj1√
ψjj

εj√
ψjj

.

Define the standardized errors

uj :=
εj√
ψjj

.

Also define

αj :=
λ2
j1

ψjj

and notice that (αj)j is a sequence of positive numbers. Let us also write

ndx =

dx∑
j=1

αj .

When αj is constant and equal to α0, ndx = dxα0, and so ndx is similar to the sample size in non-

weighted sums.

With this notation, we have

(17) r1,dx =
1

ndx

dx∑
i=1

√
αjuj .

We apply the Lyapunov central limit theorem (Billingsley, 1995, Section 27), which says that for an

independent sequence of variables X1, . . . , we have

(18)
1

sdx

dx∑
i=1

Xi
d−−−−→

dx→∞
N(0, 1)
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where s2
dx =

∑dx
i=1 Var Xi, as long as the Lyapunov condition

(19) lim
n→∞

βn,δ = 0, where βn,δ =
1

s2+δ
dx

dx∑
i=1

E|Xi|2+δ

is fulfilled, for a δ > 0.

Let Xi =
√
αiui. Since for ui = εi/

√
ψii, (ui)i is a sequence of independent standardized random

variables from Assumption 9, eq. (18) will follow as long as the Lyapunov condition is fulfilled for a

δ > 0.

We will now show that the Lyapunov condition is fulfilled with the δ from Assumption 9 (2). This

will give the stated conclusion, because

s2
dx =

dx∑
i=1

Var Xi =

dx∑
i=1

αi = ndx ,

since Var uj = 1
ψjj

Var εj = 1, and eq. (18) works with

1

sdx

dx∑
i=1

Xi =
1
√
ndx

dx∑
i=1

√
αiui =

√
ndx

1

ndx

dx∑
i=1

√
αiui =

√
ndxr1,dx .

We have

(20) E|Xi|2+δ = E(
√
αj |uj |)2+δ = α

1+δ/2
j E|uj |2+δ

and

(21) s2+δ
dx

= (s2
dx)1+δ/2 =

(
dx∑
i=1

αj

)1+δ/2

By Assumption 9 (3), we have

cδ := sup
j

E|uj |2+δ <∞

Therefore,

βn,δ =
1

s2+δ
dx

dx∑
i=1

E|Xi|2+δ (a)
=

1(∑dx
i=1 αj

)1+δ/2

dx∑
i=1

α
1+δ/2
j E|uj |2+δ

(b)

≤ cδ

∑dx
i=1 α

1+δ/2
j(∑dx

i=1 αj
)1+δ/2

= cδ

(
dx∑
i=1

α
1+δ/2
j

)
1(∑dx

i=1 αj
)1+δ/2

(c)

≤ cδdxM
1+δ/2

λ/ψ

1

dx
1+δ/2m

1+δ/2

λ/ψ

= (cδM
1+δ/2

λ/ψ m
−1−δ/2
λ/ψ )dx

−δ/2

(d)→ 0 as dx →∞.

(a) Use eq. (20) and (21). (b) Since (αj)j is a sequence of positive numbers, all terms in the two

sums are positive, and α
1+δ/2
j E|uj |2+δ ≤ α

1+δ/2
j cδ. Then factorize out cδ. (c) From Assumption

9 (2), we know that each αj is contained within a finite interval, [mλ/ψ,Mλ/ψ] with mλ/ψ > 0.

Therefore
∑dx
i=1 α

1+δ/2
j ≤

∑dx
i=1 M

1+δ/2

λ/ψ = dxM
1+δ/2

λ/ψ and
∑dx
i=1 αj ≥

∑dx
i=1 mλ/ψ = dxmλ/ψ, so that
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1(∑dx
i=1 αj

)1+δ/2 ≤ 1

(dxmλ/ψ)1+δ/2 . (d) Since δ > 0 we have dx
−δ/2 → 0. The constants are non-zero and

finite. �

Appendix F. On non-linear and misspecified measurement models

F.1. Polynomial measurement models. We here consider polynomial measurement models in the

context of the present paper. Such measurement models have long history, see R. McDonald (1967) for

an early monograph on the subject. For simplicity, we consider only a very restricted class of models,

though our arguments can be extended in various directions. Keeping the linear measurement model

of eq. (2), suppose without loss of generality that the two first coordinates of ξ and η are of the form

(θ1,x, θ
mx
1,x )′, (θ1,y, θ

my
1,y )′ mx,my > 1

respectively. That is, there may be deterministic though non-linear relations between the coordinates of

ξ and η. This is a special case of a polynomial measurement model understood as a linear measurement

model with non-linear deterministic connections between the latent variables (This is an old observation,

see Chapter 3 in R. McDonald, 1967).

While treating such a polynomial measurement model as if it was linear may have certain drawbacks

as the deterministic relationships between the latent variables are not taken into account e.g. when

forming factor scores, such non-linear measurement models may be be compatible with the assumptions

of the present paper. A core assumption in the paper is Assumption 3, where parameter identification

is assumed. The error in variables parametrization of Yalcin and Amemiya (2001) can be used to secure

this. Yalcin and Amemiya (2001) also provides an estimation method. Both identification (to fulfill

Assumption 3) and an available estimation method (to apply the method in a practical setting), are

taken as given in the following, as well as the remaining relevant assumptions.

Suppose given Assumption 1 and 3. By Lemma 1, ∆ exists and is a left inverse of Λ. Therefore, the

key correspondence

∆(x̃′, ỹ′)′ = (ξ′, η′)′ + (r′ξ, r
′
η)′

still holds. In the presence of deterministic relationships between the coordinates of ξ and η, it is

usually not of interest to compute the full E[η|ξ = x]. We now review why. For simplicity, we assume

that ξ and η are bivariate, have quadratic measurement models, and therefore only contain (θ1,x, θ
2
1,x)′

and (θ1,y, θ
2
1,y)′ respectively.

Since θ2
1,x is a function of θ1,x we have that σ(θ1,x, θ

2
1,x) = σ(θ1,x) by Lemma 11 (p. A76) since

ϕ(x) = x2 is a Borel function. Therefore, E[η|θ1,x, θ
2
1,x] = E[η|θ1,x]. Therefore, the non-uniqueness

(up to probability one) of conditional expectations now enter in a detrimental manner: Recall that

E[η|θ1,x, θ
2
1,x] is a function H of θ1,x and θ2

1,x. However, since σ(θ1,x, θ
2
1,x) = σ(θ1,x), and H(θ1,x, θ

2
1,x) =

E[η|θ1,x] = ϕ(θ1,x), for some function ϕ, we have that the functional mapping H is highly non-unique.

Indeed, any function H such that H(x1, x2) = ϕ(x1) fulfills the requirement. While all such variables

agree with probability one when evaluated at θ1,x, θ
2
1,x, the functional relationship within the mappings

can vary: For example, H(x1, x2) = ϕ(x1) and H(x1, x2) = ϕ(
√
|x2| sign(x1)) are two members of this

class. It is therefore of interest to approximate ϕ and not H.

The degeneracy induced by the deterministic relationship between θ1,x and θ2
1,x is also incompatible

with Assumption 7 used in Proposition 4 unless the set Sρ is chosen in a manner which takes the

deterministic relationship into account. For example, in Assumption 7 we assume that fξ is continuously

differentiable in Sρ. For simplicity, assume that θ1,x > 0. The joint cumulative distribution of θ1,x and
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θ2
1,x is by definition

P(θ1,x ≤ t1, θ2
1,x ≤ t2)

(a)
= P(θ1,x ≤ t1, θ1,x ≤

√
t2)

(b)
= P

(
θ1,x ≤ min(t1,

√
t2)
) (c)

= Fθ1,x
(
min(t1,

√
t2)
)

(d)
=

{
Fθ1,x(t1) if t1 ≤

√
t2

Fθ1,x(
√
t2) if t1 >

√
t2

(a) Recall that we assume that θ1,x > 0. (b) Recall that the comma in the probability stands for

intersection. Therefore, the event can only happen if θ1,x is less than or equal the smallest of the two

upper limits. (c) Fθ1,x is the cumulative distribution function of θ1,x, defined as Fθ1,x(z) = P (θ1,x ≤ z).
(d) We consider the two cases where we know the value of the minimum.

We therefore take the two partial derivatives of the above joint cumulative distribution function of

θ1,x, θ
2
1,x, and find that its density is given by

fξ(t1, t2) =

{
fθ1,x(t1) if t1 ≤

√
t2

fθ1,x(
√
t2) if t1 >

√
t2

= fθ1,x(t1)I{t1 ≤
√
t2}+ fθ1,x(

√
t2)I{t1 >

√
t2},

whose partial derivatives are

(∂/∂t1)fξ(t1, t2) = f ′θ1,x(t1)I{t1 ≤
√
t2}, (∂/∂t2)fξ(t1, t2) =

1

2
f ′θ1,x(

√
t2)t
−1/2
2 I{t1 >

√
t2}

Since these partial derivatives have jumps except in sets (t1, t2) where t1 and
√
t2 have a fixed order,

fξ is not continuously differentiable even when fθ1,x is.

Another issue is that θ2
1,y is considered as part of η only since we are considering a non-linear

measurement model from a linear perspective. We are interested in how θ1,y varies with θ1,x, where

θ1,y is measured via a quadratic measurement equation. We therefore want to approximate

E[θ1,y|θ1,x = x] and not

(
E[θ1,y|θ1,x = x1]

E[θ2
1,y|θ1,x = x1]

)
.

Both issues can be dealt with by a minor modification of the framework of the paper. This can also

be done in practice because the non-linear measurement model is provided by the user. Consider a

linear transformation P such that

(
...
ξ
′
,
...
η ′)′ := P∆(x̃′, ỹ′)′ = P (ξ′, η′)′ + P (r′ξ, r

′
η)′ = (ξ1, η1)′ + (r1,ξ, r1,η)′

removes the redundant variables, i.e., θ2
1,x, θ

2
1,y. The statistical behavior of

...
ξ ,

...
η can be treated as

population Bartlett scores and inputted into non-parametric regression methods as described above.

This will approximate H̃ and not H.

F.2. On measurement model misspecification. We here investigate what happens when the mea-

surement model is misspecified, focusing on a general non-linear measurement framework. We show

that such misspecifications will be mixed in with the non-parametric trend estimate for H, and with-

out assumptions leading to non-linear and possibly non-parametric identification of the measurement

model and the structural relations, it is impossible to disentangle where contributions to the estimate

of H comes from. Such identification results appear not to be available in the literature, and seems

difficult to reach.

Suppose the data-generating mechanism is such that

x = Gx(ξ, λx) + εx, y = Gy(η, λy) + εy.

where Gx(·, λx) = ((Gx(·, λxi ))dxi=1)′, and Gy(·, λy) = ((Gy(·, λyi ))
dy
i=1)′ are functions of the latent vari-

ables with parameter vectors λx, λy. The other parts of the data generating model is kept as is.
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While the model as stated will not be identified without more assumptions, we may still suppose the

data-generating mechanism is contained within this class. Notice that this general case also includes

the linear case with a misspecified dimensionality, and even the case when the measurement model

considered in the paper is correct.

Suppose we apply the non-parametric regression methods based on Bartlett scores as described

earlier. This procedure will then estimate H̃(z) = E[∆̃y ỹ|∆̃xx̃ = z] where ∆̃y, ∆̃x are the Bartlett

transformations for the endogenous and exogenous measurement models respectively, defined via the

population limits of a given possibly inconsistent estimator.

Since εx is mean zero and independent to x, we still have a conclusion similar to Lemma 2. Let

G̃x(ξ, λx) = Gx(ξ, λx)− Ex and G̃y(η, λy) = Gy(η, λy)− Ey. Then

E
[
∆̃y ỹ|∆̃xx̃

]
= E

[
∆̃yG̃y(η, λy)

∣∣∆̃x[G̃x(ξ, λx) + εx]
]

= E
[
∆̃yG̃y(H(ξ) + ζ, λy)

∣∣∆̃x[G̃x(ξ, λx) + εx]
]
.(22)

This cannot in general be simplified further, but we see that the non-parametric trends are mixed

together, and cannot easily be separated without strong assumptions. Especially, we see that the

relationship G̃y(H(ξ) + ζ, λy) implies that non-linearities in G̃y and H cannot be separated without

further assumptions, as any function pair with the same function composition leads to the same values

of E[∆̃yy|∆̃xx].

With more assumptions, E[∆̃yy|∆̃xx] can be further simplified. As an illustration, we consider the

case of normality.

Example 6. Suppose ξ, ζ, εx are zero mean and jointly normal, and Gx is linear, say Gx(ξ, λx) = Λ̃xξ.

Then, in eq. (22), we condition on ∆̃x[Λ̃xξ + εx], which is normal. Then Z := (∆̃x[Λ̃xξ + εx], ξ + ζ)

is jointly normal. This joint normality implies that when conditioning ξ + ζ on ∆̃x[Λ̃xξ + εx] is again

normal. We now use Lemma 8 (p. A75) to find this distribution.

Since Cov (∆̃xΛ̃xξ+∆̃xεx) = ∆̃xΛ̃xΦΛ̃′x∆̃′x+Λ̃xΨxΛ̃′x = ∆̃x(Λ̃xΦΛ̃′x+Ψx)∆̃′x, and Cov (ξ+ζ) = Φ+

Ψζ , where Ψζ = Cov (ζ). Hence, we have that ΣY,X = Cov (ξ+ ζ, ∆̃xΛ̃xξ+ ∆̃xεx) = Cov (ξ, ∆̃xΛ̃xξ) +

Cov (ξ, ∆̃xεx) + Cov (ζ, ∆̃xΛ̃xξ) + Cov (ζ, ∆̃xεx) = ΦΛ̃′x∆̃′x, and analogously, ΣX,Y = (ΦΛ̃′x∆̃′x)′ =

∆̃xΛ̃xΦ. Therefore, Z is zero mean with covariance matrix

Σ =

(
∆̃x(Λ̃xΦΛ̃′x + Ψx)∆̃′x, ∆̃xΛ̃xΦ

ΦΛ̃′x∆̃′x, Φ + Ψζ

)
.

From Lemma 8, we have that ξ + ζ|Λ̃xξ + εx is normal with mean

µ(∆̃x[Λ̃xξ + εx]) = ΦΛ̃′x∆̃′x[∆̃x(Λ̃xΦΛ̃′x + Ψx)∆̃′x]−1∆̃x[Λ̃xξ + εx]

and covariance

Σ̃ = Φ + Ψζ − ΦΛ̃′x∆̃′x[∆̃x(Λ̃xΦΛ̃′x + Ψx)∆̃′x]−1∆̃xΛ̃xΦ

Let Z ∼ Ndξ (0, I) and independent to ξ. Then for Σ̃1/2(̃Σ1/2)′ = Σ̃

Σ̃1/2Z + µ(∆̃x[Λ̃xξ + εx])

is a stochastic representation of ξ + ζ|∆̃x[Λ̃xξ + εx]. Therefore,

E
[
∆̃yy|∆̃xx

]
= EZ

[
∆̃yG̃y

(
H
(

Σ̃1/2Z + µ(∆̃x[Λ̃xξ + εx])
)
, λy
)]

where EZ is expectation with respect only to Z.
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Example 7. We continue Example 6, and verify its correctness in the case when the linear measurement

model is in fact correct, and that

H(x) = Bx.

We compute directly that

E[∆̃yΛ̃yη|∆̃xx̃] = E[η|ξ + rξ] = E[Bξ + ζ|ξ + rξ] = BE[ξ|ξ + ∆̃xεx].

We have Cov (ξ + ∆̃xεx) = Φ + ∆̃xΨx∆̃′x. We also have Cov (ξ) = Φ. Further, Cov (ξ, ξ + ∆̃xεx) =

Cov (ξ, ξ) + Cov (ξ, ∆̃xεx) = Φ, and Cov (ξ + ∆̃xεx, ξ) = Φ′ = Φ. Therefore, (ξ + ∆̃xεx, ξ) is normal

with zero mean and covariance matrix (
Φ + ∆̃xΨx∆̃′x, Φ

Φ, Φ

)
.

We therefore have that ξ|ξ + ∆̃xεx is normal, with mean

µ◦(ξ + ∆̃xεx) = Φ(Φ + ∆̃xΨx∆̃′x)−1(ξ + ∆̃xεx).

E[∆̃yΛ̃yη|∆xx] = BE[ξ|ξ + ∆̃xεx]

= BΦ(Φ + ∆̃xΨx∆̃′x)−1(ξ + ∆̃xεx).

We now verify that the expression from Example 6 is the same as found directly above. We have

that ∆̃yG̃y and ∆̃xG̃x becomes the identity by Lemma 1. Then, using that H(x) = Bx, we get that

E[∆̃yy|∆̃xx] = EZ [∆̃yG̃y(H(Σ̃1/2Z + µ(∆̃x[Λ̃xξ + εx]), λy)]

= EZ [B(Σ̃1/2Z + µ(∆̃x[Λ̃xξ + εx])]

= Bµ(∆̃x[Λ̃xξ + εx])

= BΦΛ̃′x∆̃′x[∆̃x(Λ̃xΦΛ̃′x + Ψx)∆̃′x]−1∆̃x[Λ̃xξ + εx]

= BΦ[Φ + ∆̃xΨx∆̃′x]−1[ξ + ∆̃xεx],

The last equality follows as ∆̃x is a left inverse of Λ̃x, which also implies that Λ̃′x∆̃′x = (∆̃xΛ̃x)′ = I.

We see that the expressions match with the earlier calculation.

Let us seize the occasion to verify the conclusion of Proposition 4 in this direct and simple case.

Since ∆̃xx = ξ̈, we have

Hdx(x) = E[η̈|ξ̈ = x] = E[η|ξ̈ = x] = BΦ[Φ + ∆̃xΨx∆̃′x]−1x.

Since E[η|ξ] = E[Bξ + ζ|ξ] = BE[ξ|ξ] + E[ζ|ξ] = Bξ we have

H(x) = E[η|ξ = x] = Bx.

Therefore, for any set Sρ, we have

sup
x∈Sρ

|Hdx(x)−H(x)| = sup
x∈Sρ

|BΦ[Φ + ∆̃xΨx∆̃′x]−1x−Bx|

= sup
x∈Sρ

∣∣∣B (Φ[Φ + ∆̃xΨx∆̃′x]−1 − I
)
x
∣∣∣ .

By Proposition 2, we have ∆̃xΨx∆̃′x = Cov rξ =
(
Λ′xΨ−1

x Λ′x
)−1

, which goes to zero as dx increases

under e.g. the assumptions of Proposition 3. Since matrix inversion is continuous, we see that Φ[Φ +

∆̃xΨx∆̃′x]−1 → Φ[Φ]−1 = I and so

B
(

Φ[Φ + ∆̃xΨx∆̃′x]−1 − I
)
→ B(I − I) = 0.
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Therefore, as long as Sρ has finite extension, supx∈Sρ |Hdx(x)−H(x)| goes to zero. If Sρ has infinite

extension, the supremum is infinite for each dx. This is interesting with respect to the conditions identi-

fied in Appendix E.2 (p.A44) where the required convergence concerning ω is shown under Assumption

10, which include an assumption of finite extension. We therefore see that even in this simplest of

cases, finite extension is actually needed. �

When specifying Gy, concrete expressions for Hdx can be reached, as we now illustrate.

Example 8. Suppose that

xi = λxi,1ξ + εi,x, i = 1, 2, . . . , dx,

yj = λyj,1η + λyj,2η
2 + εj,x, j = 1, 2, . . . , dy,

where the structural trend is linear and given by

η = ξ + ζ.

All error terms have zero mean, and are independent of each other as well as to ξ. Suppose ξ and ζ are

standardized. For computational tractability, we assume that all latent random variables are jointly

normal.

Suppose we estimate a single-factor linear factor model. We will show that E[η̈|ξ̈ = x] is a second

degree polynomial in x. The missing non-linearity in the measurement model therefore shows up in

the non-parametric trend estimates of the structural variables.

As earlier, the misspecified single-factor linear factor model without correlated errors is assumed

estimated using a specific estimator, such as the normal theory ML or the GLS estimator. The asymp-

totic limit that this estimator converges to as the sample size increases will be denoted by (λ̃xi ), (λ̃yi ),

and similarly for error variances estimated by the misspecified model, denoted by (ψ̃ii,x)dxi=1, (ψ̃ii,y)
dy
i=1

for respectively error variances of the measurement error of ξ and η.

Let Lx, Ly be the linear operators defined by their application to sequences cx = (c1, c2, . . . , cdx)

and cy = (c1, c2, . . . , cdy ) through the operation

Lxcx =

(
dx∑
k=1

(λ̃xk)2

ψ̃kk,x

)−1 dx∑
i=1

λ̃xi (ψ̃ii,x)−1ci

Lycy =

 dy∑
k=1

(λ̃yk)2

ψ̃kk,y

−1
dy∑
i=1

λ̃yi (ψ̃ii,y)−1ci.

Then, from Lemma 4, the Bartlett factor scores for ξ and η respectively, are

Lxx̃, x̃i = xi − Exi

Ly ỹ, x̃i = yi − Eyi.

Now Exi = 0 and Eyi = Eλyi,2η
2 = λyi,2 Var η = λyi,2 Var (ξ + ζ) = λyi,2[Var (ξ) + Var (ζ)] = 2λyi,2.

The linearity of Lx implies that

Lxx̃ = [Lx(λxi,1)dxi=1]︸ ︷︷ ︸
=:λ̃S,x

ξ + Lxεi,x︸ ︷︷ ︸
=:εS,x

= λ̃S,xξ + εS,x.
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Similarly,

Ly ỹ = Lx(−2λyi,2 + λyi,1η + λyi,2η
2 + εi,x)dxi=1

= Lx(−2λyi,2)dxi=1︸ ︷︷ ︸
=:λ̃S,0,y

+Lx(λyi,1)dxi=1︸ ︷︷ ︸
=:λ̃S,1,y

η + Lx(λyi,2)dxi=1︸ ︷︷ ︸
=:λ̃S,2,y

η2 + Lx(εi,x)dxi=1︸ ︷︷ ︸
=:εS,y

= λ̃S,0,y + λ̃S,1,yη + λ̃S,2,yη
2 + εS,y.

From our assumptions, εS,y, εS,x have zero mean and are independent to each other and to ξ. The

LOESS estimator based on the Bartlett scores from the misspecified model will therefore asymptotically

reach

E[Ly ỹ|Lxx̃] = λ̃S,0,y + λ̃S,1,yE[η|λ̃S,xξ + εS,x] + λ̃S,2,yE[η2||λ̃S,xξ + εS,x] + E[εS,y|λ̃S,xξ + εS,x]

= λ̃S,0,y + λ̃S,1,yE[ξ + ζ|λ̃S,xξ + εS,x] + λ̃S,2,yE[ξ2 + 2ξζ + ζ2||λ̃S,xξ + εS,x]

= λ̃S,0,y + λ̃S,1,yE[ξ|λ̃S,xξ + εS,x] + λ̃S,2,yE[ξ2|λ̃S,xξ + εS,x] + 2E[ξζ|λ̃S,xξ + εS,x]

+ E[ζ2|λ̃S,xξ + εS,x].

Since ζ2 is independent to λ̃S,xξ + εS,x, we use eq. (27) (p. A75) to get that E[ζ2|λ̃S,xξ + εS,x] =

Eζ2 = 1.

Since λ̃S,xξ + εS,x is a function of ξ and εS,x, we have that σ(λ̃S,xξ + εS,x) ⊆ σ(ξ, εS,x). Therefore,

we apply Theorem 4 (p. A74) and get that E[ξζ|λ̃S,xξ + εS,x] = E[E[ξζ|ξ, εS,x]|λ̃S,xξ + εS,x]. Since ξ is

σ(ξ, εS,x)-measurable, E[ξζ|ξ, εS,x] = ξE[ζ|ξ, εS,x] (use Theorem 3 on p. A74). Since ζ is independent to

both ξ, εS,x, we use eq. (27) (p. A75) to get that E[ζ|ξ, εS,x] = E[ζ] = 0. Therefore, E[ξζ|λ̃S,xξ+εS,x] =

0.

Since (λ̃S,xξ + εS,x, ξ) is jointly normal, we use Lemma 8 to see that

E[ξ|λ̃S,xξ + εS,x = z] = Cov (ξ, λ̃S,xξ + εS,x) Var (λ̃S,xξ + εS,x)−1x,

which is linear in x.

Finally, since

Var
[
ξ|λ̃S,xξ + εS,x

]
= E[ξ2|λ̃S,xξ + εS,x]− (E[ξ|λ̃S,xξ + εS,x])2

we get that

E[ξ2|λ̃S,xξ + εS,x = z] = Var
[
ξ|λ̃S,xξ + εS,x = z

]
+ (E[ξ|λ̃S,xξ + εS,x = z])2.

Again, since (λ̃S,xξ+εS,x, ξ) is jointly normal, and therefore Var
[
ξ|λ̃S,xξ + εS,x

]
is non-stochastic from

Lemma 8, it will not vary with x. Since we have already shown E[ξ|λ̃S,xξ + εS,x = z] to be linear in z,

we conclude that E[ξ2|λ̃S,xξ + εS,x = z] is a second degree polynomial in z. In conclusion, this shows

that also E[Ly ỹ|Lxx̃ = z] is a second degree polynomial in z, with coefficients deducible from the above

argument. �

F.3. Simulation illustrations with measurement model misspecifications. In this section we

provide numerical illustrations of the effect of having a nonlinear factor model, when assuming a

linear measurement model in the estimation of H. We consider only two empirical estimators: the

LOESS(BFS) method and the BSpline(NLFS) method.

For both estimators, the examples show that for low degrees of nonlinearity in the measurement

model, the structural part of the model is adequately estimated, while for stronger degree of nonlin-

earity, larger influences on the structural part are vivid. The supplemental material includes complete

computer code and all parameter values.
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Example 9 shows the effect of a nonlinear effect in the measurement as well as the structural part

of the model which result in an estimated linear trend. Example 10 and 11 show that a nonlinear

misspecification in the measurement model can result in estimates of the structural trend that is

erroneously nonlinear (the true trend is linear). This happens both for the LOESS(BFS) and the the

nonlinear factor scores of Kelava et al. (2017) in the BSpline(NLFS), which both assume a correctly

specified and linear measurement model.

Example 9. Consider the measurement models

(23) xi = µx,i + λx,i,1ξ + αλx,i,2ξ
2 + εx,i, i = 1, 2, 3, yj = µy,j + λy,j,1η + εy,j,2, j = 1, 2, 3,

which is a nonlinear factor model for xi, where α > 0 controls the degree of nonlinearity. For α = 0

this is a linear factor model. We assume a quadratic structural model

η = αη + ξ + ξ2 + ζ,

and simulate all variables to be normal with ξ ∼ N (0, .5), ζ ∼ N (0, .3), αη = −.5 so that Eη =

0,Var η = 1.3 and set the factor loadings as λx,1,1 = λy,1,1 = 1, λx,2,1 = λy,2,1 = .8, and λx,3,1 =

λy,3,1 = .7. For the nonlinear part in ξ2
1 we set λx,1,2 = 1.3, λx,2,2 = 1, and λx,3,2 = .4. Further,

we set Var εx,i and Var εy,j so that the reliabilities are constant across all values of α with Rel[x1] =

Rel[y1] = .81, Rel[x2] = Rel[y2] = .64, Rel[x3] = Rel[y3] = .49. The reliability are computed as

Rel[xi] =
λ2
x,i,1 Var ξ + 2α2λ2

x,i,2(Var ξ)2

λ2
x,i,1 Var ξ + 2α2λ2

x,i,2(Var ξ)2 + Var εx,i
and Rel[yj ] =

λ2
y,i,1 Var η

λ2
y,i,1 Var η + Var εy,i

.

Further, µx,i = −.5λx,i so that Exi = 0, i = 1, 2, 3.

We used two methods of the original simulation study. We estimated the (partly wrongly specified)

linear factor model

xi = µx,i + λ̃x,iξ̃ + ε̃x,i, i = 1, 2, 3, yj = µy,j + λy,j η̃ + ε̃y,j , j = 1, 2, 3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based

on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor

scores of Kelava et al. (2017). Figure 23 shows that for small α (i.e., small nonlinearity in the measure-

ment part of the model), the estimates for H clearly suggest a nonlinear (quadratic trend) for both

methods. In contrast, for large α, i.e., α = 1, a trend close to linear is suggested. This happens for

LOESS(BFS) as well as BSpline(NLFS).

�

Example 10. The second example is almost identical to Example 9, except, we assume a linear

structural model

η =
√

2ξ + ζ,

where, again, all parameters were chosen so that all reliabilities are identical across different values of

α and Eη = 0,Var η = 1.3. We (again) estimated the (partly wrongly specified) linear factor model

xi = µx,i + λ̃x,iξ̃ + ε̃x,i, i = 1, 2, 3, yj = µy,j + λy,j η̃ + ε̃y,j , j = 1, 2, 3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based

on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor

scores of Kelava et al. (2017). Figure 24 suggest a linear trend for small values of α, i.e., small nonlinear

effects in the measurement part of the model. For α = 1 a clear nonlinear trend is evident, which has

slower than linear growth.

�
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Figure 23. Predicted trends for quadratic structural model using

LOESS(BFS) and BSpline(NLFS) for different values of α representing

different degree of nonlinearity (quadratic) in the factor model for ξ for

n = 1000.
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Figure 24. Predicted trends for linear structural model using LOESS(BFS)

and BSpline(NLFS) for different values of α representing different degree of

nonlinearity (quadratic) in the factor model for ξ.
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Example 11. In this example we consider a linear measurement model for the exogenous part of the

model, but a nonlinear one for the endogenous part of the model. Consider the measurement models

(24) xi = µx,i + λx,i,1ξ + εx,i, i = 1, 2, 3, yj = µy,j + λy,j,1η + αλy,j,3η
3 + εy,j , j = 1, 2, 3,

which is a nonlinear factor model for yi, where α > 0 controls the degree of nonlinearity. For α = 0

this is a linear factor model. We assume a linear structural model

η = ξ + ζ,

and simulate all variables to be normal with ξ ∼ N (0, .5), ζ ∼ N (0, .5), so that Eη = 0,Var η = 1 and

set the factor loadings of the linear effects as in Example 9 and 10. For the nonlinear part in η3
1 we set

λy,1,3 = .2, λy,2,3 = .15, and λy,3,3 = .1. Further, we set Var εx,i and Var εy,j so that the reliabilities

are constant across all values of α with Rel[x1] = Rel[y1] = .81, Rel[x2] = Rel[y2] = .64, Rel[x3] =

Rel[y3] = .49. The reliability are computed as

Rel[xi] =
λ2
y,i,1 Var ξ

λ2
y,i,1 Var ξ + Var εy,i

and

Rel[yi] =
λ2
y,i,1 Var η + λ2

y,i,3α
2 Var η3 + 2αλy,i,1λy,i,3 Cov [η, η3]

λ2
y,i,1 Var η + λ2

y,i,3α
2 Var η3 + 2αλy,i,1λy,i,3 Cov [η, η3] + Var εy,i

.

Further, µx,i = µy,i = 0 so that Exi = Eyi = 0, i = 1, 2, 3. Note that for a standardized normal η we

have Var η3 = Eη6 = 15 and Cov [η, η3] = Eη4 = 3.

We (again) estimated the (partly wrongly specified) linear factor model

xi = µx,i + λ̃x,iξ̃ + ε̃x,i, i = 1, 2, 3, yj = µy,j + λy,j η̃ + ε̃y,j , j = 1, 2, 3,

and used this linear measurement model to estimate H non-parametrically using LOESS(BFS) based

on the Bartlett (1937) factor scores. Further, we estimated BSpline(NLFS) using the nonlinear factor

scores of Kelava et al. (2017). Figure 25 suggests a linear trend for small values of α, i.e., small nonlinear

effects in the measurement part of the model. For α = 1 a clear nonlinear trend is evident with growth

quicker than linear.

For α 6= 0, the estimates of H are affected by the misspecified non-linear measurement model. For

α = 1, the estimated non-linear trend appears to be a third order polynomial. We conjecture that this

is due to the same type of effect as shown analytically in Example 8 (p. A63).

�

Appendix G. Independence between ξ and ε is incompatible with ordinal data

Suppose a factor model X = Λxξ + εx, where X has ordinal coordinates and ξ continuous. Since

then Λxξ is continuous, we can apply the following Lemma (Lemma 6 below) coordinate by coordinate

to X and see that the coordinates of εx cannot be independent to
∑
j λ

x
k,jξj , which implies that εx is

not independent to ξ.

This conclusion seems intuitively clear: Since X can only take on a finite number of values, but ξ

can take on a continuum of possible values, εx = X − Λxξ has to compensate for the continuity of ξ

whose influence on X is filtered in such a way that the result of Λxξ+ εx only takes on a finite number

of values. This compensation leads to dependence between εx and ξ.
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BSpline(NLFS) LOESS(BFS)
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Figure 25. Predicted trends for a linear structural model using LOESS(BFS)

and BSpline(NLFS) for different values of α representing different degree of

nonlinearity (cubic) in the factor model for ξ.

G.1. A simple illustration. Let us look at this lack of independence in more detail using a proto-

typical factor model for univariate x, ξ, and εx, namely

x = µx + λxξ + εx.

Here, µx, λx are numbers, and ξ is an arbitrary continuous random variable.

As an extreme though practically relevant case, we suppose x is a binary variable. For concreteness,

suppose x fulfills the equations of an ordinal factor model

x = I{ξ + U > τ},

where ξ, U are independent. If the distributions of ξ, U are chosen, we may use them to choose constants

λx, µx so that the identifying restrictions Cov (ξ, εx) = 0 and Eεx = 0 are fulfilled. To see this, notice

that

0 = Cov (ξ, εx) = Cov (ξ, x− λxξ) = Cov (ξ, x)− λx Var ξ

which gives

λx =
Cov (ξ, x)

Var ξ

We then choose µx so that Eεx = 0, which is achieved by µx = Ex− λxEξ.
Now consider the formula for εx, which is

ε = x− µx − λxξ = I{ξ + U > τ} − µx − λxξ.

Simulated values when ξ ∼ N(0, 1), U ∼ N(0, 1), τ = 0 are visualized in Figure 26, showing extreme

negative dependence with a perfect locally linear trend −µx − λxx randomly distorted by adding 1

when ξ + U ≤ 0. The Pearson correlation is zero by design.
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While a general discussion of this topic is outside the scope of the present paper, we warn against

using the above argument as a justification for treating ordinal data as continuous, among other reasons

because the error terms from different ordinal variables will be correlated unless more restrictions

are imposed. This implies that standard identification criteria for confirmatory factor models are

not fulfilled. Therefore, the binary variables do not in fact follow a confirmatory factor model in a

meaningful way, and the statistical properties of the binary variables will therefore not be derivable

from general results on confirmatory factor models.

−1.0

−0.5

0.0

0.5

1.0

−2 0 2

ξ

ε

Figure 26. Scatterplot between ε and ξ in the illustrative binary case, with

trend lines in blue.

G.2. The general lemma.

Lemma 6. Suppose univariate x attains only a countable number of values, and

x = ξ + εx

where ξ is a continuous random variable and εx is a random variable. Then ξ and εx cannot be

independent.

Proof. Let the unique attainable values of x be a1, a2, . . .. Suppose, to reach a contradiction, that ξ

and εx are independent. Then, for k = aj for j ≥ 1, we have by the assumed independence that

P(x = k) = P(ξ + εx = k) = EP(ξ + εx = k|ξ)
(a)
=

∫
R
P(z + εx = k)fξ(z) dz

=

∫
R
P(εx = k − z)fξ(z) dz.

(a) This is the step that follows by independence. It is justified e.g. by Lemma 4.11 in Kallenberg

(2021).
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Therefore,

1 =
∑
j≥1

P(x = aj) =

∫
R

∑
j≥1

P(ε = aj − z)fξ(z) dz

=

∫
R
P(∪j≥1{ε = aj − z})fξ(z) dz.

Since 0 ≤ P(∪j≥1{ε = aj − z}) ≤ 1 and
∫
R fξ(z) dz = 1 we must have P(∪j≥1{ε = aj − z}) = 1

for all z such that fξ(z) > 0 except on a Lebesgue measure zero. To see this, notice that otherwise

1 =
∫
R P(∪j≥1{ε = aj − z})fξ(z) dz <

∫
R fξ(z) dz = 1 which is impossible.

Now the support S = {z : fξ(z) > 0} of fξ(z) must have positive Lebesgue measure, since otherwise

it is impossible that
∫
R fξ(z) dz = 1. We therefore conclude that P(∪mj=1{ε = aj − z}) = 1 for all

z ∈ S \M where M has Lebesgue measure zero. Since the Lebesgue measure of S̃ := S \M equals

that of S which is positive, also S̃ has positive Lebesgue measure. Choose two distinct values z1, z2

in S̃ that are not equal to any aj , j ≥ 1. This is possible because any set with a positive Lebesgue

measure has an uncountable number of outcomes, and the list aj , j ≥ 1 is countable and therefore does

not exhaust the values in S̃ in case there is overlap. Then ∪j≥1{ε = aj−z1} and ∪j≥1{ε = aj−z2} are

disjoint events, and their probability equals their sum, which is 2, which is impossible, and, therefore,

we reach a contradiction which proves that the assumed statement of independence is impossible. �

Appendix H. How H is influenced by Transformations of the Units of

Measurements of f

By the well-known scaling problem in confirmatory factor analysis, the unit of measurement of f is

not identified from the measurement model in eq. (2), and an arbitrary scale is fixed in applications.

Let us therefore consider the effect of going from one scale to another.

We here show that conditional expectations are well-behaved under scale changes. This is surely

established in the literature earlier, and the lack of importance of scale transformations is also mentioned

in Kelava et al. (2017), but we have failed to find a reference for this, nor the exact formulas for how

the changes influence H, and we therefore include derivations on this issue here.

Since conditional expectations are defined coordinate wise, we may without loss of generality assume

that η is univariate.

A scale transformation of one coordinate fi of f is of the form afi + b where a > 0. How does

H(x) = E[η|ξ = x]

change under such transformations? The coordinate fi is either contained in η or ξ. Scale changes in

η are dealt with from the linearity of conditional expectation, so that E[aη+ b|ξ] = aE[η|ξ] + b. Let us

therefore consider a scale transformation in a ξ.

First, let us consider a univariate and continuous ξ. We have

H̆(z) = E[η|aξ + b = z] =

∫
R
yfη|aξ+b(y|z) dy =

∫
R
y
fη,aξ+b(y, z)

faξ+b(z)
dy.

We have

faξ+b(z) =
∂

∂z
P (aξ + b ≤ z) =

∂

∂z
P (ξ ≤ (z − b)/a) = a−1fξ((z − b)/a)
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and similarly

fη,aξ+b(y, z) =
∂2

∂y∂z
P (η ≤ y, aξ + b ≤ z)

=
∂2

∂y∂z
P (η ≤ y, ξ ≤ (z − b)/a)

= a−1fη,ξ(y, (z − b)/a).

Therefore

E[η|aξ + b = z] =

∫
R
y
fη,ξ(y, (z − b)/a)

fξ((z − b)/a)
dy

= E[η|ξ = (z − b)/a)],

since the a−1 cancels. Therefore, H̆(z) = H((z − b)/a).

Similar calculations show that scale transformations of ξ in general makes the function H stay the

same, except a scale and shift transformation in each of its inputs.

Appendix I. The Problem of Empirically Approximating the Distribution of rξ

The theoretical basis for choosing between our suggested approximations for H depend on the

distribution of rξ. One way to approximate the distribution of rξ = ∆xεx based on data would be

to calculate a type of a residual, say ε̂x and then inspect the empirical distribution of r̂ξ = ∆̂ε̂x.

Unfortunately, this appears to be difficult.

Factor residuals have been studied in Bollen and Arminger (1991), who suggest defining residuals in

the way ε̂x = (x− µ̂x)− Λ̂xξ̂ where ξ̂ is an affine factor score, such as the Bartlett factor score. If we use

the Bartlett factor score and set ξ̂ = ∆̂x(x− µ̂x), then r̂ξ = ∆̂xε̂x = ∆̂x(x− µ̂x)− ∆̂xΛ̂x∆̂x(x− µ̂x) =

∆̂x(x−µ̂x)−∆̂x(x−µ̂x) = 0 using that ∆̂x is a left inverse of Λ̂x. Therefore, the resulting approximation

does not work.

In general, for an affine factor score of the form ξ̂ = Âx(x− µ̂x) we get r̂ξ = ∆̂x(I − Λ̂Ax)(x− µ̂x).

Numerical experiments with using the Thurstone matrix Ax = Tx (see Lemma 1 (3)) indicates that the

shape of the distribution of rξ is lost in this transformation likely due to a central limit effect induced by

the summation involved in the matrix multiplication of ∆̂x(I − Λ̂Ax): The empirical distribution of r̂ξ

is much too normal compared to the distribution of rξ, and, therefore, cannot be used for diagnostics.

Numerical experiments show that this also happens when using the non-parametric factor scores of

Kelava et al. (2017). Hence, the empirical approximation of the distribution of rξ is an open problem.

Appendix J. Non-additive noise

Since the methodology considered in this paper is centered around conditional expectation, which

is related to averaging and therefore addition, it is most suitable when the relation between η and ξ is

that of a trend with additive noise. We here provide a very simple illustration of modeling trends with

non-additive noise from a conditional expectation framework. While this is a practically important

topic, the same issue is met in standard regression modeling with observed variables, and this topic is

discussed in text-books on non-linear regression modeling. We consider a full discussion of this issue

outside the scope of the present paper.

Consider a non-linear SEM with a structural model where the error term enters in a multiplicative

(and therefore non-additive) way through

(25) η1 = exp(β0 + β1ξ1 + u1) = eβ0+β1ξ1 · eu1 ,
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where ξ1, u1 are zero mean and independent of each other.

In the non-parametric framework,

η1 = H(ξ1) + ζ1, H(x) = E[η1|ξ1 = x]

which is additive, and the foundational property E[ζ|ξ] = 0 is gained by the tautological definition of

ζ1 := η1 −H(ξ) = η1 − E[η1|ξ] and basic properties of the conditional expectation.

In the example, we use the independence between u1, ξ1 to calculate

E[η1|ξ1] = eβ0+β1ξ1E[eu1 |ξ] = eβ0+β1ξ1E[eu1 ].

Therefore, H(x) = eβ0+β1xE[eu1 ] is still an exponential trend, though with a different level than the

description in eq. (25). If e.g. u1 ∼ N(0, 1), we have Eeu1 = e1/2. Then H(x) = eβ0+β1xe1/2 =

e0.5+β0+β1x.

Of course, ζ1 will not be u1. The error term of eq. (25) u1 is independent to ξ1. And the independence

between ξ and ζ1 is not expected, and not assumed in the paper. This might be problematic for

parametric estimation methods which assumes such an independence.

We here have

ζ1 = η1 − E[η1|ξ1] = eβ0+β1ξ1 (eu1 − E[eu1 ])

While known from general theory, we confirm that

E[ζ1|ξ] = eβ0+β1ξ1E[eu1 − E[eu1 ]|ξ1] = E[ζ1|ξ1] = eβ0+β1ξ1E[eu1 − E[eu1 ]] = 0

where the next to last equality follows from the independence between eu1 − E[eu1 ] and ξ1, as implied

by the independence between ξ1 and u1.

From general results we also get that ζ1 is uncorrelated with ξ and has zero mean. But ζ1 is not

independent to ξ, and in fact ζ1 may be highly dependent to ξ, as is the case in the present example.

Since E[ζ1|ξ] = 0, we have that

Var [ζ1|ξ] = E[ζ2
1 |ξ] = e2β0+2β1ξ1E

[
(eu1 − E[eu1 ])2|ξ

]
= e2β0+2β1ξ1E

[
(eu1 − E[eu1 ])2] = e2β0+2β1ξ1 Var eu1 .

As far as we can see, this is problematic for the presently available NLSEM estimators. The prac-

titioner could therefore use factor score plots and trend estimates to detect signs of such dependence,

such as conditional heteroskedasticity as seen in the above example, if a parametric model is to be

fitted to a model using traditional methods. In the simple case of eq. (25), taking a log transform of

η1 would be a possibility, though we do not study the statistical implications of this. In econometrics,

a large literature presents solutions to this problem (see e.g. Hayashi, 2011). It seems plausible that

using these solutions using factor scores, can aid the problem, possibly with some modification. We

consider a full analysis of this outside the scope of the present paper.

In the present example, a preferred method would be to identify that a non-additive noise model

would be more appropriate. The estimation ofH as a trend estimate may be inappropriate to summarize

the trend in the factor sore in such cases, but the factor scores themselves might still be of use in a

more traditional manner to motivate non-linear models with additive noise. Also this is considered

outside the scope of the present paper.
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Appendix K. A Review of Conditional Expectations, and Their Rules

In this section, we provide a short review of conditional expectation and their most important

properties, properties used especially in Appendix B, F, G, and H.

Suppose given a probability space (Ω,F , P ). We consider mappings from Ω to Rd, and equip Rd

with the Borel σ-field B. Recall that mappings Z : Ω 7→ Rd are called random vectors (or random

variables if d = 1) if Z−1(U) := {ω ∈ Ω : Z(ω) ∈ U} ∈ F for any U ∈ B. Also, a random variable Z is

said to be measurable with respect to a σ-field H ⊆ F if Z−1(U) ∈ H for any U ∈ B. Here, measurable

can be understood in terms of having information about the events in ω ∈ Ω that result in specific

outcomes of Z(ω). Therefore, if these events are known, the values of Z are known, which is why all

statements are made about subsets of Ω.

Modern development of conditional expectations are based on conditioning with respect to a σ-

field H. Let X be a random variable. Suppose X is integrable, which means that E|X| < ∞. The

conditional expectation E[X|H] of X given H is a random variable that fulfills the following two

properties (Billingsley, 1995, Section 34).

(1) E[X|H] is H-measurable and integrable.

(2) For all G ∈ H, we have
∫
G
E[X|H] dP =

∫
G
X dP .

That such a variables always exists is proved in Billingsley (1995, Section 34). While the two require-

ments placed on E[X|H] do not uniquely construct it, all random variables that fulfill these properties

are with probability one equal (Billingsley, 1995). We will follow standard convention and talk about

E[X|H] in the singular, despite this lack of uniqueness.

The σ-field generated by Z is σ(Z), the smallest σ-field for which Z is measurable. It is given

concretely by σ(Z) = {Z−1(B) : B ∈ B} = {{ω ∈ Ω : Z(ω) ∈ B} : B ∈ B} (Billingsley, 1995, Section

33, p. 433).

A Borel function ϕ is a function such that if B ∈ B, we have that ϕ−1(B) = {z : ϕ(z) ∈ B} ∈ B.

Notice that if Y = ϕ(Z) is a Borel function of Z, then for any U ∈ σ(Z) we have that

Y −1(U) = {ω ∈ Ω : Y (ω) ∈ U} = {ω ∈ Ω : ϕ(Z(ω)) ∈ U} = {ω ∈ Ω : Z(ω) ∈ ϕ−1(U)}

Since ϕ is a Borel function, ϕ−1(U) ∈ B. Since σ(Z) consists of all sets of the form {ω ∈ Ω : Z(ω) ∈ B}
for B ∈ B, we get that Y −1(U) ∈ σ(Z), and therefore Y is σ(Z) measurable.

Also the converse holds:

Theorem 1 (Remark 5, p. 175 in Shiryaev (2016)). Let Z be a random vector. If a random

variable X is σ(Z)-measurable, there exists a Borel function ϕ such that X = ϕ(Z).

By the definition of E[X|σ(Z)], it is σ(Z) measurable. By Theorem 1, that means that E[X|σ(Z)] is

a function of Z. We usually write E[X|Z] instead of E[X|σ(Z)]. That is, there is a function ϕ so that

ϕ(Z) = E[X|Z].

Now for Z = (Y ′1 , Y
′
2 )′ where Y1, Y2 are random vectors, we sometimes write E[X|Y1, Y2], which means

E[X|Z]. As in the case of expectations of random vectors, if X is a random vector X = (X1, . . . , Xn)

then we define

E[X|Z] = (E[X1|Z], . . . ,E[Xn|Z])′.

Since E[X|Z] is a function of Z, there is a function ϕ such that E[X|Z] = ϕ(Z). This function is

sometimes denoted by ϕ(z) = E[X|Z = z], although it is not the case that the conditional expectation
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is the expectation with respect to the probability measure conditioned on the event Z = z (though in

the discrete case the function does correspond to this when P (Z = z) > 0).

While the above description is very abstract, the function ϕ fulfills a property which connects

conditional expectations with non-parametric regression: For random a random vector X and a random

variable Y , let ϕ(x) = E[Y |X = x]. Then ϕ minimizes the squared distance to Y for given x:

E
[
(Y − ϕ(x))2] ,

i.e., ϕ(x) is the least squares estimate for Y at X = x (see e.g. Hayashi, 2011, Proposition 2.7).

Using a linear function for ϕ results in the definition of the linear regression least squares estimator,

while modeling ϕ non-parametrically highlights the connection of the conditional expectation to non-

parametric regression analysis: The non-parametric regression estimate approximates the conditional

expectation.

We now review the most important properties of conditional expectations that are used in this

paper.

Theorem 2 (Theorem 34.2 in Billingsley (1995)). Suppose X,Y are integrable (i.e., E|X| <
∞,E|Y | <∞).

(1) If X = a with probability 1, then E[X|Z] = a.

(2) For constants a, b, we have E[aX + bY |Z] = aE[X|Z] + bE[Y |Z].

(3) If X ≤ Y with probability 1, then E[X|Z] ≤ E[Y |Z].

(4) |E[X|Z]| ≤ E[|X||Z].

Theorem 3 (Theorem 34.3 in Billingsley (1995)). If X is measurable with regard to a σ-field H,

and if Y and XY are integrable, then

E[XY |H] = XE[Y |H], with probability 1.

From this combined with Theorem 1, it follows that E[Z|Z] = Z and E[ϕ(Z)|Z] = ϕ(Z), for an

integrable function ϕ.

Theorem 4 (Law of Iterated Expectations, Theorem 34.4 in Billingsley (1995)). If X is integrable

and the σ-field G1 and G2 satisfy G1 ⊆ G2 then

E [E[X|G2]|G1] = E [X|G1] .

This can be used e.g. when G1 = σ(Z1) ⊆ σ(Z1, Z2) = G2 (see the upcoming Section K.1), in which

case we have E[E[X|Z1, Z2]|Z1] = E[X|Z1].

Theorem 5 (Tower Property, see the discussion following Theorem 34.4 in Billingsley (1995)). If

X is integrable then

E [E[X|Z]] = E [X] .

From e.g. Problem 34.2 in (Billingsley, 1995, p. 455), we have that when X,Y are continuous

random variables with a joint density f and Y is integrable, then

(26) E[Y |X = x] =

∫∞
−∞ yf(x, y) dy∫∞
−∞ f(x, y) dy

.
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From e.g. Problem 34.3 in (Billingsley, 1995, p. 455) we have that if X,Y are independent

(27) E[Y |X] = E[Y ].

Lemma 7. For a random variables X and a random vector Y we have that

E[X|X,Y ] = X.

Proof of Lemma 7. Since X = ϕ(X,Y ) where ϕ(x, y) = x is a Borel function, we have that X is

σ(X,Y ) measurable (see the comment just before Theorem 1). Therefore, from Theorem 3, we have

E[X|X,Y ] = XE[1|X,Y ] = X. �

Lemma 7 implies e.g. that E[X|X,U, V ] = X for Y = (U, V ).

Lemma 8. (1) For two bivariately normal variables A,B, we have that

E[A|B] = µA + Cov (A,B) Var (B)−1(B − µB)

and

(28) Var [A|B] = Var (A)− Cov (A,B)2 Var (B)−1

(2) For a jointly normal random vector (Y,X) with mean vector and covariance matrix

µ =

(
µX

µY

)
, Σ =

(
KX,X KX,Y

KY,X KY,Y

)
we have that

Y |X ∼ N(µY |X ,KY |X)

where

µY |X = µY +KYXK
−1
XX(X − µX)

and

KY |X = KY,Y −KY,XK
−1
X,XKX,Y .

Proof. See (Mardia et al., 1979, Theorem 3.2.4). �

We conclude this section by showing the property of ξ and ζ mentioned in the introduction.

Lemma 9. If E[ζ|ξ] = 0 then Eζ = 0 and Cov (ϕ(ξ), ζ) = 0 for any ϕ such that ϕ(ξ) is integrable.

Proof. We have Eζ = EE[ζ|ξ] = E0 = 0.

Therefore, Cov (ϕ(ξ), ζ) = E[ϕ(ξ)ζ]− [Eϕ(ξ)][Eζ] = E
[
E[ϕ(ξ)ζ|ξ]

]
= E

[
ϕ(ξ)E[ζ|ξ]

]
= 0. �

K.1. Some stability results of σ-fields generated by random vectors. We here gather two

results we use in the paper, for which we did not find a reference. Especially the first property is

well-known.

Let B(Rd) be the Borel σ-field for the d-dimensional Euclidean space. Recall that Chapter 2.2.3 (p.

176) in Shiryaev (2016) that for two σ-fields F1,F2, the product σ-field F = F1 ⊗ F2 is the smallest

σ-field containing all sets of the form B1 ×B2 where B1 ∈ F1, B2 ∈ F2.

It is the case that

B(Rd1)⊗ B(Rd2) = B(Rd1+d2),

as shown in e.g. Chapter 2.2.3 (p. 176) in Shiryaev (2016).
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Lemma 10. For two d1, d2 dimensional random vectors Z1, Z2, we have σ(Z1) ⊆ σ(Z1, Z2).

Proof. As mentioned just before Theorem 1, we have

σ(Z1) = {Z−1
1 (B1) : B1 ∈ B(Rd1)}

= {{ω ∈ Ω : Z1(ω) ∈ B1} : B1 ∈ B(Rd1)}.

We also have

σ(Z1, Z2) = {(Z1, Z2)−1(B) : B ∈ B(Rd1+d2)}

= {{ω ∈ Ω : (Z1(ω), Z2(ω)) ∈ B} : B ∈ B(Rd1+d2)}

Since B(Rd1+d2) = B(Rd1) ⊗ B(Rd2), we have that for all B1 ∈ B(Rd1), B2 ∈ B(Rd2) it is the case

that B1 ×B2 ∈ B(Rd1+d2).

Using this and that B(Rd2) is a σ-field so that Rd2 ∈ B(Rd2), shows that for any B1 ∈ B(Rd1) we

have that B1 × Rd2 ∈ B(Rd1+d2).

Therefore,

σ(Z1) = {{ω ∈ Ω : Z1(ω) ∈ B1} : B1 ∈ B(Rd1)}

= {{ω ∈ Ω : Z1(ω) ∈ B1, Z2(ω) ∈ Rd2} : B1 ∈ B(Rd1)}

= {{ω ∈ Ω : Z1(ω) ∈ B1, Z2(ω) ∈ Rd2} : B1 × Rd2 ∈ B(Rd1+d2)}

⊆ {{ω ∈ Ω : (Z1(ω), Z2(ω)) ∈ B} : B ∈ B(Rd1+d2)}

= σ(Z1, Z2).

�

For the next lemma, we recall Jacod and Protter (2004, Theorem 8.1), stated below. Before we

state it we recall the following more general general concept from measure theory.

Let (E, E) and (F,F) be two measurable spaces. A function X : E 7→ F is measurable relative to E
and F if X−1(Ξ) ∈ E for all Ξ ∈ F .

Theorem 6 (Theorem 8.1 in Jacod and Protter (2004)). Let C be a class of subsets of Ω such

that σ(C) = F . Then X : E 7→ F is measurable (relative to E and F) if and only if X−1(C) ∈ E for all

C ∈ C.

Lemma 11. Let X be a d1 dimensional random variable and ϕ : Rd1 7→ Rd2 a Borel function.

Then σ(X) = σ(X,ϕ(X)).

Proof of Lemma 11. Since ϕ is a Borel function, ϕ(X) is a random variable. We first show σ(X) ⊆
σ(X,ϕ(X)) and then that σ(X,ϕ(X)) ⊆ σ(X), which implies that σ(X) = σ(X,ϕ(X)).

First, Lemma 10 implies that σ(X) ⊆ σ(X,ϕ(X)).

Second, we show that σ(X,ϕ(X)) ⊆ σ(X). We do this by showing that (X,ϕ(X)) is σ(X) mea-

surable. Since σ(X,ϕ(X)) is the smallest σ-field such that (X,ϕ(X)) is measurable with respect to it,

and σ(X) is a σ-field.

To do this, we use Theorem 6. We have that (X,ϕ(X)) : Ω → Rd1+d2 , where Rd1+d2 is equipped

with the Borel σ-field B(Rd1+d2) = B(Rd1)⊗B(Rd2) which as mentioned at the start of this sub-section

is generated by the product sets of the form B1 × B2 where B1 ∈ B(Rd1), B2 ∈ B(Rd2). Let C =
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{B1 ×B2 : B1 ∈ B(Rd1), B2 ∈ B(Rd2)}. By Theorem 6, we need to show that (X,ϕ(X))−1(C) ∈ σ(X)

for all C ∈ C. Let C ∈ C so that C = B1 ×B2. We have

(X,ϕ(X))−1(C) = {ω ∈ Ω : (X(ω), ϕ(X(ω))) ∈ B1 ×B2}

= {ω ∈ Ω : X(ω) ∈ B1, ϕ(X(ω)) ∈ B2}

= {ω ∈ Ω : X(ω) ∈ B1} ∩ {ω ∈ Ω : ϕ(X(ω)) ∈ B2}

= {ω ∈ Ω : X(ω) ∈ B1} ∩ {ω ∈ Ω : X(ω) ∈ ϕ−1(B2)}

For the last step, recall that ϕ−1(B2) = {z : ϕ(z) ∈ B2}. Therefore, ϕ(X(ω)) ∈ B2 is equivalent to

X(ω) ∈ ϕ−1(B2).

Since ϕ is a Borel function, ϕ−1(B2) ∈ B(Rd1). Therefore, the sets that are intersected are both of

the form {ω ∈ Ω : X(ω) ∈ B} = X−1(B) for a set B ∈ B(Rd1), all of which are in

σ(X) = {X−1(B) : B ∈ B(Rd1)}.

Since σ-fields are stable under finite intersections, (X,ϕ(X))−1(C) ∈ σ(X). �

Appendix L. Miscellanea

Let M be a square and symmetric matrix. It is a positive semidefinite matrix if its quadratic form

is non-negative. If M is positive definite, it is also positive semidefinite.

Lemma 12. For a m × m matrix M with elements (mi,j)ij that is symmetric and positive

semidefinite, we have that max1≤i,j≤m |mi,j | ≤ λmax(M).

Proof. Since M is a square symmetric positive semidefinite matrix, Theorem 4.2.8 in Golub and

Van Loan (2013) shows that

max
1≤i,j≤m

|mi,j | = max
1≤i≤m

mi,i.

Recall that λmax(M) = max‖x‖2=1 x
′Mx where ‖x‖2 =

√∑m
i=1 x

2
i . Choose x = ej be the j’th unit vec-

tor ej = (0, 0, . . . , 0, 1, 0, . . . , 0)′, which is such that ‖x‖2 =
√∑m

i=1 x
2
i = 1 and x′Mx = mi,i. Therefore,

for each 1 ≤ i ≤ m we have mi,i ≤ max‖x‖2=1 x
′Mx = λmax(M), and therefore max1≤i,j≤m |mi,j | =

max1≤i≤mmi,i ≤ λmax(M). �

The following lemma is well known in the literature, and is used e.g. in Rosseel and Loh (2022).

While the result is given in Johnson and Wichern (2002, Exercise 9.6, p. 531) in the case when Φ

is the identity matrix, and can therefore be considered standard, we have not found a reference with

explicit statement and proof of the full result, and we for completeness include a proof for it using our

Assumption 1.

Lemma 13. Suppose given Assumption 1. Then the Thurstone matrix T := ΦΛ′Σ−1 used to

derive the regression factor score is equivalent to T2 :=
(
Φ−1 + Λ′Ψ−1Λ

)−1
Λ′Ψ−1.

Proof of Lemma 13. We begin with T and notice that there are several alternative notations for the

population covariance matrix Σz := ΛΦΛ′ + Ψ. Let L := Λ(Φ
1
2 )′, where Φ

1
2 is part of the Cholesky

decomposition (see, e.g., Horn & Johnson, 2013, p. 441, Corollary 7.2.9) of Φ = (Φ
1
2 )′Φ

1
2 . Here, Φ

1
2

is an upper triangular matrix. Further, we note that for the Cholesky decomposition the following

identity holds: Φ−1 =
(

(Φ
1
2 )′Φ

1
2

)−1

= Φ−
1
2 (Φ−

1
2 )′, where Φ−

1
2 is the inverse of Φ

1
2 . For the proof,
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we make use of three matrix properties which are sequentially proven. These are based on exercises in

(Johnson & Wichern, 2002, see Exercise 9.6, p. 531):

(a) (Idf + L′Ψ−1L)−1L′Ψ−1L = Idf − (Idf + L′Ψ−1L)−1

(b) (LL′ + Ψ)
−1

= Ψ−1 −Ψ−1L
(
Idf + L′Ψ−1L

)−1
L′Ψ−1

(c) L′ (LL′ + Ψ)
−1

=
(
Idf + L′Ψ−1L

)−1
L′Ψ−1

Proof of (a). We proof (a) by premultiplying both sides of (a) by Idf + L′Ψ−1L:[
Idf + L′Ψ−1L

]
(Idf + L′Ψ−1L)−1L′Ψ−1L =

[
Idf + L′Ψ−1L

] (
Idf − (Idf + L′Ψ−1L)−1)

⇐⇒ L′Ψ−1L =
[
Idf + L′Ψ−1L

]
− Idf

⇐⇒ L′Ψ−1L = L′Ψ−1L.

�

Proof of (b). We provide proof for (b) by postmultiplying both sides of (b) by LL′ + Ψ:(
LL′ + Ψ

)−1 [
LL′ + Ψ

]
=
(

Ψ−1 −Ψ−1L
(
Idf + L′Ψ−1L

)−1
L′Ψ−1

) [
LL′ + Ψ

]
⇐⇒ Idz = Ψ−1 [LL′ + Ψ

]
−Ψ−1L

(
Idf + L′Ψ−1L

)−1
L′Ψ−1 [LL′ + Ψ

]
⇐⇒ Idz = Ψ−1LL′ + Idz −Ψ−1L

(
Idf + L′Ψ−1L

)−1
L′Ψ−1LL′−

Ψ−1L
(
Idf + L′Ψ−1L

)−1
L′Ψ−1Ψ

(a)⇐⇒ Idz = Ψ−1LL′ + Idz −Ψ−1L
[
Idf − (Idf + L′Ψ−1L)−1]L′−

Ψ−1L
(
Idf + L′Ψ−1L

)−1
L′

⇐⇒ Idz = Ψ−1LL′ + Idz −Ψ−1LL′ + Ψ−1L(Idf + L′Ψ−1L)−1L′−

Ψ−1L
(
Idf + L′Ψ−1L

)−1
L′

⇐⇒ Idz = Idz .

�

Proof of (c). We provide proof for (c) and begin by postmultiplying (b) with L:(
LL′ + Ψ

)−1
L =

(
Ψ−1 −Ψ−1L

(
Idf + L′Ψ−1L

)−1
L′Ψ−1

)
L

⇐⇒
(
LL′ + Ψ

)−1
L = Ψ−1L−Ψ−1L

(
Idf + L′Ψ−1L

)−1
L′Ψ−1L

(a)⇐⇒
(
LL′ + Ψ

)−1
L = Ψ−1L−Ψ−1L

[
Idf − (Idf + L′Ψ−1L)−1]

⇐⇒
(
LL′ + Ψ

)−1
L = Ψ−1L−Ψ−1L+ Ψ−1L(Idf + L′Ψ−1L)−1

⇐⇒
(
LL′ + Ψ

)−1
L = Ψ−1L(Idf + L′Ψ−1L)−1.

Now, we transpose both sides and use that Ψ−1, (LL′ + Ψ)
−1

and (Idf + L′Ψ−1L)−1 are symmetric

and we have

L′
(
LL′ + Ψ

)−1
=
(
Idf + L′Ψ−1L

)−1
L′Ψ−1.

�
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Now, resubstitute L := Λ(Φ
1
2 )′ in L′ (LL′ + Ψ)

−1
=
(
Idf + L′Ψ−1L

)−1
L′Ψ−1 and we have:

L′
(
LL′ + Ψ

)−1
=
(
Idf + L′Ψ−1L

)−1
L′Ψ−1

⇐⇒ (Λ(Φ
1
2 )′)′

(
Λ(Φ

1
2 )′(Λ(Φ

1
2 )′)′ + Ψ

)−1

=
(
Idf + (Λ(Φ

1
2 )′)′Ψ−1Λ(Φ

1
2 )′
)−1

(Λ(Φ
1
2 )′)′Ψ−1

⇐⇒ Φ
1
2 Λ′

(
Λ(Φ

1
2 )′Φ

1
2 Λ′ + Ψ

)−1

=
(
Idf + Φ

1
2 Λ′Ψ−1Λ(Φ

1
2 )′
)−1

Φ
1
2 Λ′Ψ−1

Φ=(Φ
1
2 )′Φ

1
2

⇐⇒ Φ
1
2 Λ′

(
ΛΦΛ′ + Ψ

)−1
=
(

Φ
1
2

[
Φ−

1
2 Idf (Φ−

1
2 )′ + Λ′Ψ−1Λ

]
(Φ

1
2 )′
)−1

Φ
1
2 Λ′Ψ−1

Φ−1=Φ
− 1

2 (Φ
− 1

2 )′⇐⇒ Φ
1
2 Λ′

(
ΛΦΛ′ + Ψ

)−1
= (Φ−

1
2 )′
(
Φ−1 + Λ′Ψ−1Λ

)−1
Φ−

1
2 Φ

1
2 Λ′Ψ−1

⇐⇒ Φ
1
2 Λ′

(
ΛΦΛ′ + Ψ

)−1
= (Φ−

1
2 )′
(
Φ−1 + Λ′Ψ−1Λ

)−1
Λ′Ψ−1.

Premultiplying both sides with (Φ
1
2 )′ results in

(Φ
1
2 )′Φ

1
2 Λ′

(
ΛΦΛ′ + Ψ

)−1
= (Φ

1
2 )′(Φ−

1
2 )′
(
Φ−1 + Λ′Ψ−1Λ

)−1
Λ′Ψ−1

⇐⇒ ΦΛ′
(
ΛΦΛ′ + Ψ

)−1
=
(
Φ−1 + Λ′Ψ−1Λ

)−1
Λ′Ψ−1

⇐⇒ ΦΛ′Σ−1
z =

(
Φ−1 + Λ′Ψ−1Λ

)−1
Λ′Ψ−1

⇐⇒ T = T2.

�
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