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Summary: This paper develops a new instrumental variables estimator for spatial, dynamic
panels with interactive effects under large N and T asymptotics. For this class of models, most
approaches available in the literature are based on quasi-maximum likelihood estimation. The
approach put forward here is appealing from both a theoretical and a practical point of view
for a number of reasons. First, it is linear in the parameters of interest and computationally
inexpensive. Second, the IV estimator is free from asymptotic bias. Third, the approach can
accommodate endogenous regressors as long as external instruments are available. The IV
estimator is consistent and asymptotically normal as N, T → ∞ , such that N/T → c , where
0 < c < ∞ . We study the determinants of risk attitude of banking institutions. The results
show that the capital regulation introduced by the Dodd–Frank Act has succeeded in influencing
banks’ behaviour.

Keywords: Bank risk behaviour, capital regulation, common factors, instrumental variables,
large N and T asymptotics, panel data, social interactions, state dependence.

JEL codes: C23, C26, C38, C51, G21.

1. INTRODUCTION

Economic behaviour is intrinsically dynamic; that is, it is influenced by past own behaviour.
This phenomenon, commonly described as ‘state dependence’, is due to habit formation, costs of
adjustment and economic slack, among other factors.1

More recently, it has been emphatically pointed out that an economic agent’s own behaviour
is also influenced by the behaviour of other agents, typically their peers. This is due to network
linkages, social interactions, and spillover effects—see, e.g., the pioneering work of Case (1991)
and Manski (1993). At the same time, agents inhabit a common economic environment and so
their behaviour is subject to aggregate (global) shocks, which may be due to shifts in technology

1 See, e.g., the seminar papers by Balestra and Nerlove (1966), Anderson and Hsiao (1982) and Arellano and Bond
(1991). A recent overview of this literature is provided by Bun and Sarafidis (2015).
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and productivity, and changes in preferences, to mention only a few (Sarafidis and Wansbeek,
2021).

In panel data analysis, state dependence is characterised using dynamic models; peer effects
can be modelled using spatial econometric techniques—see, e.g., Kelejian and Piras (2017) and
Jing et al. (2018)—and aggregate shocks are typically captured by common factors, also known
as ‘interactive effects’.

The present paper develops a new instrumental variables (IV) estimator for spatial, dynamic
panel data models with interactive effects under large N and T asymptotics, where N denotes
the number of cross-sectional units and T denotes the number of time series observations. For
this class of models, most approaches available in the literature are based on quasi-maximum
likelihood estimation (QMLE)—see Shi and Lee (2017) and Bai and Li (2021).2 The approach
put forward in this paper is appealing both from a theoretical and from a practical point of view
for a number of reasons.

First, the proposed IV estimator is linear in the parameters of interest and it is computationally
inexpensive. In contrast, QML estimators are nonlinear and require estimation of the Jacobian
matrix of the likelihood function, which may be subject to a high level of numerical complexity in
spatial models with N large; see, e.g., Lee and Yu (2015, sec. 12.3.2). To provide some indication
of the likely computational gains of our method, in the Monte Carlo section of this paper we found
that the total length of time taken to perform 2,000 replications of the model when N = T = 200,
was roughly 4.5 minutes for IV and 4.5 hours for QMLE. Hence, for every minute of running
time using IV, it takes about an hour for QMLE.3

Second, the proposed IV approach is free from asymptotic bias. In contrast, existing QML
estimators suffer from incidental parameter bias, depending on the sample size and the magni-
tude of unknown parameters of the data generating process (DGP). Unfortunately, approximate
procedures aiming to recentre the limiting distribution of these estimators using first-order bias
correction can fail to fully remove the bias in finite samples. This can lead to severe size distor-
tions as confirmed in our Monte Carlo study. Moreover, bias expressions for QMLE are based
on the true number of factors which is unknown in practice. Thus, if the number of factors is
overestimated, bias correction becomes nontrivial.

Third, the proposed estimator retains the attractive feature of method of moments estimation
in that it can potentially accommodate endogenous regressors, so long as external exogenous
instruments are available.4

In a recent contribution, Chen et al. (2022) put forward an IV estimator for spatial static
panels with heterogeneous coefficients and unobserved common factors under large N and T

asymptotics. The common factors are controlled using a common correlated effects (CCE) type
approach, as in Pesaran (2006).5 In contrast, in this paper we consider estimation of models
with homogeneous slopes and the common factors are estimated using the principal component
method, following Bai (2009) and Norkute et al. (2021), among many others. Furthermore,
we consider a spatial panel data model with a time lag, as well as a spatial-time lag. These
specifications can capture much more complex cross-sectional and dynamic interdependencies

2 The only exception that we are aware of is a recent paper by Chen et al. (2022), discussed further below.
3 This ratio appears to decrease (increase) roughly exponentially with smaller (larger) values of N .
4 Even in cases where such instruments are not easy to find, our approach provides a framework for testing for

endogeneity, based on the overidentifying restrictions test statistic. In contrast, the exogeneity restriction is difficult to
verify outside the IV framework and so it is typically taken for granted.

5 As the factors are approximated using cross-sectional averages, this method crucially relies upon the rank condition,
as it is the case with all CCE-type estimators.
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126 G. Cui et al.

than Chen et al. (2022). Due to these two features, the theoretical analysis differs substantially
from that of Chen et al. (2022). On the contrary, the analysis of spatial dynamic panels with
heterogeneous slopes is not a trivial extension of this paper and will not be considered.

There is substantial literature on dynamic panels under large N and T asymptotics—e.g., Hahn
and Kuersteiner (2002) and Alvarez and Arellano (2003), among others. More recently, several
new methods have been developed to control for unobserved common shocks and strong cross-
sectional dependence—see, e.g., Chudik and Pesaran (2015), Everaert and De Groote (2016),
Moon and Weidner (2017), Juodis et al. (2021), Norkute et al. (2021), and Juodis and Sarafidis
(2022). However, none of these papers considers spatial interactions and endogenous network
effects.

There is also substantial literature on spatial panel data analysis and social interactions, which,
however, mostly ignores the potential presence of common unobserved shocks. Some notable
contributions include Yu et al. (2008), Korniotis (2010), Debarsy et al. (2012), and Lee and Yu
(2014), among others.

The present paper sits on the intersection of the above two strands of literature. Despite the
fact that such an intersection is highly relevant for the analysis of economic behaviour, the field
is fairly new in the econometrics literature and, as such, it is sparse.

We put forward a two-step IV estimation approach that extends the methodology of Norkute
et al. (2021) and Cui et al. (2022) to the case of panel data models with spatial interactions,
in addition to state dependence and interactive effects. Unlike Norkute et al. (2021), where the
moment conditions are independent and identically distributed (i.i.d.) conditional on the factors,
in the present case the moment conditions are weakly correlated across i even conditional on the
factors. Therefore, a central limit theorem for martingale differences is required, as in Kelejian and
Prucha (2001). Our two-step procedure can be outlined as follows: in the first step, the common
factors in the exogenous covariates are projected out using principal components analysis, as in
Bai (2003). Next, the slope parameters are estimated using standard IV regression, which makes
use of instruments constructed from defactored regressors. In the second step, the entire model is
defactored based on factors extracted from the first step residuals. Subsequently, an IV regression
is implemented again using the same instruments.

The proposed IV estimator is consistent and asymptotically normally distributed as N, T → ∞
such that N/T → c, where 0 < c < ∞. Moreover, the estimator does not have asymptotic bias
in either cross-sectional or time-series dimension. The main intuition of this result lies in that we
extract factor estimates from two sets of information that are mutually independent, namely the
exogenous covariates and the regression residuals. Therefore, there is no correlation between the
regressors and the estimation error of the interactive fixed effects obtained in the second step.
In addition, the proposed estimator is not subject to ‘Nickell bias’ that arises with QML-type
estimators in dynamic panel data models.

We study the determinants of risk attitude of banking institutions, with emphasis on the
impact of increased international capital regulation. The results bear important policy impli-
cations, and provide evidence that the more risk-sensitive capital regulation introduced by the
Dodd–Frank Act in late 2010 has succeeded in influencing banks’ behaviour in a substantial
manner.

Throughout, we denote the largest and the smallest eigenvalues of the N × N matrix A = (aij)
by μmax(A) and μmin(A), respectively, its trace by tr(A) = ∑N

i=1 aii, its column sum norm by
‖A‖1 = max1≤j≤N

∑N
i=1 |aij|, its Frobenius norm by ‖A‖ = √

tr(A′A), and its row sum norm
by ‖A‖∞ = max1≤i≤N

∑N
j=1 |aij|. The projection matrix on A is PA = A(A′A)−1A′ and MA =

C© The Author(s) 2023.
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I − PA. C is a generic positive constant large enough, δ2
NT = min{N, T }. We use N, T → ∞ to

denote that N and T pass to infinity jointly.

2. MODEL AND TWO-STEP ESTIMATION APPROACH

In our baseline setup, we consider the following spatial dynamic panel data model with exogenous
covariates:6

yit = ψ

N∑
j=1

wijyjt + ρyit−1 + x′
itβ + ϕ0′

i h0
t + εit, (2.1)

i = 1, 2, . . . , N , t = 1, 2, . . . , T , where yit denotes the observation on the dependent variable for
individual unit i at time period t , and xit is a k × 1 vector of regressors with slope coefficients
β. The spatial variable

∑N
j=1 wijyjt picks up endogenous network effects with corresponding

parameter ψ . wij denotes the (i, j )th element of the N × N spatial weights matrix WN , which is
assumed to be known. The lagged dependent variable captures dynamic or temporal effects. The
error term of the model is composite: h0

t and ϕ0
i denote ry × 1 vectors of latent factors and factor

loadings, respectively, and εit is an idiosyncratic error.
To ensure that the covariates are endogenous to the factor component, we assume that

xit = �0′
i f0

t + vit, (2.2)

where f0
t denotes an rx × 1 vector of latent factors, �0

i denotes an rx × k factor loading matrix,
while vit is an idiosyncratic disturbance of dimension k × 1. Note that h0

t and f0
t can be identical,

share some common factors, or they can be completely different, but may be mutually correlated.
Similarly, ϕ0

i and �0
i can be mutually correlated.7 While the linear factor structure poses certain

restrictions on the DGP, as argued by Freeman and Weidner (2021), it still provides a good
approximation to more complex models in the sense that one can let the number of estimated
factors grow asymptotically without consequences.

In the context of spatial panels, the above structure of the covariates has also been studied by
Bai and Li (2013). The main difference between these two specifications is that the model in (2.1)
allows for dynamics through the lagged dependent variable. Moreover, the covariates in (2.2) are
not necessarily driven by the same factors as those entering into the error term of y. This has an
appealing generality in that the common shocks that hit y and X may not be identical in practice.

Stacking the T observations for each i yields

yi = ψYwi + ρyi,−1 + Xiβ + H0ϕ0
i + εi ;

Xi = F0�0
i + Vi ,

(2.3)

where yi = (yi1, . . . , yit)′, yi,−1 = (yi0, . . . , yi,T −1)′, and εi = (εi1, · · · , εit)′ denote T × 1 vec-
tors, Xi = (xi1, · · · , xit)′ and Vi = (vi1, . . . , vit)′ are matrices of order T × k, while H0 =
(h0

1, · · · , h0
T )′ and F0 = (f0

1 , · · · , f0
T )′ are of dimensions T × ry and T × rx , respectively.

6 An extension of this model that allows for a spatial-time lag is analysed in Section 3.3. Exogenous network effects,
e.g., through an additional term

∑N
j=1 wijx′

jtδ, and lagged values of yit−1 can be accommodated in a straightforward
manner without affecting the main derivations of the paper.

7 Without loss of generality, ry and rx are treated as known. In practice, the number of factors can be estimated
consistently using, e.g., the information criteria of Bai and Ng (2002), or the eigenvalue ratio test of Ahn and Horenstein
(2013). The results of the Monte Carlo section indicate that these methods provide quite accurate estimates in our design.
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128 G. Cui et al.

Finally, Y = (y1, · · · , yT )′ denotes a T × N , matrix and the N × 1 vector wi represents the
ith row of WN .

The model in (2.3) can be written more succinctly as follows:

yi = Ciθ + ui ,

where Ci = (Ywi , yi,−1, Xi), θ = (
ψ, ρ,β ′)′

and ui = H0ϕ0
i + εi .

Let Xi,−τ ≡ Lτ Xi , where Lτ denotes the time-series lag operator of order τ . We make use
of the convention Xi,−0 = Xi . Our estimation approach involves two steps. In the first step,
the common factors in Xi,−τ are asymptotically eliminated using principal component analysis,
as advanced by Bai (2003). Next, instruments are constructed using defactored covariates. The
resulting first-step IV estimator of θ is consistent. In the second step, the entire model is defactored
based on estimated factors extracted from the first step IV residuals. Subsequently, a second IV
regression is implemented, using the same instruments as in step one. That is, an IV regression is
implemented in both of two stages.

In particular, define F̂−τ as
√

T times the eigenvectors corresponding to the rx largest eigen-
values of the T × T matrices (NT )−1 ∑N

i=1 Xi,−τ X′
i,−τ for τ = 0, 1.

The matrix of instruments is formulated as follows:

Ẑi =
⎛⎝ N∑

j=1

wijMF̂Xj , MF̂−1
Xi,−1, MF̂Xi

⎞⎠ , (2.4)

which is of dimension T × 3K .8

The first-step IV estimator of θ is defined as:

θ̂ = (
Â′B̂−1Â

)−1
Â′B̂−1ĉy,

where

Â = 1

NT

N∑
i=1

Ẑ′
iCi ; B̂ = 1

NT

N∑
i=1

Ẑ′
iẐi ; ĉy = 1

NT

N∑
i=1

Ẑ′
iyi .

Under certain regularity conditions, θ̂ is consistent (see Theorem 3.1 in Section 3), although
asymptotically biased. Rather than bias-correcting this estimator, we put forward a second-step
estimator, which is free from asymptotic bias and is potentially more efficient.

REMARK 2.1. Since our approach makes use of the defactored covariates as instruments,
identification of the autoregressive and spatial parameters requires that at least one element of β

is not equal to zero. Otherwise, it is easily seen that identification of ρ and ψ is not possible, since
the lagged and spatial defactored covariates become irrelevant instruments. This requirement
is mild and common in the estimation of spatial models using method of moments, see, e.g.,
Kelejian and Prucha (2007). Note that it is not necessary to know a priori which covariates have

8 More instruments can be used with respect to further lags of Xi or spatial lags
∑N

j=1 wijXj,−τ , for τ ≥ 1. Instruments

constructed from powers of the spatial weights matrix can also be used, such as
∑N

j=1 w
(�)
ij Xj , for � = 2, 3, . . . , where

w
(�)
ij denotes the (i, j )th element of the N × N spatial weights matrix W�

N , which is defined as the product matrix
taking WN and multiplying it by itself �-times. It is well documented in the literature that including a larger number
of instruments may render the IV estimator more efficient, although such practice can also potentially magnify small
sample bias. In principle, one could devise a lag selection procedure for optimising the bias-variance trade-off for the IV
estimator, as per Okui (2009); however, we leave this avenue for future research. The present paper assumes that both
τ ≥ 1 and � ≥ 1 are small and do not depend on T .
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IV estimation of spatial dynamic panels with interactive effects 129

nonzero coefficients, since by construction IV regression does not require all instruments to be
relevant to all endogenous regressors.

To implement the second step, we estimate the space spanned by H0 from the first step IV
residuals, i.e., ûi = yi − Ci θ̂ . To be specific, let Ĥ be defined as

√
T times the eigenvectors

corresponding to the ry largest eigenvalues of the T × T matrix (NT )−1 ∑N
i=1 ûi û′

i .
The proposed second-step IV estimator for θ is defined as follows:

θ̃ = (Ã′B̃−1Ã)−1Ã′B̃−1c̃y, (2.5)

where

Ã = 1

NT

N∑
i=1

Ẑ′
iMĤCi , B̃ = 1

NT

N∑
i=1

Ẑ′
iMĤẐi , c̃y = 1

NT

N∑
i=1

Ẑ′
iMĤyi .

Section 3 shows that the second-step IV estimator is normally distributed and correctly centred
around the true value.

A particularly useful diagnostic is the so-called overidentifying restrictions (J) test statistic,
which is given by

J = 1

NT

(
N∑

i=1

ũ′
iMĤẐi

)
�̂−1

(
N∑

i=1

Ẑ′
iMĤũi

)
, (2.6)

where ũi = yi − Ci θ̃ and �̂ = σ̃ 2
ε B̃ with σ̃ 2

ε = ∑N
i=1 ũ′

iMĤũi/NT .

REMARK 2.2. The validity of our procedure crucially relies on the assumption that Xi is
strictly exogenous with respect to εi . Violations of such restriction are detectable using the J-test
above. When strict exogeneity of Xi fails, identification of the model parameters requires the
use of external instruments. These instruments can still be correlated with the common factor
component, although they need to be exogenous with respect to εi . The theoretical analysis of our
approach based on external instruments remains exactly identical, with Xi in (2.4) replaced by
the external instruments. As it is common practice in the literature—e.g., Robertson and Sarafidis
(2015) and Kuersteiner and Prucha (2020)—in what follows, we do not explicitly account for
this possibility in order to avoid the cost of additional notation to separate covariates that can be
used as instruments from those that cannot. Finite sample results for a model with endogenous
regressors are provided in Section S3 of the Online Appendix.

3. ASYMPTOTIC PROPERTIES

3.1. Assumptions

Before stating assumptions, define the population version of

Zi =
⎛⎝ N∑

j=1

wijMF0 Vj , MF0
−1

Vi,−1, MF0 Vi

⎞⎠.

The following assumptions are employed throughout the paper.

C© The Author(s) 2023.
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ASSUMPTION 3.1 (IDIOSYNCRATIC ERROR IN y). The disturbances εit are independently dis-

tributed across i and over t , with mean zero, E(ε2
it) = σ 2

ε > 0 and E|εit|8+δ ≤ C < ∞ for some
δ > 0.

ASSUMPTION 3.2 (IDIOSYNCRATIC ERROR IN x). The idiosyncratic error in the DGP for xit

satisfies the following conditions:

(1) vit is group-wise independent from εit;
(2) E(vit) = 0 and E‖vit‖8+δ ≤ C < ∞;
(3) Let 	ij,st ≡ E

(
visv′

jt

)
. We assume that there exist σ̄ij and σ̃st , ‖	ij,st‖ ≤ σ̄ij for all (s, t),

and
∥∥	ij,st

∥∥ ≤ σ̃st for all (i, j ), such that

1

N

N∑
i=1

N∑
j=1

σ̄ij ≤ C < ∞ ,
1

T

T∑
s=1

T∑
t=1

σ̃st ≤ C < ∞ ,
1

NT

N∑
i=1

N∑
j=1

T∑
s=1

T∑
t=1

‖	ij,st‖ ≤ C < ∞.

(4) For every (s, t), E‖N−1/2 ∑N
i=1(visv′

it − 	ii,st )‖4 ≤ C < ∞.
(5) The largest eigenvalue of E

(
ViV′

i

)
is bounded uniformly in i and T.

(6) For any h, we have

1

N

N∑
i1=1

N∑
j1=1

N∑
i2=1

N∑
j2=1

|wi1j1 ||wi2j2 |
∥∥∥∥ 1

T

T∑
s=1

T∑
t=1

cov(vhs ⊗ vj2s , vht ⊗ vj1t )

∥∥∥∥ ≤ C.

(7) For any s, we have

E

∥∥∥∥∥ 1√
NT

N∑
h=1

T∑
t=1

[
v′

hsvht − E
(
v′

hsvht

)]
f0
t

∥∥∥∥∥
2

≤ C.

(8)

1

NT 2

N∑
i=1

N∑
j=1

T∑
s1=1

T∑
s2=1

T∑
t1=1

T∑
t2=1

∥∥cov
(
v′

is1
vis2 , v′

j t1
vj t2

)∥∥ ≤ C.

ASSUMPTION 3.3 (FACTORS). E‖f0
t ‖4 ≤ C < ∞, T −1F0′F0 p−→ 	F > 0 as T → ∞ for some

nonrandom positive definite matrix 	F . E‖h0
t ‖4 ≤ C < ∞, T −1H0′H0 p−→ 	H > 0 as T → ∞

for some nonrandom positive definite matrix 	H . f0
t and h0

t are group-wise independent from vit

and εit.

ASSUMPTION 3.4 (LOADINGS). �0
i ∼ i.i.d.(0,		), ϕ0

i ∼ i.i.d.(0,	ϕ), where 		 and 	ϕ are

positive definite. E
∥∥	0

i

∥∥4 ≤ C < ∞, E
∥∥ϕ0

i

∥∥4 ≤ C < ∞. In addition, �0
i and ϕ0

i are independent
groups from εit, vit, f0

t , and h0
t .

ASSUMPTION 3.5 (WEIGHTING MATRIX). Denoting the true values of ρ and ψ as ρ0 and ψ0,
respectively, the weights matrix WN satisfies the following conditions:

C© The Author(s) 2023.
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IV estimation of spatial dynamic panels with interactive effects 131

(1) All diagonal elements of WN are zeros;
(2) The matrix IN − ψ0WN is invertible;
(3) The row and column sums of the matrices WN and

(
IN − ψ0WN

)−1
are bounded uniformly

in absolute value.
(4)

∑∞
�=0 ‖[ρ0(IN − ψ0WN )−1]�‖∞ ≤ C;

∑∞
�=0 ‖[ρ0(IN − ψ0WN )−1]�‖1 ≤ C.

ASSUMPTION 3.6 (IDENTIFICATION). We assume that

(1) A0 = plimN,T →∞ 1
NT

∑N
i=1 Z′

iCi is fixed with full column rank, and B0 =
plimN,T →∞ 1

NT

∑N
i=1 Z′

iZi is fixed and positive definite.

(2) E
∥∥T −1Z′

iZi

∥∥2+2δ ≤ C < ∞ and E
∥∥T −1Z′

iCi

∥∥2+2δ ≤ C < ∞ for all i and T .

Assumption 3.1 is in line with existing spatial literature, see, e.g., Lee and Yu (2014). Cross-
sectional/time-series homoscedasticity is imposed in order to simplify the asymptotic analysis for
the variance–covariance estimator in panels with N and T both large. In contrast, Norkute et al.
(2021) allow for cross-sectional/time-series heteroscedasticity as they invoke the results in Hansen
(2007). However, Hansen (2007) assumes that the observations are independent across i, which
is not the case here. While we do not formally derive theoretical results under heteroscedasticity,
we study the finite sample properties of a robust variance–covariance estimator in Section 4.

Assumption 3.2 implies that xit is strictly exogenous with respect to εit, i.e., the defactored
regressors are valid instruments (see, e.g., Pesaran, 2006; Bai, 2009). In addition, Assumption 3.2
allows for cross-sectional and time-series heteroscedasticity as well as autocorrelation in vit. Note
that, unlike with εit, here it is important to allow explicitly for this more general setup because,
conditional on F0, the dynamics in Xi are solely driven by Vi . Note also that in contrast with
Norkute et al. (2021), vit is permitted to be weakly correlated across i, which is in the same spirit
as allowing for weak dependence in the process of y.

Assumptions 3.4 and 3.5 are standard in the principal components literature, see, e.g., Bai
(2003), among others. Assumption 3.4 permits correlations between f0

t and h0
t , and within each

one of them. Assumption 3.5 allows for possible nonzero correlations between ϕ0
i and �0

i , and
within each one of them. Since for each i, yit and xit can be affected by common shocks in a
related manner, it is potentially important to allow for this possibility in practice.

Assumption 3.5 is standard in the spatial literature, see, e.g., Kelejian and Prucha (2001). In
particular, Assumption 3.5(1) is just a normalisation and implies that no individual is viewed
as its own neighbour. Assumption 3.5(2) implies that there is no dominant unit, i.e., a unit that
is asymptotically correlated with all remaining individuals. Assumptions 3.5(3)–(4) concern the
space of the autoregressive and spatial parameters, and are discussed in detail in Kelejian and
Prucha (2010, sec. 2.2). Notice that the assumptions above do not depend on a particular ordering
of the data, which can be arbitrary so long as Assumption 3.5 holds true. Moreover, WN is not
required to be row-normalised.

Lastly, Assumption 3.6 ensures IV-based identification, see, e.g., Wooldridge (2002, ch. 5).

3.2. Asymptotic results

The asymptotic properties of the one-step estimator are determined primarily by those of
Ẑ′

iui/
√

NT . The following proposition provides an asymptotic expansion of this term.
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132 G. Cui et al.

PROPOSITION 3.1. Under Assumptions 3.1–3.6,

1√
NT

N∑
i=1

Ẑ′
iui = 1√

NT

N∑
i=1

Z′
iui +

√
T

N
b1 +

√
N

T
b2 + op (1),

where Zi =
(∑N

j=1 wijMF0Vj , MF0
−1
V i,−1, MF0V i

)
with V i = Vi − 1

N

∑N
�=1 V��

0′
� (ϒ0)−1�0

i ,

V i,−1 = Vi,−1 − 1
N

∑N
�=1 V�,−1�

0′
� (ϒ0)−1�0

i , Vi,−1 = LVi , ϒ0 = N−1 ∑N
i=1 �0

i �
0′
i , and b1 and

b2 are Op(1).9

Theorem 3.1 establishes convergence in probability of the one-step IV estimator, θ̂ .

THEOREM 3.1. Under Assumptions 3.1–3.6, as N, T → ∞ such that N/T → c, where 0 <

c < ∞, we have
√

NT
(̂
θ − θ

) = Op (1).

The above theorem implies that θ̂ can be asymptotically biased. The bias term of the one-step
IV estimator arises primarily due to the correlation between the factor loadings associated with
F0 and those associated with H0.10 Instead of correcting this bias, we proceed into the second
stage of our approach and obtain θ̃ .

The following proposition provides an asymptotic expansion of Ẑ′
iMĤui/

√
NT , the term that

primarily determines the asymptotic properties of the second-step IV estimator.

PROPOSITION 3.2. Under Assumptions 3.1–3.6, we have

1√
NT

N∑
i=1

Ẑ′
iMĤui = 1√

NT

N∑
i=1

Z′
iεi + Op

(
1

δNT

)
+ Op

(√
NT

δ3
NT

)
.

As we see from Proposition 3.2, the estimation effect in 1√
NT

∑N
i=1 Ẑ′

iMĤui can be ignored

asymptotically. Since εi is independent of Zi and H0 with zero mean, the limiting distribution
of 1√

NT

∑N
i=1 Ẑ′

iMĤui is centred at zero. Hence, the asymptotic normality result can be readily
obtained by applying the Central Limit Theorem (CLT) for martingale differences in Kelejian
and Prucha (2001).

The following theorem formally establishes consistency and asymptotic normality for θ̃ .

THEOREM 3.2. Under Assumptions 3.1–3.6, as N, T → ∞ such that N/T → c, where 0 <

c < ∞, we have
√

NT
(
θ̃ − θ

) d−→ N (0,�),

where � = σ 2
ε

(
A′

0B−1
0 A0

)−1
. Moreover, �̃ − �

p−→ 0 as N, T → ∞, where �̃ =
σ̃ 2

ε

(
Ã′B̃−1Ã

)−1
.

9 See the proof of Proposition 3.1 in Section S1 of the Online Appendix for explicit expressions of these bias terms.
To save space, we do not report these expressions here, given also that we do not bias-correct the first-step estimator.

10 On the contrary, serial dependence and weak cross-sectional dependence in the idiosyncratic part of the x process,
vit, does not result in bias because vit is not correlated with the error term in the y equation, εit. Similarly, there is no
‘Nickell bias’, which typically occurs in the least squares estimation of dynamic panel models, because θ̂ is based on
instrumental variables.
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IV estimation of spatial dynamic panels with interactive effects 133

Note that θ̃ is asymptotically unbiased. This is in stark contrast with existing QML estimators
available for spatial panels, which require bias correction.

The main reason for this result is that the estimation error of F̂ depends on Vi , which is
independent from ui . Therefore, the defactored regressors are asymptotically uncorrelated with
the error term of the model.11 The limiting distribution of the overidentifying restrictions test
statistic is established in the following theorem.

THEOREM 3.3. Under Assumptions 3.1–3.6, as N, T → ∞ such that N/T → c, where 0 <

c < ∞, we have

J
d−→ χ2

ν ,

where ν = 3k − (k + 2).

3.3. Extension to a model with a spatial-time lag

Our approach can be straightforwardly extended to a model with a spatial-time lag, which may
capture more complex spatio-temporal dependence—see, e.g., Bai and Li (2021). In particular,
we rewrite the model as follows:

yi = ψYwi + ρyi,−1 + Y−1wi + Xiβ + H0ϕ0
i + εi , (3.1)

where we introduce a spatial-time lag term, Y−1wi , with Y−1 = (y0, · · · , yT −1)′, a T × N matrix.
For simplicity, we assume that the spatial matrix for this term is WN , however, a different spatial
matrix can be permitted provided it satisfies similar conditions as Assumption 3.5.

The matrix of instruments is given by

Ẑi =
⎛⎝ N∑

j=1

wijMF̂Xj , MF̂−1
Xi,−1, MF̂Xi ,

N∑
j=1

wijMF̂−1
Xj,−1

⎞⎠ , (3.2)

which is of dimension T × 4K .
For the main results to hold true, the only modification that needs to be made is the condition

for model stationarity. Accordingly, the following assumption replaces Assumption 3.5(4):
Assumption 3.5(4′):

∞∑
�=0

∥∥∥∥[
ρ0

(
IN − ψ0WN

)−1 + 0
(
IN − ψ0WN

)−2
]�

∥∥∥∥
∞

≤ C;

∞∑
�=0

∥∥∥∥[
ρ0

(
IN − ψ0WN

)−1 + 0
(
IN − ψ0WN

)−2
]�

∥∥∥∥
1

≤ C,

where 0 denotes the true value of . We are ready to state the following result.

COROLLARY 3.1. Consider model (3.1) instead of (2.3) and the matrix of instruments
(3.2) replacing (2.4), where θ = (ψ,ρ, ,β ′)′ and the matrices A0 and B0 and their
sample counterparts are redefined accordingly with Ci = (Ywi , yi,−1, Xi , Y−1wi) and Zi =(∑N

j=1 wijMF0 Vj , MF0
−1

Vi,−1, MF0 Vi ,
∑N

j=1 wijMF0
−1

Vj,−1

)
. Then, under Assumptions 3.1–3.6

11 For the case of a static panel without spatial lags, Cui et al. (2022) provide a detailed technical comparison between
the present methodology and the one developed by Bai (2009).
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with Assumption 3.5(4) replaced by 3.5(4′), Theorem 3.2 holds true, and Theorem 3.3 holds with
ν = 4k − (k + 3).

4. MONTE CARLO EXPERIMENTS

We use Monte Carlo experiments to assess the finite sample behaviour of the two-stage IV
estimator compared to the QML estimator of Shi and Lee (2017). Section S3 of the Online
Appendix provides details of the design of our simulation study, as well as additional results for
an augmented model with a spatial-time lag, and for a model with endogenous covariates.

We consider the following spatial dynamic panel data model:

yit =αi + ρyit−1 + ψ

N∑
j=1

wijyjt +
2∑

�=1

β�x�it + uit; uit =
3∑

s=1

ϕ0
sif

0
s,t + εit;

x�it =μ�i +
2∑

s=1

γ 0
�sif

0
s,t + v�it ; i = 1, ..., N, t = −49, ..., T , for � = 1, 2.

All individual-specific effects and factor loadings are drawn as correlated mean-zero and
unit-variance random variables. All individual-invariant, time-specific variables are drawn as
autoregressive (AR) processes with mean-zero, unit variance and AR parameter equal to 0.5.
The idiosyncratic error, εit, is non-normal and heteroscedastic across both i and t , such that
εit = ςεσit(εit − 1)/

√
2, εit ∼ i.i.d.χ2

1 , with σ 2
it = ηiφt , ηi ∼ i.i.d.χ2

2 /2, and φt = t/T for t =
0, 1, ..., T and unity otherwise. The spatial weighting matrix, WN = [wij], is an invertible rook
matrix of circular form, such that its ith row, 1 < i < N , has nonzero entries in positions i − 1
and i + 1, whereas the nonzero entries in rows 1 and N are in positions (1,2), (1, N ), and (N, 1),
(N,N − 1), respectively. This matrix is row-normalised so that all of its nonzero elements equal
1/2.

We set ρ = 0.4, ψ = 0.25, and β1 = 3, β2 = 1, following Bai (2009). The proportion of the
(average) variance of uit that is due to εit, denoted as πu, is set equal to πu ∈ {1/4, 3/4}. Thus,
for example, πu = 3/4 means that the variance of the idiosyncratic error accounts for 75% of the
total variance in uit. The signal-to-noise ratio of the model, defined in Section S3, is set equal to
SNR = 4, as in Juodis and Sarafidis (2018).

We study the optimal two-step IV estimator, defined in (2.5), based on the same set of in-
struments as in (3.2) with Xi replaced by Xi ≡ Xi − X, i.e., the covariates are cross-sectionally
demeaned in order to control for individual-specific fixed effects.

To allow for heteroscedasticity, the variance estimator is given by

�̃ = (
Ã′B̃−1Ã

)−1
Ã′B̃−1�̂B̃−1Ã

(
Ã′B̃−1Ã

)−1
, (4.1)

with

�̂ = 1

NT

N∑
i=1

Ẑ′
iMĤûi û′

iMĤẐi , (4.2)

and ûi = yi − Ci θ̂ .
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IV estimation of spatial dynamic panels with interactive effects 135

Table 1. Baseline model with πu = 3/4.

IV QMLE

Results for ρ = 0.4. Case I: N = 100τ , T = 25τ

τ Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 0.399 0.016 0.363 0.059 1.000 0.394 0.013 1.611 0.309 1.000
2 0.400 0.007 0.131 0.056 1.000 0.396 0.006 0.951 0.283 1.000
4 0.400 0.003 0.041 0.048 1.000 0.398 0.003 0.515 0.249 1.000

Results for ρ = 0.4. Case II: N = 25τ , T = 100τ

τ Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 0.399 0.014 0.267 0.084 1.000 0.404 0.010 0.939 0.186 1.000
2 0.400 0.007 0.042 0.062 1.000 0.401 0.005 0.315 0.171 1.000
4 0.400 0.003 0.003 0.045 1.000 0.400 0.002 0.067 0.079 1.000

Results for ψ = 0.25. Case I: N = 100τ , T = 25τ

τ Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 0.251 0.019 0.242 0.064 0.998 0.250 0.022 0.034 0.179 0.987
2 0.251 0.008 0.246 0.042 1.000 0.250 0.011 0.033 0.119 1.000
4 0.250 0.004 0.019 0.052 1.000 0.250 0.005 0.043 0.071 1.000

Results for ψ = 0.25. Case II: N = 25τ , T = 100τ

τ Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 0.250 0.016 0.140 0.096 1.000 0.251 0.036 0.192 0.459 0.791
2 0.250 0.008 0.077 0.064 1.000 0.250 0.018 0.049 0.334 0.998
4 0.250 0.004 0.061 0.074 1.000 0.250 0.007 0.079 0.177 1.000

Results forβ2 = 1. Case I: N = 100τ , T = 25τ

τ Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.007 0.061 0.738 0.091 0.408 1.128 0.154 12.760 0.711 0.251
2 1.001 0.024 0.145 0.050 0.986 1.043 0.070 4.345 0.379 0.162
4 1.000 0.012 0.027 0.051 1.000 1.006 0.016 0.571 0.096 1.000

Results for β2 = 1. Case II: N = 25τ , T = 100τ

τ Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.001 0.049 0.137 0.097 0.554 1.130 0.170 12.950 0.713 0.167
2 0.999 0.024 0.069 0.065 0.979 1.051 0.088 5.120 0.503 0.149
4 1.000 0.011 0.048 0.045 1.000 1.008 0.024 0.764 0.205 1.000

The J-test statistic we use is as in (2.6) with �̂ replaced by the expression in (4.2).
In terms of the sample size, we consider three cases. Case I specifies N = 100τ and T = 25τ

for τ = 1, 2, 4. This implies that N and T increase by multiples of 2 and the ratio N/T remains
equal to 4 in all circumstances. Case II specifies T = 100τ with N = 25τ for τ = 1, 2, 4.
Therefore, N/T = 1/4, as both N and T grow. Finally, Case III, for which results are reported
in Section S3, sets N = T = 50τ , τ = 1, 2, 4. These choices allow us to consider different
combinations of (N, T ) in relatively small and large sample sizes.

We perform 2,000 replications and all tests are conducted at the 5% significance level. For the
power of the ‘t-test’, we specify H0 : ρ = ρ0 + 0.1 (or H0 : ψ = ψ0 + 0.1, and H0 : β� = β0

� +
0.1 for � = 1, 2) against two sided alternatives, where ρ0, ψ0, β0

1 , β0
2 denote the true parameter

values.
Table 1 reports results for the baseline model for πu = 3/4. Results for πu = 1/4 can be

found in S3 of the Online Appendix. As a benchmark, we also consider the bias-corrected QML
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136 G. Cui et al.

estimator proposed by Shi and Lee (2017).12 To speed up the computation time of QMLE, we set
ry = 3, i.e., we assume knowledge of the true number of factors (this is only for QMLE). ‘Mean’
and ‘RMSE’ denotes the average value and average squared deviation of the estimated parameters
from their true values across 2,000 replications, respectively. ‘ARB’ denotes absolute relative bias,
defined as ARB ≡ (|̂θ� − θ�|/θ�

)
100, where θ� denotes the �th entry of θ = (

ψ, ρ,β ′)′
. Size-

corrected power is reported, based on the 2.5% and 97.5% quantiles of the empirical distribution
of the t-ratio under the null hypothesis.

For both IV and QMLE the values obtained for the mean are close to the true parameters in
most cases. Moreover, as predicted by theory, RMSE declines steadily with larger values of N

and T , roughly at the rate of
√

NT . Therefore, in what follows we focus on relative RMSE
performance, ARB, and size properties of the two estimators.

When it comes to the autoregressive parameter, ρ, QMLE outperforms IV in terms of RMSE.
This reflects the higher efficiency of maximum likelihood/least squares compared to IV. However,
QMLE exhibits substantial ARB and thereby it is severely size distorted. Both ARB and size
distortions tend to become smaller as the sample size increases, albeit at a slow rate when
N/T = 4. In contrast, IV has little ARB and good size properties in most cases, with some mild
distortions observed only when N is small.

In regards to the spatial parameter, ψ , IV outperforms QMLE in terms of RMSE. As before,
IV is subject to some small size distortion when N is small, which tends to be eliminated quickly
with N . QMLE is severely size-distorted.

The results for β2 are qualitatively no different from those for ψ , with one exception: when
either N or T is small, size-adjusted power appears to be relatively lower. Moreover, IV often
appears to have higher power than QMLE in moderate sample sizes.

Results for β1 and for the performance of the J-test in terms of empirical size and power are
reported in S3. In general, some mild distortions occur only for N small.

5. AN ANALYSIS OF BANK ATTITUDE TOWARDS RISK

We explore two simple and yet unresolved empirical questions. To what extent was the credit
risk-taking behaviour of US banking institutions affected by the risk attitude of their peers during
the period that culminated in the global financial crisis (GFC)? Has such relationship changed
after the Dodd–Frank Wall Street Reform and Consumer Protection Act of 2010?

Peer influences on risk-taking behaviour may arise for several reasons. For instance, com-
petition can lead institutions to pursue riskier policies in response to their peers’ actions, in
a bid to maintain the same level of profits—see, e.g., Keeley (1990), Hellmann et al. (2000)
and Martynova et al. (2020). Peer influences can also manifest through spillover effects from
one institution to another. In particular, while interbank financial networks normally offer
the ability to externalise credit exposure by risk sharing, during periods of financial instabil-
ity such interconnectedness may render banks highly vulnerable to the risk attitude of their
peers.13

Our main objective is to analyse the effect of peer influences on bank credit risk-taking
behaviour, and the impact of the Dodd–Frank Wall Act (hereafter DFA) on risk attitude. While
there exist several insightful studies that model spatial interactions in the banking industry (e.g.,

12 We are grateful to Wei Shi and Lung-fei Lee for providing us the algorithm for the QML estimator.
13 The tension between these two forces has been explored in a variety of papers, including Allen and Gale (2000),

Freixas et al. (2000), Vries (2005), and Gai et al. (2011).
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IV estimation of spatial dynamic panels with interactive effects 137

Jing et al., 2018; Ding and Sickles, 2019), to the best of our knowledge, this is the first paper
that estimates endogenous network effects and controls for state dependence, as well as for the
impact of unobserved aggregate shocks.

5.1. Model specification

We estimate the same regression model as in (2.1) for i = 1, . . . , 350, and t = 1, . . . , 56,
where t = 1 corresponds to 2006:Q1 and t = 56 corresponds to 2019:Q4. The following
variables are employed:14

yit ≡ NPLit denotes the ratio of nonperforming loans to total loans for bank i at time period t ;
x1it ≡ INEFFit denotes the time-varying operational inefficiency of bank i at period t ,

constructed using a cost frontier model with a translog functional form as in Altunbas
et al. (2007);

x2it ≡ CARit stands for ‘capital adequacy ratio’, proxied by the ratio of core capital over
risk-weighted assets;

x3it ≡ SIZEit is proxied by the natural logarithm of banks’ total assets;
x4it ≡ BUFFERit denotes the amount of capital buffer, and it is computed by subtracting

from the core capital (leverage) ratio the value of the minimum regulatory capital ratio (8%);
x5it ≡ PROFIT ABILIT Yit is proxied by the return on equity (ROE), defined as annualised

net income expressed as a percentage of average total equity on a consolidated basis;
x6it ≡ QUALIT Yit is computed as the total amount of loan loss provisions (LLP) expressed

as a percentage of assets.
x7it ≡ LIQUIDIT Yit is proxied by the loan-to-deposit (LTD) ratio. When this ratio is too

high, banks may not have enough liquidity to meet unforeseen funding requirements;
x8it ≡ PRESSUREit takes the value of unity if a bank has a capital buffer that is less than

or equal to the 10th percentile of the distribution of capital buffer in any given period, and
zero otherwise.

The spatial weights matrix has been constructed following the methodology of Fernandez
(2011). In particular, let

dij =
√

2
(
1 − ρij

)
,

where ρij denotes Spearman’s correlation coefficient between banks i and j , corresponding to a
specific financial indicator observed over 56 time periods. Then, the (i, j )-element of the N × N

spatial weights matrix, WN , is defined as wij = exp(−dij). Thus, more distant observations take
a smaller weight. Each of the rows of WN has been divided by the sum of its corresponding
elements so that

∑
j wij = 1 for all j . Finally, the diagonal elements of WN are set equal to zero

in order to ensure that no individual is treated as its own neighbour.
We make use of two financial indicators to construct weights: the debt ratio (total liabilities

over total assets) and the dividend yield (dividends over market price per share).

5.2. Estimation

The model is estimated using the second-step IV estimator, combined with the robust variance–
covariance estimator given by (4.1)–(4.2). INEFF is treated as endogenous with respect to

14 All data have been downloaded from Bank Data and Statistics (2022), a dataset maintained by the Federal Deposit
Insurance Corporation.
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Table 2. Results for different subperiods.

Full Basel I-II DFA

ρ̂ (AR parameter) 0.492*** (0.061) 0.369*** (0.081) 0.383∗∗∗ (0.131)
ψ̂ (spatial parameter) 0.376∗∗∗ (0.091) 0.224∗∗ (0.115) 0.583∗∗ (0.230)
β̂1 (inefficiency) 0.329∗∗∗ (0.081) 0.565∗∗ (0.146) 0.242∗∗ (0.104)
β̂2 (CAR) 0.013*** (0.005) 0.031∗∗∗ (0.012) 0.007 (0.005)
β̂3 (size) 0.115* (0.022) 0.940*** (0.344) 0.275 (0.265)
β̂4 (buffer) −0.033** (0.014) −0.027 (0.026) −0.004 (0.015)
β̂5 (profitability) −0.003 (0.002) −0.002 (0.004) −0.010∗∗ (0.004)
β̂6 (quality) 0.221*** (0.038) 0.243*** (0.045) 0.035 (0.092)
β̂7 (liquidity) 1.301∗∗∗ (0.178) 2.717∗∗∗ (0.563) 1.585∗∗∗ (0.435)
β̂8 (inst. pressure) 0.045 (0.047) 0.010 (0.067) 0.015 (0.074)
r̂y 1 1 1
r̂x 1 1 2
J-test 36.019 [0.030] 27.119 [0.207] 24.662 [0.313]

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.

εit due to reverse causality. This arises because higher levels of risk imply additional costs
and managerial efforts incurred by banks, in order to improve existing loan underwriting and
monitoring procedures. INEFF is instrumented by the ratio of interest expenses paid on deposits
over the value of total deposits.15

The remaining covariates are treated as exogenous with respect to εit. However, these covariates
can be endogenous with the common factor component ϕ′

ih
0
t . The matrix of instruments is the

same as in (3.2) with Xi replaced by X̃i = (̃
x1i , x2i , . . . , x8i

)
, a matrix of order T × 8, where

x�i = x�i − x� and x�i is a T × 1 vector that denotes the �th covariate corresponding to β�, for
� = 2, . . . , k, whereas x̃1i is the external instrument. Thus, we make use of 32 moment conditions
in total, and with 10 parameters the number of degrees of freedom equals 22.

The projection matrix MF̂ is computed based on r̂x factors estimated from (NT )−1 ∑N
i=1 X̃iX̃

′
i

using the eigenvalue ratio test of Ahn and Horenstein (2013). MF̂−1
and MĤ are computed in a

similar manner.

5.3. Results

Column ‘Full’ in Table 2 reports results for the entire period of the sample.16 Columns ‘Basel I-II’
and ‘DFA’ present results for two different subperiods, namely 2006:Q1–2010:Q4 and 2011:Q1–
2019:Q4, respectively. The first subsample corresponds to the Basel I-II regulatory framework
and includes the GFC. The second subsample corresponds to the Dodd–Frank Act.

In regards to column ‘Full’, we see that both ρ̂ and ψ̂ are statistically significant, providing
evidence for state dependence and endogenous peer effects.

The coefficient of operational inefficiency is positive and statistically significant, an out-
come consistent with Williams (2004). This provides support for the so-called bad management
hypothesis (see, e.g., Fiordelisi et al., 2011). The coefficient of capital adequacy ratio on bank
risk is positive and statistically significant at the 5% level. However, bank size appears to exert

15 The correlation between these two variables in the sample equals 0.22.
16 Tables S4.2–S4.3 in the Online Appendix report robustness results in terms of different specifications and/or different

estimation approaches.
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IV estimation of spatial dynamic panels with interactive effects 139

a small impact on risk. While this finding is in contrast with the ‘too-big-to-fail hypothesis’,
the conclusions change when the model is re-estimated during 2006:Q1–2010:Q4 only. We shall
discuss this in detail shortly.

Capital buffer has a negative and significant effect on risk attitude, consistent with capital
buffer theory.

In line with the findings of Aggarwal and Jacques (2001), asset quality (or lack of thereof) has
a strong positive effect on risk attitude, i.e., banks with higher levels of loan loss provision also
have a larger proportion of risky assets in their portfolios. Similarly, liquidity (or lack of thereof)
exerts a strong positive effect on risk.

Finally, the number of estimated factors in y equals 1 across all samples, i.e., ‘Full’, ‘Basel
I-II’, and ‘DFA’. As it turns out, the estimated factor is highly correlated with the US gross private
domestic investment (PDI), and thus it appears to capture one of the major indices of economic
activity that influence aggregate demand.17

Regarding columns ‘Basel I-II’ and ‘DFA’, the following major differences are worth noting.
First, the size effect is much larger in magnitude during the period under Basel I-II. However,
following the introduction of the DFA, the effect of size falls and is no longer statistically
significant.

Second, the effect of operational inefficiency appears to be much larger under the Basel I-II
than that under the DFA. A similar result applies to the coefficients of quality and liquidity.
Finally, it appears that more profitable banks are less willing to take on more risk during the DFA,
whereas there seems to be no effect during Basel I-II.

These results bear important policy implications and provide evidence that the more risk-
sensitive capital regulation introduced by the DFA framework has succeeded in influencing
banks’ behaviour in a substantial manner.

Section S4 in the Online Appendix provides additional results in terms of direct, indirect, and
total effects, computed as in Debarsy et al. (2012), and LeSage and Pace (2009). Under Basel I-II
the direct effects appear to be larger than the indirect ones, contributing roughly three-quarters of
the total effect. In contrast, under the DFA period direct effects contribute about 42% of the total
effect.

6. CONCLUDING REMARKS

This paper develops a new IV estimator for spatial, dynamic panel data models with interactive
effects under large N and T asymptotics. The proposed estimator is computationally inexpensive
and free from asymptotic bias in either cross-sectional or time-series dimension. Last, the proposed
estimator retains the attractive feature of method of moments estimation in that it can potentially
accommodate endogenous regressors, so long as external exogenous instruments are available.
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APPENDIX A: PROOFS OF RESULTS

Proof of Proposition 3.1. With the definition of Ẑi , we have
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By Norkute et al. (2021), we have(
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Combining Lemmas S1.5, S1.6, S1.7, S1.8, and S1.10 in the Online Appendix, we can derive that
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From (A.1)–(A.5), we have
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Ẑ′
iui = 1√

NT

N∑
i=1

Z′
iui +

√
T

N
b1 +

√
N

T
b2 + op(1),

where Zi =
(∑N

j=1 wijMF0Vj , MF0
−1
V i,−1, MF0V i

)
, b1 = (

b′
11, b′

12, b′
13

)′
and b2 = (

b′
21, b′

22, b′
23

)′
. This

completes the proof. �
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Proof of Theorem 3.1. We have
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Â′B̂−1Â

)−1
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iMĤui , is equal to⎛⎝N−1/2T −1/2

∑N

i=1

∑N

j=1 wijX′
j MF̂MĤui
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Consider the first term in (A.6). By Lemmas S2.4, S2.5, S2.6, and S2.7 in the Online Appendix, and the fact
that MF0 Xj = MF0 Vj , we can derive that

1√
NT

N∑
i=1

N∑
j=1

wijX′
j MF̂MĤui
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Consider the second term in (A.6). By Lemmas S2.8, S2.9, S2.10, and S2.11 in the Online Appendix, we

have
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Similarly, for the third term, we can show that
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which leads to
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Noting that MF0X i = MF0V i and that (F0, H0), Vi , εi are all independent of each other, by Lemma S2.12
in the Online Appendix we have
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which completes the proof. �
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By Lemma S2.2 in the Online Appendix, Ã − A0 = op(1)B̃ − B0 = op(1), and together with Proposition 3.2,
we obtain

√
NT (̃θ − θ ) = (A′

0B−1
0 A0)−1A′

0B−1
0 · N−1/2T −1/2

N∑
i=1

Z′
iεi + Op(δ−1

NT ) + Op(N 1/2T 1/2δ−3
NT ).

The central limit theorem of the martingale difference in Kelejian and Prucha (2001) establishes
√

NT (̃θ − θ )
d−→ N (0,�),

since N, T → ∞ with N/T 2 → 0 and T/N 2 → 0. Finally, Lemma S2.13 shows that σ̃ 2
ε − σ 2

ε = Op(δ−1
NT ),

thus, together with Lemma S2.2, �̃ − �
p−→ 0, which complete the proof. �
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iMĤũi = ML�−1/2 1√

NT

∑N

i=1 Z′
iεi + op (1) with ML =

I3k − L (L′L)−1 L′ whose rank is ν = 3k − (k + 2). Collecting all together, the central limit theorem of

Kelejian and Prucha (2001) ensures that 1
NT

∑N

i=1 ũ′MĤẐi�̂
−1
NT

∑N

i=1 Ẑ′
iMĤũ

d→ χ 2
ν , as required. �

Proof of Corollary 3.1. In a similar line of the proof for Proposition 3.1, we have

1√
NT

N∑
i=1

Ẑ′
iui = 1√

NT
Z′

iui +
√

T

N
b1 +

√
N

T
b2 + op (1),

where Zi =
(∑N

j=1 wijMF0Vj , MF0
−1
V i,−1, MF0V i ,

∑N

j=1 wijMF0
−1
Vj,−1

)
, b1 = (

b′
11, b′

12, b′
13, b′

14

)′
, b2 =(

b′
21, b′

22, b′
23, b′

24

)′
, with b14 = − 1

N

∑N

i=1

∑N

j=1

∑N

h=1 wij
V ′

j,−1Vi,−1

T
	0′

h (ϒ0)−1
(

F0′
−1F0

−1
T

)−1 F0′
−1ui

T
and b24 =

− 1
NT

∑N

i=1

∑N

j=1

∑N

h=1 wij	
0′
j (ϒ0)−1

(
F0′

−1F0
−1

T

)−1

F0′
−1�−1MF0

−1
ui . Noting that b1 and b2 are bounded in
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probability,
√

NT
(̂
θ − θ

) = Op (1) immediately follows, where θ = (ψ,ρ, ,β ′)′ and θ̂ is the first-step
estimator. Following the same line of the proof of Theorem 3.2, it is straightforward to show that√

NT (̃θ − θ ) = (A′
0B−1

0 A0)−1A′
0B−1

0 · N−1/2T −1/2
∑N

i=1 Z′
iεi + op(1), and that

√
NT (̃θ − θ )

d→ N (0, �)

and �̃ − � = op (1). Finally, noting that Zi is T × 4k and θ is k + 3, it is straightforward to see J
d→ χ 2

ν

with ν = 4k − (k + 3), which completes the proof. �
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