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A B S T R A C T

We quantify the joint impact of the China shock and automation of labor, across US commuting
zones (CZs) in the period 2000–2007. To this end, we employ a multi-sector gravity model
of trade with Roy-Fréchet worker heterogeneity across sectors, where labor input can be
automated. Automation and increased import competition from China are both sector-specific;
they lead to contractions in a sector’s labor demand and a decline in relative income for
CZs more specialized in that sector, amplified by a voluntary reduction in hours worked and
an increase in frictional unemployment. The estimated model fits well with the aggregate
performance of manufacturing subsectors and with the variation across CZs in changes in
average income, the hourly wage, hours worked, the employment rate and employment in
manufacturing. By itself, the China shock has stronger distributional effects than automation,
but its impact on aggregate gains is less than a third of automation’s impact.

1. Introduction

During the 2000–2007 period, employment in US manufacturing abruptly fell by 20.5%, or 3.5 million jobs (US Bureau of Labor
Statistics, 2019), resulting in economic stagnation in many regions specialized in manufacturing. In the same period, the Chinese
share in US imports roughly doubled, and the associated surge in Chinese import competition has contributed to the relative decline
of US manufacturing regions (Autor et al., 2013a). However, while manufacturing employment fell, value added in manufacturing
continued to grow. This indicates that the ‘‘surprisingly swift" decline of US manufacturing employment is not only due to the ‘‘China
shock" (Pierce and Schott, 2020), but also a consequence of the rise of labor-saving technology (Acemoglu and Restrepo, 2020).
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This paper presents a unifying general equilibrium framework to quantify the impact of trade and automation on the decline of
S manufacturing employment and the associated unequal effects across US local labor markets. Many studies examine the impact
f either trade or technology on US manufacturing regions,1 but there is little to no integrated general-equilibrium analysis of their

joint impact. Importantly though, the interplay between the trade and automation shocks matters quantitatively. For instance, US
productivity shocks due to automation affect world trade patterns, which are central to the calibration of the China shock. Hence,
the joint calibration of the China and automation shocks may yield different quantitative results than when the shocks are calibrated
separately. Moreover, the interplay of the shocks determines whether their distributional impact will be dampened or amplified –
an aspect also missed when the shocks are analyzed in isolation.

Our unified framework starts from the combination of a multi-sector gravity model of trade (Arkolakis et al., 2012), with a
Roy-Fréchet setup for labor supply, where workers sort into sectors based on their comparative advantage (Lagakos and Waugh,
2013). Additionally, we introduce equipment as an imperfect substitute for labor, allowing labor to be automated. As explained
in Galle et al. (2023), the Roy-Fréchet model generalizes the specific factors intuition to a setting where labor is mobile across
sectors. Specifically, the model allows for variation in the pattern of comparative advantage across commuting zones (CZs), and the
resulting pattern of sectoral specialization determines how sensitive each CZ is to a particular sector-specific shock. In our model,
both increased import competition and automation are sector-specific. Therefore, both can induce a contraction in a sector’s labor
demand and exert downward pressure on the wages it pays. As a result, CZs more specialized in sectors undergoing increased import
competition or automation will tend to experience a relative decline in their average hourly wage. These relative differences are
amplified by adjustments in the unemployment rate and in the number of hours worked.

To allow for these changes in unemployment and hours worked, we include a bare-bones search-and-matching framework and
an intensive margin adjustment in our model, based on Kim and Vogel (2021). The resulting model has three central elasticities on
the labor supply side: (i) the dispersion parameter of the Roy-Fréchet, which governs the cost of reducing sectoral specialization
at the CZ-level; (ii) the intensive margin elasticity; and (iii) the elasticity of the employment rate to labor market tightness. We
estimate these elasticities by employing a transparent shift-share estimation strategy and obtain parameter values that align with
standard values in the literature. Our shift-share instrument captures any national sector-specific shocks, and the model explains
how these shocks translate into relative changes in CZs’ income.

Armed with our estimates, we jointly calibrate the China and automation shocks and quantify their impact on the US economy.
We model the China shock as sector-specific Chinese technological growth and calibrate it by ensuring the model exactly matches the
increase in US expenditure shares on Chinese manufacturing goods. In turn, we model automation as a shock to equipment-specific
productivity, which lowers the cost share of labor in a sector. This is why we calibrate the automation shock such that the model
exactly matches the changes in labor cost shares in US manufacturing sectors.

Our model finds that the combination of the automation and China shocks leads to an increase in aggregate US real income of
3.96%, while aggregate manufacturing employment declines by 0.81 percentage points. Given our parameter estimates, roughly 50%
of the aggregate income gain arises from changes in the average hourly wage, while changes in hours worked and the employment
rate account for the remaining 20% and 30% of the gain, respectively. Furthermore, we obtain a 0.97% standard deviation for the
income gains across CZs, and – perhaps unsurprisingly – there is a strong concentration of low gains around the Rust Belt. More
broadly, in line with the patterns described in Austin et al. (2018), large swaths of the Eastern Heartland tend to experience a
decline in relative income due to these combined shocks.

When we simulate the individual shocks, we find that the distributional effects of the China shock are larger than the effects of
automation. However, the aggregate gain from the rise of China is less than one third the size of automation’s impact. Moreover,
the impacts across CZs of the individual China and automation shocks are positively correlated. In turn, this positive covariance of
the shocks’ local effects implies that the variance in income effects of the joint shock is larger than the sum of the variance for the
individual shocks. The importance of incorporating both shocks to understand the full distributional effects across CZs helps explain
why in previous studies such as GRY, the variance of the model-predicted income effects of an individual shock appears too small
compared to the observed variance.

The predictions from our estimated model fit well with the variation across CZs for the different margins of labor market
adjustment. In terms of 𝑅2, our joint China and automation shock explains e.g. 8% of the observed variation in changes in average
CZ income and 29% of the variation in changes in the employment rate and the manufacturing employment share. In addition
to explaining a substantial share of the variation, the model slightly underpredicts the magnitude of the variance in the observed
changes. In part, this is driven by conservative choices for the intensive and extensive margin elasticities.

Turning from the model fit of the cross-CZ variation to the fit of the cross-sector variation, the joint shock continues to perform
well. In contrast, for the individual shocks, there is a mismatch between the model and the data in the performance of value added
across manufacturing subsectors. Indeed, the individual China shock predicts a decline in all subsectors’ value added, while the
automation shock predicts an increase for most. In reality, roughly half of the manufacturing subsectors undergo a decline in value
added, while the other half experiences an increase – a pattern the combined shock does match well. This finding again underscores
the importance of integrating both trade and automation in a single model to properly understand the impact of these correlated
shocks both across local labor markets and on US manufacturing in general.

1 Fort et al. (2018) provide an excellent review of the literature on this topic.
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Literature. Our paper is motivated by the large body of reduced-form work on the impact of trade and technology on local labor
arkets. Following the seminal work of Autor et al. (2013a) – henceforth ADH – many studies have examined the impact of trade

n US localities, see for instance Hakobyan and McLaren (2016), Bloom et al. (2019), Greenland et al. (2019), Pierce and Schott
2020) and Besedeš et al. (2021).2 In addition, Acemoglu and Restrepo (2020) and Dauth et al. (2021) examine the impact of

robotization across local labor markets.3 Autor et al. (2015) is one of the few papers jointly examining trade and technology shocks.
We complement this work by providing a unifying general equilibrium framework that can quantify such shocks’ impact at the
aggregate level.

Like us, Caliendo et al. (2019), Adão et al. (2020), Rodríguez-Clare et al. (2022) and Galle et al. (2023) – henceforth GRY –
quantitatively examine the impact of the China shock on US local labor markets employing a gravity model of trade with a Roy-type
labor supply side.4 We build specifically on GRY since we introduce automation in this type of model in order to examine trade and
automation shocks in a unified framework. Moreover, we follow Kim and Vogel (2021) and incorporate additional margins of labor
market adjustment, which provide amplification mechanisms for the income effects of any shock. These amplification mechanisms,
together with the combined impact of the correlated China and automation shocks, imply that our model matches the observed
labor market changes substantially better than GRY.

Atalay et al. (2018) and Burstein et al. (2019) employ Roy models to examine the impact of computerization on inequality. In
particular, the latter paper is close to ours since it also has a role for international trade. However, these papers examine the skill
premium or the gender wage gap. The focus of our paper is different, as we examine inequality between US commuting zones.
Moreover, their setup with a Cobb–Douglas production function for labor and equipment would not be able to account for the fall
in the labor share within a manufacturing subsector.5

Outside the quantitative trade literature, there is extensive literature studying the impact of technical change on inequality or
other labor market outcomes (Krusell et al., 2000; Acemoglu and Restrepo, 2018; Hémous and Olsen, 2022; Moll et al., 2022). Most
closely related to us, Acemoglu and Restrepo (2020) present a model for the local impact of technological shocks, but their model
does not feature international trade or worker heterogeneity. A further contribution of our paper is that the generalized specific
factors mechanism in the Roy-Fréchet framework can help to tractably analyze the impact of sector-specific automation on different
worker groups.

This paper is organized as follows. Section 2 introduces the theory, Section 3 discusses the data, and Section 4 examines the
model’s shift-share approximation and estimates the key labor supply elasticities. Section 5 presents our quantitative results and
discusses their fit with the data. Finally, Section 6 concludes.

2. Theory

2.1. Setup

The model consists of three blocks. First, for labor supply we have a discrete choice model of the labor market where workers sort
across the 𝑆 sectors. Specifically, we assume a standard Roy (1951) model, where workers’ comparative advantage across sectors
determines the sorting pattern. Second, demand for goods in each sector for each of the 𝑁 countries is governed by a gravity model

ith an input–output loop as in Costinot and Rodríguez-Clare (2014) and Caliendo and Parro (2015). Finally, we introduce a CES
roduction function where labor and equipment are imperfect substitutes. We model automation as an increase in the productivity
f equipment, which leads to a decrease of the labor share in production. We keep track of all the Roman and Greek notation in
he model in Appendix Tables A.1 and A.2.

abor supply. We start from a Roy-Fréchet model of labor supply as in Lagakos and Waugh (2013), and combine it with frictional
nemployment and an intensive margin of labor supply as in Kim and Vogel (2021).6 To start, wages 𝑤𝑜𝑠 vary by country 𝑜 and
ector 𝑠; and workers differ in their productivity 𝑧𝑠 across sectors. Given wages, workers apply to a specific sector to maximize their

2 Notable contributions on the local impact of trade shocks outside the US are Topalova (2010), Kovak (2013), Dauth et al. (2014), and Dix-Carneiro and
ovak (2017).

3 The reduced-form literature on the impact of trade and technology on local labor markets typically employs shift-share estimation, and the prominence of
his estimation technique has motivated fundamental econometric work on identification and inference with shift-share instruments (Adão et al., 2019; Borusyak
t al., 2020; Goldsmith-Pinkham et al., 2020). The resulting deeper understanding of the potential limitations of shift-share estimation indicates the usefulness
f a quantitative model to jointly analyze the implications of trade and technology shocks, both on aggregate and cross-sectional moments. Interestingly then,
or the latter our model yields predictions both across sectors and across localities, which we will leverage in our model fit discussion.

4 Hsieh and Ossa (2016) also quantify the rise of China but do not focus on its distributional impact in the US. Other quantitative trade papers studying
orker reallocation via a Roy model are Artuç et al. (2010), Dix-Carneiro (2014), Adão (2016), Curuk and Vannoorenberghe (2017), and Lorentzen (2022), but

hey all employ a small open economy framework. More similar to us, Lee (2020) employs a gravity model but does not focus on the China shock. In addition, Lee
nd Yi (2018) examine the impact of trade with China but focus on the skill premium instead of regional inequality. Finally, gravity models are also employed
o study the impact of trade on the skill premium (Burstein and Vogel, 2017), or on unequal price changes for different consumption baskets (Fajgelbaum and
handelwal, 2016).

5 In a recent contribution, Bernon and Magerman (2022) generalize the impact of productivity shocks on income inequality arising in general equilibrium in
Roy-Fréchet setup.
6 As in Kim and Vogel (2021), we could also add voluntary non-employment by introducing home production as one of the sectors. We refrain from doing

o since it would make the estimation less tractable (see Section 8.2 in GRY). As an aside, note that Kim and Vogel (2020) generalizes the setup from Kim and
ogel (2021) and derives sufficient statistics for welfare analysis of trade shocks.
3



Journal of International Economics 150 (2024) 103912S. Galle and L. Lorentzen

a

w

o

r

w

a

expected utility, which will be a function of 𝑤𝑜𝑠𝑧𝑠. After applying, there is random matching between vacancies and workers. We
assume that unemployed workers have no income.7 Conditional on being hired though, workers unilaterally decide how many hours
of labor to supply. Specifically, they have a standard utility function with consumption of the final good (𝐶) and hours worked (𝐻)
s elements:

𝑈 (𝐶,𝐻 ; 𝑜𝑔) = 𝛿𝑜𝑔𝐶 − 𝐻1+𝜇

1 + 𝜇
,

where consumption is funded by the value of a worker’s earnings, at price 𝑃𝑜. After output is realized, the worker and firm engage
in Nash bargaining over the surplus of the match.

We are interested in between-group inequality. Each country 𝑜 therefore has 𝐺𝑜 groups of workers, analogous to the setups
in Burstein et al. (2019), Hsieh et al. (2019) and GRY. In our application a group will be defined as a commuting zone (CZ),
but the theory can be applied to worker groups defined by any pre-determined characteristic. Groups differ in their productivity
distributions, which will lead to differences in sectoral specialization across groups. Specifically, a worker from group 𝑔 in country
𝑜 has a number of effective units of labor 𝑧𝑠 drawn from a Fréchet distribution with level parameter 𝐴𝑜𝑔𝑠 and dispersion parameter
𝜅.8 Here, the 𝐴𝑜𝑔𝑠 parameters govern differences in groups’ absolute advantage for each sector, while 𝜅 determines the dispersion
of productivity within a sector. Due to the properties of the Fréchet, 𝜅 will also determine the dispersion of workers’ comparative
advantage, and thereby the elasticity of their labor supply across sectors. 𝐿𝑜𝑔 denotes the measure of workers for group 𝑜𝑔.

The Nash bargaining between the worker and the firm results in a share 𝜈𝑜𝑔 of revenue going to the worker.9 We backwardly
solve the other elements of the labor problem in Appendix Section G.1. There, given the properties of the Fréchet, we find that the
share of workers in group 𝑜𝑔 that apply to sector 𝑠 is

𝜋𝑜𝑔𝑠 =
𝐴𝑜𝑔𝑠𝑤𝜅𝑜𝑠
𝛷𝜅
𝑜𝑔

,

where 𝛷𝑜𝑔 ≡ (
∑

𝑘 𝐴𝑜𝑔𝑘𝑤
𝜅
𝑜𝑘)

1∕𝜅 is a group-level index of sectoral wages, where the weights indicate the importance of each sector for
group 𝑜𝑔. Next, average real income per worker in 𝑜𝑔 is

𝜈𝑜𝑔𝐼𝑜𝑔𝑠
𝜋𝑜𝑔𝑠𝐿𝑜𝑔𝑃𝑜

= 𝜂𝑒𝑜𝑔𝛿
1
𝜇
𝑜𝑔

( 𝜈𝑜𝑔
𝑃𝑜

)
1+𝜇
𝜇
𝛷

1+𝜇
𝜇

𝑜𝑔 ,

ith 𝐼𝑜𝑔𝑠 nominal revenue in 𝑠 for group 𝑜𝑔 and 𝜂 ≡ 𝛤
(

1 − 1+𝜇
𝜇𝜅

)

. Consequently, the share of income obtained by workers of group
𝑜𝑔 in sector 𝑠 is also given by the sectoral employment share 𝜋𝑜𝑔𝑠. Total nominal revenue in group 𝑜𝑔 is

𝐼𝑜𝑔 ≡
∑

𝑠
𝐼𝑜𝑔𝑠 = 𝜂𝑒𝑜𝑔

( 𝛿𝑜𝑔𝜈𝑜𝑔
𝑃𝑜

)

1
𝜇
𝛷

1+𝜇
𝜇

𝑜𝑔 𝐿𝑜𝑔 , (1)

f which workers earn 𝜈𝑜𝑔𝐼𝑜𝑔 .
Relatedly, we can show that average expected utility in group 𝑜𝑔 is

𝑈𝑜𝑔 =
𝜇

1 + 𝜇
𝜂𝑒𝑜𝑔

(

𝛿𝑜𝑔𝜈𝑜𝑔
)
1+𝜇
𝜇

(𝛷𝑜𝑔
𝑃𝑜

)

1+𝜇
𝜇
, (2)

and that both hours worked (ℎ𝑜𝑔) and hourly income (𝑖𝑜𝑔) are also functions of 𝛷𝑜𝑔 :

ℎ𝑜𝑔 = �̀�
(

𝛿𝑜𝑔𝜈𝑜𝑔
)

1
𝜇

(𝛷𝑜𝑔
𝑃𝑜

)

1
𝜇
, (3)

𝑖𝑜𝑔 =
𝜂
�̀�
𝛷𝑜𝑔 . (4)

Hence, 𝛷𝑜𝑔 (a group’s wage index) determines endogenous differences in average hourly labor income across groups and thereby
also differences in average hours worked. Moreover, below we will see that it also determines differences in the employment rate,
such that we can solve for 𝐼𝑜𝑔 and 𝑈𝑜𝑔 as a function of 𝛷𝑜𝑔 and 𝑃𝑜.

Unemployment. A Cobb–Douglas matching function with vacancies 𝑉𝑜𝑔𝑠 and applicants 𝜋𝑜𝑔𝑠𝐿𝑜𝑔 as inputs entails that the employment
ate is a function of labor market tightness 𝜓𝑜𝑔𝑠 ≡ 𝑉𝑜𝑔𝑠∕(𝜋𝑜𝑔𝑠𝐿𝑜𝑔):

𝑒𝑜𝑔𝑠 ≡ 𝐴𝑀𝑜𝑔𝜓
𝜒
𝑜𝑔𝑠,

7 Since employment status is determined purely at random, it is relatively straightforward to introduce unemployment benefits in our framework, since they
ould not distort any decisions. However, we omit them for simplicity.
8 Three parameters that we introduce in this section (𝜅, 𝜇 and 𝜒) are allowed to be 𝑜𝑔-specific in the theory. However in the empirics we will only estimate

one value for each parameter, as is common in the literature. We therefore leave out the 𝑜𝑔 subscript from the start, to ease the notational burden.
9 At the time of bargaining, the outside option of the match has zero value for both worker and firm, since hours worked and the cost of posting a vacancy
4

re both sunk. Hence, at this point, the surplus of the match is exactly 𝑤𝑜𝑠𝑧𝑠, multiplied by the number of hours worked.
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where 𝐴𝑀𝑜𝑔 measures matching efficiency and the employment rate elasticity is 0 < 𝜒 < 1. For the employer, the cost of posting a
vacancy is 𝑐𝑜𝑔𝑃𝑜, while the expected benefit is the share of revenue per vacancy accruing to the employer: (1 − 𝜈𝑜𝑔)𝐼𝑜𝑔𝑠∕𝑉𝑜𝑔𝑠. The
mplied zero-profit condition together with the matching function determine the employment rate, which is indeed constant across
ectors:

𝑒𝑜𝑔 =
⎛

⎜

⎜

⎝

𝐴𝑀𝑜𝑔

( 𝜂(1 − 𝜈𝑜𝑔)
𝑐𝑜𝑔

)𝜒
(

𝛿𝑜𝑔𝜈𝑜𝑔
)

𝜒
𝜇

(𝛷𝑜𝑔
𝑃𝑜

)

𝜒(1+𝜇)
𝜇 ⎞

⎟

⎟

⎠

1
1−𝜒

, (5)

where we can set parameters such that 0 < 𝑒𝑜𝑔 < 1. Intuitively, a shock that increases the real value of a typical worker (𝛷𝑜𝑔∕𝑃𝑜),
increases the return to posting a vacancy in group 𝑜𝑔 across all sectors, and thereby pushes the employment rate up in all sectors.
Importantly, the combinations of Eqs. (2) and (1) with (5) imply that

𝑈𝑜𝑔 ∝
𝐼𝑜𝑔
𝑃𝑜

∝
(𝛷𝑜𝑔
𝑃𝑜

)

1+𝜇
(1−𝜒)𝜇

.

Hence, the final good price (𝑃𝑜) has a common effect on all groups’ utility and real income, while sectoral wages lead to differences
n utility and income across groups as measured by the group’s index of sectoral wages (𝛷𝑜𝑔). Also note that 𝐼𝑜𝑔 = 𝑒𝑜𝑔ℎ𝑜𝑔𝑖𝑜𝑔 , where
he employment rate (𝑒𝑜𝑔), hours worked (ℎ𝑜𝑔), and the real hourly wage (𝑖𝑜𝑔) are all functions of 𝛷𝑜𝑔∕𝑃𝑜. This is the reason for the
mplification exponent in the welfare and income equation above, as an amplification of 𝛷𝑜𝑔∕𝑃𝑜 through adjustments in employment
governed by 1∕(1 − 𝜒)) and hours worked (governed by (1 + 𝜇)∕𝜇).

rade. There are iceberg trade costs 𝜏𝑜𝑑𝑠 ≥ 1 to export goods from origin country 𝑜 to destination country 𝑑, with 𝜏𝑜𝑜𝑠 = 1. We
ork with the multi-sector version of the Eaton and Kortum (2002) gravity model. Hence, within each sector, there is a continuum
f goods of measure one, which have constant returns to scale technologies and good-specific productivities drawn from a Fréchet
istribution with shape parameter 𝜃𝑠 and level parameter 𝑇𝑜𝑠 in country 𝑜 and sector 𝑠. Preferences across goods within a sector are
ES with elasticity of substitution 𝜎𝑠 < 𝜃𝑠.

All this results in the following import shares for sector 𝑠 in destination country 𝑑 originating from country 𝑜:

𝜆𝑜𝑑𝑠 =
𝑇𝑜𝑠

(

𝜏𝑜𝑑𝑠𝑐𝑜𝑠
)−𝜃𝑠

∑

𝑖 𝑇𝑖𝑠
(

𝜏𝑖𝑑𝑠𝑐𝑖𝑠
)−𝜃𝑠

, (6)

where a good’s marginal cost 𝑐𝑜𝑠 is determined below. The price index in sector 𝑠 in country 𝑑 is then

𝑃𝑑𝑠 = �̃�−1𝑠

(

∑

𝑜
𝑇𝑜𝑠

(

𝜏𝑜𝑑𝑠𝑐𝑜𝑠
)−𝜃𝑠

)−1∕𝜃𝑠

, (7)

where �̃�𝑠 ≡ 𝛤 (1− 𝜎𝑠−1
𝜃𝑠

)1∕(1−𝜎𝑠). The final good is the Cobb–Douglas composite of sectoral goods, with expenditure shares 𝛽𝑑𝑠, and its
rice is 𝑃𝑑 =

∏

𝑠 𝑃
𝛽𝑑𝑠
𝑑𝑠 .

actor demand. Each sector has a two-tiered production function, where the upper-tier is Cobb–Douglas:

𝑌𝑜𝑠 = 𝐹 𝛼𝑜𝑠𝑜𝑠 𝐾
1−𝛼𝑜𝑠−𝛾𝑜𝑠
𝑜𝑠

∏

𝑘
𝑁𝛾𝑜𝑘𝑠
𝑜𝑘𝑠 , (8)

here 𝑁𝑜𝑘𝑠 are intermediate inputs sourced from sector 𝑘 with 𝛾𝑜𝑠 ≡
∑

𝑘 𝛾𝑜𝑘𝑠, and 𝐾𝑜𝑠 are structures. Next, 𝐹𝑜𝑠 is a lower tier CES:

𝐹𝑜𝑠 = 𝜉𝜐𝑜𝑠

[

𝜉
1
𝜌
𝑜𝑠𝑀

𝜌−1
𝜌

𝑜𝑠 +𝑍
𝜌−1
𝜌

𝑜𝑠

]
𝜌
𝜌−1

,

where 𝑍𝑜𝑠 =
∑

𝑔∈𝐺𝑜 𝑍𝑜𝑔𝑠 are effective units of labor and 𝑀𝑜𝑠 is equipment (or machines). Both 𝐾𝑜𝑠 and 𝑀𝑜𝑠 are units of the final
good, purchased at cost 𝑃𝑜.10 The parameter 𝜉𝑜𝑠 appears twice; within the brackets it drives automation by shifting production
toward equipment usage, while 𝜐 (outside the brackets) regulates the associated productivity gains. This is a tractable reduced-form
approach of capturing the impact automation has in a task-based model.11

10 Since we focus on hat algebra across static equilibria below, we abstract from investment and its dynamics for 𝑀𝑜𝑠 and 𝐾𝑜𝑠, analogous to Burstein et al.
(2019). This abstraction necessarily also entails that our model is not able to analyze the differential impact of automation on the income of asset holders versus
workers – let alone the dynamics for these variables, as in Moll et al. (2022).

11 We thank an anonymous referee for pointing us to this setup where 𝜐 regulates the productivity gains, and for pointing out how this is a reduced-form
approach to modeling the production as in a task-based production setup, which can map into a CES production function (Acemoglu and Restrepo, 2018).
Other papers modeling automation employing a CES production function are Krusell et al. (2000) or Hémous and Olsen (2022). These papers are interested in
explaining changes in the skill premium, and this in part motivates their assumption that only low-skill labor can be automated. However, since our paper is
primarily interested in inequality across CZs and less in inequality across skill groups, we do not introduce a distinction between skill groups in the baseline
model. This is similar to Acemoglu and Restrepo (2020), who also focus on inequality across CZs and likewise do not distinguish between skill groups. In contrast
to Acemoglu and Restrepo (2020), our model is tractable without introducing differences in tasks, and restrictions on the set of tasks that can be automated.
This results from the combination of the CES production function and the imperfectly elastic labor supply to each sector in the Roy-Fréchet setup.
5
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Cost minimization implies that 𝜔𝑜𝑠, the labor share of expenditure on 𝐹𝑜𝑠, is

𝜔𝑜𝑠 =
𝑤1−𝜌
𝑜𝑠

[

𝜉𝑜𝑠𝑃
1−𝜌
𝑜 +𝑤1−𝜌

𝑜𝑠

] , (9)

hile 𝑐𝑜𝑠, the marginal cost for an extra unit of 𝑌𝑜𝑠, has the standard form arising from Cobb Douglas production functions. Given
erfect competition, total revenue for a sector in country 𝑜 is 𝑅𝑜𝑠 ≡ 𝑐𝑜𝑠𝑌𝑜𝑠. Note that the above implies that the cost share of capital
n production is (1 − 𝛼𝑜𝑠 − 𝛾𝑜𝑠) = 𝑃𝑜𝐾𝑜𝑠∕𝑅𝑜𝑠.

quilibrium. Cobb Douglas preferences and technologies imply that expenditure on a sector is 𝑋𝑑𝑠 = 𝛽𝑑𝑠(𝑉𝑑 + 𝐷𝑑 ) +
∑𝑆
𝑘=1 𝛾𝑑𝑠𝑘𝑅𝑑𝑘.

ere, value added is 𝑉𝑑 =
∑𝑆
𝑘=1(1 − 𝛾𝑑𝑘)𝑅𝑑𝑘, and trade deficits (𝐷𝑑) are such that ∑

𝑑 𝐷𝑑 = 0. Goods market clearing implies that
𝑜𝑠 =

∑

𝑑 𝜆𝑜𝑑𝑠𝑋𝑑𝑠.
Total payments to labor in a sector are 𝛼𝑜𝑠𝜔𝑜𝑠𝑅𝑜𝑠, while total labor income is ∑

𝑔 𝜋𝑜𝑔𝑠𝐼𝑜𝑔 ,12 and in the labor market the two need
o equalize in equilibrium. Hence, we can write excess labor demand in sector 𝑠 of country 𝑜 as

𝐸𝐿𝐷𝑜𝑠 =𝛼𝑜𝑠𝜔𝑜𝑠𝑅𝑜𝑠 −
∑

𝑔
𝜋𝑜𝑔𝑠𝐼𝑜𝑔 . (10)

ote that 𝜔𝑜𝑠 (the labor share), 𝑅𝑜𝑠 (revenue), 𝜋𝑜𝑔𝑠 (employment shares), and 𝐼𝑜𝑔 (labor income) are functions of the matrix of wages
≡

{

𝑤𝑜𝑠
}

. The system 𝐸𝐿𝐷𝑜𝑠 = 0 for all 𝑜, 𝑠 is therefore a system of equations in 𝒘 whose solution gives the equilibrium wages
nd prices given a choice of numeraire.

.2. Counterfactual equilibrium

When interested in the impact of changes in trade costs 𝜏𝑜𝑑𝑠, national technology 𝑇𝑜𝑠, equipment productivity 𝜉𝑜𝑠, or deficits 𝐷𝑑 ,
e can use exact hat algebra, where �̂� ≡ 𝑥′∕𝑥, to solve for the proportional change in the endogenous variables (Dekle et al., 2008).
ormally, for shocks 𝜏𝑜𝑑𝑠 for 𝑜 ≠ 𝑑, �̂�𝑜𝑠, 𝜉𝑜𝑠 or �̂�𝑑 we compute the counterfactual equilibrium with 𝐸𝐿𝐷′

𝑜𝑠 = 0 for all 𝑜, 𝑠.13 To this
nd, we write 𝐸𝐿𝐷′

𝑜𝑠 = 0 as

∑

𝑔
�̂�𝑜𝑔𝑠𝜋𝑜𝑔𝑠𝐼𝑜𝑔𝐼𝑜𝑔 = 𝛼𝑜𝑠�̂�𝑜𝑠𝜔𝑜𝑠

∑

𝑑
�̂�𝑜𝑑𝑠𝜆𝑜𝑑𝑠

(

𝛽𝑑𝑠
(

𝑉𝑑𝑉𝑑 + �̂�𝑑𝐷𝑑
)

+
𝑆
∑

𝑘=1
𝛾𝑑𝑠𝑘�̂�𝑑𝑘𝑅𝑑𝑘

)

. (11)

his NxS system of equations can be solved for {�̂�𝑜𝑠} given data on income levels 𝐼𝑜𝑔 , trade shares 𝜆𝑜𝑑𝑠, expenditure shares 𝛽𝑜𝑠,
evenue 𝑅𝑜𝑠, labor allocation shares 𝜋𝑜𝑔𝑠, cost shares 𝛼𝑜𝑠, 𝜔𝑜𝑠, and 𝛾𝑜𝑘𝑠, and values for the exogenous shocks (see Appendix Section
.2).

Importantly, the change in a sector’s labor share is

�̂�𝑜𝑠 =
�̂�1−𝜌
𝑜𝑠

[

(1 − 𝜔𝑜𝑠)𝜉𝑜𝑠𝑃
1−𝜌
𝑜 + 𝜔𝑜𝑠�̂�

1−𝜌
𝑜𝑠

] . (12)

o conditional on wage and price changes, an increase in equipment productivity (𝜉), or ‘‘automation’’, lowers the labor share. On
he trade side, trade or technology shocks will affect demand for each country’s goods:

�̂�𝑜𝑑𝑠 =
�̂�𝑜𝑠

(

𝜏𝑜𝑑𝑠𝑐𝑜𝑠
)−𝜃𝑠

∑

𝑖 𝜆𝑖𝑑𝑠�̂�𝑖𝑠
(

𝜏𝑖𝑑𝑠𝑐𝑖𝑠
)−𝜃𝑠

. (13)

Shifts in labor demand lead to wage changes, which induce workers to move across sectors with elasticity 𝜅:

�̂�𝑜𝑔𝑠 =
�̂�𝑜𝑔𝑠�̂�𝜅𝑜𝑠
�̂�𝜅
𝑜𝑔

, (14)

where �̂�𝑜𝑔 is the change in the average hourly wage in group 𝑜𝑔 (see Eq. (4)), with

�̂�𝑜𝑔 =

(

∑

𝑘
𝜋𝑜𝑔𝑘�̂�𝑜𝑔𝑘�̂�

𝜅
𝑜𝑘

)
1
𝜅

. (15)

Given that the change in the employment rate is

𝑒𝑜𝑔 =
(

�̂�𝑀𝑜𝑔
)

1
1−𝜒

(

�̂�𝑜𝑔
𝑃𝑜

)

𝜒(1+𝜇)
(1−𝜒)𝜇

, (16)

12 A group’s supply of effective labor units to sector 𝑠 is 𝑍𝑜𝑔𝑠 = 𝐼𝑜𝑔𝑠∕𝑤𝑜𝑠, and the Fréchet implies that 𝜋𝑜𝑔𝑠𝐼𝑜𝑔 = 𝑤𝑜𝑠𝑍𝑜𝑔𝑠.
13 Throughout the analysis in this and the following sections, we assume for simplicity that �̂� = 1. It is straightforward to relax this.
6
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and knowing the expressions for nominal income and utility from (1) and (2), the change in real income per worker is

�̂�𝑜𝑔 =
𝐼𝑜𝑔
𝑃𝑜

=
(

�̂�𝑀𝑜𝑔
)

1
(1−𝜒)

(

�̂�𝑜𝑔
𝑃𝑜

)
1

(1−𝜒)
1+𝜇
𝜇

. (17)

Importantly, �̂�𝑜𝑔 in Eq. (15) has a generalized specific factors interpretation, with 𝜅 governing the degree to which workers are a
specific factor. When 𝜅 → 1, any sector’s wage change translates directly to a change in nominal income, weighted by a group’s
specialization in that sector (𝜋𝑜𝑔𝑠). At the other extreme, when 𝜅 → ∞, labor supply is perfectly elastic across sectors and as a
result, all sectors experience an identical wage change and all groups undergo the same income change. Hence, between-group
distributional effects are stronger for 𝜅 close to 1, and disappear when 𝜅 → ∞. In Eq. (17), the exponent on �̂�𝑜𝑔∕𝑃𝑜 is increasing in
he elasticity of the employment rate to labor market tightness (𝜒), and in the intensive margin elasticity (1∕𝜇). This term therefore

represents an amplification effect driven by changes in the employment rate and hours worked.

3. Data

Estimation data. To estimate the labor supply-side parameters of the model, we use worker-level data from IPUMS (Ruggles et al.,
2019). There, we restrict the sample to individuals who are between 25 and 60 years old, and also exclude government or non-profit
employees, family workers, and institutionalized individuals. IPUMS provides info on total earned income over the past year, total
number of hours worked, and employment status. We measure the hourly wage as average income per hour, and the employment
rate as the share of employed individuals in the labor force. The model predicts that sectoral employment shares (𝜋𝑈𝑆,𝑔𝑠) in terms
f income or hours worked should be perfectly correlated, while in practice the correlation is ‘‘only" 97% (see Appendix Fig. A.1).
ince the correlation appears a little less strong for the larger 𝜋𝑈𝑆,𝑔𝑠, we employ both the income- and hours-based measure for
hese shares in the estimation.

Our analysis focuses on changes over time with the year 2000 as the start period, which is the first year where IPUMS and our
nternational trade dataset both have available data, and an end period before the onset of the Great Recession. For the year 2000,
PUMS provides the 5% sample of the Census, but for the end period only the American Community Survey (ACS) is available.
imilar to the strategy in ADH, we therefore combine the ACS surveys for the years 2005-2006-2007 to ensure a more precise
easurement of sector-level variables for all commuting zones. Throughout, we deflate income to 1999 dollars using the CPI.

imulation data. For the international trade data, we employ the 2016 release of the World Input-Output Database (WIOD) -
ee Timmer et al. (2015). In the simulations, we measure the labor compensation share (𝛼𝑜𝑠𝜔𝑜𝑠) as the labor share of a sector’s
alue added in the WIOD Socio Economic Accounts for all 43 countries in WIOD.

Given the observed values for 𝛼𝑜𝑠𝜔𝑜𝑠, we disentangle the values of 𝛼𝑜𝑠 (the cost share of the lower-tier CES 𝐹𝑜𝑠) and 𝜔𝑜𝑠 as follows.
irst, we measure the share of structures in the total value of structures and equipment in each sector as 𝜁𝑜𝑠 ≡ 𝑃𝑜𝐾𝑜𝑠∕(𝑃𝑜𝐾𝑜𝑠+𝑃𝑜𝑀𝑜𝑠).
econd, we note that (𝑃𝑜𝐾𝑜𝑠+𝑃𝑜𝑀𝑜𝑠)∕𝑌𝑜𝑠 = 1−𝛾𝑜𝑠−𝛼𝑜𝑠𝜔𝑜𝑠 and therefore the output share of 𝐾𝑜𝑠 is (1−𝛼𝑜𝑠−𝛾𝑜𝑠) = 𝜁𝑜𝑠(1−𝛾𝑜𝑠−𝛼𝑜𝑠𝜔𝑜𝑠),
hich allows us to solve for 𝛼𝑜𝑠 and 𝜔𝑜𝑠. We measure 𝜁𝑜𝑠 based on sector-level data on structures and equipment from EU-KLEMS (The
onference Board, 2023; van Ark and Jäger, 2017) and the OECD (OECD, 2019). As in Krusell et al. (2000), we group structures
nd transportation equipment under 𝐾𝑜𝑠 and the other asset types under 𝑀𝑜𝑠. Appendix F provides more background, as well as
etailed summary statistics for all the cost share parameters.

We employ sector definitions based on ISIC Rev.4, and to create consistent sectors across all estimation and simulation datasets,
e aggregate sectors to 23 industries. Of these industries, two are in the primary sector and 11 are in manufacturing.14 The full list

s in Appendix Table A.3.
In the simulations, we need to ensure that groups’ labor income is consistent with the WIOD revenue measures: ∑

𝑔 𝐼𝑜𝑔𝑠 =
𝑜𝑠𝜔𝑜𝑠𝑌𝑊 𝐼𝑂𝐷

𝑜𝑠 , where the superscript denotes the data source. To ensure this, we adjust IPUMS income to WIOD revenue as follows:

𝐼𝑈𝑆,𝑔𝑠 =
( 𝜈𝑈𝑆𝐼𝑈𝑆,𝑔𝑠
∑

ℎ 𝜈𝑈𝑆𝐼𝑈𝑆,ℎ𝑠

)𝐼𝑃𝑈𝑀𝑆

𝛼𝑈𝑆,𝑠𝜔𝑈𝑆,𝑠𝑌
𝑊 𝐼𝑂𝐷
𝑈𝑆,𝑠 ,

where we assume that 𝜈𝑈𝑆,𝑔 is constant across US groups. We then measure group-level sectoral employment shares as 𝜋𝑈𝑆,𝑔𝑠 =
𝐼𝑈𝑆,𝑔𝑠∕

∑

𝑠 𝐼𝑈𝑆,𝑔𝑠.

4. Estimation

4.1. A shift-share approximation

Our model features trade and technology shocks at the national level, which lead to changes in wages per effective unit of labor
(�̂�𝑜𝑠), which in turn result in unequal changes in income and welfare across commuting zones (see Eqs. (15) and (17)). While the
�̂�𝑜𝑠 are unobservable, we can derive an observable shift-share measure that closely approximates the model-predicted impact of

14 The main data limitation here is arising from EU-KLEMS, which has data on just 11 manufacturing sectors. (WIOD has data on 19 manufacturing sectors.)
ince we then only have these 11 manufacturing sectors, we are missing the additional variation in Chinese import penetration and changes in the labor share
7

ithin these sectors. This may lead us to understate the aggregate and distributional effects of the China and automation shock.
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Table 1
Estimating the model-implied shift-share approximation.

(1) (2) (3) (4)
ln 𝐼𝑔 ln 𝐼𝑔 ln 𝐼𝑔 ln 𝐼𝑔

ln
∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 �̂�𝑠 1.23∗∗∗ 1.18∗∗∗

(0.17) (0.27)

ln
∑

𝑠 𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 �̂�𝑠 1.13∗∗∗ 0.94∗∗∗

(0.16) (0.25)

Controls No Yes No Yes
Observations 722 722 722 722

The regressions in this table estimate Equation (19), where the 𝜋𝑔𝑠 are measured based on
hours worked or income. 𝐼𝑔 is the change in average income per person in the labor force
in a CZ, with the unemployed earning zero income. The even-numbered specifications include
the following control variables from ADH: dummies for the nine Census divisions, the average
offshorability index of occupations, and percentages of employment in manufacturing, college-
educated population, foreign-born population, and employment among women, where these
percentages are all measured at the start of the period. Standard errors, clustered at the state
level, in parentheses. P-values: * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

changes in national wages across commuting zones. Specifically, assuming �̂�𝑀𝑜𝑔 = 1 and defining sectoral labor income shares as
𝑜𝑠 ≡

∑

𝑔 𝐼𝑜𝑔𝑠∕𝐼𝑜, we show in Appendix Section G.3 that:15

𝐼𝑜𝑔
𝐼𝑜

≈

(

∑

𝑠
𝜋𝑜𝑔𝑠�̂�𝑜𝑔𝑠 �̂�𝑜𝑠

)
1+𝜇

𝜅(1−𝜒)𝜇

. (18)

We bring this approximation to US data with commuting zones as groups. In doing so, we simplify notation by dropping the
ountry subscript and assume that groups face a uniform productivity shock across all sectors: �̂�𝑔𝑠 = �̂�𝑔 . We can then estimate:

ln 𝐼𝑔 = 𝛼𝑠𝑠 + 𝛽𝑠𝑠 ln

(

∑

𝑠
𝜋𝑔𝑠 �̂�𝑠

)

+ 𝜀𝑠𝑠,𝑔 , (19)

where 𝛼𝑠𝑠 ≡ ln 𝐼 , 𝛽𝑠𝑠 ≡
(1+𝜇)
𝜅(1−𝜒)𝜇 and 𝜀𝑠𝑠,𝑔 ≡ ln �̂�

(1+𝜇)
𝜅(1−𝜒)𝜇
𝑔 . Here, ∑𝑠 𝜋𝑔𝑠 �̂�𝑠 measures a group’s exposure to sectors’ national expansion or

ontraction, weighted by initial employment shares. Our shift-share variable, therefore, incorporates the impact of any sector-specific
upply or demand shock at the national level, including any trade or technology shocks. Below, we will use the estimate of 𝛽𝑠𝑠 as a
onsistency check for the individual estimates of 𝜅, 𝜇, and 𝜒 . Note that 𝛽𝑠𝑠 contains the same amplification term as in our welfare
xpression (17), arising from adjustments on the intensive and extensive margins. In addition, the term is now divided by 𝜅, which
s the parameter that measures workers’ scope for reallocation across sectors.

We estimate the elasticity of our shift-share approximation in Table 1, both with and without controls and for our two measures
f the employment shares 𝜋𝑔𝑠 (based on hours or income). While other shift-share estimations hinge on isolating the impact of one
articular shock in their estimation (e.g. only the China shock or only robotization), this is not the case here since our shift-share
ariable incorporates all national-level shocks. We therefore estimate specification (19) using OLS.

The obtained estimates are strongly statistically significant, with coefficients between 0.94 and 1.23. The 95% confidence
ntervals overlap across all four specifications. These estimates imply strong distributional effects since a coefficient above unity
mplies amplification effects on top of the specific factors case (𝜅 → 1).

In Appendix B, we document the absence of pre-trends related to the shift-share estimation (Tables B.3, B.4), and that the
ariation in this variable is strongly affected by the ADH China and computerization shocks, as well as the robotization shock
Table B.5). Finally, we also calculate the Rotemberg weights for this estimation (Tables B.1, B.2).

.2. Estimating 𝜇, 𝜅, and 𝜒

We now estimate the parameters that govern the behavior of hours worked, the employment rate, and the degree of sectoral
obility.

15 This approximation builds on a similar derivation in GRY, and here we extend its application to a setting with automation, unemployment and an intensive
argin for labor supply. The approximation is exact when 𝜅(1 − 𝜒)𝜇∕(1 + 𝜇) = 1. Moreover, using the simulated model, we show that the approximation also
8

erforms extremely well for other parameter values (see Appendix Figure B.1).



Journal of International Economics 150 (2024) 103912S. Galle and L. Lorentzen

w
w

I
(
s
I
e

c

t
t
a
1

f

t

P
i

4.2.1. Estimation equations
Estimating 𝜇. From Eq. (3), we have that the change in average hours worked is ℎ̂𝑜𝑔 =

(

�̂�𝑜𝑔𝛿𝑜𝑔∕𝑃𝑜
)1∕𝜇 , while from Eq. (4) the change

in the hourly wage is 𝑖𝑜𝑔 = �̂�𝑜𝑔 . By combining these results, we obtain the estimation equation for 𝜇:

ln ℎ̂𝑜𝑔 = 𝛼𝜇 + 𝛽𝜇 ln �̂�𝑜𝑔 + 𝜀𝜇,𝑜𝑔 , (20)

where 𝛽𝜇 ≡ 1
𝜇 , 𝛼𝜇 ≡ − ln𝑃 1∕𝜇

𝑜 and 𝜀𝜇,𝑜𝑔 ≡ ln 𝛿1∕𝜇𝑜𝑔 . The estimated elasticity (1∕𝜇) governs how the supplied number of labor hours
increases with the average hourly wage.

Estimating 𝜅. By combining 𝑖𝑜𝑔 = �̂�𝑜𝑔 with Eq. (14), we find that

ln 𝑖𝑜𝑔 = ln �̂�𝑜𝑠 −
1
𝜅
ln �̂�𝑜𝑔𝑠 + ln �̂�

1
𝜅
𝑜𝑔𝑠. (21)

Abstracting from local productivity shocks, this expression implies that �̂�𝑜𝑔𝑠 is a sufficient statistic for the change in the hourly wage
relative to other groups. Moreover, this relation holds for any sector. To therefore exploit information from all sectors and thereby
make this specification less sensitive to measurement in a single sector, we take an average of the previous specification across
sectors:

ln 𝑖𝑜𝑔 = 𝛼𝜅 + 𝛽𝜅
∑

𝑠
𝜔𝜅,𝑠 ln �̂�𝑜𝑔𝑠 + 𝜀𝜅,𝑜𝑔 , (22)

where 𝛽𝜅 ≡ − 1
𝜅 , 𝛼𝜅 ≡

∑

𝑠 𝜔𝜅,𝑠 ln �̂�𝑜𝑠, 𝜀𝜅,𝑜𝑔 ≡
∑

𝑠 𝜔𝜅,𝑠 ln �̂�
1
𝜅
𝑜𝑔𝑠, and where the weights satisfy 0 ≤ 𝜔𝜅,𝑠 ≤ 1 and ∑

𝑠 𝜔𝜅,𝑠 = 1.16 Here, the
regressor measures the change in the degree of specialization. Since ∑

𝑠 𝜋𝑜𝑔𝑠�̂�𝑜𝑔𝑠 = 1, a higher average ln �̂�𝑜𝑔𝑠 implies that smaller
sectors are expanding while larger sectors are contracting – a decrease in sectoral specialization. Then, the lower is 𝜅, the more
negative the impact of decreasing sectoral specialization on the hourly wage.

Estimating 𝜒 . From Eq. (1), we find that the change in average income per worker is

𝑖𝑜𝑔 ℎ̂𝑜𝑔 =
𝐼𝑜𝑔
𝑒𝑜𝑔

=

(

𝛿𝑜𝑔
𝑃𝑜

)
1
𝜇

�̂�
1+𝜇
𝜇

𝑜𝑔 .

Combining this expression with Eq. (16) and assuming 𝑐𝑜𝑔 = 1, we obtain an estimation equation for the employment rate elasticity
(𝜒)

ln 𝑒𝑜𝑔 = 𝛼𝜒 + 𝛽𝜒 ln(𝑖𝑜𝑔 ℎ̂𝑜𝑔) + 𝜀𝜒 , (23)

here 𝛽𝜒 ≡ 𝜒
1−𝜒 , 𝛼𝜒 ≡ ln𝑃 𝜒∕(𝜒−1)𝑜 and 𝜀𝜒 ≡ 1

1−𝜒 ln �̂�𝑀𝑜𝑔 . In the model, the employment rate 𝑒𝑜𝑔 increases with average income per
orker, and a higher 𝜒 entails that 𝑒𝑜𝑔 is more responsive to such changes, which is reflected in the estimation equation.

V strategy. In contrast to our shift-share estimation in Eq. (19), the model now implies that for the 𝜅 estimation in specification
22) the error term is necessarily correlated with the regressor. Moreover, OLS estimation of the intensive margin elasticity in (20)
uffers from division bias (Borjas, 1980).17 We therefore cannot estimate these two specifications with OLS. However, employing an
V addresses the endogeneity concern for specification (22) and the division bias in (20). Finally, the IV strategy may also address
ndogeneity concerns not captured by the model.

As an instrument, we utilize our shift-share variable ∑

𝑠 𝜋𝑔𝑠 �̂�𝑠.18 As explained by Goldsmith-Pinkham et al. (2020), a sufficient
ondition for this instrument to be valid is that the error terms are uncorrelated with the sector shares (𝜋𝑔𝑠). Importantly, the model

also suggests this instrument to be highly relevant. It should therefore provide sufficiently strong first stages, in contrast to the ADH
or Acemoglu and Restrepo (2020) shocks (see Appendix Table C.1).

4.2.2. Results
Table 2 presents the results of our parameter estimation. For each specification, we employ two versions of our shift-share

instrument: in columns 1 and 2, we measure the sectoral shares 𝜋𝑔𝑠 based on hours worked, while in columns 3 and 4, we measure
hem based on sectoral income shares. We perform the estimation without and with controls for each version of the instrument in
he odd and even columns, respectively. We cluster standard errors at the state level. For all three parameters, our estimates are
lways strongly statistically significant. Moreover, the first stage is generally sufficiently strong since all the F-statistics are above
0, with one exception where it is 8.5.

16 In our estimation, we weigh sectors by their employment shares (measured in terms of hours or income units), because percentage changes in employment
or smaller sectors are more sensitive to measurement error, in particular at the CZ-level in the IPUMS data.
17 This division bias arises from calculating the hourly wage rate as the ratio of earnings over hours, such that the hours variable appears on both sides of

he regression.
18 We focus on the instrument in levels instead of logs, to be able to apply the standard identification framework for shift-share instruments – see e.g. Goldsmith-
inkham et al. (2020). However, the instruments in levels and logarithms have a correlation of 99%, so all our findings are robust to employing the instrument
9

n logarithms instead.
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Table 2
Parameter estimation.

(a) Estimation of 1
𝜇

(1) (2) (3) (4)
ln ℎ̂𝑔 ln ℎ̂𝑔 ln ℎ̂𝑔 ln ℎ̂𝑔

ln 𝑖𝑔 0.94∗∗∗ 0.32∗∗∗ 1.04∗∗∗ 0.40∗∗∗

(0.24) (0.10) (0.28) (0.14)

Implied 𝜇 1.07 3.12 0.96 2.48
F-First Stage 18.1 15.6 14.1 8.53
Instrument ∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 �̂�𝑠
Controls No Yes No Yes
Observations 722 722 722 722

(b) Estimation of − 1
𝜅

(1) (2) (3) (4)
ln 𝑖𝑔 ln 𝑖𝑔 ln 𝑖𝑔 ln 𝑖𝑔

∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑠 ln �̂�ℎ𝑜𝑢𝑟𝑠𝑔𝑠 −0.44∗∗∗ −0.48∗∗∗

(0.11) (0.096)
∑

𝑠 𝑟𝑠 ln �̂�𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 −0.36∗∗∗ −0.35∗∗∗

(0.097) (0.091)

Implied 𝜅 2.27 2.10 2.81 2.88
F-First Stage 71.4 94.3 53.5 34.2
Instrument ∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 �̂�𝑠
Controls No Yes No Yes
Observations 722 722 722 722

(c) Estimation of 𝜒
1−𝜒

(1) (2) (3) (4)
ln 𝑒𝑔 ln 𝑒𝑔 ln 𝑒𝑔 ln 𝑒𝑔

ln 𝑖𝑔 ℎ̂𝑔 0.39∗∗∗ 0.20∗∗∗ 0.42∗∗∗ 0.27∗∗∗

(0.052) (0.053) (0.059) (0.079)

Implied 𝜒 0.28 0.17 0.30 0.21
F-First Stage 39.4 16.9 33.2 11.0
Instrument ∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 �̂�𝑠
∑

𝑠 𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 �̂�𝑠
Controls No Yes No Yes
Observations 722 722 722 722

Panel (a) presents estimation results for specification (20), where 𝑖𝑔 is the average hourly wage and ℎ𝑔 is the
average annual supply of hours. Panel (b) estimates specification (22) and Panel (c) specification (23), where
𝑒𝑔 is the employment rate and 𝑖𝑔ℎ𝑔 is the average annual income. The even-numbered specifications include
the following control variables from ADH: dummies for the nine Census divisions, the average offshorability
index of occupations, and percentages of employment in manufacturing, college-educated population, foreign-
born population, and employment among women, where these percentages are all measured at the start of the
period. Standard errors, clustered at the state level, in parentheses. P-values: * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

For the elasticity of the intensive margin of labor supply (1∕𝜇), Chetty (2012) provides bounds on the estimates in the literature
etween 0.28 and 0.54.19 This interval covers our results for the specifications with controls (columns 2 and 4 in panel b). We set
ur preferred value to 0.4 – our estimate from column 4, with an implied inverse elasticity of 𝜇 = 2.5. Our point estimates for 𝜅
all within the interval of 2.1–2.88 (see Panel b). In somewhat different setups, Burstein et al. (2019), Hsieh et al. (2019) and GRY
ind estimates between 1.26 and 1.81. We therefore set our preferred value at 𝜅 = 2.1. Finally, for the employment elasticity 𝜒 , we
btain estimates between 0.17 and 0.3. These estimates are in line with the results from Shimer (2005), who estimates 𝜒 between
.25 and 0.3, while Barnichon and Figura (2015) estimate 𝜒 = 0.33.20 We therefore set 𝜒 = 0.3.

How do the distributional implications of our parameter values compare to the estimated shift-share elasticity from Table 1
which informed us on how local exposure to national sectoral reallocation translates into local income changes)? Interestingly,
ith 𝜇 = 2.5, 𝜅 = 2.1 and 𝜒 = 0.3 we obtain a value for 1+𝜇

𝜅(1−𝜒)𝜇 = 0.95. Since our estimates for this latter elasticity range from 0.94
to 1.23, our parameter values match the empirical elasticity almost perfectly.

In Appendix C, we perform a series of robustness checks: (i) estimation with benchmark instruments, which are too weak for
our setting (Table C.1), (ii) estimating 𝜅 separately for each sector (Table C.2), obtaining a median 𝜅 estimate of 2.17, and (iii)
documentation on the Rotemberg weights for each parameter estimate (Tables C.3, C.4, C.5).

19 As explained in Kim and Vogel (2021), our labor-leisure preferences have a zero income effect, such that the Marshallian labor supply elasticity equals the
icksian one. Chetty (2012) focuses on the latter.
20 Our setup is not identical to Shimer (2005) and Barnichon and Figura (2015), who employ a dynamic setting where only the currently unemployed are
10

onsidered to be job applicants. In our static model, all workers are considered applicants.
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5. Counterfactuals

5.1. Calibration

Parameter values. From the estimation we obtained values for the labor-side parameters, namely 𝜅 = 2.1, 𝜇 = 2.5 and 𝜒 = 0.3.
We take values from the literature for 𝜌 and 𝜃. Specifically, for the elasticity of substitution between capital and labor we
follow Karabarbounis and Neiman (2014) and set 𝜌 = 1.28.21 We also set a common trade elasticity for all sectors: 𝜃 = 5, as
in Head and Mayer (2014).

We also calibrate 𝜐, the parameter that regulates the change in productivity arising from an automation shock. To do so,
we target the elasticity from Moll et al. (2022) for productivity increases associated with a certain decline in the labor share.
Specifically, Moll et al. (2022) parametrize their model such that an automation-induced decline in the labor share of 13% is
associated with a productivity increase of 2.4%. In our calibration, targeting this elasticity for the manufacturing sector implies a
value of 𝜐 = −1.86.22,23

Shock calibration. With these parameter values, we jointly calibrate the automation shock and the China shock for the manufacturing
subsectors.24 First, we model the China shock as changes in China’s sectoral productivity (�̂�𝐶ℎ𝑖𝑛𝑎,𝑠). Leveraging Eq. (13), we calibrate
these productivity shocks such that the model exactly matches the strong growth in Chinese manufacturing exports to the US
(�̂�𝐶ℎ𝑖𝑛𝑎,𝑈𝑆,𝑠).25

Second, for the automation shock, recall that the model predicts that automation leads to a decline in sectoral labor shares (�̂�𝑈𝑆,𝑠)
– see Eq. (12). We therefore calibrate the changes in equipment productivity for US manufacturing sectors such that the model
generates exactly the observed �̂�𝑈𝑆,𝑠 in these sectors. Here, we categorize all labor-saving technological change under automation,
ncluding robotization, computer-driven automation of routine tasks, or other physical or intangible labor-saving technologies.26

As indicated, the calibration targets for the shocks, namely the changes in the labor shares and the changes in the import shares
rom China, are also a function of equilibrium changes in factor prices (see Eqs. (12) and (13)). Since both the automation and the
hina shock affect these factor prices, both shocks can affect each of the calibration targets (labor shares and import shares from
hina). Hence, it is essential to calibrate these shocks jointly, which is what we do.

Fig. 1 details the two sets of targeted moments. With one exception, the US import shares for Chinese goods (�̂�𝐶ℎ𝑖𝑛𝑎,𝑈𝑆,𝑠) more
han double over the period 2000–2007. In fact, in our data, the average import share for manufacturing sectors increased from
.02% in 2000 to 3.86% in 2007, which entails an increase of 278 percent over seven years. The textile sector, in particular,
xperienced a substantial increase in the import share, going from 3.8% in 2000 to 15.9% in 2007. Over the same period, the labor
hare declines by 8.3% on average in the manufacturing sectors. This pattern is not unique to the US since there is a correlation of
0% with the changes in the labor share in 11 European countries for which EU-KLEMS has detailed sector-level data. We return
o this observation in Section 5.7. Such a high correlation is consistent with an automation shock common among these advanced
conomies. Note that there is also a correlation of 40% between the changes in the labor share and the changes in the import
hare from China.27 Although these two moments are correlated, in our model, they have very different origins, as we will see in
ection 5.4.1.

.2. Impact of automation and the rise of China

The impact of automation and the rise of China is strongly positive for the US in the aggregate but widely unequal across US
ommuting zones (see Table 3). At the aggregate level, the US gains 3.96%, but the standard deviation across CZs is elevated

21 This value is in line with the recent estimate of 𝜌 = 1.35 in Hubmer (2021).
22 Equation 45 in Appendix H explains how 𝜐 governs the relationship between output increases and automation-induced changes in the labor share.
23 In addition to calibrating 𝜐 in the above manner, in Appendix H we also estimate it by employing an indirect inference procedure that exploits the link
etween output increases and automation-induced declines in the labor share. We obtain a point estimate of 𝜐 = −2.2, with a standard error of 0.256. Hence,
he 95% confidence interval of our estimate includes the value employed here (𝜐 = −1.86). Because the standard error on the indirect inference estimate is
ubstantial and the quantitative results are sensitive to the precise 𝜐 value, we prefer to determine 𝜐 based on the benchmark productivity effect of automation
n Moll et al. (2022).
24 Throughout our simulation analysis, we employ the Alvarez and Lucas (2007) algorithm to find the counterfactual equilibrium. To ensure this algorithm is
ell behaved, following Ossa (2014) and GRY, we first purge trade deficits from the data using the original Dekle et al. (2008) exercise and then perform the

ntire analysis on the resulting data with balanced trade.
25 Eq. (13) shows that an increase in �̂�𝐶ℎ𝑖𝑛𝑎,𝑠 leads to an increase in import shares in all destination countries (including the US), taking into account changes

n marginal costs. Our shock calibration matches observed import shares in a counterfactual general equilibrium. By design, it therefore incorporates changes in
quilibrium prices and wages across all countries and sectors as well as in their marginal costs.
26 It may not be a conservative modeling choice to map the full changes in the labor share into the automation shock, but we will see below that it provides a
ery good model fit for the cross-sector and the cross-CZ variation. Moreover, our calibrated value of 𝜐, which governs the productivity increases associated with
n automation-induced decline in the labor share, is corroborated by the observed relationship between reductions n the labor share and increases in output (see
he 𝜐 estimation in Appendix H). Hence, our setup does not overstate the productivity gains associated with the observed declines in the labor share. Finally,
n Section 5.7, we examine the robustness of our results to targeting the common trend in the labor shares across the US and 11 European countries instead of
nly the labor share changes in the US. Importantly, the common trends in the labor shares are arguably driven by common technological developments.
27 Interestingly, due to the joint calibration of the China and automation shock, this pattern results in a correlation of 50% between the �̂�𝐶ℎ𝑖𝑛𝑎,𝑠 and 𝜉𝑈𝑆,𝑠
ectors. Based on the positive correlation between �̂�𝑈𝑆,𝑠 and �̂�𝐶ℎ𝑖𝑛𝑎,𝑈𝑆,𝑠, and since there is a negative relation between 𝜉𝑈𝑆,𝑠 and �̂�𝑈𝑆,𝑠, we might have expected
negative correlation between the calibrated shocks �̂�𝐶ℎ𝑖𝑛𝑎,𝑠 and 𝜉𝑈𝑆,𝑠. However, the strong US automation shock in certain sectors, particularly in the petroleum

efining sector, requires stronger Chinese productivity growth to match its �̂�𝐶ℎ𝑖𝑛𝑎,𝑈𝑆,𝑠 target. This in turn leads to the positive correlation between �̂�𝐶ℎ𝑖𝑛𝑎,𝑠 and
̂

11

𝑈𝑆,𝑠 across manufacturing sectors.
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Fig. 1. Changes in import shares from China and labor shares in US manufacturing.
For manufacturing sectors over the period 2000–2007, the figure displays �̂�𝐶ℎ𝑖𝑛𝑎,𝑈𝑆,𝑠 and �̂�𝑈𝑆,𝑠, which are the targeted moments in our calibration. The correlation
between the two variables is 40%.

Table 3
Impact of automation and the rise of China across commuting zones.

Aggregate Mean SD Min. Max.

𝐼𝑔∕𝑃 3.96 4.43 0.97 1.24 8.34
�̂�𝑔∕𝑃 1.96 2.19 0.48 0.62 4.09
ℎ̂𝑔 0.78 0.87 0.19 0.25 1.61
𝑒𝑔 1.17 1.31 0.28 0.37 2.43
𝛥𝜋𝑔𝑀 −0.81 −0.82 0.39 −2.57 −0.02

The table shows the impact of automation and the rise of China across US commuting zones. The
first row displays the change in average real income, the second on the average hourly wage,
the third row on hours worked per employee and the fourth on the employment rate. The final
row shows the change in the share of employment in manufacturing. The first column shows
the aggregate effect, and the second the average. The third column shows the standard deviation
across commuting zones and the fourth and fifth column respectively show the minimum and
maximum effect. All variables are measured in percentage changes, except 𝛥𝜋𝑔𝑀 which is
measured in percentage points because �̂�𝑔𝑀 is a very noisy measure in our data, especially
for low initial 𝜋𝑔𝑀 (see Appendix Figure D.2).

t 0.97%. Some CZs gain up to 8.34% while for others this is limited to 1.24%.28 The strongest concentration of low gains is
oncentrated around the Rust Belt (see Fig. 2). More broadly, the non-coastal regions east of the Mississippi river - or the ‘‘Eastern
eartland" in the phrasing of Austin et al. (2018) - mostly experience low gains due to these combined shocks.

Recall that changes in the hourly wage drive changes in a CZ’s earnings, hours worked, and the employment rate. Moreover, if
here are only national-level shocks, then changes in a group’s total real income (𝐼𝑔∕𝑃 ) are perfectly correlated with changes in the
eal hourly wage, hours worked, and the employment rate. Specifically, we then have that

𝑖𝑔
𝑃

=

(

𝐼𝑔
𝑃

)

(1−𝜒)𝜇
1+𝜇

, ℎ̂𝑔 =

(

𝐼𝑔
𝑃

)

1−𝜒
1+𝜇

, 𝑒𝑔 =

(

𝐼𝑔
𝑃

)𝜒

. (24)

Given our parameter values, this implies that the hourly wage accounts for 50% of the log change in a group’s real income, while
hours worked and the employment rate respectively account for 20% and 30% of that change. For the US in the aggregate, this
results in an increase of the real hourly wage by 1.96%, with a standard deviation of 0.48%, and increases in hours worked and the
employment rate by 0.78% and 1.17% respectively (see Table 3). Since the trade and automation shocks occur in manufacturing –
a sector that only accounts for 16% of employment in the year 2000, these numbers are substantial.

28 When we employ alternative values for 𝜃𝑠 in the simulation, the aggregate gains increase to 4.45% and the standard deviation to 1.76% (please see Appendix
Table E.1, Panel a). There, we follow Bartelme et al. (2019) and employ the median value for 𝜃𝑠 from the estimations in Caliendo and Parro (2015), Shapiro
12

(2016), Bagwell et al. (2018) and Giri et al. (2018).
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Fig. 2. Geographical impact of the automation and China shock.
The figure plots the geographic distribution of the percentage changes in groups’ average real income for US commuting zones due to the combined effect of
automation and the China shock.

The change in commuting zones’ manufacturing sector (𝛥𝜋𝑔𝑀 ) has a correlation of 74% with the income changes.29 As a result
of this high correlation, the manufacturing sector’s decline also tends to be concentrated in the Eastern Heartland in general and
in the Rust Belt in particular (see Appendix Figure D.3). We find that the aggregate decline in the manufacturing sector is 0.81
percentage points, with a standard deviation of 0.39 and a maximum decline of 2.57 percentage points.

5.3. Examining model fit

For all the different margins of adjustment discussed so far – income,30 hourly wage, hours worked, employment rate and
employment share in manufacturing – our model predictions fit well with the observed variation across commuting zones (see
Appendix Fig. A.3).31 To examine the model fit more formally, we regress the observed changes in the data on the model’s predicted
changes after the combined China and automation shocks (see Table 4). We run this regression with and without control variables
for each of the variables of interest. We find that there is a strongly significant positive relationship for all specifications between
the model’s predictions and the actual changes. To see how much of the variation in the observed changes the model can explain on
its own, we focus first on the specifications without controls. There, we explain 28% or more of the variation for changes in hours
worked, the employment rate, or the manufacturing share. For average income, the 𝑅2 is 8%, and 4% for changes in the hourly
wage. Part of the difference in these 𝑅2 values arises from a stronger presence of outliers for the income variables, which may be
due to larger measurement error (see Appendix Fig. A.3, panels a and b).

In addition to examining the share of the observed variation explained by the model, we ask if the magnitude of the model-implied
changes is in line with the observed changes. This is the case if the estimated regression coefficient is around unity.32 If the coefficient
is larger, the model underpredicts the observed changes because a given change in the model translates into a larger change in the
data. Once we add control variables,33 we cannot reject a unity coefficient for CZ-level income variables (ln 𝐼𝑔). However, the degree
of underprediction is stronger and significant for the other variablest. This might indicate that we have been too conservative in
setting the intensive and extensive margin elasticities and that – if anything – we are underestimating the distributional impact of
the shocks. Overall, our model with the combined China and automation shock fits the data quite well, regarding the share of the
variation it explains and the magnitude of the predicted values.

29 While we measure the other variables in Table 3 in percentage terms, we measure the change in the manufacturing employment share in percentage points
(𝛥𝜋𝑔𝑀 ). This is because the variable in percentage terms (�̂�𝑔𝑀 ) is extremely sensitive to the initial 𝜋𝑔𝑀 , while 𝛥𝜋𝑔𝑀 is not (see Appendix Figure D.2). The wide
variance in �̂�𝑔𝑀 is probably due to measurement error in IPUMS, in particular for low initial values of 𝜋𝑔𝑀 .

30 Since all CZs share the same price index, we focus on variation in nominal income in our model fit analysis.
31 Throughout the model fit exercise, we use our WIOD-adjusted measure for changes in the manufacturing share, since this is the measure we need to employ

in the simulations (see end of Section 3). This measure has a correlation of 82% with the raw measure from IPUMS.
32 See also the model-fit discussion in Adão et al. (2020).
33 These control variables capture shocks associated with regional fixed effects, the demographic composition of a CZ, the potential for offshorability of the
13

local jobs, or the secular decline in manufacturing.
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Table 4
Model fit of variation across commuting zones.

ln 𝐼𝑔 ln �̂�𝑔 ln ℎ̂𝑔 ln 𝑒𝑔 𝛥𝜋𝑔𝑀
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ln 𝐼𝑔 - Both shocks 2.81 1.81
(0.60) (0.79)

ln �̂�𝑔 - Both shocks 1.98 2.81
(0.77) (1.24)

ln ℎ̂𝑔 - Both shocks 8.69 6.95
(0.90) (1.08)

ln 𝑒𝑔 - Both shocks 4.78 2.95
(0.72) (0.82)

𝛥𝜋𝑔𝑀 - Both shocks 3.62 2.16
(0.31) (0.33)

𝑅2 0.08 0.29 0.04 0.20 0.37 0.44 0.29 0.37 0.28 0.43
Controls No Yes No Yes No Yes No Yes No Yes
Observations 722 722 722 722 722 722 722 722 722 722

The specifications in this table regress observed changes in the data for the period 2000–2007 on the model’s predicted changes after the combined China
and automation shock. The first two specifications examine average income, specifications (3) and (4) average hourly wage, specifications (5) and (6) hours
worked per employee, specifications (7) and (8) the employment rate, and (9) and (10) the manufacturing employment share. We measure 𝛥𝜋𝑔𝑀 in percentage
points because �̂�𝑔𝑀 is a very noisy measure in our data, especially for low initial 𝜋𝑔𝑀 (see Appendix Figure D.2). The even-numbered specifications include the
following controls from ADH: dummies for the nine Census divisions, percentage of employment in manufacturing, percentage of college-educated population,
percentage of foreign-born population, percentage of employment among women, and the average offshorability index of occupations, where these percentages
are all measured at the start of the period. Standard errors, clustered at the state level, in parentheses.

In addition to the observed variation for labor market outcomes across CZs, the model also explains a large part of the aggregate
decline in manufacturing employment. As is well known, during the period 2000–2007, the share of manufacturing employment
in the US declined exceptionally fast, falling from 16.4% to 13% in our data.34 In our model, the combined China and automation
shock leads to a decline by 0.81 percentage points in 𝜋𝑈𝑆,𝑀 (see Table 3), which means that our model explains 24% of the total
decline in manufacturing employment. Other trends in demand and supply then account for the further erosion of manufacturing
employment during this period.35

5.4. Comparing the automation and China shocks

We now examine how the individual China and automation shocks contribute to the combined shock. From the calibration of
the joint shock, we have obtained the values for productivity changes in China (�̂�𝐶ℎ𝑖𝑛𝑎,𝑠) and on automation shocks in the US (𝜉𝑈𝑆,𝑠).
To simulate the counterfactual impact of the individual China shock and the individual automation shock, we therefore separately
shock our model with these previously calibrated values for (�̂�𝐶ℎ𝑖𝑛𝑎,𝑠) and (𝜉𝑈𝑆,𝑠) respectively.

5.4.1. Comparison of the sector-specific shocks
Through the lens of our model, increased Chinese import penetration and changes in sectors’ labor shares clearly have different

origins (see Fig. 3). For the individual China shock, the model completely fails to match the changes in the labor shares (Panel
a). Analogously, in response to the individual automation shock, import shares from China tend to fall – sometimes substantially –
instead of increase (Panel b).

Of course, it may be highly intuitive that US automation does not lead to increased import shares from China and that Chinese
technological progress does not induce drastic changes in US sectoral labor shares. In that case, this only emphasizes the need to
account for the occurrence of both shocks during the period we study. Moreover, the finding that each shock tends to exert downward
pressure on the primarily targeted moment for the other shock highlights the importance of jointly calibrating the shocks. Specifically,
the China shock tends to increase the labor share, while the automation shock tends to lower imports from China. Hence, ignoring
the impact of one shock in the calibration of the other shock leads to a type of omitted variable bias, which we overcome in the
joint calibration.

Taking both shocks into account also matters for matching the changes in manufacturing subsectors’ value added. Specifically, in
a regression of the actual on the predicted changes in value-added, the combined shock yields an 𝑅2 of 74%, which is substantially
higher than the values of 34% or 57% for the individual China or automation shocks, respectively (see Fig. 4). To understand why,

34 The measured decline of 3.44 percentage points in the model-based measure is closely in line with the 3.78 percentage point decline in the raw IPUMS data.
he difference in magnitude is due to adjusting the data to the WIOD value-added data, which is necessary to make the simulation data internally consistent
see Section 3).
35 For instance, consistent with the literature on structural change (e.g. Ngai and Pissarides (2007) and Kehoe et al. (2018)), there has been a substantial
ownward trend in the consumption share of manufacturing since US final demand for manufacturing falls by two percentage points in our data. Moreover, the
ncrease in global offshoring also negatively affects US manufacturing employment (see e.g. Ebenstein et al. (2014), Feenstra (2017) and Fort (2017)). Finally,
he increase in the US trade deficit also puts downward pressure on manufacturing employment. However, as explained in footnote 24, we remove the impact
14

f trade deficits in our analysis by employing data purged from trade deficits.



Journal of International Economics 150 (2024) 103912S. Galle and L. Lorentzen

f
e
i
o
a

t

(

t
t

Fig. 3. Changes in the labor share and imports from China for the individual shocks.
In both panels, the blue circles show the actual values for changes in US import shares from China (�̂�𝐶ℎ𝑖𝑛𝑎,𝑈𝑆,𝑠) and the changes in the labor shares (�̂�𝑈𝑆,𝑠) for
US manufacturing subsectors, while the orange squares depict the simulated values after the China shock (Panel a) or the automation shock (Panel b).

Table 5
Impact of the individual shocks on real income across US commuting zones.

Aggregate Mean SD Min. Max. 𝛥𝜋𝑈𝑆,𝑀
Only China Shock 0.86 1.47 0.80 −1.71 3.58 −0.60
Only Automation shock 2.90 2.81 0.51 1.44 5.22 −0.28
China and Automation Shock 3.96 4.43 0.97 1.24 8.34 −0.81

The table shows the impact of the individual China shock in the first row, the individual automation shock in the second row, and
the combined China and automation shock in the third row. The first four columns display statistics for the changes in groups’
real income, with the first column showing the aggregate change, the second the average change, the third the standard deviation,
the fourth the minimum, and the fifth the maximum change. All these changes in real income are reported as percentage changes.
The final column lists the change in the aggregate US employment share in manufacturing in percentage points. Appendix Table
D.1 provides the full breakdown of the different margins of adjustment.

irst observe that in reality, roughly half of the manufacturing subsectors experience a decline in value-added, while the other half
xperience an increase. The individual shocks are unable to match this mixed pattern; the China shock predicts a general decline
n manufacturing value-added, while the automation shock predicts an overall increase. Importantly though, when we combine the
pposite impact of the individual shocks in the joint shock, the model matches the mixed pattern well (Fig. 4, Panel c) and yields
substantially higher 𝑅2.

5.4.2. Aggregate and distributional impact of the individual shocks
Turning to the effect of the shocks on aggregate US real income, we find that the impact of the individual automation shock is

more than three times as large as that of the individual China shock, namely 2.90% versus 0.86% (see Table 5).36,37 Interestingly,
we also find that the impact of the combined shock is 0.20 percentage points larger than the sum of the impact of the individual
shocks.

Even though the China shock yields a lower aggregate gain than the automation shock, it leads to stronger distributional effects
and a larger decline in manufacturing employment. Specifically, the China shock generates a standard deviation of 0.8 percent in
gains across CZs and a drop in manufacturing employment of 0.6 percentage points. This compares to a standard deviation for the
gains of 0.51 percent and a manufacturing decline of 0.28 for the automation shock.38

We also find that the distributional impact of the combined shock (measured in variance) is slightly larger than the sum of the
effect of the individual shocks. This is due to the income changes for the two shocks being positively correlated (at 8.7% - see

36 Appendix Table D.1 provides the full breakdown for the different margins of adjustment. As explained in Eq. (24), the hourly wage accounts for 50% of
he log change in a group’s real income, hours worked for 20%, and employment for 30%.
37 When we employ alternative values for 𝜃𝑠 in the simulation, the gains from automation increase to 3.64% and those from the China shock fall to 0.55%

see Appendix Table E.1). We employ the median value for 𝜃𝑠 from some prominent estimates in the literature, as in Bartelme et al. (2019).
38 Interestingly, the model-predicted income changes due to these two shocks are strongly correlated with closely related reduced-form measures. Specifically,

he predicted income changes after the China shock have a correlation of −50% with the ADH China shock instrument, while the predicted income changes due
15

o automation have a correlation of −24% with the Acemoglu and Restrepo (2020) robotization shock.
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Fig. 4. Predicted changes in manufacturing value added for the different shocks.
The figure shows the percentage change in value added (𝑉𝑈𝑆,𝑠 − 1) for US manufacturing sectors for each of the shocks listed. The horizontal axis shows the
model’s predicted changes, while the vertical axis shows the actual changes..
16
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Appendix Figure D.1), which implies the variance of the combined shock is larger than the sum of the variance of the individual
shocks.39

Given the positive but imperfect correlation of the two shocks, the geographic incidence of the China shock and the automation
hock is related but far from identical. For instance, the Midwest tends to receive low gains for both shocks. At the same time,
he central and southern Appalachians have low gains for the China shock but relatively more positive effects for automation (see
ppendix Figures D.5 and D.6). These latter regions have relatively high employment shares in the textile sector – the sector most
egatively affected by the China shock – but very little employment in the sectors hit by automation (coke and refined petroleum
roducts). Fig. A.2 has the details on the sector-level impact of each shock.

.4.3. Model fit across commuting zones for the different shocks
In Table 6, we run the model fit for the same variables as before in Table 4, but now for the individual shocks. Specifically, in the

dd columns, we regress the observed values on the predicted changes for both the individual China and the individual automation
hock. For comparison, we repeat the analysis from Table 4 for the combined shock in the even columns.

For the specifications with the predictions from both individual shocks, all coefficient values are positive and, with few
xceptions, also statistically significant. Hence, just as for the combined shock, also for the individual shocks, there is a positive and
sually significant correlation between the observed values in the data and the predictions from the model. This corroborates our
odel predictions for the individual shocks.

In turn, these significant correlations are reflected in substantial 𝑅2 values for the specifications with the two shock predictions,
mplying that the model is empirically relevant for explaining the observed variation. More precisely, the 𝑅2 for these specifications

tends to be slightly higher than the 𝑅2 for the combined shock. For instance, for CZ income (𝐼𝑔) or the employment rate (𝑒𝑔), the 𝑅2

for the specification with both shocks is 12% and 31% respectively, while it is 8% and 29% for the specification with the combined
shock.

Recall that the regression coefficient should be equal to unity for the model to match the magnitude of the variance in the data.
There are several cases where we cannot reject this null hypothesis, e.g. for both shock’s predictions on the hourly wage (𝑖𝑔), for
the China shock’s predictions on CZ income, or for automation’s predictions on the change in manufacturing employment (𝛥𝜋𝑔𝑀 ).

In the other cases, there is some significant underprediction. In part, this could be because the model is understating certain
spects of the labor market impacts of the shock.40,41 Alternatively, the model predictions for the different shocks may be correlated
ith other trends in the economy. When we address this latter issue by introducing controls in our model fit regressions (see
ppendix Table D.2), as we also did in Table 4, we indeed notice again that the degree of underprediction falls. In several cases,

he coefficient becomes insignificantly different from unity, but not generally so. At the same time, some of the coefficients become
nsignificant, for instance, the predicted effect of the China shock on CZ income. This is due to the strong correlation of these
redictions with CZs’ initial manufacturing share. This collinearity problem would raise estimation challenges in a reduced-form
etup (see e.g. the estimation results on wage growth in Borusyak et al. (2020)), but does not imply that the China shock has no
mpact on CZs’ income. Indeed, the benefit of our quantitative model is precisely that we can examine the China shock, its impact,
nd its relation to other shocks without relying only on reduced-form correlations and in isolation from any potential confounds.

Notice also that the predictions for the combined shock always remain statistically significant, in contrast to the predictions for
he individual shocks. This is due to the smaller standard errors in case of the combined shock, which arise from the larger variance
n the predictions for the joint shock. Therefore, analyzing the impact of the joint shock has the benefit of exploiting all the variation
t generates and not being limited to the conditional variation for one shock, holding the impact of other shocks constant.

.4.4. Comparison to reduced-form analyses of trade and automation
As indicated above, our quantitative analysis is inspired by the seminal work on the China shock by ADH and Pierce and Schott

2020), and on robotization by Acemoglu and Restrepo (2020); i.e. the seminal papers that have put the distributional effects of
rade and automation across local labor markets on the agenda. In this section, we first ask what the potential benefits are from
nalyzing these shocks with our general-equilibrium (GE) framework, and afterwards how our findings compare to those influential
educed-form findings.

The first benefit of our GE approach is that it allows for aggregation. Where the above shift-share analyses can only estimate
elative effects across CZs, our approach analyzes both the aggregate and the distributional effects across local labor markets. Second,
he estimates in our framework have a clear interpretation and are driven by transparent model-based shocks. This way, we also
ide-step complex identification issues, such as disentangling Chinese supply from US demand shocks as sources for the observed

39 The correlation in the income changes for the individual China and automation shocks is driven by the size of the manufacturing sector in a CZ. Specifically,
hen we regress the income change due to one shock on the income change due to the other shock, we obtain a significantly positive coefficient. However,

his coefficient turns negative, and significantly so, when we control for the size of a CZ’s manufacturing sector.
40 For instance, Rodríguez-Clare et al. (2022) argue that downward nominal wage rigidity is important for understanding the labor market impact of the China

hock, which is in line with our model underpredicting the impact of the China shock on the employment rate and the decline in manufacturing employment. We
iew incorporating nominal rigidities into the analysis of the joint equilibrium impact of trade and automation shocks as an excellent topic for further research.
41 There is a strong association between the explanatory power (𝑅2) of the individual shock (observed in Appendix Table D.3), and its degree of underprediction.

This is because a higher correlation, or more precisely the higher covariance, between the model predictions and the observed changes, increases the value of
the coefficient estimate. Interestingly, still in Table D.3, the predictions from the combined shock yield a similar 𝑅2 value as the most predictive individual
shock but are associated with a lower degree of underprediction. This is because the predictions for the combined shock exhibit substantially larger variance
than those of the individual shock, which lowers the estimated coefficient value.
17
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Table 6
Model fit of the separate shocks.

ln 𝐼𝑔 ln �̂�𝑔 ln ℎ̂𝑔 ln 𝑒𝑔 𝛥𝜋𝑔𝑀
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ln 𝐼𝑔 - China 1.14
(0.85)

ln 𝐼𝑔 - Automation 6.08
(1.39)

ln 𝐼𝑔 - Both shocks 2.81
(0.60)

ln �̂�𝑔 - China 1.62
(0.75)

ln �̂�𝑔 - Automation 2.58
(1.48)

ln �̂�𝑔 - Both shocks 1.98
(0.77)

ln ℎ̂𝑔 - China 10.01
(1.01)

ln ℎ̂𝑔 - Automation 5.25
(1.26)

ln ℎ̂𝑔 - Both shocks 8.69
(0.90)

ln 𝑒𝑔 - China 5.26
(0.79)

ln 𝑒𝑔 - Automation 3.41
(1.10)

ln 𝑒𝑔 - Both shocks 4.78
(0.72)

𝛥𝜋𝑔𝑀 - China 4.55
(0.44)

𝛥𝜋𝑔𝑀 - Automation 1.89
(0.51)

𝛥𝜋𝑔𝑀 - Both shocks 3.62
(0.31)

𝑅2 0.12 0.08 0.04 0.04 0.41 0.37 0.31 0.29 0.31 0.28
Controls No No No No No No No No No No
Observations 722 722 722 722 722 722 722 722 722 722

The specifications in this table regress observed changes in CZs’ labor market outcomes in the data for the period 2000–2007 on the model’s predicted changes
for the different listed shocks. The odd columns regress the observed values on the predicted changes for both the individual China and the individual automation
shock. The even columns repeat the analysis from Table 4 for the combined shock. The first two specifications examine average income, specifications 3 and 4
average hourly wage, specifications (5) and (6) hours worked per employee, specifications (7) and (8) the employment rate, and (9) and (10) the manufacturing
employment share. We measure 𝛥𝜋𝑔𝑀 in percentage points because �̂�𝑔𝑀 is a very noisy measure in our data, especially for low initial 𝜋𝑔𝑀 (see Appendix Figure
D.2). Standard errors, clustered at the state level, in parentheses.

growth in Chinese import penetration or distinguishing exogenous changes in automation technology from endogenous technology
adoption. While the above-referenced reduced-form studies carefully address these endogeneity concerns, it remains useful to have
a quantitative framework available where these identification issues are side-stepped.

An additional advantage is that our framework estimates the full, unconditional effects of trade and technology shocks. In
contrast, the reduced-form analyses necessarily focus on the effects of one shock, holding the other shock constant and conditioning
on a further set of control variables. As is clear from above, our analysis can estimate the unconditional effects of both the joint and
the individual trade and technology shocks, which makes it substantially more versatile than the reduced-form approaches. Relatedly,
in some reduced-form analyses, collinearity issues can arise from including all required control variables for proper identification,
e.g. when the shock is strongly correlated with the manufacturing employment share. This challenge does not arise in our setting.

Furthermore, our framework incorporates how shocks to one sector affect other sectors through sectoral labor reallocation and
input–output linkages. While reduced-form analyses can attempt to approximate these effects, they may not succeed in capturing
the full equilibrium cross-sectoral effects. To illustrate this, in our model, we construct an ADH-style exposure term to increased
Chinese import penetration in the US after the joint China and automation shock. We then regress the model’s predicted income
effects for the individual China shock on this ADH-style exposure term and find that the exposure term explains 44% of the variation
in the income effects due to the China shock. While this is substantial, it still means that 56% of the variation is not captured by
this reduced-form measure. When we plot the model-based ADH exposure term on a map (see Appendix Figure D.7), we indeed
notice a strong correlation with the impact of the individual China shock in our model (see Appendix Figure D.5). However, the
latter often finds stronger negative effects in the Great Lakes Region (e.g. Ohio and upstate New York). An important part of the
explanation for these differences, is that our model takes into account how the China shock to manufacturing differentially affects
the various non-manufacturing sectors.

To sum up, conditional on the validity of our model, our quantitative GE analysis is more comprehensive, more precise, and
18

more versatile than a reduced-form approach. Qualitatively though, our findings are closely in line with those in ADH and Acemoglu



Journal of International Economics 150 (2024) 103912S. Galle and L. Lorentzen

a
a
o

r
t
e
f
f

5

a
a
𝜌

o
M
t

Table 7
Counterfactual results on real income across US CZs for 𝜌 = 0.72.

Aggregate Mean SD Min. Max. 𝛥𝜋𝑈𝑆,𝑀
Only China Shock 0.86 1.35 0.78 −1.89 3.18 −0.59
Only Automation shock 3.51 3.76 1.04 −3.13 7.88 −0.77
China and Automation Shock 4.35 5.12 1.28 −1.74 8.07 −1.36

For the model with 𝜌 = 0.72, the table shows the impact of the individual China shock in the first row, the individual automation
shock in the second row, and the combined China and automation shock in the third row. The first four columns display statistics
for the changes in groups’ real income, with the first column showing the aggregate change, the second the average change, the
third the standard deviation, the fourth the minimum, and the fifth the maximum change. All these changes in real income are
reported as percentage changes. The final column lists the change in the aggregate US employment share in manufacturing in
percentage points.

nd Restrepo (2020), who both find that their respective shocks lead to relative declines in income and employment. Moreover,
nalogous to Acemoglu and Restrepo (2020), we also find that the distributional effects of the China shock are stronger than those
f robotization (see their footnote 27).

Our automation shock is less comparable to the computerization shock in Autor et al. (2015). While this technology shock to
outine-task intensive occupations is a type of automation, in manufacturing it primarily occurred in the 1980s and 1990s, i.e. before
he 2000–2007 period that we are studying.42 In addition, the main impact of the computerization shock is occupational polarization:
mployment mainly declines in routine-task intensive occupations while it stays stable or increases in other occupations. Our current
ramework is not set up to study the joint impact of trade and automation on occupational polarization, which is a great topic for
urther research.

.5. Alternative elasticity of substitution between labor and equipment

There is debate in the macroeconomic literature on how elastic substitution between labor and equipment is; while Karabarbounis
nd Neiman (2014) and Hubmer (2021) estimate values for the elasticity of substitution (𝜌) around 1.3, Oberfield and Raval (2021)
rgue that 𝜌 is below unity, with a preferred value of 𝜌 = 0.72. In our baseline analysis, we followed the former studies by setting
= 1.28, but here we examine the robustness of our results by setting 𝜌 = 0.72. Due to this substantial fall in 𝜌, as explained in

Appendix Section H.1,43 the effect of automation shocks on productivity would substantially decline – other things equal. However,
to ensure that the elasticity of productivity gains associated with automation-induced declines in the labor share remains at the
same level as in Moll et al. (2022) – as in our baseline analysis, we now set 𝜐 = 2.4.44

The effects of the combined shock under this scenario are quite close to our baseline results (see bottom row of Table 7). The
aggregate gain in real income is now 4.35% and the standard deviation in the gains is 1.28%, compared to 3.96% and 0.97% in
the baseline. In addition, the correlation in the welfare effects across the two versions of the model is substantial, at 41.5% (see
Appendix Figure E.1). As a result, the model fit results are also fairly similar, as discussed in Appendix E.1.

5.6. Heterogeneity across education groups

In this section, we examine the heterogeneous effects of trade and automation on workers with different education levels. To
this end, we split each CZ into two groups, consisting of workers with or without some college education.

Estimation. Before turning to our counterfactual analysis, we re-estimate the labor-side parameters of the model for each education
group. Specifically, we proceed as in the estimation in Table 2, but we estimate each specification separately for workers without
or with some college education. Appendix Table E.3 has the results. There, we typically do not find strong patterns of heterogeneity
across education groups, and the confidence intervals of the estimates usually overlap. As preferred values for 𝜇 and 𝜒 , we take
the average estimate of the two specifications that include controls but have different instrument construction. This results in the
following values for non-college workers: 𝜇𝑁𝐶 = 2.845, 𝜒𝑁𝐶 = 0.185; and these for college workers: 𝜇𝐶𝑂 = 3.925;𝜒𝐶𝑂 = 0.172. Hence,
these two worker types exhibit a highly similar employment elasticity (𝜒), while non-college workers have a more elastic intensive
margin labor supply elasticity (1∕𝜇) than college workers. Finally, we obtain that 𝜅𝑁𝐶 = 1.445 and 𝜅𝐶𝑂 = 2.105.

42 Autor et al. (2013b) argue that their China and technology shocks are largely uncorrelated, which may create tension with our finding that the impact
f the trade and automation shocks has a correlation of 8.7%. Our automation shock being distinct from the computerization shock resolves this tension.
oreover, Autor et al. (2013b) obtain a correlation close to zero after weighting CZs by their population. The unweighted correlation between their trade and

echnology exposure terms is 31%.
43 Specifically, there we show that:

𝑑 ln 𝑌𝑠|𝑀𝑠 ,𝑍𝑠 ,𝐾𝑠,𝑁𝑘𝑠
=
[

𝜐 +
(1 − 𝜔𝑠)
𝜌 − 1

]

𝛼𝑠𝑑 ln 𝜉𝑠 ,

where the second term within the brackets switches sign at 𝜌 = 1.
44 Our value of 𝜐 = 2.4, implied by the Moll et al. (2022) relation between productivity gains and automation, is close to the value that we obtain in our

indirect inference estimation, namely 𝜐 = 2.34, with a standard error of 0.26 (see Appendix Section H.3).
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Table 8
Heterogeneity across education groups for the combined shock.

Aggregate Mean SD Min. Max. 𝛥𝜋𝑈𝑆,𝑀
All groups 3.10 3.56 0.94 −0.43 7.53 −0.78
Non-college workers 3.12 3.58 1.16 −0.43 7.53 −0.77
College workers 3.10 3.53 0.65 1.09 6.58 −0.78

The table shows the impact of the combined China and automation shock for the model with groups defined by commuting
zone and education level (some college education or not). The first row shows the effect of the shock on all groups in the top
row, on the groups where workers have no college education in the middle row, and on groups with college education in the
bottom row. The first four columns display statistics for the changes in groups’ real income, with the first column showing the
aggregate change, the second the average change, the third the standard deviation, the fourth the minimum, and the fifth the
maximum change. All these changes in real income are reported as percentage changes. The final column lists the change in the
aggregate US employment share in manufacturing in percentage points.

elfare effects. For the counterfactual exercise, aside from the estimated parameter values mentioned above, we return to our
aseline calibration with 𝜌 = 1.28, and 𝜐 = −1.86. Table 8 then reports the results for the joint shock. Compared to our baseline

results, we now obtain aggregate gains for the combined shock that are 0.86 percentage points lower, at 3.1%. This is mainly due
to the lower values for the extensive and intensive margin elasticities (𝜒 and 1∕𝜇), which entails lower amplification effects of the
shocks.

We do not find substantial heterogeneity in terms of the aggregate effects of the joint shock on non-college versus college workers
(see Table 8). However, for college workers, the distributional effects are smaller than for non-college workers, with respective
standard deviations in the welfare effects of 0.65% and 1.16%. A first reason is that college workers have a higher reallocation
elasticity. Second, since a group’s exposure to the joint shock depends mainly on the size of its overall manufacturing sector, this
difference in the distributional effects is also due to non-college workers exhibiting a higher standard deviation in their initial share
of manufacturing employment across CZs (10.3% versus 6.6%). Specifically, 22.6% of the non-college groups have at least 30% of
their workforce employed in manufacturing, compared to 1.5% of college groups for which this is the case.

Turning to the individual shocks, we find that college workers gain slightly more from the automation shock (2.33% versus
2.14% for non-college workers; see Appendix Table E.4). That is because they tend to be less employed in manufacturing, where
workers tend to be negatively exposed to automation, and more in services, where employees reap the benefits from automation
in manufacturing due to consumer gains. In contrast, college workers gain somewhat less from the China shock (0.60% vs. 0.83%
for non-college workers; see Appendix Table E.5). This is because college workers are less specialized in the primary sectors, which
gain substantially from the China shock due to increased export demand in these sectors.

One reason our model does not generate strongly different effects for college versus non-college workers, is that here, automation
is not biased toward a particular education group. To examine education-biased automation in our setup, one could introduce a CES
production function with college and non-college labor as imperfect substitutes (as in Section 7.2 in GRY), where equipment is a
stronger substitute for one of the education groups. We leave this exercise for further research.

5.7. Alternative shock calibration

So far, we have calibrated the China shock and the automation shock by respectively matching changes in US import shares
from China and changes in US labor shares. Since neither increased imports from China nor automation are unique to the US, in
this section, we can examine the robustness of our calibration by focusing on common trends across advanced economies. To this
end, we return to our baseline model with a single group per CZ and 𝜌 = 1.28, and we perform this analysis in Appendix Section
E.3. There, we continue to find that the China shock has the lowest aggregate and the strongest distributional effects.

6. Conclusion

This paper presents a gravity model to examine the aggregate and distributional effects of sector-specific trade and automation
shocks on US commuting zones. After transparently estimating the key labor-supply elasticities, the model predictions for the
calibrated China and automation shocks match well with both the observed labor market outcomes across CZs and the pattern of
value-added growth across manufacturing subsectors. This contrasts with the model fit for the individual China or automation shocks,
which generate a mismatch for the pattern of value-added growth in manufacturing. Moreover, since the China and automation
shocks are correlated, the individual shocks underpredict the magnitude of the observed variation in income changes across CZs.
Taken together, our model provides a more comprehensive understanding of trends in inequality across local labor markets compared
to existing quantitative papers that focus on a single shock.
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ppendix A. Supplementary tables and figures

List of Online Appendices:

• Appendix B. Shift-share approximation (supplementary estimation results)
• Appendix C. Parameter estimation (supplementary results)
• Appendix D. Counterfactual analysis (supplementary results for baseline model)
• Appendix E. Counterfactuals: sensitivity and heterogeneity

– E.1 Counterfactual results for the model with 𝜌 = 0.72
– E.2 Heterogeneity across education groups
– E.3 Alternative shock calibration

• Appendix F. Measurement of 𝛼𝑜𝑠𝜔𝑜𝑠, 𝛼𝑜𝑠, 𝜔𝑜𝑠
• Appendix G. Theory

– G.1 Labor Supply
– G.2 System of Hat Equations
– G.3 Derivation of the shift-share approximation

• Appendix H. Indirect Inference for the estimation 𝜐

– H.1 Estimation equation
– H.2 Groundwork for the indirect inference
– H.3 Data and results

Table A.1
List of Roman symbols in the model.

Symbol Description

𝐴𝑜𝑔𝑠 Level parameter of the Roy-Fréchet distribution
𝐴𝑀𝑜𝑔𝑠 Efficiency of the matching between workers and employers
𝑐𝑜𝑠 Marginal cost of 𝑌𝑜𝑠
𝑒𝑜𝑔𝑠 Employment rate
𝐷𝑑 Trade deficits
𝐹𝑜𝑠 Lower-level CES production function with inputs 𝑍𝑜𝑠, 𝑀𝑜𝑠

𝐺𝑜 Number of groups
ℎ𝑜𝑔 Average hours worked per worker
𝐼𝑜𝑔𝑠 Nominal revenue
𝑖𝑜𝑔 Average hourly wage rate
𝐾𝑜𝑠 Structures, as input in production of 𝑌𝑜𝑠
𝐿𝑜𝑔 Measure of workers
𝑀𝑜𝑠 Equipment, as input in production of 𝐹𝑜𝑠
𝑁𝑜𝑘𝑠 Intermediate inputs in production of 𝑌𝑜𝑠
𝑁 Number of sectors
𝑃𝑜 Price of the final good
𝑅𝑜𝑠 Total revenue
𝑆 Number of sectors
𝑇𝑜𝑠 Level parameter of the EK-Fréchet distribution
𝑈𝑜𝑔 Utility
𝑉𝑜𝑔𝑠 Number of vacancies
𝑉𝑑 Value added
𝑤𝑜𝑠 Wage per effective labor unit
𝑋𝑑𝑠 Expenditure
𝑌𝑜𝑠 Physical output
𝑍𝑜𝑔𝑠 Supply of effective labor units
𝑧𝑠 Number of effective units of labor for any worker
21
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Table A.2
List of Greek symbols in the model.

Symbol Description

𝛼𝑜𝑠 Cobb–Douglas share for 𝐹𝑜𝑠 in production of 𝑌𝑜𝑠
𝛽𝑑𝑠 Expenditure shares in consumption
𝛤 Gamma function
𝛾𝑜𝑘𝑠 Cobb–Douglas share for 𝑁𝑜𝑘𝑠 in production of 𝑌𝑜𝑠
𝛿𝑜𝑔 Relative utility weight on consumption versus hours worked
𝜁𝑜𝑠 Share of structures in the total value of structures and equipment
𝜂 𝛤 (1 − 1+𝜇

𝜇𝜅
)

�̀� 𝛤 (1 − 1
𝜇𝜅

)

�̃�𝑠 𝛤 (1 − 𝜎𝑠−1
𝜃𝑠

)1∕(1−𝜎𝑠 )

𝜃𝑠 Dispersion parameter of the EK-Fréchet distribution
𝜅 Dispersion parameter of the Roy-Fréchet distribution
𝜆𝑜𝑑𝑠 Trade shares
𝜇 Inverse of the intensive margin labor-supply elasticity
𝜈𝑜𝑔 Nash bargaining share of workers
𝜉𝑜𝑠 Automation and productivity shifter
𝜋𝑜𝑔 Sectoral employment shares
𝜌 Elasticity of substitution between labor and equipment
𝜎𝑠 Elasticity of substitution across varieties
𝜏𝑜𝑑𝑠 Iceberg trade costs
𝜐 Elasticity regulating productivity changes driven by automation
𝛷𝑜𝑔 Index of sectoral wages
𝜒 Elasticity of the employment rate to labor market tightness
𝜓𝑜𝑔𝑠 Labor market tightness
𝜔𝑜𝑠 Cost share of labor in production of 𝐹𝑜𝑠

Table A.3
Sector classification: overview and summary statistics.

Sector Sector name 𝛽𝑈𝑆,𝑠 𝜋𝑈𝑆,𝑠 𝛼𝑈𝑆,𝑠 𝜔𝑈𝑆,𝑠 𝛾𝑈𝑆,𝑠
A Agriculture, forestry, and fishing 0.004 0.011 0.287 0.755 0.593
B Mining and quarrying 0.003 0.007 0.219 0.772 0.486
10–12 Food, beverages and tobacco 0.032 0.013 0.221 0.598 0.701
13–15 Textiles, apparel, and leatherware 0.014 0.007 0.289 0.838 0.668
16–18 Wood, paper, and printing 0.004 0.019 0.344 0.849 0.629
19 Coke and refined petroleum products 0.008 0.002 0.168 0.289 0.758
20–21 Chemical industry 0.013 0.013 0.355 0.464 0.578
22–23 Rubber, plastics, and other non-metallics 0.003 0.012 0.347 0.708 0.598
24–25 Basic metals and metal products 0.003 0.021 0.354 0.776 0.596
26–27 Electrical and optical equipment 0.032 0.030 0.381 0.735 0.576
28 Machinery and equipment 0.016 0.015 0.357 0.779 0.607
29–30 Transport equipment 0.041 0.023 0.293 0.698 0.668
31–33 Other manufacturing; repair and installation 0.016 0.012 0.445 0.762 0.495
D-E Electricity, gas and water supply 0.019 0.013 0.238 0.664 0.498
F Construction 0.074 0.061 0.471 0.897 0.490
G Wholesale and retail trade, vehicle repair 0.124 0.131 0.503 0.820 0.298
H Transportation and storage 0.018 0.037 0.394 0.935 0.481
I Accommodation and food services 0.036 0.029 0.402 0.875 0.441
J Information and communication 0.054 0.055 0.414 0.732 0.514
K-L Financial and insurance activities 0.154 0.076 0.182 0.937 0.372
M-N Professional and administrative services 0.039 0.121 0.525 0.847 0.373
R-S Arts and entertainment, other services 0.028 0.033 0.517 0.913 0.338
O-P-Q-T-U Social and personal services 0.262 0.260 0.562 0.959 0.344

This table lists the sector classification used in our estimation and simulations. For each sector, the table provides the value in the US for the listed parameter
in the year 2000.

Appendix B. Supplementary analysis

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jinteco.2024.103912.
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Fig. A.1. Comparison of 𝜋𝑔𝑠 measures.
he figure compares different measures of sectoral employment shares (𝜋𝑔𝑠) for US commuting zones used in our estimation. On the horizontal axis, we have
mployment shares calculated based on labor income in each sector (𝜋𝑖𝑛𝑐𝑜𝑚𝑒𝑔𝑠 ), while on the vertical axis the shares are calculated based on the number of hours

worked in a sector (𝜋ℎ𝑜𝑢𝑟𝑠𝑔𝑠 ). The correlation between the two measures is 97%.

Fig. A.2. Pattern of the wage changes for the different shocks.This figure compares the changes in the real wages by sector for each of the shocks.
23
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Fig. A.3. Fit of model’s predicted changes to non-targeted moments.

he table plots the observed values against the model’s predicted values for log changes in CZs’ income (𝐼𝑔), average hourly wage (𝑖𝑔), hours worked (ℎ𝑔),
employment rate (𝑒𝑔), and manufacturing share (𝜋𝑔𝑀 ). In contrast to the other variables, the change in the manufacturing share is measured in percentage points.
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