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Urban quantum leap: a comprehensive review and analysis of quantum 

technologies for smart cities 

 

Abstract 

Contemporary smart city solutions rely on standardized von Neumann architecture, in which 

single data units are coded as “0” or “1.” Conversely, urban quantum technologies rely on the 

fundamental principles of quantum physics, transcending the conventions of the current 

computational paradigm. On the one hand, urban quantum technologies hold managerial 

relevance for future smart cities. On the other hand, they are often overlooked by smart city 

researchers. Accordingly, their value as a breakthrough technological paradigm is still largely 

unexplored. In this article, we look at how quantum technologies may contribute to existing 

smart city solutions, including the Internet of Things, cloud computing, big data, ICT, smart 

transportation, artificial intelligence, and blockchain. First, through a semi-systematic review 

of eighty articles on quantum computing within the social science domain, we identify two 

relevant classes of urban quantum technologies: quantum communication and quantum 

computing. Second, we establish a comprehensive taxonomy of conventional smart city 

solutions based on the automated content analysis of 567 abstracts of articles on the 

technological aspects of smart cities. Third, we investigate potential associations between two 

classes of technologies (conventional smart city solutions and urban quantum technologies) by 

analyzing the semantic relationships between eighty articles on quantum technologies 

according to the frequency of keywords denoting different types of conventional smart city 

solutions. Finally, we triangulate our findings through a thematic analysis of potential uses of 

quantum technologies within identified categories of smart city solutions. 

Keywords: smart city, quantum city, smart city technologies, urban quantum technologies, 

semi-systematic literature review, thematic analysis 
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List of abbreviations 

 

QTs    quantum technologies 

QC    quantum computing 

QCM    quantum communication 

SCTs    smart city technologies 

ICT    information and communication technology 

AI    artificial intelligence 

IoT    Internet of Things 

PCA    principal component analysis 

SEM    structural equation modeling 

PLS-SEM   partial least squares structural equation modeling 

PLSc-SEM   consistent partial least squares structural equation modeling 
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1. Introduction  

The concepts and metaphors of twentieth-century urban theory (Joss et al., 2022) are no longer 

optimal in dealing with contemporary cities’ growing complexity, uncertainty, and risk (Arida, 

2002; Macionis & Parrillo, 2017). While grand narratives of the past lose their explanatory 

power, novel urban metaphors and concepts are becoming increasingly relevant (Lynch, 1984, 

1990).  

The changes in urban theorizing relate to various social, economic, demographic, and 

technological factors (Anthopoulos, 2017). As for the latter, we may distinguish two categories 

of technology-driven urban changes. On the one hand, there is a shift toward smart cities and, 

more generally, a sustainable smart city paradigm (Bifulco et al., 2016). Investing in research, 

development, and use of smart technologies influences future urban growth. Indeed, cities’ 

growth can be governed more effectively by adopting innovative technologies (Bibri, 2018). 

Furthermore, those technologies, including information and communication technology (ICT), 

artificial intelligence (AI), Internet of Things (IoT), blockchain, and big data, are critical to 

urban sustainability (Bibri, 2018; Bifulco et al., 2016; Gouvea et al., 2018; Quan et al., 2019). 

On the other hand, the further development of quantum technologies (QTs) makes their 

adoption in future smart cities more likely. The quantum paradigm is a fruitful metaphorical 

foundation for examining increasingly complex urban-related topics. It incorporates language, 

imagery, and concepts from quantum physics (Arida, 2002), such as uncertainty, duality, and 

entanglement, to address the issues of urban complexity and risk more effectively (Bashirpour 

Bonab, Fedele, et al., 2023). Unlike conventional smart city solutions, quantum urban 

technologies rely on the fundamental principles of quantum mechanics and, therefore, promise 

greater accuracy, computational power, speed, and efficiency. 

Due to the complexities of quantum theory, the quantum city metaphor can be challenging to 

communicate to the public properly. Nonetheless, with the growth of practitioners’ interest in 
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quantum technologies, engaging end-users through effective communication is essential (Arida, 

1998, 2002). Hence, the implementation of proof-of-concept quantum cities, like Hefei in China 

(Courtland, 2016), serves as a viable example of what the urban future might be. 

In this article, we investigate how conventional and quantum smart city technologies are related. 

Accordingly, we first perform a semi-systematic review of eighty articles on quantum 

technologies within the broader social science domain. We prioritize urban-related academic 

contributions in selecting and including the articles in the review. After finding which QTs are 

the most important for cities, we derive a taxonomy of conventional smart city solutions based 

on the semantic analysis of 567 abstracts of articles on the technological aspects of smart cities. 

Then, we explore semantic connections between eighty articles on quantum technologies 

according to the frequency of selected keywords denoting different classes of conventional 

smart city solutions (as derived in the previous step). We investigate semantic relationships 

between the eighty articles by employing principal component analysis, agglomerative 

hierarchical clustering, and partial least squares path modeling. Although strictly exploratory, 

the study of semantic relationships can be indicative of current and prospective academic 

interests within the research field (Arnulf, 2020; Arnulf et al., 2014). Finally, we perform a 

methodological triangulation of quantitative results through a qualitative thematic analysis of 

potential uses of quantum technologies within the identified domains of conventional smart city 

solutions. 

 

 

 

2. A semi-systematic literature review and thematic synthesis of urban quantum 

technologies 
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Detailed taxonomies of quantum technologies are still rare in the literature. Among the few 

existing, the taxonomy proposed by Acín et al. (2018) is one of the most comprehensive. The 

authors distinguish four classes of QTs: 1) quantum communication, in which entangled 

photons are used to transmit data securely; 2) quantum simulation, in which quantum systems 

are used to imitate phenomena that are impossible to simulate by a classical Turing machine; 

3) quantum computation, in which quantum physics principles are used to speed up specific 

types of calculations; 4) quantum sensing and metrology, in which the higher sensitivity of 

quantum systems to outside perturbations is used to increase the precision of physical 

measurements. 

To understand which types of QTs are potentially useful in smart cities, we performed a 

structured literature search. We carried out five separate searches on Scopus based on the 

keywords derived from the taxonomy of Acín et al. (2018) (“quantum communication,” 

“quantum simulation,” “quantum computation,” “quantum sensing,” and “quantum 

metrology”). We used the in-title specifier to limit the results to articles directly related to the 

topic of interest. We also restricted the results to the domains of “Social Sciences,” “Business, 

Management and Accounting,” “Decision Sciences,” and “Economics, Econometrics, and 

Finance” to exclude literature that was too technical or not pertinent to the interests of urban 

scholars. Finally, we put no restrictions on the types of articles, allowing for insightful “gray” 

literature to be included. 

The choice of Scopus is in line with the suggestion of Gusenbauer and Haddaway (2020). 

According to the authors, Scopus is a suitable search engine for systematic and semi-systematic 

literature reviews in different social science fields (Gusenbauer & Haddaway, 2020). We also 

performed similar searches on Web of Science, ProQuest, ScienceDirect, and Wiley Online 

libraries (Gusenbauer & Haddaway, 2020). However, as the identified articles largely 

overlapped, only the results from Scopus were considered. No forward or backward searches 
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were carried on. Therefore, to ensure that all the key articles were included, we performed a 

complementary set of searches on Google Scholar (Gusenbauer & Haddaway, 2020). However, 

as the additional academic articles identified on Google Scholar were of dubious quality, we 

excluded them from the final analysis. In total, we identified 196 articles. 

We then assessed the abstracts, collegially discussing the inclusion of the related articles in the 

review. We preferred a semi-systematic literature review to a systematic one, as our primary 

goal was not a comprehensive assessment of the totality of the literature on a narrow topic but 

a derivation of a taxonomy of urban QTs based on academic articles of heterogeneous nature 

and from different sub-fields of social science (Snyder, 2019). We also gave urban-related 

contributions more weight in evaluating articles for inclusion to ensure that the qualitative 

coding results were trustworthy. 

Although we opted for a semi-systematic literature review, we closely followed the Preferred 

Reporting Items for Systematic Review (PRISMA 2020) flow diagram to identify, screen, and 

include articles in order to ensure a higher degree of replicability (Liberati et al., 2009; Brennan 

& Munn, 2021; Page et al., 2021). Figure 1 shows the four selection stages in line with the 

PRISMA 2020 framework. Overall, eighty articles were included in the review.  

As our primary goal was not to assess the totality of academic literature on the topic but to 

derive a taxonomy of urban QTs through a semi-systematic review, we do not exclude that 

some articles on the application of QTs in cities could have been omitted. However, we 

considered the eighty papers included in the review sufficient to achieve theoretical saturation, 

as the two relevant types of quantum technologies emerged early on, and no additional category 

was added to the taxonomy in the later stages of the coding process (Low, 2019). 

 

Figure 1. Identification and selection of articles on quantum technologies 
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Source: own elaboration 

 

We imported the downloaded articles into qualitative data analysis software (MAXQDA) and 

performed their qualitative open coding. We then collegially reviewed and discussed the initial 

code structures (St. Pierre & Jackson, 2014). As a result, two categories of urban-related 

quantum technologies emerged: quantum computing (QC) and quantum communication 

(QCM). Lower-level codes denoting the usage of quantum technologies in urban contexts were 

also analyzed and aggregated for both QC and QCM categories. Conversely, quantum 

simulation, sensing, and metrology (Acín et al., 2018) did not emerge as separate categories 

during coding.  

What follows is a brief thematic synthesis of potential contributions of quantum communication 

and quantum computing to smart cities as derived from the coded literature. We report a more 

detailed thematic analysis of the contributions of the two types of quantum technologies to 

individual types of conventional smart city solutions in the later section of the article. 

 

Table 1. Quantum communication and computing in quantum cities. A thematic synthesis 
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Quantum 

technology  

Main themes and topics Contributions 

Quantum  

communication 

Quantum communication in cities involves securely transferring 

and exchanging quantum information between distant urban 

communication nodes connected via quantum channels through 

qubits (units of quantum data). 

(Y. Liu et al., 2010; Sauge 

et al., 2007) 

One prominent feature of quantum communication is quantum 

teleportation. The purpose of quantum teleportation is to send an 

arbitrary quantum state to a distant location (e.g., to another 

communication node across the city) without sending the physical 

object that carries the state. Conventional communication 

technology makes such a task impossible. Conversely, quantum 

physics provides a viable solution. 

(Aspelmeyer, M et al., 

2006; Chehimi & Saad, 

2021; Lele, 2021) 

Quantum communication includes high-quality long-distance 

quantum channels that can accommodate the growing complexity 

of urban infrastructure. The defining feature of quantum 

communication networks in cities is the capacity to use and 

connect heterogeneous technologies in a modular and dependable 

manner. As a result, technologies as different as shopping 

systems, 6G networks, IoT, blockchain, financial modeling, traffic 

optimization, weather forecasting, medical systems, AI, and solar 

capture systems can benefit from the effective deployment of 

urban quantum communication. 

(Al-Mohammed & 

Yaacoub, 2021; 

Aspelmeyer, M et al., 

2006; Carvacho et al., 

2021; Chehimi & Saad, 

2021; T.-Y. Chen et al., 

2010; Chou et al., 2014; 

Lele, 2021; Nema & 

Nene, 2020; Resch et al., 

2005) 

Quantum Internet is a QCM system in which sensing, 

communication, and computing work simultaneously to exchange 

information between sensors, computers, and networks. Such 

technology can substantially increase the efficiency and security 

of urban communication infrastructure. However, establishing a 

broad physical entanglement distribution is necessary to improve 

the quantum internet’s robustness and channel capacity. As a 

result, city managers, administrators, and planners should be 

ready to upgrade current communication systems to implement 

the first viable quantum internet solutions. 

(Lele, 2021) 

One of the most critical issues in quantum communication is 

security. Today, information security is an important goal for 

smart city managers, administrators, and planners. On the other 

hand, fully working quantum computers can break conventional 

cryptosystems. As a result, traditional communication protocols 

are potentially no longer safe, prompting researchers to design 

more secure cryptographic systems. 

(Lele, 2021; Malluh et al., 

2014; Monz et al., 2016; 

Tsai et al., 2005; Wei & 

Zhang, 2019) 

Quantum key distribution is a promising quantum security 

method. It allows two legitimate remote users (for example, users 

in different parts of a city) to establish a shared secret key via 

photon transmission and use it to encrypt or decrypt messages. 

Post-quantum cryptography (also known as quantum-safe, 

quantum-proof, or quantum-resistant cryptography) refers to 

cryptographic methods that rely on public-key algorithms and are 

secured against a quantum computer attack. Post-quantum 

cryptography is concerned with improving existing algorithms 

and standards to prepare current systems for the era of quantum 

vulnerability. An efficient post-quantum cryptography system 

(Aspelmeyer, M et al., 

2006; Bennett & Brassard, 

1984; Chou et al., 2014, 

2014; Malluh et al., 2014; 

Piacentini et al., 2015; 

Tsai et al., 2005; X. Zhang 

et al., 2015) 
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implemented in an urban context should withstand quantum 

computer attacks on the city’s infrastructure while securing 

properties such as variability, unforgeability, identifiability, and 

confidentiality. 

Quantum  

computing 
Quantum computers are the next-generation technology that has 

the potential to alter the economic, industrial, academic, and 

social landscapes of contemporary cities. Quantum computing 

relies on the fundamental principles of quantum physics, such as 

entanglement and quantum superposition, and thus transcends 

conventional von Neumann architecture. 

(Elhaddad & Mohammed, 

2016; Inglesant et al., 

2021; Meng, 2020; Salehi 

et al., 2021; Taha, 2016; 

Ten Holter et al., 2021; 

Trabesinger, 2017; Uhlig 

et al., 2019) 

Modern-day computers store information in bits—either 0 (false) 

or 1 (true)—one at a time. As a result, they rely on Boolean 

algebra. Conversely, quantum computers work with quantum bits 

(or qubits). In contrast to traditional bits, a single qubit can stand 

for a one, a zero, or a mixed state that is both 0 and 1. In other 

words, a quantum computer operates on a probabilistic rather than 

a deterministic basis. 

(Amiri, 2003; Cuffaro, 

2015; Elhaddad & 

Mohammed, 2016; Sotelo, 

2019; You et al., 2009) 

Quantum computers’ most significant advantage is their capacity 

to solve computationally demanding problems, which require 

time, effort, and money or are impossible to perform on 

conventional computers. However, this does not imply that 

quantum architectures would completely replace the current 

computing paradigm. Instead, quantum computers can integrate 

and assist conventional computers, including in many city-related 

tasks and computations.  

(DeBenedictis, 2020; 

Mosteanu & Faccia, 2021; 

Raisinghani & Emerson, 

2001; Yetis & Karakoes, 

2021) 

Artificial intelligence is one of the areas in which the synergistic 

effect of quantum computing can be most relevant. On the one 

hand, the automation of computer systems and the minimization 

of human intervention are two of AI’s most important 

contributions to quantum computing. On the other hand, quantum 

algorithms can significantly improve unsupervised machine 

learning. 

(Bhatia et al., 2020; 

Palmieri et al., 2020; 

Torlai et al., 2018) 

According to the analyzed literature, the most frequently 

mentioned areas potentially benefitting from the integration with 

quantum computing include 5G and 6G communications, power 

grid management, smart factory optimization, drug discovery, 

cryptography, database search improvement, blockchain, banking, 

finance and business, economics, simulation and modeling, 

weather forecasting, market prediction, disease prediction, 

strategic management, AI, big data, education, law, the aircraft 

industry, the military, IoT, and art. 

Integrating quantum computers into urban infrastructure may also 

increase inter-regional inequality due to a lack of knowledge or 

financial resources to acquire innovative technology. Openness 

and accessibility are the best ways to ensure that quantum 

computers’ benefits outweigh their negative urban impacts. 

Accordingly, pertinent scientific knowledge should be made 

available through public campaigns and initiatives, and quantum 

computing capacity should be accessible via the cloud. 

(Aderman, 2019; 

Alaminos et al., 2021; 

Atik & Jeutner, 2021; 

Bhatt & Gautam, 2019; 

Casati, 2020; Chambers-

Jones, 2021; de Wolf, 

2017; Gutiérrez-Salcedo 

et al., 2018; Heaney, 

2019; Inglesant et al., 

2021; Krendelev & 

Sazonova, 2018; Kumar 

Sharma & Ghunawat, 

2019; Majot & 

Yampolskiy, 2015; Möller 

& Vuik, 2017; Shubham 

et al., 2019; Singh & 

Singh, 2016; Swarna et 

al., 2021; Uhlig et al., 

2019; Weder et al., 2020) 
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Overall, three distinct visions of QC’s future can be identified. 

According to the first, we are on the verge of a new computing era 

leading to widespread consequences in all aspects of urban life. 

For the second, we need to focus on determining the short-term 

practical implications of quantum computing while avoiding 

futuristic speculations. The third one is a gloomier vision of 

“quantum supremacy,” concerned with the negative consequences 

of the technological advantage that a quantum computer has over 

a conventional computer. 

(Elhaddad & Mohammed, 

2016; Gutiérrez-Salcedo 

et al., 2018; Inglesant et 

al., 2021; Paraoanu, 2011) 

One of the most significant threats QC poses is that it would 

“break the internet,” making existing data encryption methods 

insecure. Accordingly, a substantial increase in cryptographic 

vulnerabilities can undermine security in financial and other 

critical systems in cities. The adverse effects of quantum 

computing on urban security highlight the need for regulations 

that encourage the responsible use of quantum computers in future 

smart cities. 

(Covers & Doeland, 2020; 

Inglesant et al., 2021; 

Majot & Yampolskiy, 

2015; Sotelo, 2021; F. 

Zhang, 2020) 

Source: own elaboration 

 

3. Investigating the relationship between quantum technologies and conventional smart 

city technologies 

3.1 Classifying smart city technologies 

Before analyzing the contributions of the two classes of quantum technologies to a smart city, 

we sought to derive a less speculative definition of the latter. One way to define a smart city in 

more practical terms is by elaborating a thorough taxonomy of technologies used therein (Javed 

et al., 2022). Contrary to relying on the existing classification, as we had done in the case of 

quantum technologies (Acín et al., 2018), we derived the taxonomy of smart city solutions 

based on the automated content analysis of the abstracts of academic literature on the topic. 

We used the keywords “smart city” and “technology” (linked by the AND operator) on Scopus 

to search and retrieve all academic records having the two keywords in their titles. Moreover, 

we imposed no restrictions on the academic field or type of publication. As a result, we 

identified 567 smart city-related academic articles (as of January 9, 2022). We downloaded and 

analyzed 576 abstracts in qualitative data analysis software (MAXQDA, release 22.0.1). We 
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applied lemmatization to control for different spellings and inflected forms and then calculated 

the absolute frequency of all meaningful words and word combinations in the abstracts. Finally, 

we manually assessed the frequency table, selecting the most frequent words and word 

combinations related to smart city technologies. Each researcher performed the selection 

separately, and then we collegially decided on which words and word combinations to select in 

order to increase the results’ trustworthiness. In total, we identified forty smart city-related 

keywords (Figure 2).  

 

Figure 2. Most frequent words and word combinations related to smart city technologies  

 

Source: own elaboration 

 

Next, with the help of MAXQDA, we assessed how authors use those selected keywords in the 

abstracts. As a result, we identified seven major categories of smart city technologies: artificial 

intelligence (AI), Internet of Things (IoT), information and communication technologies (ICTs), 

big data, blockchain, cloud computing, and smart transportation technologies.  
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3.2 Quantum technologies for smart cities: an exploration of semantic relatedness 

To study the potential connections between the two types of urban quantum technologies and 

the seven common types of smart city solutions (as determined in the previous sub-section), we 

analyzed how the eighty papers on quantum technologies (Figure 1) relate semantically 

according to the three categories of keywords (quantum communication keywords, quantum 

computing keywords, and smart city keywords). We performed the initial qualitative 

assessment in MAXQDA (release 22.0.1). We searched and automatically coded all sentences 

containing keywords pertinent to the seven categories of smart city technologies (see the 

previous sub-section). We performed similar searches and automatic coding for the quantum 

computing and quantum communication categories. We derived the keywords for the two 

categories through the thematic synthesis of QC and QCM literature (Table 1). 

Figure 3 shows the hierarchical code structure resulting from the automatic coding. The 

numbers denote the absolute frequencies of codes across eighty articles. In all cases, we also 

considered the lemmatized variations of keywords (e.g., “ai” and “artificial intelligence,” 

“computer” and “computers”). We then transformed the absolute frequencies of twenty-eight 

lower-level codes into relative frequencies to account for the different lengths of the articles. 

We used the following formula for the calculation: 

𝑟𝑒𝑙. 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘
𝑖 =

𝑎𝑏𝑠. 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘
𝑖

∑ 𝑎𝑏𝑠. 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑗
𝑖28

𝑗=1

 

In the formula, i denotes the unit of analysis (one of eighty retrieved articles); k and j denote a 

keyword (one of twenty-eight lower-level categories in Figure 3). 
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Figure 3. Conventional and quantum urban technologies. Main themes and categories 

 

Source: own elaboration 

 

We imported the data into RStudio (version 1.4.1717) and performed a principal component 

analysis (PCA). Twenty-eight lower-level codes entered the analysis as active variables, 

yielding an equal number of uncorrelated dimensions. This implies that the twenty-eight 

keywords (Figure 3) are mostly uncorrelated between the retrieved articles. However, the first 

two dimensions stood out, accounting for approximately 31% of the total inertia, which, in turn, 

indicated the presence of commonalities and thematic clusters within the analyzed literature. 

As the remaining principal components did not noticeably contribute to the overall variability, 

we analyzed only the first two PCA dimensions. Figure 4 shows the contribution of active 

variables to the creation of axes. The cos2 indicator measures the quality of the representation 

of active variables on the axes. 
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Figure 4. PCA. Relationships between QC, QCM, and SCT keywords 

 

Source: own elaboration 

 

As shown in Figure 4, the horizontal dimension reflects the distinction between two classes of 

articles—on quantum computing to the left and quantum communication to the right. 

Additionally, the vertical axis captures the relevance of seven types of conventional smart city 

technologies (SCTs) in those articles. In particular, quantum communication and quantum 

computing-related articles in the northern part of the plane are more likely to mention 

conventional smart city technologies than articles in the southern part of the plane. Thus, we 

can hypothetically distinguish four clusters of urban-related articles on quantum technologies. 

These are articles on QC or QCM with an emphasis on conventional smart city technologies 

and articles on QC or QCM without an emphasis on conventional smart city technologies. 
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As for relationships between QCM, QC, and SCTs, little can be inferred from the results of the 

principal component analysis. Indeed, as seen in Figure 4, the QCM, QC, and SCT variables 

are mostly orthogonal to one another. However, a closer observation reveals that articles on 

quantum communication are slightly more likely to contain keywords related to the Internet of 

Things. At the same time, the remaining SCT keywords are more likely to appear in articles on 

quantum computing. 

We performed agglomerative hierarchical clustering to confirm our interpretation of PCA 

results. We used the Euclidean distance to compare the similarity between pairs of records. We 

also chose Ward’s method as a measure of group proximity. Figure 5 shows the resulting cluster 

dendrogram. In addition, Figure 6 shows the hierarchical tree projected on the PCA factor map. 

Because inertia gains from considering five clusters or more were relatively small, the 

Factoshiny package considered the partitioning of articles into four clusters as optimal. 

 

Figure 5. Cluster analysis. Hierarchical tree 

 

Source: own elaboration 
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Figure 6. Cluster analysis. The hierarchical tree projected on the factor map 

 

Source: own elaboration 

 

Figure 7 shows all the most significant semantic categories that (positively) contributed to the 

definition of clusters. 

 

Figure 7. Most significant (p-value less or equal to 0.05) positive contributions to each cluster 

 

N.B. top left – Cluster 1; top right – Cluster 2; down-left – Cluster 3; down-right – Cluster 4 

Source: own elaboration 
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Cluster analysis partially confirmed the interpretation of PCA results. In particular, clusters 1 

and 4 reflect the categorization of articles according to their belonging to the quantum 

computing (all contributing variables are QC variables) or quantum communication (QCM 

variables predominate) categories. On the other hand, cluster 2 contains articles that primarily 

deal with conventional smart city technologies but also mention quantum technologies (all three 

classes of variables are present, and SCT variables are predominant). By analyzing the variables 

contributing to the definition of cluster 2, we may conclude that AI is the most discussed topic 

in the literature of that cluster. Other conventional smart city technologies often mentioned in 

quantum technology literature include (in order of importance) ICT, big data, cloud computing, 

blockchain, and smart transportation. Conversely, cluster 3 appears more balanced in terms of 

its composition, emphasizing both quantum communication and quantum computing topics. 

Moreover, conventional smart city technologies are also mentioned, albeit only to a limited 

extent (i.e., the “blockchain” variable). 

As a final step, we used structural equation modeling (SEM) to understand how SCTs, QC, and 

QCM are semantically related within the literature. While it is uncommon to use the SEM 

framework for purely exploratory purposes, partial least squares structural equation modeling 

(PLS-SEM) has been recommended as appropriate if the research is exploratory or with the 

goal of identifying key “driver” constructs (Hair et al., 2011). In particular, we preferred the 

PLS-SEM because it is less strict regarding the assumptions about the underlying data 

distribution and is often considered superior to other SEM frameworks when the sample size is 

relatively small (Ravand & Baghaei, 2019). 

We treated twenty-eight lower-level categories (Figure 3) as observed variables. We used these 

to define three latent variables (SCTs, QC, and QCM, corresponding to the three upper-level 

categories in Figure 3). Contrary to the previous analyses, we did not treat the twenty-eight 
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variables as relative frequencies but instead as occurrences. Consequently, they were coded as 

“0” or “1,” depending on whether they were present in the articles. The discretization was 

crucial as it allowed for better interpretability of the results, even if some variability was lost in 

the process. Moreover, according to Kupek (2006), using binary variables within the SEM 

framework is legitimate, and the classification performance is broadly similar to that of logistic 

regression. 

We analyzed the two models. We run both using the path weighting scheme, with the maximum 

number of iterations set to three hundred. First, we studied the relevance of quantum 

communication and quantum computing topics for conventional smart city technologies (Figure 

8). Then, by reversing the logic, we looked at the relevance of seven categories of conventional 

smart city technologies within the retrieved quantum communication and quantum computing 

literature (Figure 9). In both cases, we assumed the reflective measurement model. Accordingly, 

we applied a consistent PLS algorithm (PLSc-SEM) to correct reflective constructs’ 

correlations (Dijkstra, 2010). 

According to the resulting path coefficients of the first model (Figure 8), quantum 

communication is more likely than quantum computing to be discussed in conjunction with 

smart city-related topics (path coefficient 0.547 > 0.424). The closer conceptual connection 

between quantum communication and conventional smart city technologies was also confirmed 

by a thematic synthesis of the retrieved papers (see the following section). Conversely, 

bootstrapping revealed that both path coefficients are statistically insignificant at the 5% level. 

The model’s fit was not great, as the standardized root mean square residual (equal to 0.173) 

exceeded the suggested threshold value of 0.1 (Hu & Bentler, 1999). Nevertheless, we deemed 

it acceptable for exploratory purposes. On the other hand, the fit was better when the formative 

model was estimated (standardized root mean square residual equal to 0.107). However, a 
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precaution is needed in interpreting fit statistics for the PLS-PM framework, as they are still in 

the early stages of development (Hair et al., 2017).  

In terms of construct reliability and validity, the three latent variables were appropriately 

defined, with most outer weights exceeding or close to the often-used cutoff value of 0.7. 

Nevertheless, several outer weights negatively correlated with QCM and QC latent variables 

(Figure 8). Given the exploratory purpose of the analysis, we decided to keep them in the model. 

 

Figure 8. PLSc-PM. Model 1 

 

Source: own elaboration 
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Similarly, by looking at relationships between smart city technologies and both QC and QCM 

keywords (Figure 9), we may observe that quantum communication is semantically more 

related than quantum computing to conventional smart city technologies (R squared = 0.303 for 

quantum communication compared to R squared = 0.182 for quantum computing).  

 

Figure 9. PLSc-PM. Model 2 

 

Source: own elaboration 
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As for individual conventional smart city technologies, ICT has the strongest semantic 

relationship with quantum communication topics (path coefficient = 0.584, the only statistically 

significant after bootstrapping at the 0.05 significance level). Conversely, the smart city 

technology topic most related to quantum computing is smart transportation (path coefficient = 

0.366), followed by AI (path coefficient = 0.195) and big data (path coefficient = 0.167). The 

second model’s fit was higher than in the case of the first model (standardized root mean square 

residual equal to 0.140). As in the first model, not all outer weights for QCM and QC latent 

variables exceeded the cutoff value of 0.7. Moreover, in the case of the second model, latent 

variables denoting conventional smart city technologies were defined directly by the observed 

variables.  

To sum up, we conclude that quantum communication is currently the most important topic 

concerning quantum technologies for smart cities (Figure 8). ICT is the type of conventional 

smart city technology for which quantum communication is most relevant (Figure 9). On the 

contrary, the semantic relationships between quantum communication and the remaining types 

of conventional smart city technologies are weaker (Figure 9). The role of quantum computing 

is more diverse, as it is important for several conventional smart city technologies (AI, big data, 

blockchain, and smart transportation). However, its overall relevance within the assessed 

literature is lower than that of quantum communication. 

 

4. The relationship between quantum technologies and conventional smart city 

technologies: a qualitative thematic analysis  

We integrate the findings of the quantitative analyses with a qualitative thematic analysis of the 

eighty retrieved articles. We proceed by describing each identified category of conventional 

smart city technologies in terms of their potential synergies with both types of quantum 

technologies (quantum computing and communication). Given our difficulties separating the 
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big data and cloud computing-related themes and topics on mere qualitative bases, we 

summarize both categories in a single sub-section. 

 

4.1 Blockchain and quantum technologies 

Due to post-quantum vulnerability, future smart cities face substantial security and integrity 

challenges. As a consequence, communication between various infrastructural components of 

a city requires more robust security measures. In this regard, blockchain technology can be a 

means to manage different smart city components more securely and efficiently (Bagloee et al., 

2021).  

In a smart city, data can be safely exchanged via blockchain technology, ensuring network 

security and privacy for services such as the smart grid, transportation, and healthcare. 

Additionally, blockchain can promote transparency, freedom, democracy, decentralization, 

privacy, and security (A. Kumari et al., 2021; Vivekanadam, 2020; Xie et al., 2019). However, 

conventional blockchain technologies face critical limitations. Today, digital signatures based 

on asymmetric cryptographic mechanisms are commonly used to validate transaction 

authenticity in blockchain systems (Vivekanadam, 2020; Xie et al., 2019). On the other 

hand, quantum computing attacks pose a threat to modern-day cryptography algorithms. This 

constitutes a significant barrier to the novel secure blockchain-based smart city technologies 

(S. Kumari et al., 2021). The threat of post-quantum vulnerability calls for greater integration 

of blockchain and quantum technologies (S. Kumari et al., 2021). 

According to the results of PLSc-SEM analysis (Figure 9), the topic of blockchain relates to 

both quantum computing and quantum communication. However, its connection to the former 

is stronger. Indeed, quantum computing could be fundamental for the next generation of 

blockchain technology since it can provide significantly faster computations. For example, 

traditional protocols cannot address blockchain mining efficiently. Therefore, each block on a 
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blockchain has a finite transaction capacity that must be extended (S. Kumari et al., 2021). 

Conversely, novel quantum techniques can safeguard a blockchain against quantum computing 

attacks while ensuring more efficient mining to secure and verify blockchain transactions (J. 

Chen et al., 2021; Moorman & Stricklen, 2020; Vivekanadam B, 2020; Zhu et al., 2019). 

To sum up, the synergy between blockchain and post-quantum cryptography can ensure the 

preservation of privacy and security in digitally vulnerable smart cities while, at the same time, 

offering faster computation and assisting decision-makers by providing authentic and valid 

information for more informed decisions (Abd El-Latif et al., 2021; Allam & Jones, 2020; 

Azzaoui & Park, 2020; J. Chen et al., 2021; Chiang et al., 2020; Guo et al., 2021; Gupta et al., 

2021; A. Kumari et al., 2021; McKee et al., 2017; Toapanta et al., 2020; Xie et al., 2019; Zhu 

et al., 2019). 

 

4.2 Internet of Things and quantum technologies 

As Figure 9 shows, the Internet of Things is semantically negatively related to the topic of 

quantum computing. Regarding quantum communication, the effect size was too small to draw 

meaningful conclusions about the direction and strength of the relationship. On the contrary, 

the qualitative thematic analysis revealed that quantum communication could significantly 

boost IoT efficiency and security. 

The IoT can increase the connectivity of various smart city components (i.e., water meters, 

environmental sensors, lighting rods, smart energy networks, smart homes, and vehicles) 

(Ghorpade et al., 2021; Ghosh et al., 2019). IoT solutions can also be applied in a variety of 

smaller-scale settings: industry can use IoT devices to increase efficiency; agriculture can use 

IoT devices to reduce pesticide use while increasing crop yield; healthcare can use IoT devices 

to assist doctors and nurses in responding more quickly and efficiently to patients; IoT devices 

can provide key insights on how to develop sustainable solutions for waste management 
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(Garcia-Morchon et al., 2015; Ghorpade et al., 2021; Ghosh et al., 2019; Imran et al., 2020; 

Park et al., 2021). 

The connected devices gather real-time information and communicate it to the cloud to 

simultaneously store and analyze different data streams. These processes may involve privacy-

related and security-sensitive information (Garcia-Morchon et al., 2015). Accordingly, 

protecting the entire network from malicious events is one of the salient issues associated with 

successful IoT implementation. Thus, well-integrated security features are necessary for 

providing optimal IoT functionality (Garcia-Morchon et al., 2015; Ghosh et al., 2019; Routray 

et al., 2017). 

Post-quantum cryptography and, in particular, lattice-based cryptographic algorithms have been 

proposed as viable approaches to post-quantum security (Garcia-Morchon et al., 2015; Imran 

et al., 2020; S. Kumari et al., 2021; Nieto-Chaupis, 2018; Ning & Liu, 2015; Routray et al., 

2019; Zhu et al., 2019). Quantum communication technology can ensure a safer and more 

efficient IoT by increasing the efficiency of sensor networks, improving communication 

security, and ensuring greater data processing capacity. For example, Quantum Photonic 

Computer can provide a set of countermeasures to IoT 5G network abuse (Kaatuzian, 2020). 

Due to its environmentally friendly characteristics, Quantum Photonic Computer may also 

serve as a viable basis for future 6G networks in smart cities (Kaatuzian, 2020). Additionally, 

an IoT chip with a quantum number generator can produce non-deterministic real random 

numbers to increase IoT networks’ protection (Kaatuzian, 2020; Ning & Liu, 2015; 

Ramachandran, 2018). 

 

4.3 ICT and quantum technologies 

Information and communication technologies, as a broader set of smart city solutions, are the 

most discussed in the context of quantum communication topics (Figure 9). On the contrary, 
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according to the PLSc-SEM analysis, its semantic relationship to quantum computing themes 

and topics is negative. 

When it comes to ICT infrastructure optimization, a city can only be considered partially smart 

with 5G. Alternatively, 6G constitutes a comprehensive, integrated approach to creating a 

genuinely “smart” city (Kaatuzian, 2020). Moreover, enhancing urban network infrastructure 

with cloud and edge computing can enable the further integration of novel services such as the 

Internet of Things, augmented and virtual reality, multimedia interactive gaming, and 

unmanned mobility (Manzalini, 2020; Tariq et al., 2020). 

Quantum communication can positively contribute to the two key characteristics of 6G: higher 

data rates and increased security measures (Park et al., 2021; Tariq et al., 2020). As in the case 

of the IoT, post-quantum cryptography is relevant for 5G networks, 6G networks, and beyond 

due to the non-negligible possibility of a quantum attack. Quantum encryption and the related 

encryption algorithms can ensure the secure transfer of information within and between ICT 

networks (Park et al., 2021; Tariq et al., 2020).  

To conclude, integrating quantum communication technologies with conventional ICTs can 

improve the connectivity between users and devices in a smart city. Moreover, communication 

costs can be reduced as new communication technologies are implemented, and innovative 

encryption technologies, such as quantum encryption, can ensure the secure transmission of 

information (Liang et al., 2018; Toapanta et al., 2020). 

 

4.4 Big data, cloud computing, and quantum technologies 

According to the PLSc-SEM analysis, big data is more semantically related to quantum 

computing, and cloud computing is semantically closer to quantum communication. However, 

we discuss both in the same sub-paragraph because, according to thematic analysis, the two 

classes of conventional smart city solutions are closely interrelated. 
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In smart cities, big data services provided by public and private cloud computing platforms can 

offer real-time insights into large-scale processes in different urban subsystems (Allam & 

Dhunny, 2019). Smart city constituents such as the government, residents, businesses, health 

services, buildings, transportation, and traffic control centers generate a substantial amount of 

data (Lim et al., 2018; Moustafa, 2020). Part of these data may be open-source and free to use 

(Criado & Gil-Garcia, 2019; Iavich et al., 2021; Toapanta et al., 2020). In this case, however, 

maximum security is needed to maintain the system’s integrity. As a consequence, smart cities 

may require quantum-assisted security and protection to safeguard the whole cloud from 

quantum vulnerability (Abd El-Latif et al., 2018; Chiang et al., 2020; Jabbar et al., 2020; Qian, 

Cao, Dong, et al., 2021; Qian, Cao, Lu, et al., 2021). 

As the data volumes grow, smart cities need to deploy advanced analytical software and 

hardware solutions to extract value from the data. Accordingly, quantum computing can help 

overcome data collection, analysis, error detection, and resource management limits through 

quantum-based algorithms and hardware infrastructures for more efficient data storage and 

processing (AlSuwaidan, 2021; Balicki, 2022; Balicki et al., 2019; Juma, 2020). 

 

4.5 Artificial intelligence and quantum technologies 

The successful integration of artificial intelligence is essential to several smart city-enabling 

technologies (Luckey et al., 2021; Mukherjee & Mandal, 2020; Zubov, 2015). According to the 

PLSc-SEM analysis (Figure 9), artificial intelligence is most related to the topic of quantum 

computing. Indeed, complex intelligent systems relying on the integration of data mining, big 

data analysis, cloud computing, and post-quantum network security techniques can be 

implemented with greater ease thanks to advanced quantum computing systems (Balicki, 2022; 

Lindgren, 2020; Mukherjee & Mandal, 2020). Moreover, a framework that comprises all smart 



 

27 
 

city technologies and services can be based on quantum deep learning techniques (Mukherjee 

& Mandal, 2020). 

Conversely, quantum communication can be used in conjunction with artificial intelligence to 

enable services such as ultra-large-scale networks for connected AI agents. Machine learning 

can also enhance quantum protocols such as entanglement purification, quantum teleportation, 

and quantum repeaters (Wallnöfer et al., 2020). This is particularly relevant in developing long-

distance communication schemes since it allows using machine learning in designing and 

implementing future quantum networks (Baonan et al., 2019; Manzalini, 2020; Wallnöfer et al., 

2020). 

 

4.6 Smart transportation and quantum technologies 

Integrated quantum technologies can increase the scheduling efficiency of urban traffic flow. 

Indeed, a quantum network model can predict and simulate the passage times of vehicles 

queuing at intersections (Otto, 2013; Santos, 2021). Quantum communication between vehicles 

can enhance data transmission rates (Santos, 2021). Additionally, incorporating artificial 

intelligence and the Internet of Things into vehicles can improve the communication system’s 

efficiency. Likewise, post-quantum cryptography can be critical in developing more secure 

automated smart city transportation systems (Lv et al., 2021; Otto, 2013). 

Accurate traffic flow predictions are essential for efficient smart city management. The 

advancement in AI technology enables real-time traffic flow forecasting, allowing regulators to 

intervene early to avoid or alleviate congestion (Otto, 2013; Santos, 2021). In this regard, 

quantum computers can increase the efficiency of future AI-based systems and, consequently, 

improve traffic flow prediction outcomes (Mukherjee & Mandal, 2020).  

Finally, an efficient bike-sharing system provides a viable alternative to automated mobility. 

Short-distance cycling helps alleviate traffic congestion (Harikrishnakumar et al., 2021). 
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Moreover, it reduces carbon emissions and the overpopulation risk (Harikrishnakumar et al., 

2021). An effective bike-sharing system requires rebalancing analysis, which includes the 

transfer of bikes between different bike stations to ensure that supply meets anticipated 

demand—this could be effectively achieved by employing the higher computational power of 

quantum computing (Harikrishnakumar et al., 2021; Z. Liu et al., 2020; Manna et al., 2021; 

Manzalini, 2020; Santos, 2021; F. Zhang et al., 2020). 

 

5. Discussion and managerial implications 

To emphasize the managerial relevance of the application of quantum technologies in smart 

cities, we categorized the impact of quantum technologies’ integration into smart city 

infrastructures considering the following observations: 

• when addressing a problem, QTs can accommodate more variables (Khan & Robles-Kelly, 

2020);  

• quantum technologies could potentially store higher volumes of data and, at the same time, 

prevent data-sieving errors (Dowling & Milburn, 2002); 

• using quantum technologies makes it possible to solve complex city-related problems with 

high precision. Consequently, QTs allow for more exact predictions and forecasts (Kim et 

al., 2021; Proctor et al., 2022); 

• QTs can sustain complex communication networks (Bassoli et al., 2021);  

• QTs can also provide a substantial increase in computational speed for specific types of 

algorithms, allowing urban managers, administrators, and planners to address the 

complexity and variety intrinsic to a smart city with better precision and efficiency (Amiri, 

2003; Wack et al., 2021);  

• QTs can significantly affect privacy and security standards and procedures in different smart 

city subsystems (S. Kumari et al., 2021). 
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Integrating fully functioning quantum devices into existing smart city infrastructures can lead 

to a substantial leap in the capacity of all conventional smart city technologies. Accordingly, 

we may identify numerous benefits of such integration. For example: 

• more precise urban-related forecasting made possible by QTs can be critical in the context 

of the high uncertainty and complexity typical of contemporary cities (Kim et al., 2021; 

Proctor et al., 2022); 

• as a result of the increase in computation speed, more complexity and variety (in terms of 

the number and types of variables) can be integrated into the forecasting and cost-benefit 

analyses of different smart city initiatives (Amiri, 2003; Wack et al., 2021);  

• quantum AI can be used in decision-making to incorporate a greater number of social, 

cultural, economic, financial, environmental, and technical variables in order to provide 

urban managers, administrators, and planners with a variety of equifinal policies and 

strategies to meet the needs and expectations of the highest number of inhabitants and other 

smart city stakeholders (Khan & Robles-Kelly, 2020);  

• quantum technologies can help prevent errors caused by improper data handling in highly 

digitalized smart cities (Dowling & Milburn, 2002); 

• by implementing complex quantum communication networks, urban managers, 

administrators, and planners can aspire to design smart cities in which various 

technological, social, and environmental actors are structurally integrated and operate in 

agreement (Bassoli et al., 2021);  

• quantum cryptography and communication systems can provide advanced safety and 

security algorithms for data and information protection (S. Kumari et al., 2021; Portmann 

& Renner, 2021; X. Zhang et al., 2015). 

Conversely, the supposed technological leap may result in a number of issues: 
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• including too many variables in decision-making processes may lead to a loss of sense of 

control for some. Moreover, it could be worrisome for others to rely excessively on 

technology in their day-to-day decisions; 

• storing a large amount of city-related information without a proper system to evaluate the 

relevance and reliability of each piece of data may lead to over-investment in resources, 

policies, and decisions that are ineffective, resulting in unnecessary expenses as well as an 

increased likelihood of unintended consequences; 

• exact predictions may be used for conflicting goals by different urban actors. This could 

lead to an increase in conflicts as opposed to the desired cooperation and, consequently, a 

rise in inequality; 

• higher network complexity could be incompatible with human perceptual and knowledge 

capabilities. To avoid being excluded from decision-making processes, individuals may be 

constrained to manually oversee city-related solutions suggested by quantum-integrated AI. 

Overall, the increasing complexity of quantum systems could potentially undermine the 

more “humane” aspects of city-related decision-making and management;  

• a substantial increase in problem-solving speed may not be consistent with people’s rate of 

understanding and accepting those changes, widening the divide between technology and 

humans; 

• quantum technology advancements could have an ambiguous impact on security and 

privacy. Improvements in quantum cryptography may result in a “cold war” between 

developers of more powerful tools for undermining security systems and those who strive 

to protect infrastructural safety and security. 

• the potential benefits of integrating quantum technologies into smart cities can be 

challenging to hypothesize due to their perceived “futuristic” and speculative aspects. 



 

31 
 

Openness and accessibility are some of the ways to ensure that QTs’ benefits outweigh their 

negative impacts. Therefore, the related scientific knowledge should be made publicly available 

and actively communicated, and if possible, QTs’ higher computational capacity should be 

made accessible via the cloud (de Wolf, 2017). Moreover, to reinforce the positive impacts of 

QTs in smart cities, the crucial step is to ensure that urban residents start thinking in new ways 

compatible with quantum technolgies (Arida, 1998, 2002). It does not mean people should start 

thinking in a manner similar to a quantum computer, but rather that they need to understand 

what it can and cannot do and how to make sense of its outputs. This can be achieved through 

education and the gamification of education in the field of QTs (DeBenedictis, 2020; Gordon 

& Gordon, 2012; Mykhailova & Svore, 2020; Uhlig et al., 2019).  

If quantum technologies reach widespread usage, radical social changes might follow (Berezin, 

2007). For this reason, we advise urban decision-makers to start strategizing QT’s introduction 

in their smart cities as a lever for urban growth and aim to reduce barriers to adopting quantum 

technologies in order to decrease the related inequalities (Bhasin & Tripathi, 2021). Presently, 

the race is on to build the first effective quantum computer as researchers initially envisioned it 

(Lele, 2021). On the one hand, only simple proof-of-concept quantum computers have been 

developed so far, and most academics agree that an advanced, fully performant quantum 

computer remains just a theoretical possibility (Prince, 2014). On the other hand, today’s 

progress in quantum computing could help us conceptualize complexity as a potential rather 

than a barrier or a threat (Cuffaro, 2018). 

 

6. Conclusion and limits of the research 

The analysis of academic literature revealed that quantum communication and quantum 

computing are the most important quantum technologies regarding their potential relevance for 

future smart cities. Hence, investing in quantum communication and computing could give 
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smart cities a significant first-mover advantage in terms of technological development, 

innovation potential, and increased appeal to heterogeneous smart city stakeholders.  

In evaluating the impact of quantum technologies on conventional smart city technologies, we 

observed that many researchers (over-) emphasize the security dangers posed by quantum 

computers and the related solutions proposed by quantum communication. However, we argue 

that such a view on QTs could aliment a new type of a “cold war” (this time between 

technologies, not countries), consuming resources and producing tension without contributing 

to people’s welfare or improving everyday life. On the other hand, quantum technologies can 

make most computational processes in smart cities considerably more efficient. Accordingly, 

we advise city managers, administrators, and planners to start incorporating the calculation of 

the potential benefits quantum technologies could bring to urban infrastructure while planning 

and allocating the resources for future smart city initiatives.  

We also encourage researchers to investigate practical everyday applications of quantum 

technologies in smart cities in addition to a frequently studied topic of quantum defensive 

strategies (mainly associated with digital warfare). Indeed, as the quantitative analyses of 

semantic relationships between the retrieved articles revealed, thematic connections among 

quantum computing, quantum communication, and seven facets of smart city technology (AI, 

ICT, IoT, blockchain, big data, cloud computing, and transportation) are present but not yet 

strong, indicating an important research gap.  

Quantum technologies rely on quantum mechanics’ counterintuitive and, sometimes, abstract 

principles. Adopting QTs for everyday use in cities makes it necessary for urban managers, 

administrators, and planners to effectively communicate the benefits and drawbacks of urban 

QTs and the fundamental principles of their operation, which, in turn, requires increasing 

people’s “quantum literacy.” To reach a conceptual shift from quantum defense strategies to 

everyday QTs’ applications in cities, a novel form of education and training should orient future 
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generations to perceive the world in safer, although equivocal terms in line with the urban 

quantum development. As a result, in addition to investing in quantum technology 

development, educational investments are also critical (Bashirpour Bonab, Fedele, et al., 2023). 

To conclude, our study has several limitations. First, we hypothesized the relationships between 

quantum technologies and conventional smart city technologies based on the frequency of 

corresponding keywords in the retrieved academic papers on QTs within the broader social 

science domain. As such, the related variables should not be considered exact operational 

definitions of quantum or smart city technologies. What we studied here is the semantic 

interrelatedness of research ideas, emerging topics, themes, and ongoing academic discourses 

rather than the concrete contributions of quantum computing and quantum communication to 

seven types of smart city technologies. Such a study would require advanced and ubiquitous 

QTs, which, for now, are only in the nascent phases of development. Second, we only used 

simple Boolean queries for the literature search. We do not exclude that several relevant papers 

could have been omitted from the analyses. However, given the high number of analyzed 

documents (eighty for the content and thematic analyses and 567 for the derivation of the 

conventional smart city technologies taxonomy), we consider the theoretical saturation 

appropriately reached. Therefore, it is unlikely that additional insights could have emerged from 

the omitted academic literature. Indeed, as we noticed early on, most articles were variations 

on the few fundamental themes and topics continually re-emerging during the qualitative 

coding. 
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