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Abstract
This paper addresses a multi-skill resource-constrained multi-project scheduling problem
(MSRCMPSP) with different types of resources and complex industrial constraints, which
originates from SNCF heavy maintenance factories. Two objective functions, that have been
rarely addressed in the literature, are independently considered: (i) Minimization of the sum
of the weighted tardiness of the projects and (ii) Minimization of the sum of the weighted
duration of the projects. A time-indexed mixed-integer linear programming model is pre-
sented with both resource assignment and capacity constraints. To solve large instances with
several thousand activities, a new memetic algorithm combining a novel hybrid simulated
genetic algorithm with a simulated annealing is implemented. The memetic algorithm is
compared with popular solution approaches. Computational experiments conducted on real
instances and benchmark instances validate the efficiency of the proposed algorithm.
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1 Introduction

In this paper, a multi-skill resource-constrained multi-project scheduling problem (MSR-
CMPSP) is modeled and solved. The problem is motivated by a real industrial issue at SNCF,
the French national railway company, which carries out the heavy maintenance of its rolling
stock in ten different factories. Several rolling stock units are maintained simultaneously, and
each unit is considered as a project. To complete each project, a certain number of activities
requiring multiple skilled resources must be performed. Different types of resources (main-
tenance operators and machines) with different characteristics and constraints are taken into
account. Two original objective functions, that have rarely been addressed in the literature,
are independently considered: (i) Minimization of the sum of the weighted tardiness of the
projects (SWTP) and (ii) Minimization of the sum of the weighted duration of the projects
(SWDP).

Project management has attracted the attention of many researchers over the years. Plan-
ning and scheduling are crucial for controlling the execution time of projects, managing the
required resources, andmeeting (customer) deadlines.Without a detailed efficient plan, activ-
itieswould be poorly executed causing resource conflicts,waste of time and thus cost increase.
In a world where market competition and customer expectations are very high, companies
want to digitize their processes to better control production, optimize resource allocation and
reduce costs (Moeuf et al. 2018). However, project scheduling is a very complex problem.
The well-known Resource-Constrained Project Scheduling Problem (RCPSP) belongs to the
class of hard optimization problems, and instances ofmore than 60 activities cannot be solved
with exact methods in reasonable computational time (Koné et al. 2011). Furthermore, most
companies produce several products which generally share the same resources. The survey
of Lova et al. (2000) found that 84% of companies work with several projects. The multi-
project version of the RCPSP is closer to real-word applications. Yet, most papers study the
single project version of the RCPSP. The objective function is often the minimization of the
makespan, i.e., the completion time of the last activity. The multi-project extension results
in more complex problems because of the scarcity of shared resources, the interactions and
the competition among different projects, project specific characteristics, deadlines and more
elaborate objective functions (Browning and Yassine 2010).

We first show how to model a complex industrial problem by proposing a time-indexed
MILP (Mixed-Integer Linear Programming) model with several constraints such as prece-
dence constraints with lag times, time-dependent resource capacity constraints and machine
assignment. In themodel, each rolling stock unit is considered as a project, maintenance oper-
ations as activities requiring a certain number of human resources with different skills and
one specific machine to be executed. Since resources have multiple skills and several rolling
stock units are maintained simultaneously, the problem studied in this paper corresponds
to the Multi-Skill Resource-Constrained Multi-Project Scheduling Problem (MSRCMPSP)
(Pritsker et al. 1969; Bellenguez and Néron 2004). The problem with the considered con-
straints and objective functions has never been addressed in the literature.

Secondly, several solution approaches are proposed and tested to find the most effective
one. To address large industrial instances involving hundreds of projects and thousands of
operations, two greedy algorithms are first introduced: a serial scheduling generation scheme
and a parallel scheduling generation scheme with different priority rules. These priority rules
are determined using a global precedence graph, which is constructed from the precedence
graph of each individual project (which is a graph showing the critical paths for each project).
The solutions produced by the greedy algorithms are then further optimized using a memetic
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algorithm. Finally, by conducting various computational experiments, the potential gains are
quantified.

The main contributions of this paper are summarized below.

• To our knowledge, this is the first attempt to tackle the integration of both multi-project
and multi-skill versions of the RCPSP problem with an objective function other than the
makespan. A time-indexed MILP formulation of the problem is provided.

• A new Memetic Algorithm (MA) and a new Simulated Genetic Algorithm (hSGA)
are proposed for scheduling multiple projects with different resource constraints. The
proposed solution approaches are compared, using large industrial instances, to the
time-indexed MILP model, and to popular solution approaches of the literature (two
constructive heuristics, Simulated Annealing (SA) and a Genetic Algorithm (GA)).

• The MA is evaluated on benchmark instances, and the computational results show that
it stands as one of the most effective methods compared to the existing literature.

• The gap between theory and practice is reduced by considering more realistic objective
functions and constraints. As highlighted by Hartmann and Briskorn (2022), Sánchez et
al. (2022) and Rahman et al. (2020) real-world case studies are necessary to motivate
more complex models.

The paper is organized as follows. Section 2 gives an overview of the literature on project
scheduling problems. Section 3 describes the industrial problem and introduces the associated
mathematical model. The solution approaches are presented in Section 4. Section 5 provides
the numerical results used to evaluate the performance of the proposed approaches. Finally,
Section 6 concludes the paper and gives some perspectives on future work.

2 Literature review

In this section, we review the literature on the multi-project and multi-skill extensions of
the RCPSP. Section 2.1 recalls the classical RCPSP and then focuses on the multi-project
extension. Section 2.2 reviews the research on project scheduling problemswithmulti-skilled
resources. In Section 2.3, papers integrating both multiple projects and multiple skills are
discussed. The limits of the existing literature are also discussed.

2.1 Scheduling problems withmultiple projects

The resource-constrained project scheduling problem (RCPSP) is a complex optimization
problem that involves scheduling a set of activities subject to precedence constraints and
resource availability (Deblaere et al. 2011). It is an extension of the classical job shop
scheduling problem and is NP-hard in nature (Blazewicz et al. 1983). Since its formula-
tion by Pritsker et al. (1969), many extensions and solution methods have been proposed.
A comprehensive overview of the different RCPSP problems and variants can be found in
the literature such as Özdamar and Ulusoy (1995), Brucker et al. (1999), and more recently
Habibi et al. (2018) and Hartmann and Briskorn (2022). Kolisch (1996) and Kolisch and
Hartmann (2006) examine the performance of various heuristics and priority rules for the
classical RCPSP. Lancaster and Ozbayrak (2007) focus on evolutionary algorithms, while
Pellerin et al. (2020) provide a comprehensive review on recent hybrid metaheuristics.

A generalization of the RCPSP is to consider the resource-constrained multi-project
scheduling problem (RCMPSP). This extension is interesting since it is a step forward on
modeling real world problems (Lova et al. 2000). Although the same methods for modeling
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and solving the RCPSP can be applied to the RCMPSP (Drexl 1991), developing efficient
algorithms is more challenging. Dealing with several projects simultaneously significantly
increases the size of the problems to solve. The deadlines are relatively easier or harder to
meet depending on the tightness of each project, the delay penalties, etc. Additional objective
functions, such as the sum of the weighted tardiness of projects (Krüger and Scholl 2009)
can be considered and thus exploring the problem structure knowledge may increase the
efficiency of solution techniques. In fact, for the multi-project version of the RCPSP, there
are two approaches to present the links between activities (Kurtulus and Davis 1982):

1. The single-project approach, that uses two dummy activities and precedence arcs to com-
bine the projects into a single global project. The problem is then reduced from the
RCMPSP to the RCPSP and the critical paths of the projects are lost.

2. The multi-project approach, that uses (P + 1) ∗ 2 dummy activities (where P is the
number of projects) andwhere each project has its own critical path(s). Given the objective
functions considered in this paper, the multi-project approach is more appropriate and is
used to compute priority rules.

Even if most papers on project scheduling focus on solution methods for the single-
project version, there exist some work on the multi-project version. Pritsker et al. (1969) are
the first to propose a zero-one programming approach for the RCMPSP. Later, Deckro et al.
(1991) explore the model of Pritsker et al. (1969) and use a project decomposition approach
to solve larger multi-project problems. Similarly, Vercellis (1994) consider a Lagrangian
decomposition technique to solve a multi-project planning problem.

Because of the complexity of the RCMPSP, heuristics based on priority rules are widely
studied in the literature. Kurtulus and Davis (1982) experiment six new priority rules (PRs).
The authors show that priority rules computed using the multi-path method (critical paths
for each project) outperform priority rules computed on a single global graph. Browning and
Yassine (2010) analyze the performances of 20 PRs and consider various objective functions.
The authors help project managers by characterizing the best priority rule based on four
problem structure measures: Objective function, network complexity, resource distribution,
and resource contention. Lova et al. (2000) use an iterative Forward-Backward heuristic to
solve the RCMPSP and consider two time criteria (mean project delay and sum of duration of
projects), and four non-time criteria (project splitting, in-process inventory, resource leveling
and idle resources). Gonçalves et al. (2008) propose a random key genetic algorithm to solve
the RCMPSP. The genes decode the priority of the activities (computed using slack times),
the delay of each iteration g (when a new activity is scheduled) and the release date of each
project.

The Multi-Mode Resource-Constrained Multi-Project Scheduling Problem (MRCMPSP)
is an extension of the multiple project scheduling problem that has attracted the attention of
many researchers (Chen et al. 2022). In theMISTA 2013 challenge, various solution methods
were proposed tominimize, in lexicographical order, themakespan and the total project delay.
For details on the presented methods, the reader can refer to Wauters et al. (2016). Other
papers tackle the distributed (or decentralized) resource-constrainedmulti-project scheduling
problem (DRCMPSP) (Confessore et al. 2007). Multi-agent based approaches are the most
popular solution methods (Li et al. 2021).

2.2 Multiple skill resource allocation

The multi-skill resource-constrained project scheduling problem (MSRCPSP) is formalized
inBellenguez andNéron (2004). Each activity requires a certain number of (human) resources
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mastering a given skill. Since resources have multiple skills, not only which resources allo-
cated to each activity must be decided, but the allocated resources must also have the required
skills to execute the activity. Generally, skills can be classified into two types: Categorical
and hierarchical skills (Snauwaert and Vanhoucke 2023). The categorical class makes no
distinction between resources; they either possess the skill or do not. The hierarchical skill
class offers additional information about resource efficiency. Resources with higher hierar-
chical skills can, for instance, process tasks faster. Moreover, certain activities can only be
executed by a resource possessing a skill level that meets a specified minimum requirement
(Bellenguez and Néron 2004).

These additional decisions and constraints make the problem even harder to solve than
the classical RCPSP (Polo-Mejía et al. 2021; Almeida et al. 2019) and exact methods are
only considered for small instances. Among the exact approaches that can be found in the
literature, Correia and Saldanha-da Gama (2014) propose a MILP model with different valid
inequalities. The considered objective functions are the total costs and the makespan. Li and
Womer (2009) propose a hybrid MILP/CP Benders decomposition approach to solve the
MSRCPSP where activities require only one multi-skill resource. Bellenguez-Morineau and
Néron (2007) propose a branch and boundmethodwith instances having at most 32 activities,
10 resources and 5 skills. Montoya et al. (2014) propose a branch and price algorithm with
an activity and time decomposition approach and the makespan as objective function.

As for the RCPSP, heuristics based on different priority rules and metaheuristics are also
popular approaches to solve the MSRCPSP. Myszkowski et al. (2015) compare state-of-
the art priority rules using data from a real world problem. They conclude that complex
priority rules are not necessarily better than simple ones. Almeida et al. (2016) propose
a parallel scheduling generation scheme (PSGS) with activity priority rules and resource
weights to avoid a random resource selection. At each stage of the PSGS, a flow graph is
implemented to assign resources. Javanmard et al. (2017) develop a genetic-based algorithm
and a particle-swarm-based algorithm for the MSRCPSP with preemptive activities. Lin et
al. (2020) implement a genetic programming algorithm (GP) used as a high-level strategy to
select a sequence of 10 low-level heuristics (priority rule based heuristics).

For more details about multi-skill resource allocation problems, the reader is referred to
the review of Afshar-Nadjafi (2021). The author reviews 160 articles published from 2000 to
2020 and classify the articles based on the objective functions, themathematical formulations
and the solution approaches.

2.3 Multiple skills andmultiple projects scheduling problems

In the literature, few papers integrate multiple skills and multiple projects. Cui et al. (2021)
consider the multi-mode and multi-skill resource-constrained multi-project scheduling prob-
lem in high-end equipment production. A variable neighborhood search metaheuristic is
developed to solve the problem. As the objective function is the makespan, the problem can
be reduced to a single project with additional project-based precedence constraints.

Somepapers considermultiple project schedulingwithmulti-skilled resources but the only
sequencing decisions that are made are the starting order of projects (Heimerl and Kolisch
2010; Felberbauer et al. 2019;Chen et al. 2022). Similarly,Haroune et al. (2022) study amulti-
project scheduling and multi-skilled employee assignment problem with preemptive tasks.
Each project is broken down into several tasks, but without explicit precedence constraints.
A mixed-integer goal programming (MIGP) formulation to optimally solve small instances
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is implemented. A local search algorithm and a tabu search algorithm are developed to tackle
large instances provided by an IT company.

To the best of our knowledge, problems with multiple projects, multi-skilled resources,
explicit precedence constraints between activities and other objective functions than the
makespan are not studied in the literature.

3 Problemmodeling

In Sect. 3.1, the problemof heavy rolling stockmaintenance is described in detail. Information
about the activities and resources involved in the problem is also provided. In Sect. 3.2, the
mathematical model for the MSRCMPSP is presented.

3.1 Problem description

Heavy maintenance refers to the renovation and/or modernization of trains as well as the
repair of different components such as electronic cards, bogies, axles and rotors. The main
challenges in this process include achieving economic savings and reducing the environ-
mental impact of the railway industry, while also increasing passenger comfort and service
quality. During heavy maintenance, the rolling stock is immobilized for several weeks. Since
a rolling stock unit is very expensive, the primary objective of SNCF is tominimize the immo-
bilization time of these units. This is highly desirable for clients as it enables the rolling stock
units to be operational again as soon as possible. Additionally, by decreasing lead times,
idle times for resources are minimized, maintenance costs are reduced and the maintenance
process becomes more cost-effective.

The first objective, minimizing the immobilization time of rolling stock units, can be seen
as a tactical objective. In fact, each year a plan is made for the next one or two years. The plan
is communicated to the clients, and the due dates are fixed. In this way, the clients can build
their timetable based on the availability of rolling stock units. But, at the operational level,
there are many uncertainties and sometimes due to consecutive or large disturbances (e.g.,
new crashed rolling stock arrival) it is necessary to reschedule. In this case, respecting the due
dates of customers, fixed at the tactical level, is the main objective for SNCF maintenance
workshops since, to maintain the train timetable, the rolling stock units must be available on
time.

When trains enter into the workshop, some technical tests and observations are performed
to re-estimate the workload. Then, trains are uncoupled in several coaches. Components of
coaches are dismantled and repaired in parallel. To reassemble the train, the activities of
all coaches and components must be finished. Once coaches are coupled, the final activity
consists of testing the train to check that safety and quality standards are respected. Figure
1 illustrates the activity precedence graph of a very simplified maintenance procedure of a
rolling stock unit composed of only two coaches.

In the maintenance workshops, several rolling stock units, with different activities to
process and deadlines to respect, are repaired simultaneously and compete for resources. Two
kinds of renewable resources are considered: (i) Several teams having several maintenance
operators with multiple categorical skills and daily variable capacities. An example of the
characteristics of a team is shown in Table 1. The team has a different total capacity for each
period and for each skill k1 and k2. The capacities of skills k1 and k2 are computed according
to the availability and the skills of each operator. (ii) Locations in the maintenance center
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Fig. 1 Simplified activity precedence graph of rolling stock heavy maintenance

Table 1 Example of the
capacities in working hours of a
team with two skills k1 and k2

Period Team capacity Capacity skill k1 Capacity skill k2

t = 1 100 60 80

t = 2 90 50 70

t = 3 110 70 80

Fig. 2 Example of activity resource requirements

equipped with one or more installations (e.g. a garage pit and a roof access) but, for safety
reasons, only one installation at a time can be occupied. A location can be seen as a renewable
resource with multiple categorical skills (the skills being the installations at the location).

To process an activity, several resources are necessary. Each activity is composed of several
sub-tasks with a fixed order. Each sub-task requires a workload of team r ∈ R with a skill
k ∈ K (during the processing time of the sub-task and not the duration of the activity).
To execute the set of sub-tasks, an installation is always necessary (e.g., a garage pit). An
example of activity resource requirements is shown in Fig. 2:

• At period t = 1, activity a requires from team r1 a total of workload of 60 h: 20 h of skill
k1, and 40 h of skill k2. Human resources become available again at the completion of
each sub-task.

• At period t = 2, activity a requires a workload of 30 h of skill k2 from team r1 and a
workload of 20 h of skill k3 from team r2.

• An installation of type i1 which, contrary to the human resources (teams), is necessary
during the entire processing time of activity a, i.e., the processing time pa .

Since a team has multiple operators and thus a given capacity for each period and skill,
many sub-tasks can be processed in parallel (as it is the case for Task1 and Task2 in Fig. 2) as
long as the capacities of the team are not exceeded. In fact, due to long-horizon scheduling
(1 to 2 years) and the uncertainty on the number of operators, operators are not assigned.
However, we ensure to not exceed a capacity threshold for each team r ∈ R and skill k ∈ K
at each period t ∈ {1, ..., H} (constraints (10) and (11)).
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Fig. 3 Example of a solution of a problem with three activities

Furthermore, the workshop configuration is very unlikely to bemodified on the considered
scheduling horizon. Thus, we assign to each activity the locationwith the installation required
to process this activity. Since the locations have several installations, this is a multi-skill
resource assignment problem (Bellenguez and Néron (2004)).

In Fig. 3, a solution of an example with three activities, two machines m1 and m2 and
one team r1, is illustrated. A precedence constraint, with a lag time la1,a2 of one time unit,
exists between activity a1 and activity a2. Machine m1 includes two installations i1 and i2,
while machine m2 contains only installation i1 (Fig. 3b). The total capacity of r1 and the
capacities of its skills k1 and k2 are given in Fig. 3d. To simplify the example, we assume
that the capacities remain constant over time.
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In this solution, activity a1 and activity a2 are assigned to machine m1 while activity a2
is assigned to machine m2 (Fig. 3a). Figure 3c shows the workload and the total capacity of
team r1. The workload and the capacity of skill k1 of team r1 is presented in Fig. 3e. Note that
activity a3 cannot start before t = 2, since the total capacity of team r1 would be violated.

The goal is to find a resource feasible solution that minimizes the sum of the weighted
tardiness of the projects or the sum of their weighted duration. The weights are given by
the planners of SNCF (e.g. the weight of a high-speed train is usually larger than that of a
regional train). The proposed mathematical model is presented in the next section.

3.2 Mathematical model

The following notations are considered to model the MSRCMPSP.
Parameters of the model:

• H , number of periods in the horizon,
• E , set of N projects,
• dre, ready date of the project (engine) e,
• dde, due date of project e,
• we, weight of project e,
• A, set of activities to schedule,
• pa , processing time of activity a,
• Pa , set of pairs of activities: (a, a′) ∈ Pa means that activity a ∈ A must be processed

before a′ ∈ A,
• la,a′ , positive or negative lag time between (a, a′) ∈ Pa ,
• e(a), function that returns the project of activity a,
• M, set of machines (locations in the workshop with one or several installations),
• I, set of installations,
• Im , set of installations (skills) associated to machine m,

• ba,i =
{
1 if installation i ∈ I is necessary to process activity a,

0 otherwise,
• R, set of teams ,
• K, set of skills,
• WR

r ,t , total capacity of team r ∈ R at period t ∈ {1, ..., H},
• WK

r ,k,t , total capacity of team r ∈ R for skill k ∈ K at period t ∈ {1, ..., H},
• αr ,a =

{
1 if team r ∈ R is necessary to process activity a ∈ A,

0 otherwise,
• φk,a(l), workload of skill k ∈ K necessary to process a ∈ A at period l ∈ {1, ..., pa}.

Decision variables:

• Xm,a,t =
{
1 if a ∈ A start at t ∈ {1, ..., H} and m ∈ M is assigned to a,

0 otherwise.

• Ym,i,a =
{
1 if m ∈ M is assigned to a ∈ Awith installation i ∈ Im,

0 otherwise.
To keep a similar structure as the model proposed in Pritsker et al. (1969), but also to
ease the understanding of the mathematical model, the following auxiliary variables are
defined.
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Auxiliary variables:

• Sa,t =
{
1 if activity a ∈ A starts at t ∈ {1, ..., H},
0 otherwise.

Let us note that Sa,t = ∑
m∈M Xm,a,t , ∀a ∈ A,∀t ∈ {1, ..., H}.

Furthermore, the completion time and the tardiness of project e ∈ E are respectively
defined as:

Ce = max
a∈A;e(a)=e

(

H∑
t=1

t Sa,t + pa)

Te = max(0,Ce − dde)

Using the notations introduced above and based on Pritsker et al. (1969) and Bellenguez
and Néron (2004), the following MILP model is proposed.

Minimize
N∑

e=1

weTe (1)

or

Minimize
N∑

e=1

weCe (2)

subject to,

dre(a)−1∑
t=1

Sa,t = 0 ∀a ∈ A (3)

H∑
t=1

Sa,t = 1 ∀a ∈ A (4)

H∑
t=1

t Sa,t + pa + la,a′ ≤
H∑
t=1

t Sa′,t ∀(a, a′) ∈ Pa (5)

∑
a∈A

t∑
t1=max(1,t−pa)

Xm,a,t1 ≤ 1 ∀m ∈ M,∀t ∈ {1, ..., H} (6)

∑
m∈M

Xm,a,t = Sa,t ∀t ∈ {1, ..., H},∀a ∈ A (7)

H∑
t=1

Xm,a,t =
∑
i∈Im

Ym,i,a ∀m ∈ M,∀a ∈ A (8)

∑
m∈M

Ym,i,a = ba,i ∀i ∈ I,∀a ∈ A (9)

∑
a∈A

t∑
t1=max(1,t−pa)

αr ,aφk,a(t + 1 − t1)Sa,t1 ≤ WK
r ,k,t

∀r ∈ R,∀k ∈ K,∀t ∈ {1, ..., H} (10)
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∑
k∈K

∑
a∈A

t∑
t1=max(1,t−pa)

αr ,aφk,a(t + 1 − t1)Sa,t1 ≤ WR
r ,t

∀r ∈ R,∀t ∈ {1, ..., H} (11)

Sa,t ∈ {0, 1} ∀a ∈ A,∀t ∈ {1, ..., H} (12)

Xm,a,t ∈ {0, 1} ∀m ∈ M,∀a ∈ A,∀t ∈ {1, ..., H} (13)

Ym,i,a ∈ {0, 1} ∀m ∈ M,∀i ∈ I,∀a ∈ A (14)

The objective functions (1) and (2), respectively minimize the weighted sum of the tar-
diness of the projects and the weighted sum of the duration of the projects. Constraints (3)
ensure that activities cannot start before the project start date (note that dre(a) can be replaced
with the earliest starting date of each activity a ∈ A). Constraints (4) are the non-preemption
constraints, meaning that each activity has one and only one possible start date. Constraints
(5) are the precedence constraints with minimum lag times (mainly transportation times of
coaches from one location to another). An original disaggregated approach to write prece-
dence constraints was proposed by Christofides et al. (1987) and Almeida et al. (2019):

t+pa−1∑
l=1

l Sa,l + pa + la,a′ ≤
H∑
l=1

l Sa′,l ∀t ∈ {1, ..., H},∀(a, a′) ∈ Pa (15)

The main advantage of the disaggregated approach is that it has a better linear relax-
ation and can be used to reinforce the model. Constraints (6) ensure the non-duplication of
machines, i.e., that machine (location) m ∈ M is not assigned to more than one activity in a
single period t ∈ {1, ..., H}. Constraints (7) ensure the synchronization of variables Xm,a,t

and auxiliary variables Sa,t . Constraints (8) guarantee that if machine m ∈ M is assigned
to activity a ∈ A, then exactly one of its installations (skills) is used. Constraints (9) ensure
that the right installation is assigned to each activity a. Constraints (10) and (11) are the
time-varying cumulative capacity constraints. Constraints (10) ensure that the total capacity
of each skill k ∈ K of team r ∈ R is not exceeded, and constraints (11) ensure that the total
capacity of each team r ∈ R is not exceeded (Table 1). Finally, constraints (12), (13) and
(14) are the binary constraints of the decision variables. A similar model for the RCPSP with
multiple skills (without constraints (10) and constraints (11)) is proposed in Almeida et al.
(2019).

4 Solution approaches

Section 4.1 introduces two greedy algorithms and 7 priority rules. The general framework
and the different components of the proposed memetic algorithm are presented in Section
4.2.

4.1 Greedy algorithms

In the literature, there are two methods to determine feasible schedules (also called con-
structive heuristics) for the RCPSP problem (Kolisch 1996): Serial Scheduling Generation
Scheme (SSGS) and Parallel Scheduling Generation Scheme (PSGS). The SSGS performs
activity-incrementation while the PSGS performs time-incrementation. In the SSGSmethod,
at each stage g, an activity is selected among a set of eligible activities Eg (activities where
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each predecessor has already been scheduled), and scheduled at its first precedence and
resource feasible time. The selection of the activity at stage g is based on one or several
priority rules. The algorithm ends when all activities are scheduled, and the solution is a list
with the activities in their scheduled order and with their starting times. The procedure of the
algorithm is formalized in Algorithm 1.

Algorithm 1 Greedy algorithm: SSGS + Priority rule
1: for g ← 0, 2, ..., n do
2: Calculate the eligible set of activities Eg ;
3: Select one activity a ∈ Eg using a priority rule;
4: Calculate t0, the earliest precedence feasible start time:

t0 ← max{ESa , max
a′∈Prec(a)

(Sa′ + pa′ )};
5: Sa ← CheckResources(a, t0); � Return the earliest resource feasible time
6: end for

In the PSGS method, at each stage g, the smallest completion time tg among the active
activities (AActive) is calculated. Then, the eligible activities at tg in terms of precedence
constraints are computed and sorted according to a priority rule. If not all eligible activities
can be scheduled at tg due to lack of resources, activitieswith the lowest priority are postponed
to the next iteration (Algorithm 2). The algorithm ends when all activities are scheduled.

Algorithm 2 Greedy algorithm: PSGS + Priority rule
1: tg = 0
2: while still activities to schedule do
3: Calculate the eligible set of activities Eg at tg ;
4: Sort Eg according to a priority rule;
5: for a ∈ Eg do
6: if CheckResources(a, tg) = tg then
7: Schedule a at tg ;
8: else
9: Add a to Eg+1;
10: end if
11: end for
12: g ← g + 1;
13: tg ← min{Sa + pa , a ∈ AActive};
14: end while

Because of its relative ease of implementation, SSGS is more popular than PSGS, but
the performances of each method seem to be problem related (Kolisch and Hartmann 2006).
For more details about complexity, performances and priority rules used in SSGS and PSGS
the reader is referred to Hartmann and Kolisch (2000) and Kolisch and Hartmann (2006).
In this work, both SSGS and PSGS are adapted and implemented to solve the MSRCMPSP.
The main differences compared to the classical SSGS and classical PSGS stand on the
assignment of multi-skilled resources and the computation of priority rules since they depend
on the tightness of each project. The procedure that allows the availability of resources to
be checked so that an activity a may start at time t , is detailed in Algorithm 3. First, the
resource availability for each skill k ∈ K and resource r ∈ R is checked for each period
t ′ ∈ {t, t + 1, ..., t + pa}. Then, the first available machine m ∈ M is selected and assigned
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to activity a. Since machines have multiple skills, the selection of machines is based on the
number of skills as in Almeida et al. (2019).

Seven priority rules are implemented:

• EF: The activity with the minimal earliest finish time is selected,
• ES: The activity with the minimal earliest starting time is selected,
• LF: The activity with the minimal latest finish time is selected,
• LS: The activity with the minimal latest start time is selected,
• Rand: Activities are selected in a uniformly distributed random manner,
• SA: The activity with the smallest duration is selected,
• SST: The activity with the smallest slack time is selected.

The priority rules considered in this paper are among the most common ones in the
literature. They are computed using a precedence graph for each project.

Algorithm 3 Implementation of CheckResources(a, t)
1: for t ′ ← t, t + 1, ..., t + pa do
2: for ra,k ∈ Ra,t ′−t do � Ra,t ′−t is the set of resources required by
3: activity a at period t ′ − t (Figure 2).
4: Let b0 be the remaining capacity of skill k at t ′ for resource r ;
5: Let b1 be the remaining capacity of resource r at t ′;
6: if ra,k > b0 or ra,k > b1 then
7: CheckResources(a, t + 1);
8: end if
9: end for
10: end for
11: Let i ∈ I be the installation required by a;
12: if no machine m ∈ M with installation i is available during [t, t + pa [ then
13: CheckResources(a, t + 1);
14: else
15: Assign m to activity a and update remaining capacities;
16: end if
17: return t;

4.2 Memetic algorithm

The solutions determined by the greedy algorithms in Section 4.1 are improved using a
memetic algorithm (MA). A memetic algorithm combines a Genetic Algorithm (GA) and a
local search procedure which is usually applied after mutation or as a mutation operator on
the new individuals (Moscato and Cotta 2003; Gonçalves et al. 2005).

In this paper, a hybridization of simulated annealing and genetic algorithm (hSGA) is
combined with a conditional simulated annealing (SA) used as a local search procedure.
The general framework of the proposed MA for the MSRCMPSP is presented in Algorithm
4. The algorithm starts by generating an initial population of solutions. To determine good
initial solutions, and based on experimental results conducted in this research (Table 5), the
SSGS with a randomized version of priority rule LS (using a geometric distribution with
p = 0.5) as a priority rule is used. The randomization of LS ensures the diversification of
the initial population. Then, while any of the stopping criteria is not met, two parents are
randomly selected from the population.Aone-point crossover operator is used to generate two
children. Each child has a probability of Pm to mutate. The mutation operator implemented
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in this work randomly changes the position of an activity in the sequence by preserving
the precedence feasibility. Contrary to the classical generational GA and to avoid the loss
of chromosomes with high qualities, a steady-state replacement strategy (Syswerda 1991)
based on a simulated annealing method is employed. The incremental replacement can lead
to a low population diversity (Essafi et al. 2008) but simulated annealing helps to overcome
this drawback. Each child is accepted or not according to the simulated annealing procedure.
If the child is accepted, an individual among Nworst individuals is replaced with the accepted
child. A common strategy is to replace the worst individual (Chen and Shahandashti 2009)
but, in this case, the Metropolis acceptance criterion loses its sense. In fact, there is a high
probability that the accepted child with a worse objective than the current population may
be replaced before undergoing the crossover process. Accepting worse solutions into the
population not only helps in the diversification of the population (which is crucial for GA)
but also it helps to escape from a local optimum. To ensure global convergence, a cooling
scheme is applied.

Algorithm 4Memetic algorithm (MA)
1: Initialize Npop , Pc , Pm , Tinit , C , Nrem , Niter , GAiter , NSA , SAiter
2: Generate initial population using greedy algorithm;
3: while no stopping criterion satisfied do
4: Randomly select two parents;
5: Apply one-point crossover with probability Pc;
6: Apply mutation with probability Pm ;
7: for each new child c ∈ {c1, c2} do
8: Check acceptance (Metropolis criterion with temperature Tinit );
9: if c accepted then
10: Insert c in population;
11: Randomly remove a solution from Nrem worst solutions;
12: end if
13: end for
14: Tinit ← Tinit ∗ C � Decrease cooling temperature
15: Niter ← Niter + 1
16: if Niter = GAiter then
17: Randomly select NSA individuals from the current population;
18: Apply SA to each individual with Tinit as initial temperature, C/10 as cooling factor and SAiter as

stopping criterion;
19: Niter ← 0
20: end if
21: end while
22: return best solution;

The local search procedure of the proposed memetic algorithm is a SA algorithm. SA is
known for its ability to escape local optima andmany papers found that SA leads to very good
results when solving complex scheduling problems (Bouleimen and Lecocq 2003; Yugma
et al. 2012; Tamssaouet et al. 2022). The neighborhood function implemented in the SA
procedure is the Swap activity move (Asta et al. 2016). Tomaintain the precedence feasibility
of the sequence list, the move starts by randomly selecting an activity a1. Then, a second
activity a2 between the positions of the latest predecessor and the earliest successor ofa1 (with
a1 	= a2) is selected. Themove is accepted or not according to theMetropolis criterion. There
are two main methods to apply the local search procedure in a memetic algorithm (Moscato
and Cotta 2003): (i) As a mutation operator of the GA algorithm and (ii) After each iteration
to all or a part of the population. Many papers underline that the quality of a population based
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metaheuristic results from the interplay between intensification and diversification (Sörensen
and Sevaux 2006). Intensification may conduct the population to be very close to the few
first improved individuals (using local search) since the mutation probability is usually small.
Consequently the population loses its diversification. Diversification is very time consuming
(Gonçalves et al. 2005; Sevaux and Dauzère-Pérès 2003). To overcome these drawbacks,
in this work, the SA local search procedure is applied after every GAiter iterations of the
evolutionary process to NSA random individuals of the population.

All the metaheuristics implemented in this paper work on a precedence feasible activity
list. To evaluate the objective function, Algorithm 5 converts the activity list to a time feasible
schedule.

Algorithm 5 Time schedule construction algorithm
1: Let L be the (precedence feasible) list solution representation;
2: for i ← 1, 2, ..., n do
3: a ← L(i);
4: Calculate t0, the earliest precedence feasible start time: t0 ←

max{ESa , max
a′∈Prec(a)

(Sa′ + pa′ )};
5: Sa ← CheckResources(a, t0); � returns the earliest resource feasible time
6: end for

5 Computational experiments

Section 5.1 presents the design of the computational experiments and how they were con-
ducted. In Section 5.2, the MILP model is compared to MA on 10 small instances. Section
5.3 investigates the performances of SSGS, PSGS and the 7 priority rules. In Sect. 5.4, five
solution approaches (Greedy, SA, GA, hSGA and MA) are compared on 27 large instances.
The MA is evaluated on benchmark instances in Sect. 5.5. Finally, sensitivity analyses of the
MA are discussed in Sect. 5.6.

5.1 Design of experiments

The performances of the proposed solution approaches are analyzed using real industrial
instances of SNCF. The instances are extracted from the manufacturing execution system
(MES) database of the maintenance centers and are feasible. All the numerical experiments
are carried out on the two considered objective functions: Minimization of the weighted sum
of the completion times of the projects andminimization of the weighted sum of the tardiness
of the projects.

First, the MILP model is compared with the proposed MA on 10 small instances defined
based on industrial data. Table 2 provides some properties of the small instances. The number
of projects varies from 1 to 4 and the number of activities varies from 48 to 156. The
serial/parallel indicator SP (defined in Vanhoucke et al. (2008) as I2) is lower than 0.5, which
means that many activities can be performed in parallel. Note that, since the instances consist
of multiple projects, the SP values are computed using the global graph, which is formed
by the precedence graphs of each individual project. The number of teams varies from 4 to
8 with approximately 3 skills per team. The average skill strength avgSSk (Snauwaert and
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Vanhoucke 2023) is relatively small, which indicates that all the required skills are scarce,
posing a significant challenge when solving the instances. The number of machines varies
from 38 to 49 and with an average number of installations per machine from 1.2 to 1.9. For
the small instances, very few machines (one or two) were critical. To diversify the instances,
data from two different heavy maintenance centers are used.

The MILP model is solved by the standard solver IBM ILOG CPLEX 20.1 with default
parameters. The memetic algorithm is implemented in C++ and the numerical experiments
were carried out on a personal computer with a 1.60 GHz processor and 16 Gb RAM. To
compare the convergence efficiency over time, the computational time is limited first to 600 s
and then to 3600 s. The results are summarized in Sect. 5.2 and show that MA outperforms
the MILP model on both the quality of solutions and the convergence efficiency.

Then, computational experiments are conducted on 27 large instances with 14 to 380
projects and 1539 to 7119 activities. The large instances correspond to real cases and are
provided from three heavy maintenance centers which repair different types of rolling stock
units. Since many projects are considered simultaneously, a large number of activities can be
executed in parallel. Consequently, the SP values of the large instances are even smaller in
comparison to the SP values of the small instances. The number of teams varies from 9 to 21
with an average number of skills per team between 2.9 and 5.2. The average skill strength is
very small (lower than 0.14) because, at the tactical level, the resources are sized to reduce
the idle times. The number of machines varies from 52 to 107 with an average number of
installations per machine between 1.5 and 2.1. Additional properties of the instances can be
found in Table 2.

In Sect. 5.3, SSGS is compared to PSGS with the 7 priority rules described in Sect. 4.1.
The results show that SSGS outperforms PSGS and that LS is the best priority rule for both
objective functions. Five algorithms are compared in Sect. 5.4: Greedy, SA, GA, hSGA and
MA. The algorithms are implemented in C++ and empirically parameterized in the following
manner:

• Greedy: Refers to SSGS+LS,
• SA: Simulated Annealing algorithm with the following parameters:

– Initial temperature: Tinit = 24 for SWTP and Tinit = 48 for SWDP,
– Cooling factor: C = 0.99999,

• GA: Genetic Algorithm with the following parameters:

– Population size: Npop = 120,
– One-point crossover probability: Pc = 0.95,
– Mutation probability: Pm = 0.75,
– Linear ranking selection (Hartmann 1998) method is used for selecting the next

generation,

• hSGA: hybrid Simulated Genetic Algorithm with the same parameters as above and
Nrem = 40,

• MA: Memetic Algorithm with the same parameters as hSGA and GAiter = 2500 itera-
tions, NSA = 4 and SAiter = 2000.

The parameter tuning is done step by step. First the SA parameters are tuned as in Knopp
et al. (2017). By computing the first 100 moves which deteriorates the solution, the 2%
percentile on some training instances was calculated. We found that, in most of the cases,
the 2% percentile is approximately 24 for the SWTP objective and approximately 48 for the
SWDP objective. Note that 24 correspond to 24 hours, which is the duration of most of the
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activities. Secondly, by empirically testing different values (as in Hartmann (1998)) of the
population size, mutation and crossover probabilities, the parameters of the GAwere set. The
mutation probability (0.75) is notably larger than what is commonly found in papers of the
literature that use GA for solving the RCPSP. However, it seems that, for complex and large
problems, it is usually better to have a highmutation probability (Elloumi and Fortemps 2010;
Murata et al. 1996). For the hGSA, the same parameters of SA and GA are used but; to keep
a diversified population and to exploit the advantages of the simulated annealing approach,
several values of Nrem (10, 20, 30, 40, 50) were tested. The best results were obtained for
Nrem = 40. Finally, for the MA, the value of GAiter is the number of iterations required
for the GA algorithm to converge towards a good solution. After reaching approximately
2 500 iterations (equivalent to 5 000 schedules), the convergence of the GA significantly
decelerates. Adjusting parameters NSA and SAiter is challenging, because large values may
lead to premature convergence (Sörensen and Sevaux 2006). Consequently, small values are
preferred and have been tested by trying different values (2, 4, 6, 8, 10 for NSA and 2000,
4000, 6000, 8000, 10000 for SAiter ).

The computational time limits were chosen to evaluate the quality of the approaches in a
limited amount of time (600 s) and if longer computational times are allowed (1800 and 3600
s). The requirements in terms of computational times from the planners of SNCF depend
on how the optimization is used (for generating an initial complete schedule or to perform
simulations by varying input parameters).

5.2 Comparison of MILP andMA

In this section, the performances of the MILP model and the proposed MA are compared.
Table 3 shows the numerical results and the percentage improvement PI (in %) after 300 s of
computational time, while Table 4 shows the results obtained after 3600 s of computational
time.

PI is defined as follows:

P I (%) = MI LPObj − MAObj

M I LPObj
∗ 100,

where MAObj is the objective value of the best solution determined by MA and MI LPObj

is the objective value found by CPLEX. Column LB is the lower bound found by CPLEX
after 3600 s, column Gap is the gap between LB and the objective value of the MILP, while
GapMA is the gap between LB and the solution found by MA. The cells filled with “–”
indicate that no feasible solution is found by CPLEX, while the cells filled with “*” indicate
that the solution found by CPLEX is optimal.

Regarding the SWDP objective function, Table 3 shows a clear dominance of MA, which
obtains the best solution for 8 instances out of 10 and equivalent solutions for the 2 remaining
instances. The improvement becomes particularly significant when the instances have more
than 90 activities. CPLEX obtained an optimal solution in less than 300 s for only 2 instances.
For Instance N_3_144, the solver could not find a feasible solution. For Instances N_3_144
and S_4_156, GapMA is relatively large (6% and 7.5%), but as CPLEX struggles to find good
solutions, it is likely that the lower bound LB is of poor quality.

Regarding the SWTP objective function, MA found the best solution for 8 instances out
of 10 and equivalent solution for Instance S_2_58 with a large PI (>78%) for instances with
more than 90 activities. For Instance N_2_57, the solver outperforms the proposed MA.
Instance N_2_57 has the smallest avgSSk and also the average number of skills per machine
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is larger than in other instances with less than 60 activities, which makes it harder to solve
to optimality.

However, after 3600 s of computational time,MAobtains the optimal solution for Instance
N_2_57. All instances with less than 60 activities were optimally solved by both CPLEX
and MA. For the other instances, MA outperforms CPLEX with a PI larger than 15% for
the SWDP objective function and larger than 65.9% for the SWTP objective function. For
Instance N_3_144, the solver still could not find a feasible solution while MA reduces its gap
from the LB from 6% to 2.3% after 3600 s, which indicates the capability of MA to address
hard instances. Concerning the SWTP objective function, large gaps between the solution of
MA and the lower bound for the Instances S_3_127, N_3_105 and N_3_144 (respectively
29.5%, 28.6% and 27.8%) can be observed. This is likely due to the small values of the
objective function and the poor quality of the lower bounds.

Tables 3 and 4 illustrate the superiority of the proposed MA over CPLEX for the
MSRCMPSP. The percentage improvement increases with the size of the instances. The
performances of CPLEX could be improved by better tuning the parameters or applying
a warm start for example. However, as the real instances include several thousand activi-
ties, CPLEX is not adapted to solve the industrial instances. Memory limitations actually
prevented us from obtaining even a lower bound for the large real instances.

5.3 Performance of greedy algorithms

In this section, we investigate the performances of SSGS and PSGS tested with the 7 priority
rules detailed in Sect. 4.1. Table 5 summarizes the numerical results obtained using the 27
large instances (the detailed results for each instance can be found in Table 11 of Appendix
A). Column "#best" gives the number of instances where the corresponding priority rule
found the best solution. Column "avg gap (%)" shows the average gap (in %) from the best
solution and "max gap (%)" is the maximal gap among the 27 instances. The computational
times are not given since both SSGS and PSGS need less than 1 (approximately 5ms) to
compute a solution.

The first observation is that the serial scheduling scheme is superior to the parallel schedul-
ing scheme. Column "#best" of Table 5 shows that SSGS found a better solution than PSGS
for the 27 considered instances. The average gap of PSGS is at least 47% for the SWDP
objective and at least 90% for the SWTP objective. Kolisch and Hartmann (2006) and Hart-
mann and Kolisch (2000) concluded that SSGS is better than PSGS for complex problems.
In this paper, this significant gap can be explained by the large size of the problem. Having
several projects with different characteristics and deadlines makes the problem very complex
to solve. The gap is even larger for the SWTP objective function since scheduling in parallel
is very myopic regarding the deadline tightness of projects.

Among the 7 considered priority rules, the best one is LS with 22 best solutions found
out of 27 for both objective functions. The second best priority rule is LF which found 4 best
solutions out of 27 instances for SWDP and 5 best solutions out of 27 instances for SWTP.
LS is also the most robust priority rule since LS has the smallest average gap and the smallest
maximum gap for both objective functions. Hence, SSGS+LS is used to generate the initial
solution of the different metaheuristics. When a population of initial solutions is needed, a
randomized version of LS is used as a priority rule to generate the individuals. The numerical
results obtained by the metaheuristics are discussed in the next section.
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Table 5 SSGS vs. PSGS: Performance of priority rules and associated gap from the best solution found by
SSGS or PSGS

SWDP SWTP

Algorithm PR #best Avg gap
(%)

max
gap(%)

#best Avg gap
(%)

Max gap
(%)

SSGS EF 0 8.9 13.0 0 54.4 83.3

ES 1 4.0 7.9 0 40.0 78.7

LF 4 3.9 9.1 5 22.2 60.2

LS 22 0.4 4.8 22 0.9 8.3

Rand 0 20.3 31.4 0 78.8 94.3

SA 0 36.7 58.9 0 88.2 95.2

SST 0 17.2 26.2 0 71.9 91.4

PSGS EF 0 47.3 57.3 0 90.7 98.1

ES 0 47.7 61.6 0 90.7 98.5

LF 0 47.5 61.5 0 90.3 98.1

LS 0 46.3 56.9 0 90.1 98.5

Rand 0 57.1 72.7 0 93.9 99.2

SA 0 56.9 76.0 0 93.8 99.3

SST 0 58.7 80.5 0 93.3 99.2

5.4 Comparison of heuristics

Five algorithms are compared in this section: Greedy, SA,GA, hSGAandMA. The results are
presented after 600, 1800 and 3600 s for both considered objective functions. The detailed
results for each large instance are presented in the 6 tables of Appendix B which have a
similar structure (Tables 12, 13, 14, 15, 16, and 17). The tables show the objective value for
each algorithm and the associated gap (column "%Gap") from the best solution highlighted
in bold.

A summary of the results can be found in Table 6 for the SWDP objective and in Table
8 for the SWTP objective. Column "#best" provides the number of best solutions found by
the corresponding algorithm over the 27 large instances. To analyze the efficiency and the
robustness of each algorithm, the average, the standard deviation and the maximal gap from
the best solution are also provided.

Let us first analyze the results obtained for the SWDP objective. When the computational
time is limited to 600 s, from Tables 12 and 6, note that, out of 27 instances MA finds the
best solution for 19 instances and hSGA finds the best solution for 9 instances. No best
solution is determined by the other algorithms. Consequently, MA and hSGA outperform the
Greedy algorithm, GA and SA. MA is slightly better than hSGA since the average gap for
MA is equal to 0.1% while the average gap of hSGA is around 0.4%. When compared to the
greedy algorithm which is used to generate the initial solutions, MA improves the solutions
by around 8%. The maximal gap of the Greedy algorithm is 15.6%. Even if SSGS+LS (i.e.,
the Greedy algorithm) seems to have good results in Sect. 5.3 compared to PSGS and the
other priority rules, still a significant improvement is obtained with the proposed MA.

Regarding the maximal gap, MA is also robust because its worst gap is around 0.8%.
The worst gap is obtained for Instance S_21 which has the larger number of activities. In
the evolutionary process, many decisions are made randomly. Thus, for large instances it
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Table 6 Summary of results on the performances of the metaheuristics for objective function SWDP

CPU Algorithm #best Avg gap (%) Std gap (%) Max gap (%)

600 SSGS 0 8.1 2.9 15.6

SA 0 1.7 0.8 3.5

GA 0 4.0 1.5 6.8

hSGA 9 0.4 0.4 1.5

MA 19 0.1 0.2 0.8

1800 SSGS 0 8.6 2.9 16.5

SA 1 1.4 0.8 2.8

GA 0 4.0 1.4 6.5

hSGA 8 0.4 0.4 1.4

MA 18 0.1 0.3 1.1

3600 SSGS 0 8.8 3.0 16.6

SA 1 1.2 0.8 2.8

GA 0 4.0 1.5 6.6

hSGA 8 0.4 0.4 1.7

MA 18 0.1 0.2 1.0

is more difficult to control the convergence. Since GA has worse results compared to SA
(with respectively an average gap of 1.7% and 4.0% in Table 6), the fact that the simulated
annealing procedure helps to escape local optimum is very important when dealing with
large instances and complex problems. Similar conclusions were drawn in Tamssaouet et al.
(2022).

Furthermore, after 1800 s of computational time, SA closes the gap from the best solutions.
Table 6 shows that SA has an average gap of 1.7% and a maximal gap of 3.5% after 600 s but
that after 1800 s the average gap reduces to 1.4% and the maximum gap to 2.8%. SA even
finds the best solution for Instance N_b_21_3 (Table 13). However, MA remains the best
metaheuristic with 18 best solutions out of 27, followed by hSGA with 8 best solutions. The
gap of the Greedy algorithm increases (from 8.1% to 8.6%), meaning that the metaheuristics
can still improve the solution after 600 s. In particular, the gap difference between the greedy
Algorithm and MA increases from 8% to 8.5%.

Similar observations can be derived when the computational time is limited to 3600 s. SA
still closes the gap (from 1.4% to 1.2%) and the number of best solutions found is the same
as after 1800 s. However, the best solutions determined byMA, hSGA and SA are not for the
same instances as in Table 13. In Table 13, the best solution found by SA was for Instance
N_b_21_3 but, in Table 14 the best solution found by SA is for Instance N_22_3. Another
difference can be observed for Instances N_b_22_ot and N_b_21_1 where MA overcomes
hSGA. However, for Instances S_21_2 and S_22_3, hSGA overcome MA. The gap of the
Greedy algorithm still increases from 8.6% after 1800 s to 8.8% after 3600 s. Details on the
percentage of improvement (PI) over time are illustrated in Table 7. These results confirm
the complexity of the problem and that finding the optimal solution is difficult.

Considering the results presented so far, MA is the most appropriate approach to solve
the MSRCMPSP with SWDP as objective function. SA can close the gap over time, which
makes SA a very good candidate for the local search procedure of a memetic algorithm.
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Table 7 Convergence
performances of the
metaheuristics: Mean of the PI
(in %) of the initial solutions
provided by SSGS

SWDP SWTP

CPU SA GA hSGA MA SA GA hSGA MA

600 6.5 4.3 7.7 8.0 43.1 44.4 49.2 50.0

1800 7.2 4.8 8.2 8.5 45.3 45.6 50.3 50.9

3600 7.7 5.0 8.5 8.7 46.5 46.0 51.0 51.4

Table 8 Summary of results on the performances of the metaheuristics for objective function SWTP

CPU Algorithm #best Avg gap (%) Std gap (%) Max gap (%)

600 SSGS 0 51.0 13.3 73.5

SA 0 14.6 8.1 29.1

GA 1 12.4 9.6 33.3

hSGA 14 3.7 5.4 21.2

MA 14 2.3 3.5 11.6

1800 SSGS 0 52.1 13.2 73.5

SA 0 13.0 7.7 28.7

GA 2 12.3 9.8 33.4

hSGA 13 3.8 5.3 18.8

MA 14 2.5 3.6 11.1

3600 SSGS 0 52.6 13.2 73.5

SA 0 11.9 6.9 27.0

GA 0 12.5 9.6 31.9

hSGA 14 3.5 5.0 19.2

MA 15 2.5 3.4 8.8

The same analysis is conducted for the SWTP objective function. Table 8 presents the
summary of the results for the 27 instances.

After 600 s of computational time, MA and hSGA both find the best solution for 14
instances. One best solution was found by GA for Instance S_22_2 but the gap with the
solution found by MA is only 0.9%, which represents less than one day of total delay for 69
projects (Table 15). MA remains the best approach with an average gap of 2.3%, while the
second best approach is hSGA with an average gap of 3.7%. MA also has the best maximal
gap (11.6%) and the best standard deviation gap (3.5%), confirming the robustness of MA
compared to the other approaches. In particular, the average gap of the Greedy algorithm
is 51%, which implies that the tardiness is approximately reduced by a factor of 2. SA and
GA have good results as well with an average gap smaller than 15% but their efficiency is
not stable since the maximum gap is respectively 33.3% for SA and 29.3% for GA. Once
again, this instability can be justified by the complexity of the problem with many projects,
activities, teams, machines, skills and constraints. When neighborhood exploration is too
random, it may be difficult for the metaheuristics to select promising moves. Table 5 in
Section 5.3 shows significant gaps as well, i.e., SSGS and PSGS determine solutions that are
far from an optimal solution.

When the computational time is limited to 1800 s, several observations can bemade (Table
16):
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• hSGA finds 13 best solutions whereas MA still finds 14 best solutions out of 27 and GA
determines one additional best solution, i.e., 2 best solutions.

• As for the SWDP objective, hSGA converges better thanMA for some instances towards
the best solution after 1800 s (for example Instance S_21_3). On the contrary, MA
overcomes hSGA for Instance N_21_2.

• SA closes the gap from 14.6% after 600 s to 13% after 1800 s. The othermetaheuristics do
not considerably improve the solutions since the gap of the Greedy algorithm deteriorates
by only 1%.MA and hSGA struggle to improve the solutions (Table 7) and consequently,
their average gap slightly deteriorates (from 2.3% to 2.5% forMA and from 3.7% to 3.8%
for hSGA).

However, MA improves the maximal gap, in particular when the computational time is
limited to 3600 s. The maximal gap of MA decreases from 11.6% after 600 s to 8.8% after
3600 s, which confirms its robustness. SA, GA and hSGA still have significant maximal
gaps (respectively 27%, 31.9% and 19.2%). hSGA overcomes GA for Instances S_22_2 and
S_21_2 for which GA finds a better solution after 1800 s (Table 16). As for the SWDP
objective, accepting worse solutions using the Metropolis criterion allows local optima for
the SWTP objective to be escaped.

In view of the results, the intensification in the memetic algorithm, ensured by the local
search procedure, increases the average quality of solutions and the robustness of the proposed
solution approach. Hence, MA is the best approach to solve the MSRCMPSP. However, in
terms of best solutions, hSGA and MA are quite equivalent when SWTP is considered as
objective function. These results illustrate that there is still room for improvement and in
particular in the intensification mechanism ensured by SA, as SA consistently improves its
average gap (for example from 13.0% after 1800 s to 11.9% after 3600 s). An interesting
perspective would be to better choose the visited neighborhood. The evaluation of moves is
very time-consuming, by discarding uninteresting moves considerable computational time
can be saved (Dauzère-Pérès and Paulli 1997; Mati et al. 2011). Hence, with the same time
allocated to the intensification part, a more promising neighborhood could be explored. This
would probably improve the convergence and the results of the proposed memetic algorithm
and the results of SA as well.

5.5 Comparison on benchmark datasets

To the best of our knowledge a benchmark dataset with both multiple projects and multiple
skills does not exist in the literature. Since our objective functions are only meaningful in the
context of multiple projects, we conducted experiments on the instances of the Multi-Project
Scheduling Problem library (MPSPLib: http://www.mpsplib.com/, July 2023). The library
contains 20 datasets with a total of 140 instances built by combining several RCPSP instances
of Kolisch and Sprecher (1997). The number of projects varies from 2 to 20 and the number of
activities varies from 60 to 2 400. For more details about the characteristics of these datasets,
the reader is referred to Wauters et al. (2015). The memetic algorithm is compared with
the sequential learning-based metaheuristic of Wauters et al. (2015), which is reported to be
one of the best (decentralized) solution approaches of the literature (Bredael and Vanhoucke
2022). Their solution approach consists of a sequence learning game played by several project
managers. Each manager learns both a local activity list (using reinforcement learning) and a
global activity list containing all the activities of all projects. The global activity list is build
by adding all the activities of the first project, then the activities of the second project, and so
on. Finally, the global list is transformed into a feasible schedule by using the classical serial
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generation scheme. To ensure a fair comparison, the same stopping criterion (i.e. 100 000
schedules) is used. After preliminary experiments and since the objective values are smaller
than the objective values of the real instances, an initial temperature Tinit = 2.5 was set. The
other parameters of the proposed memetic algorithm remain unchanged.

Table 9 presents the results of the first configuration (ADP1, Time1 in seconds, and Gap1
in %). The proposed memetic algorithm shows good performance when the average project
delay (ADP) is small (less than 30). For example, better solutions are found by MA for
Instances MP120_20, MP30_2, MP30_5, MP90_2 and MP90_5. On the contrary, when the
ADP is large, MA does not perform well.

The problem subsets with large ADP have an significant resource Average Utilization
Factor (AUF) (Kurtulus and Davis 1982 and the MPSPLib web site). In this case, and as
it is underlined in Asta et al. (2016) and Bredael and Vanhoucke (2022), the prioritization
of the projects is very important. At the SNCF maintenance centers, the arrival times of
the rolling stock (i.e. the starting time of the projects) are decided at a tactical level to
avoid overloading the available resources. Hence, the prioritization of the projects was not
really necessary. However, we have implemented several neighborhood operators and, among
them, a novel one which handles the project priorities (more precisely the priorities of the
different phases of a project). The novel neighborhood operator (SortActivities) consists of
selecting a sublist from the global activity list, with a random size uniformly distributed
between 3 and |A|/2. The activities of the sublist are then sorted by project delay while
conserving the initial order of the activities of a same project. For example, if the following
sublist is selected: [1(1), 2(2), 3(2), 4(1)] (where a(n) means that the activity a of project
n is in the sublist), and project 1 has a larger delay compared to project 2, after applying
the SortActivities neighborhood function, the sublist becomes: [1(1), 4(1), 2(2), 3(2)]. The
SortActivitiesneighborhood function is added as amutationoperator in thememetic algorithm
of Sect. 4.2. Thememetic algorithmhas now twomutation operatorswith the sameprobability
of being selected. The original one is kept to help the exploration of additional solutions by the
SortActivities function. This is the second configuration of our proposed memetic algorithm
and the results (ADP2, Time2 (in seconds), and Gap2 (in %)) are detailed in Table 9. The
gap is considerably reduced for the instances with large ADP values. For Problem subset
MP120_20AC, Gap1 was −108% and the second configuration reduces the gap to −4.4%.
Generally speaking, the average gap over all instances is reduced from −32.2% to 6.4%.
The memetic algorithm with the second configuration obtains better results for 15 datasets
out of 20 compared to the learning approach of Wauters et al. (2015), leading to an average
improvement over all instances of 6.4%. In terms of computational times, the proposed
memetic algorithm is on average at least 3 times faster for the first configuration and 4 times
faster with the second configuration (note that, when the solution quality is poor, Algorithm
3 requires more time, which explains the difference of computational times between Time1
and Time2).

Let us note that, for the instances with small ADP values, the second configuration still
finds better solutions compared to the learning approach of Wauters et al. (2015), but does
worse than the first configuration (for Instances MP30_2, MP90_2, MP90_5 and MP30_5).
In view of the results, the SortActivities mutation operator should be used when the problem
has a large AUF. That is why the SortActivities mutation operator is not useful to solve the
real instances of SNCF.

The column GapBest gives the best gap between Gap1 and Gap2. If the appropriate
configuration of the memetic algorithm is chosen, an overall average improvement of the
ADP of 7.7% can be achieved. Even if our algorithm was not initially built to solve the
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Table 10 Sensitivity of MA: Impact of input parameters with CPU time limited to 600 s

SWDP SWTP
Npop Tinit Nrem Pm Avg gap (%) Npop Tinit Nrem Pm Avg gap (%)

60 48 40 0.75 1.3 60 24 40 0.75 14.1

80 48 40 0.75 0.2 80 24 40 0.75 9.7

120 48 40 0.75 0.2 120 24 40 0.75 2.8

180 48 40 0.75 0.3 180 24 40 0.75 2.7

240 48 40 0.75 0.8 240 24 40 0.75 2.9

120 12 40 0.75 1.6 120 12 40 0.75 3.1

120 24 40 0.75 0.5 120 24 40 0.75 2.8

120 36 40 0.75 0.4 120 36 40 0.75 5.8

120 48 40 0.75 0.2 120 48 40 0.75 6.3

120 60 40 0.75 0.4 120 60 40 0.75 11.3

120 48 10 0.75 2.7 120 24 10 0.75 15.3

120 48 20 0.75 1.8 120 24 20 0.75 12.8

120 48 30 0.75 0.7 120 24 30 0.75 8.4

120 48 40 0.75 0.2 120 24 40 0.75 2.8

120 48 50 0.75 0.3 120 24 50 0.75 2.1

120 48 40 0.05 3.1 120 24 40 0.05 9.5

120 48 40 0.1 2.8 120 24 40 0.1 7.3

120 48 40 0.5 1.3 120 24 40 0.5 4.6

120 48 40 0.75 0.2 120 24 40 0.75 2.8

120 48 40 0.85 0.3 120 24 40 0.85 2.0

MSPSLib instances, it shows very promising results and could be generalized to solve other
related problems.

5.6 Sensitivity analyses

An efficient hybrid metaheuristic requires the configuration of many parameters (Pellerin et
al. 2020). Table 10 reports the average gap from the best solution obtained by the different
configurations of MA. The computational experiments are conducted on the real instances of
SNCF and MA is stopped after 600 s. In this sensitivity analysis, for the sake of brevity and,
since they have been identified as themost influential factors during preliminary experiments,
we exclusively focus on the parameters Npop , Tinit , Nrem and Pm .

In each row of Table 10, only a single parameter is changed from the initial configuration
of MA. Regarding the SWPD objective function, the largest average gaps are obtained for
small values of Pm and Nrem (resp. 3.1% and 2.7%), which are both useful for keeping
a diversified population. Similar conclusions can be drawn when the objective function is
SWTP.

Regarding the population size, note that, for the SWTP objective function, a larger value
(180) is more suitable while, for the SWDP objective function, a lower population (between
80 and 120) performs better. The primary reason could be that numerous individuals yield the
same objective values for the SWTPobjective function. In fact, a neighborhoodmove can lead
to a different solution but it may not impact the tardiness of the projects and hence, a larger
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population is necessary to prevent the population to be homogeneous (Van Peteghem and
Vanhoucke 2010). This observation could also indicate why the suggested MA demonstrates
improved performance with larger values of Pm and Nrem for the SWTP objective function
(resp. 0.85 and 50) compared to the SWDP objective function (resp. 0.75 and 40).

This analysis shows the importance of a proper parameter tuning for the success of a
(hybrid) metaheuristic. Except for the initial temperature, we chose a uniform configuration
for both of the considered objective functions to facilitate the use of the algorithm.

6 Conclusions

This paper studies an original industrial RCPSP problem with multiple skills and multiple
projects, which corresponds to a real case in the heavy maintenance centers of railway rolling
stock. Two objective functions are considered: (i) Minimization of the sum of the weighted
tardiness of the projects and (ii) Minimization the sum of the weighted duration of the
projects. A time-indexedMILP formulation of the problem is provided, and two constructive
heuristics (serial and parallel scheduling generation schemes) are implemented and tested
with 7 priority rules on 27 large real instances. The solutions provided by SSGS+LS are
used as initial solutions and are improved using four metaheuristics: SA, GA, hSGA and
MA. Several computational experiments were conducted in this study. The first experiment
compared the MILP model and the proposed memetic algorithm (MA) on 10 small instances
defined using industrial data. The results showed that MA outperforms the MILP model
after 300 and 3600 s of computational time, in particular for instances with more than 90
activities. Larger gaps were observed when the objective function was to minimize the sum
of the weighted tardiness of the projects (SWTP). In the second experiment, the performance
of 7 priority rules implemented in the serial scheduling generation scheme (SSGS) and the
parallel scheduling generation scheme (PSGS)were evaluated using 27 large instances. SSGS
found the best solution for the 27 instances, while none were found by PSGS. Among the
priority rules, the Latest Start (LS) rule had the best performance, with 22 best solutions
found out of 27 for both objective functions.

Finally, the performance of the memetic algorithmwas compared to SSGS+LS, simulated
annealing (SA), genetic algorithm (GA), and hybrid simulated annealing and genetic algo-
rithm (hSGA) with computational times limited to 600, 1800, and 3600 s. MA has the best
average gap and the smallest maximal gap, indicating a high level of stability. In particular,
for the SWDP objective function, an average improvement of 8% of the initial solutions
provided by the Greedy algorithm was observed. For the SWTP objective function, the total
delay was reduced by a factor of 2. Furthermore, an overall average improvement of the
ADP of 7.7% was achieved for the benchmark instances. In view of the results, the memetic
algorithm is being integrated into the MES of SNCF maintenance centers. The scheduling
horizon is decided by the planners, and all the activities starting beyond the starting date of
the scheduling horizon are (re)scheduled.

Despite the promising results obtained by the memetic algorithm, several areas for
improvement can be identified. One potential direction for future research is to conduct
a more advanced sensitivity analysis of the proposed algorithm to optimize its configuration.
The proposed approach requires the initialization of numerous parameters, and characterizing
the most robust configuration can be a challenging task. A self-adapting component would
be of great value for MA to solve other SNCF instances in the future, which may be different
from the considered instances. Additionally, as previously discussed, a better exploration of
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promising neighborhood moves may save computational time and improve the convergence
of the memetic algorithm.

Another area of future research is to consider the stochastic version of the problem. In
the context of heavy maintenance, many operations are performed by human operators and
processing times are uncertain.Moreover, uncertain additional tasksmay also be encountered.
Therefore, defining robust scheduleswould be helpful tomeet customer deadlines. A possible
robustness measure would be to maximize the chances of meeting project deadlines. Similar
robustness measures, such as the service level, are proposed in Dauzère-Pérès et al. (2008).
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Table 11 SSGS vs. PSGS: Performance of priority rules and associated gap from the best solution found by
SSGS or PSGS (details for each instance)

SWDP SWTP
Instance PR SSGS %Gap PSGS %Gap SSGS %Gap PSGS %Gap

B_21 EF 24630 3.8 37618 37.0 2803 15.9 14844 84.1

ES 23865 0.8 39279 39.7 2461 4.2 16510 85.7

LF 23683 0.0 40052 40.9 2817 16.3 14685 83.9

LS 24315 2.6 39223 39.6 2357 0.0 14841 84.1

Rand 34333 31.0 38145 37.9 13820 82.9 19218 87.7

SA 44752 47.1 43419 45.5 22456 89.5 20677 88.6

SST 27484 13.8 44654 47.0 4305 45.2 24545 90.4

B_21_22 EF 40512 6.8 64308 41.3 6540 35.6 29385 85.7

ES 38655 2.3 64781 41.7 5318 20.8 29873 85.9

LF 37757 0.0 66343 43.1 4423 4.7 32118 86.9

LS 39648 4.8 63827 40.8 4214 0.0 27481 84.7

Rand 50745 25.6 75132 49.7 25964 83.8 35808 88.2

SA 62223 39.3 86967 56.6 27981 84.9 52101 91.9

SST 43536 13.3 84985 55.6 8474 50.3 39436 89.3

B_22 EF 14385 7.8 21013 36.9 2326 57.0 8845 88.7

ES 13604 2.5 20248 34.5 1760 43.1 8080 87.6

LF 13301 0.3 22048 39.9 1001 0.0 11265 91.1

LS 13259 0.0 20764 36.1 1038 3.6 10258 90.2

Rand 14301 7.3 22450 40.9 2284 56.2 12854 92.2

SA 22894 42.1 29185 54.6 10954 90.9 17017 94.1

SST 15704 15.6 32051 58.6 3703 73.0 14237 93.0

N_21 EF 126028 8.7 211432 45.6 14780 58.4 62085 90.1

ES 118677 3.0 202209 43.1 9552 35.6 52767 88.3

LF 121863 5.6 206036 44.2 10254 40.0 62444 90.2

LS 115060 0.0 203812 43.5 6150 0.0 60020 89.8

Rand 152451 24.5 292933 60.7 31433 80.4 125190 95.1

SA 208886 44.9 273061 57.9 96524 93.6 121578 94.9

SST 137554 16.4 303320 62.1 32915 81.3 100162 93.9

N_21_1 EF 120021 8.3 203515 45.9 19516 34.5 72364 82.3

ES 112236 2.0 189397 41.9 13606 6.0 58581 78.2

LF 116448 5.5 204187 46.1 14745 13.3 68648 81.4

LS 110022 0.0 199111 44.7 12791 0.0 68837 81.4

Rand 159900 31.2 266038 58.6 35401 63.9 117622 89.1

SA 197827 44.4 253144 56.5 97634 86.9 120908 89.4

SST 132789 17.1 261771 58.0 44622 71.3 123717 89.7
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Table 11 continued

SWDP SWTP
Instance PR SSGS %Gap PSGS %Gap SSGS %Gap PSGS %Gap

N_21_2 EF 102208 8.2 169103 44.5 11408 50.7 48932 88.5

ES 95181 1.5 171510 45.3 7019 19.9 51558 89.1

LF 99497 5.7 175728 46.6 6621 15.1 54412 89.7

LS 93778 0.0 167026 43.9 5621 0.0 40852 86.2

Rand 111714 16.1 220777 57.5 22785 75.3 78779 92.9

SA 158113 40.7 197210 52.4 65826 91.5 74517 92.5

SST 106562 12.0 225685 58.4 15714 64.2 81507 93.1

N_21_3 EF 127789 6.9 222535 46.5 19760 41.0 79811 85.4

ES 119335 0.3 213107 44.2 13175 11.5 70106 83.4

LF 123025 3.3 228166 47.8 13092 11.0 60491 80.7

LS 118989 0.0 220178 46.0 11657 0.0 74386 84.3

Rand 157803 24.6 297886 60.1 43254 73.0 146218 92.0

SA 227993 47.8 299121 60.2 119267 90.2 155780 92.5

SST 147954 19.6 318400 62.6 45272 74.3 123376 90.6

N_22 EF 53345 8.0 111400 55.9 5971 82.2 56866 98.1

ES 52118 5.8 127674 61.6 4989 78.7 72555 98.5

LF 49903 1.7 127333 61.5 2668 60.2 55580 98.1

LS 49078 0.0 107352 54.3 1063 0.0 70119 98.5

Rand 64014 23.3 179505 72.7 18676 94.3 127516 99.2

SA 65306 24.8 204734 76.0 17572 94.0 149821 99.3

SST 59987 18.2 251311 80.5 6146 82.7 136541 99.2

N_22_ot EF 71249 8.6 133743 51.3 6017 83.3 41395 97.6

ES 67110 3.0 118880 45.2 2751 63.4 24466 95.9

LF 67879 4.1 135783 52.1 1199 16.0 31204 96.8

LS 65088 0.0 124235 47.6 1007 0.0 22982 95.6

Rand 76826 15.3 149563 56.5 13047 92.3 54927 98.2

SA 79790 18.4 139871 53.5 12697 92.1 46407 97.8

SST 76135 14.5 150025 56.6 4025 75.0 33424 97.0

N_22_1 EF 61478 9.4 115416 51.7 6874 78.8 38575 96.2

ES 57762 3.6 101663 45.2 4009 63.7 25398 94.3

LF 58632 5.0 106274 47.6 2549 43.0 21916 93.4

LS 55692 0.0 104366 46.6 1454 0.0 24669 94.1

Rand 67217 17.1 137884 59.6 11286 87.1 59793 97.6

SA 74121 24.9 125950 55.8 17548 91.7 46218 96.9

SST 62071 10.3 127285 56.2 5111 71.6 37146 96.1
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Table 11 continued

SWDP SWTP
Instance PR SSGS %Gap PSGS %Gap SSGS %Gap PSGS %Gap

N_22_2 EF 60931 9.3 110713 50.1 7296 73.8 35569 94.6

ES 56884 2.9 111234 50.3 3910 51.0 33801 94.3

LF 57873 4.5 111558 50.5 2531 24.4 31978 94.0

LS 55253 0.0 107552 48.6 1914 0.0 23790 92.0

Rand 65738 15.9 122832 55.0 7813 75.5 39741 95.2

SA 69873 20.9 110550 50.0 14575 86.9 35319 94.6

SST 64539 14.4 133928 58.7 4893 60.9 33844 94.3

N_22_3 EF 65507 5.9 113274 45.6 7828 64.3 33499 91.7

ES 61636 0.0 120346 48.8 4937 43.4 39680 93.0

LF 65041 5.2 119783 48.5 4088 31.6 39294 92.9

LS 62421 1.3 110156 44.0 2796 0.0 33448 91.6

Rand 69873 11.8 138131 55.4 13756 79.7 59199 95.3

SA 74858 17.7 121460 49.3 15955 82.5 40673 93.1

SST 65403 5.8 138713 55.6 5698 50.9 38426 92.7

N_b_21 EF 79474 11.1 133253 47.0 14993 63.8 59634 90.9

ES 71628 1.3 156599 54.9 8870 38.7 82643 93.4

LF 76638 7.8 156904 55.0 11629 53.3 66125 91.8

LS 70676 0.0 148103 52.3 5433 0.0 76472 92.9

Rand 97345 27.4 214791 67.1 53120 89.8 132559 95.9

SA 172069 58.9 235297 70.0 109570 95.0 162092 96.6

SST 87573 19.3 254039 72.2 50866 89.3 139575 96.1

N_b_21_1 EF 72514 12.4 127303 50.1 14294 61.2 62108 91.1

ES 64853 2.0 130975 51.5 8551 35.2 65493 91.5

LF 69793 9.0 126095 49.6 12777 56.6 66810 91.7

LS 63528 0.0 121198 47.6 5545 0.0 60983 90.9

Rand 92637 31.4 187810 66.2 41075 86.5 103080 94.6

SA 146081 56.5 185548 65.8 90895 93.9 119810 95.4

SST 79312 19.9 214241 70.3 48760 88.6 142482 96.1

N_b_21_2 EF 60057 10.6 116105 53.7 8926 69.5 55763 95.1

ES 55562 3.3 108270 50.4 5373 49.3 48239 94.3

LF 58445 8.1 114469 53.1 5070 46.2 53714 94.9

LS 53717 0.0 104743 48.7 2726 0.0 52325 94.8

Rand 66710 19.5 146696 63.4 17592 84.5 107668 97.5

SA 99735 46.1 167657 68.0 49122 94.5 106769 97.4

SST 64437 16.6 153217 64.9 16962 83.9 71302 96.2
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Table 11 continued

SWDP SWTP
Instance PR SSGS %Gap PSGS %Gap SSGS %Gap PSGS %Gap

N_b_21_3 EF 78319 12.4 139506 50.8 14873 66.1 67648 92.6

ES 70563 2.8 150814 54.5 8831 43.0 78587 93.6

LF 75476 9.1 137230 50.0 12257 58.9 72620 93.1

LS 68586 0.0 132185 48.1 5037 0.0 67557 92.5

Rand 98160 30.1 206359 66.8 54243 90.7 153280 96.7

SA 165386 58.5 217204 68.4 104995 95.2 145648 96.5

SST 85243 19.5 212164 67.7 58757 91.4 150418 96.7

N_b_22_ot EF 39825 12.6 81421 57.3 7300 75.1 43558 95.8

ES 36864 5.6 82840 58.0 4683 61.2 45086 96.0

LF 38157 8.8 73406 52.6 2912 37.5 34229 94.7

LS 34790 0.0 80659 56.9 1819 0.0 40331 95.5

Rand 46515 25.2 100857 65.5 11312 83.9 61892 97.1

SA 50337 30.9 93941 63.0 17580 89.7 56525 96.8

SST 39964 12.9 110237 68.4 7572 76.0 41201 95.6

S_21 EF 89238 7.7 167433 50.8 13921 34.5 82012 88.9

ES 86963 5.3 167108 50.7 13127 30.5 81792 88.8

LF 83294 1.1 160465 48.7 10230 10.9 84119 89.2

LS 82338 0.0 165031 50.1 9120 0.0 76098 88.0

Rand 93327 11.8 213250 61.4 27743 67.1 145037 93.7

SA 127768 35.6 192355 57.2 50174 81.8 107149 91.5

SST 107877 23.7 203907 59.6 26416 65.5 105539 91.4

S_21_1 EF 69506 10.1 124011 49.6 9096 54.2 55116 92.4

ES 67375 7.2 125052 50.0 7843 46.9 55613 92.5

LF 63843 2.1 119432 47.7 4163 0.0 48969 91.5

LS 62496 0.0 117164 46.7 4275 2.6 51113 91.9

Rand 69587 10.2 137197 54.4 13516 69.2 80692 94.8

SA 87208 28.3 135671 53.9 25678 83.8 66254 93.7

SST 76941 18.8 131811 52.6 13088 68.2 64853 93.6

S_21_2 EF 78431 9.8 144104 50.9 13003 31.4 70551 87.4

ES 76733 7.9 152300 53.6 12483 28.6 78373 88.6

LF 72360 2.3 147423 52.0 10463 14.8 69799 87.2

LS 70706 0.0 152011 53.5 8914 0.0 70777 87.4

Rand 85966 17.8 174695 59.5 29757 70.0 102784 91.3

SA 108824 35.0 162605 56.5 41684 78.6 90456 90.1

SST 93685 24.5 165950 57.4 23317 61.8 95750 90.7
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Table 11 continued

SWDP SWTP
Instance PR SSGS %Gap PSGS %Gap SSGS %Gap PSGS %Gap

S_21_3 EF 84066 13.0 152216 52.0 14998 53.7 75037 90.7

ES 79245 7.8 150620 51.5 11667 40.4 73898 90.6

LF 76123 4.0 140128 47.8 7599 8.6 68363 89.8

LS 73100 0.0 148065 50.6 6949 0.0 66894 89.6

Rand 92343 20.8 188488 61.2 26453 73.7 109813 93.7

SA 114608 36.2 175232 58.3 45185 84.6 97482 92.9

SST 99000 26.2 172445 57.6 27352 74.6 84458 91.8

S_22 EF 76561 6.9 127928 44.3 8314 41.9 47882 89.9

ES 77433 7.9 130142 45.2 9063 46.7 49808 90.3

LF 71306 0.0 123156 42.1 5457 11.5 39936 87.9

LS 71768 0.6 126609 43.7 4827 0.0 39273 87.7

Rand 85810 16.9 143309 50.2 22345 78.4 61950 92.2

SA 104575 31.8 143612 50.3 30676 84.3 62885 92.3

SST 87057 18.1 148927 52.1 15418 68.7 61179 92.1

S_22_1 EF 62809 6.7 97144 39.7 7128 54.5 32863 90.1

ES 59601 1.6 96475 39.2 6115 47.0 32817 90.1

LF 59491 1.5 95853 38.8 3240 0.0 27522 88.2

LS 58620 0.0 90970 35.6 3372 3.9 29296 88.9

Rand 68470 14.4 112070 47.7 18493 82.5 43360 92.5

SA 80005 26.7 119595 51.0 20690 84.3 53852 94.0

SST 68537 14.5 111029 47.2 12813 74.7 39188 91.7

S_22_2 EF 70182 6.1 119330 44.8 7416 38.6 44734 89.8

ES 71441 7.7 119243 44.7 8446 46.1 45661 90.0

LF 65921 0.0 117830 44.1 4552 0.0 38350 88.1

LS 66234 0.5 115489 42.9 4830 5.8 37066 87.7

Rand 85191 22.6 141194 53.3 22127 79.4 59095 92.3

SA 97044 32.1 130318 49.4 28297 83.9 54671 91.7

SST 81911 19.5 129771 49.2 16108 71.7 43221 89.5

S_22_3 EF 65273 12.0 98578 41.7 6866 57.5 33440 91.3

ES 62093 7.4 100065 42.6 6277 53.5 34712 91.6

LF 60624 5.2 98526 41.7 3448 15.3 36539 92.0

LS 57469 0.0 95759 40.0 2920 0.0 34624 91.6

Rand 64855 11.4 110367 47.9 16186 82.0 53060 94.5

SA 80555 28.7 112667 49.0 19709 85.2 46793 93.8

SST 70155 18.1 113130 49.2 14717 80.2 46681 93.7
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Table 11 continued

SWDP SWTP
Instance PR SSGS %Gap PSGS %Gap SSGS %Gap PSGS %Gap

S_b_21 EF 80651 8.4 147562 49.9 12279 29.8 70047 87.7

ES 77511 4.7 161624 54.3 10185 15.4 84848 89.8

LF 75901 2.7 150739 51.0 9691 11.0 68344 87.4

LS 73871 0.0 161296 54.2 8621 0.0 74657 88.5

Rand 93059 20.6 199969 63.1 22684 62.0 117886 92.7

SA 114498 35.5 176376 58.1 45069 80.9 98926 91.3

SST 98839 25.3 186481 60.4 24008 64.1 110365 92.2

S_b_22 EF 70824 9.7 109687 41.7 7633 60.3 37017 91.8

ES 68564 6.7 115691 44.7 6923 56.2 42081 92.8

LF 65123 1.8 108011 40.8 3029 0.0 33367 90.9

LS 63976 0.0 110721 42.2 3304 8.3 36014 91.6

Rand 85764 25.4 126822 49.6 17181 82.4 49149 93.8

SA 103708 38.3 125138 48.9 36451 91.7 51517 94.1

SST 77202 17.1 121254 47.2 15771 80.8 39088 92.3

Bold indicates which priority rule (PR) gives the best solution for a given heuristic (PSGS or SSGS)
Bolditalics indicates which combination of priority rule (PR) and heuristic (PSGS or SSGS) gives the best
solution
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Appendix BMetaheuristic comparison: detailed results

Table 12 Comparison of metaheuristics: SWDP objective and computational time limited to 600 s

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

B_21 24315 14.5 20958 0.9 21262 2.3 20837 0.3 20778 0.0

B_21_22 39648 15.6 34021 1.6 34929 4.1 33666 0.5 33482 0.0

B_22 13259 10.4 12137 2.2 12375 4.0 12057 1.5 11876 0.0

N_21 115060 6.2 110047 2.0 112748 4.3 108252 0.4 107871 0.0

N_21_1 110022 8.6 101667 1.1 106786 5.9 100517 0.0 101050 0.5

N_21_2 93778 6.5 89692 2.2 92432 5.1 88452 0.9 87683 0.0

N_21_3 118989 8.9 110971 2.3 114904 5.7 108886 0.5 108386 0.0

N_22 49078 6.9 45948 0.5 47578 3.9 45825 0.2 45713 0.0

N_22_ot 65088 5.7 62371 1.6 64325 4.6 61391 0.0 61418 0.0

N_22_1 55692 5.7 53085 1.1 54848 4.3 52490 0.0 52594 0.2

N_22_2 55253 5.8 52537 1.0 54529 4.6 52030 0.0 52030 0.0

N_22_3 62421 11.3 55757 0.7 59414 6.8 56041 1.2 55388 0.0

N_b_21 70676 12.3 64235 3.5 65947 6.0 62430 0.7 62013 0.0

N_b_21_1 63528 11.1 57317 1.4 59480 5.0 56490 0.0 56847 0.6

N_b_21_2 53717 9.3 49412 1.4 50922 4.3 49167 0.9 48741 0.0

N_b_21_3 68586 10.3 61903 0.6 64955 5.3 61506 0.0 61594 0.1

N_b_22_ot 34790 8.5 32313 1.4 32867 3.1 31916 0.2 31849 0.0

S_21 82338 7.3 78251 2.4 79497 3.9 76364 0.0 76969 0.8

S_21_1 62496 5.5 60507 2.4 61622 4.2 59110 0.1 59044 0.0

S_21_2 70706 6.0 68402 2.8 68532 3.0 66720 0.3 66487 0.0

S_21_3 73100 5.2 70737 2.1 72148 4.0 69645 0.5 69283 0.0

S_22 71768 6.2 68701 2.0 68418 1.6 67293 0.0 67749 0.7

S_22_1 58620 8.8 54675 2.2 54492 1.9 53820 0.7 53450 0.0

S_22_2 66234 7.3 62669 2.0 63096 2.7 61729 0.5 61410 0.0

S_22_3 57469 4.3 55392 0.7 55682 1.2 55056 0.1 55002 0.0

S_b_21 73871 5.5 71652 2.6 73053 4.4 70655 1.2 69812 0.0

S_b_22 63976 5.3 61019 0.7 61222 1.1 60565 0.0 60701 0.2
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Table 13 Comparison of metaheuristics: SWDP objective and computational time limited to 1800 s

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

B_21 24315 14.8 20814 0.4 21181 2.1 20772 0.2 20727 0.0

B_21_22 39648 16.5 33938 2.5 34802 4.9 33438 1.0 33106 0.0

B_22 13259 10.6 12033 1.5 12354 4.1 12018 1.4 11847 0.0

N_21 115060 7.1 109306 2.2 112008 4.5 107534 0.5 106947 0.0

N_21_1 110022 8.9 100939 0.7 106175 5.6 100221 0.0 100622 0.4

N_21_2 93778 6.8 88949 1.8 91290 4.3 88118 0.9 87358 0.0

N_21_3 118989 9.4 109806 1.8 114305 5.6 108398 0.5 107848 0.0

N_22 49078 7.3 45760 0.6 47341 3.9 45497 0.0 45648 0.3

N_22_ot 65088 6.3 61867 1.4 63713 4.2 61114 0.2 61014 0.0

N_22_1 55692 6.3 52613 0.8 54293 3.9 52194 0.0 52548 0.7

N_22_2 55253 6.1 52313 0.8 54089 4.1 51942 0.1 51884 0.0

N_22_3 62421 11.6 55315 0.2 59074 6.5 55573 0.7 55209 0.0

N_b_21 70676 12.8 63195 2.5 65681 6.2 62097 0.8 61610 0.0

N_b_21_1 63528 11.3 56648 0.5 59427 5.2 56360 0.0 56409 0.1

N_b_21_2 53717 9.9 49064 1.3 50764 4.6 48857 0.9 48422 0.0

N_b_21_3 68586 10.7 61264 0.0 64620 5.2 61273 0.0 61346 0.1

N_b_22_ot 34790 9.2 32097 1.6 32817 3.7 31594 0.0 31635 0.1

S_21 82338 7.6 77539 1.9 79117 3.9 76058 0.0 76545 0.6

S_21_1 62496 6.1 59695 1.7 61496 4.6 58871 0.4 58653 0.0

S_21_2 70706 6.5 68008 2.8 68064 2.9 66185 0.2 66084 0.0

S_21_3 73100 5.8 70453 2.3 71943 4.3 69124 0.4 68866 0.0

S_22 71768 6.9 67945 1.6 68117 1.9 66839 0.0 67604 1.1

S_22_1 58620 9.1 54238 1.7 54405 2.0 53718 0.8 53310 0.0

S_22_2 66234 7.6 62272 1.7 62933 2.8 61572 0.6 61188 0.0

S_22_3 57469 4.7 55250 0.8 55462 1.2 54911 0.2 54793 0.0

S_b_21 73871 5.8 71320 2.4 72620 4.2 70231 0.9 69582 0.0

S_b_22 63976 5.9 60882 1.2 61017 1.4 60173 0.0 60179 0.0

123



Annals of Operations Research

Table 14 Comparison of metaheuristics: SWDP objective and computational time limited to 3600 s

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

B_21 24315 15.0 20770 0.4 21178 2.4 20701 0.1 20677 0.0

B_21_22 39648 16.6 33597 1.6 34751 4.9 33142 0.3 33054 0.0

B_22 13259 11.2 11909 1.1 12328 4.5 11978 1.7 11778 0.0

N_21 115060 7.2 109023 2.0 111611 4.3 107184 0.4 106800 0.0

N_21_1 110022 9.0 100588 0.5 105966 5.5 100103 0.0 100421 0.3

N_21_2 93778 7.0 88671 1.7 91069 4.2 87933 0.8 87199 0.0

N_21_3 118989 9.7 108457 0.9 114171 5.9 107749 0.3 107449 0.0

N_22 49078 7.4 45672 0.5 47237 3.8 45441 0.0 45509 0.1

N_22_ot 65088 6.5 61329 0.8 63474 4.1 61048 0.3 60865 0.0

N_22_1 55692 6.3 52184 0.0 54274 3.9 52182 0.0 52309 0.2

N_22_2 55253 6.3 52001 0.4 53781 3.7 51847 0.1 51793 0.0

N_22_3 62421 12.0 54929 0.0 58659 6.4 55256 0.6 54972 0.1

N_b_21 70676 13.2 62645 2.0 65679 6.6 61937 0.9 61374 0.0

N_b_21_1 63528 11.8 56366 0.6 58998 5.1 56353 0.6 56004 0.0

N_b_21_2 53717 10.0 48936 1.2 50537 4.4 48723 0.8 48333 0.0

N_b_21_3 68586 11.1 61145 0.3 64481 5.4 61057 0.1 60992 0.0

N_b_22_ot 34790 9.4 31987 1.5 32789 3.9 31524 0.1 31508 0.0

S_21 82338 7.9 77305 1.9 79044 4.1 75814 0.0 76234 0.6

S_21_1 62496 6.4 59526 1.7 61376 4.6 58713 0.3 58527 0.0

S_21_2 70706 7.0 67700 2.8 67922 3.2 65774 0.0 65910 0.2

S_21_3 73100 6.1 70096 2.0 71839 4.4 68864 0.3 68663 0.0

S_22 71768 6.9 67597 1.2 67906 1.6 66795 0.0 67506 1.1

S_22_1 58620 9.2 54102 1.6 54193 1.7 53642 0.7 53247 0.0

S_22_2 66234 7.8 62215 1.8 62899 2.9 61438 0.6 61065 0.0

S_22_3 57469 4.8 55057 0.6 55277 1.0 54727 0.0 54764 0.1

S_b_21 73871 6.1 71018 2.3 72467 4.3 69931 0.8 69359 0.0

S_b_22 63976 6.0 60530 0.7 60808 1.1 60109 0.0 60173 0.1
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Table 15 Comparison of metaheuristics: SWTP objective and computational time limited to 600 s

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

B_21 2357 67.8 849 10.7 788 3.8 758 0.0 758 0.0

B_21_22 4214 64.4 1908 21.4 1594 5.9 1554 3.5 1500 0.0

B_22 1038 64.4 493 25.2 431 14.4 390 5.4 369 0.0

N_21 6150 61.7 2889 18.5 3035 22.4 2355 0.0 2475 4.8

N_21_1 12791 68.0 5779 29.1 6143 33.3 5200 21.2 4099 0.0

N_21_2 5621 62.7 2636 20.4 2473 15.2 2098 0.0 2104 0.3

N_21_3 11657 56.7 6951 27.4 6334 20.3 5048 0.0 5592 9.7

N_22 1063 44.3 707 16.3 636 6.9 646 8.4 592 0.0

N_22_ot 1007 73.5 365 26.8 293 8.9 267 0.0 302 11.6

N_22_1 1454 38.6 1079 17.3 946 5.7 892 0.0 892 0.0

N_22_2 1914 45.7 1133 8.3 1114 6.7 1039 0.0 1080 3.8

N_22_3 2796 59.1 1296 11.7 1336 14.4 1144 0.0 1180 3.0

N_b_21 5433 58.7 2330 3.7 2643 15.1 2500 10.3 2243 0.0

N_b_21_1 5545 65.4 2588 26.0 2872 33.3 2259 15.2 1916 0.0

N_b_21_2 2726 62.4 1113 7.9 1290 20.5 1111 7.7 1025 0.0

N_b_21_3 5037 54.8 2454 7.3 2978 23.6 2274 0.0 2491 8.7

N_b_22_ot 1819 35.9 1311 11.1 1173 0.6 1260 7.5 1166 0.0

S_21 9120 43.5 5534 6.9 6272 17.9 5533 6.9 5151 0.0

S_21_1 4275 43.7 2588 7.0 2462 2.2 2407 0.0 2592 7.1

S_21_2 8914 42.4 5586 8.2 5172 0.8 5130 0.0 5186 1.1

S_21_3 6949 44.4 4556 15.2 4998 22.7 4131 6.4 3865 0.0

S_22 4827 40.2 3240 11.0 3016 4.3 2885 0.0 2923 1.3

S_22_1 3372 32.9 2555 11.5 2373 4.7 2348 3.7 2262 0.0

S_22_2 4830 40.4 2926 1.5 2881 0.0 2901 0.7 2908 0.9

S_22_3 2920 21.5 2404 4.6 2428 5.6 2362 2.9 2293 0.0

S_b_21 8621 51.6 5523 24.4 5164 19.2 4173 0.0 4440 6.0

S_b_22 3304 33.5 2539 13.4 2336 5.9 2198 0.0 2274 3.3

Table 16 Comparison of metaheuristics: SWTP objective and computational time limited to 1800 s

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

B_21 2357 67.8 840 9.8 788 3.8 758 0.0 758 0.0

B_21_22 4214 64.5 1810 17.4 1568 4.6 1545 3.2 1496 0.0

B_22 1038 66.3 435 19.5 431 18.8 390 10.3 350 0.0

N_21 6150 64.8 2707 20.1 3011 28.2 2163 0.0 2433 11.1

N_21_1 12791 68.8 5597 28.7 5485 27.3 4912 18.8 3989 0.0

N_21_2 5621 65.3 2137 8.8 2354 17.2 1994 2.3 1949 0.0

N_21_3 11657 58.6 6640 27.2 6190 21.9 4832 0.0 5381 10.2
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Table 16 continued

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

N_22 1063 44.9 702 16.5 636 7.9 635 7.7 586 0.0

N_22_ot 1007 73.5 365 26.8 293 8.9 267 0.0 292 8.6

N_22_1 1454 38.6 984 9.4 946 5.7 892 0.0 892 0.0

N_22_2 1914 45.7 1117 7.0 1109 6.3 1039 0.0 1056 1.6

N_22_3 2796 59.1 1296 11.7 1230 7.0 1144 0.0 1180 3.0

N_b_21 5433 59.7 2317 5.4 2584 15.2 2483 11.8 2191 0.0

N_b_21_1 5545 65.7 2544 25.2 2860 33.4 2232 14.7 1904 0.0

N_b_21_2 2726 62.4 1102 7.0 1290 20.5 1111 7.7 1025 0.0

N_b_21_3 5037 56.1 2394 7.6 2838 22.1 2211 0.0 2362 6.4

N_b_22_ot 1819 36.3 1263 8.2 1173 1.2 1260 8.0 1159 0.0

S_21 9120 46.3 5355 8.6 5778 15.2 5338 8.3 4897 0.0

S_21_1 4275 44.4 2561 7.3 2450 3.1 2375 0.0 2557 7.1

S_21_2 8914 45.4 5340 8.8 4870 0.0 4918 1.0 5136 5.2

S_21_3 6949 47.3 4281 14.5 4938 25.9 3660 0.0 3701 1.1

S_22 4827 41.4 3050 7.2 2949 4.0 2831 0.0 2880 1.7

S_22_1 3372 33.4 2457 8.6 2312 2.9 2342 4.1 2245 0.0

S_22_2 4830 40.6 2911 1.4 2869 0.0 2883 0.5 2886 0.6

S_22_3 2920 23.5 2348 4.8 2409 7.2 2339 4.4 2235 0.0

S_b_21 8621 52.7 5221 21.8 5052 19.2 4081 0.0 4380 6.8

S_b_22 3304 33.9 2483 12.0 2311 5.4 2185 0.0 2265 3.5

Table 17 Comparison of metaheuristics: SWTP objective and computational time limited to 3600 s

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

B_21 2357 67.8 816 7.1 788 3.8 758 0.0 758 0.0

B_21_22 4214 64.5 1733 13.7 1568 4.6 1507 0.7 1496 0.0

B_22 1038 66.3 388 9.8 431 18.8 374 6.4 350 0.0

N_21 6150 65.0 2628 18.2 3002 28.4 2150 0.0 2349 8.5

N_21_1 12791 69.2 5222 24.6 5398 27.1 4872 19.2 3935 0.0

N_21_2 5621 68.2 2083 14.1 2354 24.0 1967 9.0 1789 0.0

N_21_3 11657 59.2 6505 27.0 6188 23.2 4751 0.0 5208 8.8

N_22 1063 44.9 701 16.4 636 7.9 634 7.6 586 0.0

N_22_ot 1007 73.5 365 26.8 293 8.9 267 0.0 292 8.6

N_22_1 1454 38.7 984 9.3 946 5.7 892 0.0 892 0.0

N_22_2 1914 46.1 1079 4.4 1109 6.9 1039 0.7 1032 0.0

N_22_3 2796 59.2 1287 11.3 1204 5.1 1142 0.0 1167 2.1

N_b_21 5433 59.7 2294 4.5 2584 15.2 2476 11.5 2191 0.0

N_b_21_1 5545 65.7 2333 18.4 2797 31.9 2135 10.8 1904 0.0
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Table 17 continued

Greedy SA GA hSGA MA
Instance SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap SWDP %Gap

N_b_21_2 2726 62.4 1091 6.0 1130 9.3 1088 5.8 1025 0.0

N_b_21_3 5037 57.4 2391 10.2 2823 23.9 2147 0.0 2311 7.1

N_b_22_ot 1819 36.3 1238 6.4 1173 1.2 1260 8.0 1159 0.0

S_21 9120 46.3 5288 7.4 5761 15.0 5321 8.0 4897 0.0

S_21_1 4275 45.8 2489 7.0 2450 5.5 2316 0.0 2532 8.5

S_21_2 8914 47.1 5171 8.7 4865 3.0 4719 0.0 4930 4.3

S_21_3 6949 47.9 4126 12.3 4883 25.9 3617 0.0 3681 1.7

S_22 4827 41.6 3027 6.9 2949 4.4 2819 0.0 2867 1.7

S_22_1 3372 33.4 2426 7.5 2298 2.3 2280 1.5 2245 0.0

S_22_2 4830 43.3 2907 5.8 2859 4.2 2739 0.0 2885 5.1

S_22_3 2920 23.8 2336 4.8 2383 6.6 2329 4.5 2225 0.0

S_b_21 8621 53.3 5147 21.8 5044 20.2 4026 0.0 4310 6.6

S_b_22 3304 34.0 2447 10.8 2310 5.5 2182 0.0 2265 3.7
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