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MEASURES OF AGREEMENT WITH MULTIPLE RATERS: FRÉCHET VARIANCES
AND INFERENCE

Jonas Moss
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Most measures of agreement are chance-corrected. They differ in three dimensions: their definition
of chance agreement, their choice of disagreement function, and how they handle multiple raters. Chance
agreement is usually defined in a pairwise manner, following either Cohen’s kappa or Fleiss’s kappa.
The disagreement function is usually a nominal, quadratic, or absolute value function. But how to handle
multiple raters is contentious, with the main contenders being Fleiss’s kappa, Conger’s kappa, and Hubert’s
kappa, the variant of Fleiss’s kappa where agreement is said to occur only if every rater agrees. More
generally, multi-rater agreement coefficients can be defined in a g-wise way, where the disagreement
weighting function uses g raters instead of two. This paper contains two main contributions. (a) We
propose using Fréchet variances to handle the case of multiple raters. The Fréchet variances are intuitive
disagreement measures and turn out to generalize the nominal, quadratic, and absolute value functions to
the case of more than two raters. (b) We derive the limit theory of g-wise weighted agreement coefficients,
with chance agreement of the Cohen-type or Fleiss-type, for the case where every item is rated by the same
number of raters. Trying out three confidence interval constructions, we end up recommending calculating
confidence intervals using the arcsine transform or the Fisher transform.
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1. Introduction

Themost popular measures of inter-rater agreement involve correction for chance agreement.
These can be written on the form

pa − pca

1 − pca
= 1 − pd

pcd
, (1.1)

where pa (pd ) is the percentage agreement (disagreement) between the raters and pca (pcd ) is
the chance agreement (disagreement) between the raters. Such measures are frequently called
chance-corrected measures of agreement. Well-known examples of coefficients in this class are
Cohen’s (1960) kappa and its weighted variant (1968), its multi-rater variant Conger’s kappa
(Conger, 1980; Light, 1971), Krippendorff’s (1970) alpha, Scott’s (1955) pi, and Fleiss’ (1971)
kappa. Some of these coefficients are defined only for two raters. The rest are defined in a pairwise
manner, in the sense that theymeasure agreement between two raters at a time. However, not every
proposed measure of agreement is defined on pairs of raters. The most famous is Hubert’s kappa
(1977), which was recently studied in detail by Martín Andrés and Álvarez Hernández (2020).
Other agreement coefficients include the AC1 coefficient (Gwet, 2008), the recent coefficient of
van Oest (2019), and a multitude of intraclass correlation coefficients (Gwet, 2014).
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There is no consensus on how multi-rater agreement coefficients should be defined. Broadly
speaking, two options are considered: pairwise coefficients and consensus coefficients. The pair-
wise coefficients measure the agreement between pairs of raters (Conger, 1980) , while the
consensus coefficients measure the simultaneous agreement between all raters. In particular, con-
sensus coefficients support the notion that “agreement occurs if and only if all raters agree on the
categorization of an object” (Hubert, 1977). Both pairwise and consensus-based definitions of
agreement are variants of g-wise measures of agreement (Conger, 1980), where agreement is
measured among g-tuples of raters. The case where 2 < g < R has received little attention in the
literature (Warrens, 2012), and non-trivial ways to measure agreement are hard to invent in this
case. However, we introduce a promising and general framework for handling g-wise measures
of agreement based on the concept of Fréchet variances (Dubey & Müller, 2019). The Fréchet
variances generalize the variance and the measures of agreement based on them generalize the
nominal, linearly weighted, and quadratically weighted pairwise measures of agreement in a nat-
ural way. They are easily interpretable, as you measure how much the raters disagree with the
generalized mean rater and then adjust for chance. For nominal data in particular, they measure
how many raters disagree with the modal rater, with a resulting agreement measure less extreme
than Hubert’s kappa.

We need inferential theory for the g-wise agreement coefficients to make them useful. Much
work has been done on inference for agreement coefficients, but, to our knowledge, inference
for g-wise agreement coefficients has yet to be studied. Assuming multivariate normality of
the ratings, Lin (1989, Section 3) derived the asymptotic distribution of Cohen’s kappa with
quadratic weights. Fleiss (1971) introduced a formula for the standard error of Fleiss’s kappa, but
later showed that it was incorrect. Using the properties of the multinomial distribution and the
delta method, Schouten (1980) found the asymptotic variance of the weighted Fleiss’s kappa in
the case when the number of categories is finite. Almost forty years later, Gwet (2021) found a
consistent estimator of the variance for the unweighted Fleiss’s kappa. We extend these results to
the weighted g-wise Fleiss’s kappa for any number of categories below. In addition, we mention
that bootstrap inference for Fleiss’s kappa and Krippendorff’s alpha was studied by Zapf et al.
(2016).

We begin the paper by providing the definitions of two kinds of chance-corrected agreement
coefficients. Then, in Sect. 2, we establish connections between the multi-rater Cohen’s kappa,
Fleiss’s kappa, Conger’s kappa, Krippendorff’s alpha, and Hubert’s kappa. We restrict ourselves
to the context where every rater rates every item. In Sect. 3, we discuss the Fréchet variances
mentioned above. Then we spell out the basic limit theory for this class agreement coefficients in
Sect. 4, extending the results of Schouten (1980), Schouten (1982), and O’Connell and Dobson
(1984) to vector-valued items and g-wise coefficients. We do this using the theory of U -statistics
(Lee, 2019), but there are other ways to arrive at the same results. Then, in Sect. 5, we provide
practical recommendations regarding the choice of confidence interval, obtained by comparing
three confidence interval constructions: basic, arcsine transformed, and Fisher transformed. Using
a simulation study, we find that the arcsine and Fisher intervals outperform the basic interval when
n is small.

2. Measures of Agreement

Let d(x1, . . . , xg) be a disagreement function, a positive and symmetric function of g argu-
ments that equals 0 when all xi s are equal, i.e., d(x, . . . , x) = 0. The disagreement function
quantifies the disagreement between the ratings x1, . . . , xg , where 0 is understood as complete
agreement.
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Most disagreement functions take two arguments. While there are infinitely many disagree-
ment functions, the best-known belong to the class of l p quasi-norms, p = 0, 1, 2, potentially
raised to the pth power. The l p quasi-norms, p ∈ [0,∞] in Rk are defined as

‖x‖p =
(

k∑
i=1

|xi |p

)1/p

. (2.1)

Here ||x ||0 = ∑k
i=1 1[xi �= 0] and ||x ||∞ = supi |xi |, as can be verified by taking the limit of

||x ||p as p → 0 and p → ∞, respectively. It is well known that ||x ||p are proper norms if and
only if p ≥ 1, as the triangle inequality is violated when 1 > p ≥ 0.

Now define the disagreement functions dp as the l p quasi-norm evaluated in x1 − x2, i.e.,

dp(x1, x2) = ||x1 − x2||p. (2.2)

In the case of scalar values, d0(x1, x2) = 1[x1 �= x2] is known as the nominal disagreement
function. For p = 1, the l p norm equals d1(x1, x2) = |x1 − x2|, which is known as the absolute
value disagreement function (and sometimes the linear disagreement function). The quadratic
disagreement function is d2

2 (x1, x2) = (x1 − x2)2. Vector-valued variants of dp and d p
p are much

less common, but have been used by, e.g., Berry et al. (2008).
When the dimension of the disagreement function d is not equal to 2, we are mostly interested

in the case where its dimension equals the number of raters R. In this case, the disagreement
functions often measure the degree of consensus among the raters, with 0 reflecting complete
consensus. The most obvious choice is the Hubert disagreement function,

d(x1, . . . , xg) = 1 − 1[x1 = · · · = xg] (2.3)

which equals 0 if and only if every rater agrees on a rating. The disagreement function is employed
in Hubert’s kappa (Hubert, 1977).

We present our results in terms of disagreement functions instead of the more popular agree-
ment functions (i.e., positive symmetric functions bounded by 1 where 1 signifies maximal agree-
ment, sometimes with the additional assumption that a ≥ 0). We do this mainly for mathematical
convenience. Agreement functions and disagreement functions are closely related, for if a is
an agreement function, then d = 1 − a is a disagreement function. Our results could have been
framed in terms of agreement functions instead, thoughwith some loss of generality. SeeAppendix
(Sect. 6) for a short discussion.

Our results and definitions are framed in the following setup. Let R be the number of raters
and n be the number of items rated. Moreover, let F be a fixed multivariate distribution function
F so that all rating vectors X i are sampled independently from F . In symbols,

X1, X2, . . . , Xn
iid∼ F. (2.4)

There are no restrictions on the rating vector components X ir . They can be, e.g., categorical, real
numbers, or vectors.

Equation (2.4) implies that every item is rated by exactly the same number of raters, which
we refer to as the rectangular design assumption. The assumption is common in the literature,1

1For instance, Fleiss (1971), in his paper introducing Fleiss’ kappa, removed several ratings from this data to make
sure the total number of ratings was 6 for each item.
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but far from universal. It can be relaxed, but it is strictly required for the limit results. We sketch
how to loosen it in Appendix (Sect. 6), but we have made no attempts at an inferential theory for
non-rectangular designs.

There are two important special cases covered by equation (2.4). First, in the case of fixed
raters, the same set of ordered raters rate every item.Having fixed raters is common in applications
of Cohen’s kappa, Conger’s kappa, and the concordance correlation coefficient.2 Having fixed
raters ensures that F does not vary across different rating vectors, but F could potentially varywith
the ratings when the raters are not fixed, provided we do not make further assumptions. And that
leads us to the second case, that of exchangeable ratings given the item. Here, the rater identities
do not affect the ratings given. The raters may be different for each item, but the distribution F will
still be fixed. Exchangeable ratings occur when the ratings are identically distributed conditional
on the item rated. Exchangeable ratings is an implicit assumption underlying most applications
of Fleiss’ kappa, e.g., that of Fleiss (1971). In this case, the marginal distributions for all raters
will be equal, which implies that the population value of the generalized Fleiss kappa equals the
population value of the generalized Cohen’s kappa, both defined below. However, the sample
Fleiss’s kappa is the preferred sample estimator, as it is invariant under changes of the raters’
identities.

We intend to collect the kappas of Cohen, Fleiss, Conger, Hubert, and so on, into a coherent
framework of g-wise agreement coefficients. To do this, we will have to define some quantities.
Let xi = (xi1, xi2, . . . , xi R) be an R-dimensional vector of observed ratings, and recall that g is
the dimension of our disagreement function d. The following definitions are natural population
counterparts of sample definitions prevalent in the agreement literature.

(i) The disagreement at x1, as measured by d. The purpose of this quantity is to translate
an arbitrary g-dimensional disagreement function d into a disagreement function taking
an R-dimensional vector x1 as input. It is defined as

Dd(x1) =
(

R

g

)−1 ∑
r1,...,rg

d(x1r1 , . . . , x1rg ), (2.5)

where the sum runs over all g-dimensional subsets of {1, . . . , R} with order ignored,
i.e., the g-combinations of R. The expression is simplified when g = R, as Dd(x1) =
d(x11, . . . , x1R) in this case. To gain some intuition about this quantity, suppose that g =
2, that x1, x2 are scalars, and consider the nominal disagreement function d0(x1, x2) =
1[x1 �= x2]. Then Dd(x1) = 2R−1(R − 1)−1 ∑

r1>r2 1[x1r1 �= x1r2 ] is the percentage
of times two distinct raters disagree on their rating.

(ii) The Cohen-type chance disagreement at x1, . . . , xg , so called to differentiate it from
the Fleiss-type chance disagreement. It is similar to the disagreement at x1, but this time
the raters do not necessarily rate the same item, as one rater rates the first item (from
x1) another rater rates the second item (from x2), and so on. We do not allow a rater to
rate the same item more than once in a pass: Hence, we need to choose g raters from a
set of R raters, and the chance disagreement is

Cd(x1, . . . , xg) =
(

R

g

)−1 ∑
r1,...,rg

d(x1r1 , . . . , xgrg ), (2.6)

2Note that the concordance correlation coefficient is an intraclass correlation coefficient, see (Carrasco & Jover, 2003,
p. 850).
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where the sum runs over all g-dimensional subsets of {1, . . . , R}, i.e., the g-combinations
of R. Observe that Dd(x) = Cd(x, , . . . , x). Since d is assumed to be symmetric, the
expression is simplified to d(x1r1 , . . . , xRrR ) when g = R. When g = 2, Cd(x1, x2) =
R−1(R − 1)−1 ∑

r1 �=r2 d(x1r1 , x2r2).
(iii) The Fleiss-type chance disagreement at x1, . . . , xg is similar, but allows the same

rater to rate an item multiple times. Its definition is

Fd(x1, . . . , xg) = R−g
∑

r1,...,rg

d(x1r1 , . . . , xgrg ), (2.7)

where the sum runs over the product set Rg . The expression for Fd(x1, . . . , xg)

is not dramatically simplified when g = R. When g = 2, Fd(x1, x2) =
R−2 ∑

r1,r2 d(x1r1 , x2r2).

We will call the expected values of these quantities the mean disagreement, the mean Cohen-
type chance disagreement, and the mean Fleiss-type chance disagreement. Slightly abusing nota-
tion, we denote them as

Dd = E[Dd(X1)], Cd = E[Cd(X1, . . . , Xg)], Fd = E[Fd(X1, . . . , Xg)], (2.8)

where X1, . . . , Xg are independently sampled from the same distribution F . Discussions about
the difference between E[Cd(X1, . . . , Xg)] and E[Fd(X1, . . . , Xg)], and why to prefer one over
the other, are abundant in the literature, often in the context of the so-called paradox of kappa
(Cicchetti & Feinstein, 1990).

Definition 1. Let X ∼ F be a vector of R ratings and d be an agreement function with dimension
g. Define the population values of the generalized Cohen’s kappa (κd) and Fleiss’s kappa (πd) as

κd = 1 − Dd

Cd
, πd = 1 − Dd

Fd
. (2.9)

The generalized Fleiss’s kappa, denoted as πd since it generalizes of Scott’s pi (Scott, 1955),
is a straightforward generalization of the Fleiss kappa (1971) to hold for 2 < g ≤ R. When
g = R and d is the nominal disagreement, it equals Hubert’s kappa. Likewise, the generalized
Cohen’s kappa is an extension of weighted Conger’s kappa to hold for 2 ≤ g ≤ R. When g = R,
it equals the Schuster–Smith coefficient (Schuster & Smith, 2005, eq. 1).3 It generalizes several
other agreement coefficients as well. For instance, Berry and Mielke (1988) discussed what we
call κd for Euclidean weights between vector-valued ratings, while Janson and Olsson (2001)
extended it to squared Euclidean and nominal weights. The relationship between most of the
mentioned agreement coefficients is summarized in Table 1.

Sample Estimates

Let X1, . . . , Xn ∼ F be n iid vectors of ratings. Then there is a single natural sample estimator
of Dd , namely

D̂d = n−1
n∑

i=1

Dd(xi ). (2.10)

3The Schuster–Smith coefficient also encompasses the case of 2 < g < R provided their weight function v(s) is
appropriately defined, see the discussion on dispersion weights in (Schuster & Smith, 2005).
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Table 1.
Weighted agreement coefficients.

Coefficient R = 2 R > 2
g = 2 g = R

Cohen-type (κd ) Cohen’s kappa Conger’s kappa† Schuster–Smith
Lin’s CC* CC*

Fleiss-type (πd ) Scott’s π† Fleiss’ kappa† Hubert’s kappa†

Krippendorff’s alpha

*Lin’s concordance coefficient and the concordance correlation coefficient (CC) is defined for quadratic
weights only.
†Originally defined for nominal weights only.

There are, however, two natural estimators of the Cohen-type chance disagreement: one them
a V -statistic (Lee, 2019, Chapter 4.2) and the other a U -statistic (Lee, 2019, Chapter 1),

Ĉd = n−g
∑

i1,...,ig

Cd(xi1 , . . . , xig ) and Ĉu
d =

(
n

g

)−1 ∑
i1,...,ig

Cd(xi1 , . . . , xig ), (2.11)

where the first estimator runs over all combinationswith repetitions of i1, i2, . . . , ig and the second
estimator runs over the unordered combinations i1 < i2 < . . . < ig . Using the basic results of
U -statistics (Lee, 2019, Chapter 1), we see that Cu

d is the unique minimum-variance unbiased
estimator of Cd , which makes it attractive from a theoretical point of view. However, from a
well-known correspondence between U -statistics and V -statistics, the asymptotic distributions
of Ĉd coincide with the asymptotic distribution of Ĉu

d (Lee, 2019, Chapter 4, Theorem 1), so the
choice between Ĉd and Ĉu

d barely matters when n is sufficiently large.
Likewise, there are two natural estimators of the Fleiss-type weighted chance agreement,

F̂d = n−g
∑

i1,...,ig

Fd(xi1 , . . . , xig ) and F̂u
d =

(
n

g

)−1 ∑
i1,...,ig

Fd(xi1 , . . . , xig ), (2.12)

where the index sets are described above.
Now, we can define two sample variants of Cohen’s kappa (Fleiss’s kappa), depending on

which one of Ĉd (F̂d ) and Ĉu
d (F̂u

d ) we choose to use. These are κ̂d = 1 − D̂d/Ĉd and κ̂u
d =

1− D̂d/Ĉu
d for Cohen’s kappa and π̂d = 1− D̂d/F̂d and π̂u

d = 1− D̂d/F̂u
d for Fleiss’s kappa. The

definition of the sample Cohen’s kappa (Cohen, 1968) agrees with κ̂d , not with κ̂u
d . Likewise,

the sample Fleiss’s kappa has a definition agreeing with π̂d (Fleiss, 1971). Moreover, due to
the possibility of binning data, π̂d and κ̂d are faster to compute when the data is not continuous.
Since the estimators are asymptotically equivalent in any case, we will stick to the V -statistics κ̂d

and π̂d for estimation, but use the U -statistic form when deriving limit distributions. We note that,
since we need to compute strictly fewer combinations, κ̂u

d and π̂u
d are faster to compute when the

data is continuous, which may be useful in some settings.

3. Fréchet Variances for g-Wise Agreement Coefficients

The most popular measures of agreement are defined only for g = 2. It is easy to find
reasonable disagreement measures in this case, as one can draw on the extensive literature on
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norms and distances. The l p distances are the obvious choices, but there are many unexplored
options, such as the Huber loss (Huber, 1964) and the LINEX loss (Varian, 1975).

In the setting of Hubert’s kappa and the Schuster–Smith coefficient, we have g = R, and it
is not that easy to find reasonable disagreement functions anymore. The disagreement function
used in Hubert’s kappa, d(x1, . . . , xR) = 1 − 1[x1 = · · · = xR], will penalize any number of
discordant ratings equally, yielding the often undesirable outcome that most sets of ratings will
be in complete disagreement. But there are less sensitive ways to count nominal disagreements.
Consider the case of 10 raters with three ratings on an ordinal scale from 1–3, with 7 raters giving
rating 1, 2 giving rating 2, and 1 giving rating 3. Then Hubert’s disagreement rating is 1, as the
rating vector is not constant, and the pairwise disagreement is 46/100. But it sounds reasonable
to pick the modal rating (in this case 1) and then report the number of raters that disagree with
it, divided by the number of raters. In this case, the number of raters disagreeing with the modal
rating is 3, and the “modal” disagreement equals 3/10.

Sometimes we wish to aggregate numerical ratings instead of categorical ratings. Consider
the above case again but with the median (which is 1) instead of the mode. It is well known that
the median of a vector x is equal to argminμ

1
R

∑R
r=1 |xr − μ|, so minμ

1
R

∑R
r=1 |xr − μ| (mean

absolute deviation from themedian) appears to be a reasonable measure of the mean disagreement
when we use the median as the aggregation method. The resulting mean disagreement of the
previous example is minμ

1
R

∑R
r=1 |xr − μ| = 1

10

∑10
r=1 |xr − 1| = 4/10.

The “modal” and “median” disagreementmeasures are instances of an intuitive generalization
of the variance called the Fréchet variance (Dubey &Müller, 2019). Let l be a distance function
satisfying l(x, y) ≥ 0 and l(x, x) = 0, and let A = {x1, x2, . . . , xR} be a set of points. The
sample Fréchet mean of A is defined as the (not necessarily unique) point μl that minimizes the
sum of distances to all points in A, that is,4

μl [A] = argminμ

R∑
r=1

l(μ, xr ). (3.1)

Similarly, the sample Fréchet variance on A with distance function l is

V (l)[A] = min
μ

R∑
r=1

1

R
l(μ, xr ) =

R∑
r=1

1

R
l(μl [A], xr ). (3.2)

The Fréchet mean (Fréchet, 1948) is a generalization of centroids to arbitrary distance
functions l; likewise, the Fréchet variance is a generalization of dispersion to any such distance
function. They are best understood through a decision-theoretic lens: The Fréchet mean of A
represents your best guess of the true classification or value of an item according to the distance l;
the Fréchet variance V (l) is the decision-theoretic risk associated with the choice. See Cooil and
Rust (1994) for an investigation of a closely related idea in the context of agreement measures.

Define the g-dimensional disagreement based on l as

d(x1, . . . , xg) = V (l)[{x1, . . . , xg}]. (3.3)

The most important distance functions are:

4The Fréchet mean and variances are usually defined slightly differently, using l2(x, xk ) instead of l(x, xk ), with l
being a metric. Our definition of the Fréchet mean is sometimes called the generalized Fréchet mean or the α-Fréchet
mean.
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(i) d0(x, y) = 1[x �= y]. Generalizes the nominal distance. If the data are categorical, the
Fréchet mean μd equals the mode, and the Fréchet variance equals the percentage of
observations different from the mode. If we are dealing with vector-valued data with I
elements each, it might be preferable to use I −1 ∑I

i=1 1[xi �= yi ] instead, as it counts
each dimension of the nominal data separately.

(ii) d1(x, y) = ||x − y||1. For scalar ratings, the Fréchet mean is equal to the samplemedian.
The Fréchet variance equals the sample mean absolute deviation from the median, i.e.,
1
R

∑R
r=1 |xr − μd |, where μd is the sample median.

(iii) d2
2 (x, y) = ||x − y||22. For scalar ratings, the Fréchet mean is equal to the sample mean

μd = 1
R

∑R
r=1 xr , and the Fréchet variance is equal to the biased sample variance of

{x1, x2, . . . , xR}, that is, 1
R

∑R
r=1(xr − μd)2.

(iv) d2(x, y) = ||x − y||2. For vector-valued data, the Fréchet mean has no simple formula,
but is known as the geometric median. If the data is scalar, d2 = d1, which implies that
the Fréchet mean equals the median, hence the name. There is an extensive literature on
the geometric median; see, e.g., Drezner et al. (2002) for an overview and Cohen et al.
(2016) for how to compute it. When the ratings are vector-valued, the geometric median
is far more computationally expensive than the Fréchet mean based on ||x − y||22.

For any p ∈ [0,∞] and pair of vectors x1, x2, we have the following (proved in Appendix,
Sect. 6):

V (dp)[x1, x2] = 1

2
dp(x1, x2), V (d p

p )[x1, x2] = 1

2p
d p

p (x1, x2). (3.4)

It follows that κdp = κV (dp) and κd p
p

= κV (d p
p ) whenwe are dealingwith pairwise agreement. Thus,

the Fréchet variances generalize the pairwise agreement for these distances to g-wise coefficients.
But be aware that the particular case of V (d2

2 ) constitutes a trivial generalization, as it can be shown
that the kappas do not vary with g when using the quadratic Fréchet variance V (d2

2 ). It follows
that κV (d2

2 ) equals the concordance coefficient for every g.

Example 1. Suppose you have R = 5 raters and 4 items, with ratings (1, 1, 2, 1, 1), (1, 2, 3, 2, 2),
(2, 1, 1, 1, 1), (2, 3, 4, 4, 5). The Fréchet means using the distance |x − y| equals the sample
medians 1, 2, 1, 4. The Fréchet variances are V (d1) = (0.2, 0.4, 0.2, 0.8). To calculate the sample
Cohen’s kappa with d = V (d1), we first find the mean disagreement V (d1) = 0.4 (2.10), then the
mean Cohen disagreement, which is ≈ 0.73 (2.11). Thus, Cohen’s kappa is 1− 0.4/0.73 = 0.45.

We believe the most useful distance measures will typically be d0 for categorical data and d1 for
ordinal data, both using g = R. The quadratic distance d2

2 could be used for ordinal data aswell, but
is harder to justify, as it is usually not obvious why we would be interested in the squared distance
between two observations rather than just the distance itself. The distances dp, p ∈ (1,∞], with
d2 included, are even harder to recommend, as they do not work in a coordinatewise manner for
vector data. In any case, it seems most reasonable to go with the R-wise variants of these distance
measures, as they make use of all the available information, but the g-wise agreement coefficients
(g < R) do not.

Example 2. In the paper introducing what is now called Fleiss’s kappa, Fleiss (1971) discussed
an example involving 5 different types of diagnoses, n = 30 patients, and R = 6 psychiatrists.
The data were originally from Sandifer et al. (1968), but Fleiss removed some ratings to make
the design rectangular. We use this data to illustrate the difference between Hubert’s kappa and
the Fréchet variances when applied to nominal data with g = R.

Hubert’s kappa is π = 0.166 while Fleiss’ kappa using V (d0) is π = 0.486. The substantial
difference suggests that a sizeable number of rating vectors contain at least one rating that disagrees
with the others. Table 2 summarizes the relevant aspects of the data. The maximal agreement row
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Table 2.
Maximal agreement for the data of Fleiss (1971).

Maximal agreement* 3 4 5 6

Count 8 10 7 5
Distance (V (d0)) 1/2 1/3 1/6 0
Distance (Hubert) 1 1 1 0

*The largest number of raters that agree on the classification of an item. Both V (d0) and Hubert’s distance
depend only on this when g = R.

could potentially go from 1 to 6, but the smallest number of raters agreeing on the classification
of an item in this data set is 3. The count row counts the number of rows with the corresponding
maximal agreements and distances. According to the Hubert distance, the raters disagree a lot,
since only 5 items have a disagreement of 0 and the rest a disagreement of 1. On the other hand,
V (d0) results in a much smaller overall disagreement, with all disagreements smaller than the
maximum of 1.

4. Inference

4.1. Limit Theory Using U-Statistics

Let X1, . . . , Xn be independently and identically distributed and ψ(x1, . . . , xk) be a sym-
metric function. A U -statistic of order k with kernel ψ is

Un =
(

n

k

)−1 ∑
i1,...,ik

ψ(X i1 , . . . , X ik ), (4.1)

where the sum extends over all k-dimensional tuples satisfying 1 ≤ i1 < i2 < · · · ≤ n.
The theory ofU -statistics was established by Hoeffding (1992); for an introduction, see, e.g.,

Chapter 6.1 of Lehmann (2004), Chapter 5 of Serfling (1980), or the textbook of Lee (2019).
These references handle U -statistics where the Xi s are real-valued, but their results, including
the simple results below, hold for vector-valued Xi s as well (Korolyuk & Borovskich, 2013).

The weighted chance agreement of Fleiss-type (Cohen-type) is a U -statistic with kernel Fd

(Cd), of order g. The disagreement is a U -statistic with kernel Dd , which has order 1. To find
the asymptotic variance of the kappas, we will use formulas for the asymptotic covariance of U -
statistics. Let U1n and U2n be two U -statistics of n observations with symmetric kernel functions
ψ1, ψ2 of dimensions k1 and k2. Define

σ 2
1 = Var(E[ψ1(X1, . . . , Xk1) | X1)]),

σ12 = Cov(E[ψ1(X1, . . . , Xk1) | X1)], E[ψ2(X1, . . . , Xk2) | X1)]).

Then we have n Cov(U1n, U2n) → k1k2σ12 and n Var(U1n) → k21σ
2
1 (Lee, 2019, Theorem 2,

p. 76)). It is also possible to calculate the exact covariances, which could potentially make the
asymptotic variances for the kappas perform better. See Appendix, Sect. 6 for the formula for the
exact covariance (Lee, 2019, Theorem 2, p. 17)).
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Lemma 1. Define the parameter vectors p = (Dd , Cd , Fd)and p̂ = (D̂d , Ĉd , F̂d). Then
√

n( p̂−
p)

d→ N (0, �), where � is the covariance matrix with elements

σ11 = σ 2
D = Var Dd(X1), σ12 = σC D = g Cov(μdC (X1), Dd(X1)),

σ22 = σ 2
C = g2 VarμdC (X1), σ13 = σF D = g Cov(μd F (X1), Dd(X1)),

σ33 = σ 2
F = g2 Varμd F (X1), σ23 = σC F = g Cov(μdC (X1), μd F (X1)).

Here the variable μdC (X1), and μd F (X1) are defined as

μdC (X1) = E[Cd(X1, . . . , Xg) | X1] μd F (X1) = E[Fd(X1, . . . , Xg) | X1].

The formof the covariancematrix follows from the remarks preceding the lemma.Asymptotic
normality follows from a general theorem about asymptotic normality of U -statistics, see, e.g.,
Theorem 2 of Lee (2019, p. 76).

We want to use Lemma 1 to find the limit distribution of the generalized Cohen’s kappa and
Fleiss’s kappa.To this end, recall themultivariate deltamethod (see, e.g., Lehmann, 2004,Theorem

5.2.3). Let f : R
k → R be continuously differentiable at θ and suppose that

√
n(θ̂ − θ)

d→
N (0, �). Then √

n[ f (θ̂) − f (θ)] d→ N (0,∇ f (θ)T �∇ f (θ)), (4.2)

where ∇ f (θ) denotes the gradient of f at θ .
In the case of Cohen’s kappa and Fleiss’s kappa, we find that

∇κd = 1

Cd

(
−1,

Dd

Cd

)
, ∇πd = 1

Fd

(
−1,

Dd

Fd

)
. (4.3)

Using some algebra, the expressions for the asymptotic variances follow from Lemma 1 and
the above gradients.

Proposition 1. Then Cohen’s kappa κ̂d and Fleiss’s kappa π̂d are asymptotically normal, and
their asymptotic variances are

σ 2
κ = σ 2

D
1

C2
d

− 2σC D
Dd

C3
d

+ σ 2
C

D2
d

C4
d

,

σ 2
π = σ 2

D
1

F2
d

− 2σF D
Dd

F3
d

+ σ 2
F

D2
d

F4
d

. (4.4)

These results are also valid for κ̂u
d and π̂u

d . Since the sample Krippendorff’s alpha (see note below)
is equal to α̂d = π̂d + 1

2Rn (1 − π̂d), it is also asymptotically normal with asymptotic variance
σ 2

π .

With g = 2 and a finite number of categories, Schouten (1980) derived σ 2
π , while Schouten

(1982) and O’Connell and Dobson (1984) derived σ 2
κ . The result for Krippendorff’s alpha is, to

our knowledge, new.
A brief aside on Krippendorff’s alpha Krippendorff’s alpha (Krippendorff, 1970) is an
agreement coefficient especially popular in content analysis (Krippendorff, 2018). It has no
population definition, but its sample definition equals α̂d = π̂d + 1

N (1 − π̂d) (the total sample
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size N equals 2Rn in the case of a rectangular design); see Proposition 3 in Appendix for a
justification. For this reason, all of the results about the limit of π̂u

d apply to Krippendorff’s alpha
as well, as it is an asymptotically equivalent estimator of πd . Note, however, that Krippendorff
(2018) emphasizes the use of non-rectangular designs, and the limit results in the preceding section
do not hold for such study designs.

4.2. Estimating the Variances

The unknown quantities D̂d , Ĉd , and F̂d can be estimated using their sample counterparts.
The variances and covariances can be estimated using the empirical (co)variances of the estimated
μ̂s. These have formulas

μ̂d(xi ) = Dd(xi ),

μ̂dC (xi ) = n−(g−1)
∑

i1,...,ig−1

Cd(xi , xi1 , . . . , xig−1),

μ̂d F (xi ) = n−(g−1)
∑

i1,...,ig−1

Fd(xi , xi1 , . . . , xig−1), (4.5)

where the index sets run over all combinations with repetitions of (i1, i2, . . . , ig−1).
Observe that estimating μ̂dC and μ̂d F directly is computationally very expensive, especially

when donewithout binning, which cannot be donewith continuous data. The obvious computation
of all μ̂dC requires a number of operations on the order of ng−1, which is prohibitively expensive
for large n and g. However, there are few applications of agreement measures with very large
n and g, so this should not be a serious problem in practice. We note that less computationally
demanding procedures are possible for the quadratic Fréchet variance V (d2

2 ), as it can be shown
that its associated kappas are invariant under g. Thus, we may use the computationally very
effective methods for the concordance coefficient outlined by, e.g., Carrasco and Jover (2003).

From the definitions of D̂d , Ĉd , and F̂d , (4), we quickly deduce that μ̂d = D̂d , μ̂dC = Ĉd

and μ̂d F = F̂d . Using this fact, we can define the estimators

σ̂ 2
C = g2

n − 1

n∑
i=1

(μ̂dC (xi ) − Ĉd)2, σ̂ 2
C D = g

n − 1

n∑
i=1

(μ̂dC (xi ) − Ĉd)(μ̂d(xi ) − D̂d),

and σ̂ 2
D = 1

n−1

∑n
i=1(μ̂d(xi ) − D̂d)2. Moreover, we can estimate σ̂ 2

F and σ̂ 2
F D in the same way,

substituting μ̂d F for μ̂dC . Using the formulas for the theoretical variances (4.4), we find the
estimators

σ̂ 2
κ = σ̂ 2

D
1

Ĉ2
d

− 2σ̂C D
D̂d

Ĉ3
d

+ σ̂ 2
C

D̂2
d

Ĉ4
d

, (4.6)

σ̂ 2
π = σ̂ 2

D
1

F̂2
d

− 2σ̂F D
D̂d

F̂3
d

+ σ̂ 2
F

D̂2
d

F̂4
d

. (4.7)

The variance estimator σ̂ 2
π coincides with that of Gwet (2021, equation 4) in the case of

nominal weights; see Appendix (Sect. 6) for a proof sketch.
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4.3. Improving Approximate Normality with the Arcsine and Fisher Transforms

It is well known that the Fisher transform (Fisher, 1915) improves the inference for the
correlation coefficient. If r is the sample correlation, artanh(r) = 1

2 log[(1 + r)/(1 − r)] has
approximately the same variance for most r , and its distribution is closer to normal than that of
the untransformed r , especially when the population correlation is close to ±1. This transform
makes sense outside the world of correlations; for instance, Lin (1989) used the Fisher transform
to improve the normality of the quadratically weighted Cohen’s kappa.

The arcsine is another reasonable transformation of κ̂d and π̂d . The arcsine is the inverse
of the sine function and is defined as arcsin x = ∫

1/
√
1 − x2dx . In ecology (Warton & Hui,

2011), the arcsine transformation denotes arcsin
√

p, where p is a probability. We do not take
square root, however, as κ̂d and π̂d can be negative.

Calculating the limiting variance of arcsin κ̂d and arcsin π̂d requires an additional application
of the delta method (4.2). Using that d

dx arcsin(x) = 1/
√
1 − x2 and d

dx artanh(x) = 1/(1− x2),
we find

√
n(arcsin κ̂d − arcsin κd) → N (0, (1 − κ2

d )−1σ 2
κ ), (4.8)√

n(artanh κ̂d − artanh κd) → N (0, (1 − κ2
d )−2σ 2

κ ). (4.9)

Expressions for π̂d can be found by swapping κd for πd and σ 2
κ for σ 2

π .

Example 3. This example illustrates that the arcsine andFisher transformsmaymake the sampling
distribution closer to the normal distribution. Let the number of raters be R = 3, the disagreement
function be quadratic (with g = 2), and the number of items be n = 20. There are five categories
and the true classification of an item is one of {1, 2, 3, 4, 5} with probability 1/5 each. Every
rater knows the true classification of an item with probability 0.9. If they do not know the correct
classification, they will guess a classification from {1, 2, 3, 4, 5} uniformly at random. One can
show that the population value of the quadratically weighted Cohen’s kappa is 0.816 under these
circumstances, following the arguments of Perreault and Leigh (1989). We simulate the value
of κ̂d a total of N = 50, 000 times and transform them using the identity transform, the arcsine
transform, and the Fisher transform. The results are shown in Fig. 1. The arcsine transform appears
to bring the sampling distribution of κ̂d closer to the normal distribution, with the Fisher transform
also improving normality quite a bit.

5. Confidence Intervals

Using the methodology we have developed, we can easily construct confidence intervals for
the agreement coefficients.

We describe our three confidence interval constructions only for Cohen’s kappa, as the inter-
vals using Fleiss’ kappa can be found by replacing every instance κ̂d with π̂d and σ̂ 2

κ with σ̂ 2
π . We

use the two-sided t-distribution-based confidence intervals with nominal level 1− α = 0.95. Let
c be the (1−α/2)-quantile of the t distribution with n − 1 degrees of freedom. The basic interval
is

[κ̂d − cσ̂κ/
√

n − 1, κ̂d + cσ̂κ/
√

n − 1], (5.1)

where σ̂κ is the estimated variance described in equation (4.6).
The arcsine interval replaces the basic limits with

sin
(
arcsin κ̂d ± c(1 − κ̂2

d )−1/2σ̂κ/
√

n − 1
)

, (5.2)
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Figure 1.
Simulated sampling distribution of κ̂d for quadratic weights using three transformations, n = 20, R = 3. The simulation
setup is described in Example 3. The arcsine transform makes the sampling distribution closest to the normal distribution.

where (1 − κ̂2
d )−1σ̂ 2

κ is the asymptotic variance of arcsin κ̂d (4.8). The Fisher interval uses the
area hyperbolic tangent,

tanh
(
artanh κ̂d ± c(1 − κ̂2

d )−1σ̂κ/
√

n − 1
)

, (5.3)

where (1 − κ̂2
d )−2σ̂ 2

κ is the asymptotic variance of artanh κ̂d (4.9).
Using the methodology just described, we can calculate confidence intervals for the Fleiss

(1971) data of Example 2.

Example 4. (Ex. 2 cont.) Using the data of Fleiss (1971), we calculate arcsine confidence intervals
for the g-wise Fleiss’s kappa. The raters are not the same for all items, but it seems plausible to
assume that the ratings are exchangeable given the item. The diagnoses are essentially categorical
in nature; hence, we will only consider V (d0) and Hubert’s disagreement function. The results are
shown in Table 3. We see that the agreement coefficients agree when g = 2, as both V (d0) and
Hubert’s disagreement function equals the nominal agreement in this case. But the coefficients
differ substantially as g increases. This is to be expected, as Hubert’s disagreement function
measures consensus while V (d0) measures the number of observations different from the mode.
Observe that V (d0) is not invariant with respect to g, hence it is a proper alternative to the classical
Fleiss’s kappa. Moreover, all confidence intervals are of comparable length.

The preceding example fits best into the context of Fleiss’ kappa, as the identity of the raters
are unknown. Moreover, there is no ordinal structure in the data, making the V (d1) and V (d2

2 )
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Table 3.
Confidence intervals for the data of Fleiss (1971) using the arcsine method.

d Fleiss’ kappa
g = 2 g = 3 g = 6*
CIl CIu π̂ CIl CIu π̂ CIl CIu π̂

V (d0) 0.314 0.539 0.43 0.388 0.597 0.496 0.366 0.597 0.486
Hubert† 0.314 0.539 0.43 0.202 0.458 0.333 0.021 0.308 0.166

*This is Hubert’s kappa when the Hubert disagreement is used.
†Hubert disagreement equals the nominal disagreement V (d0) when g = 2.

Table 4.
Confidence intervals for Zapf et al. (2016) using the arcsine method.

d Cohen’s kappa Fleiss’ kappa
g = 2 g = 4† g = 4
CIl CIu κ̂ CIl CIu κ̂ CIl CIu π̂

V (d0) 0.453 0.672 0.567 0.475 0.701 0.594 0.466 0.700 0.589
V (d1) 0.699 0.857 0.784 0.713 0.870 0.798 0.710 0.870 0.797
V (d22 ) 0.834 0.948 0.898 0.834 0.948 0.898 0.834 0.948 0.898
Hubert† 0.453 0.672 0.567 0.276 0.565 0.426 0.271 0.564 0.423

†Hubert disagreement equals the nominal disagreement V (d0) when g = 2.

distances unnatural to employ. Our next example concerns the Fréchet variances applied to a case
of ordinal data when the identity of the raters are known.

Example 5. Zapf et al. (2016) studied bootstrap intervals for Fleiss’s kappa and Krippendorff’s
alpha using simulations and a case study. Their case study concerned the histopathological assess-
ment of breast cancer and involved ratings performed by R = 4 senior pathologists and n = 50
breast cancer biopsies. We apply the arcsine method to calculate confidence intervals and point
estimates, displayed in Table 4. We focus on Cohen’s kappa since the same four pathologists rate
each cancer biopsy, but we include a column for Fleiss’s kappa when g = 4 for comparison’s
sake. When g = 4, Cohen’s kappa and Fleiss’s kappa are as good as indistinguishable. As can
be verified by using the code in the supplementary material, this happens for the other gs as
well. It is not generally the case that Fleiss’s kappa and Cohen’s kappa nearly coincide, but it is
likely to happen if the marginal ratings are approximately the same for all raters, as is the case
in this data set. There is a sizable difference between the disagreement functions, but there is
not typically a big difference when changing gs, provided we keep the disagreement functions
constant. It remains to be seen whether this is common or not. The exception is Hubert’s disagree-
ment function, which decreases quite a bit. (As in the Fleiss (1971) example, this is expected, as
the Hubert’s disagreement function is a consensus measure.) Observe that the kappas under the
quadratic Fréchet variance V (d2

2 ) do not change with g, which is always the case.

5.1. Simulation of Confidence Sets When g = 2

We include a small simulation study on the performance of confidence sets using twomodels:
A Perreault–Leigh model for discrete rating data and a normal model for continuous rating data.
For both models, we investigate the following parameters:
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(i) Number of raters R. We use 2, 5, 20, which corresponds to a small, medium, and large
selection of raters.

(ii) Sample sizes n. We use n = 10, 40, 100, corresponding to small, medium, and large
agreement studies.

(iii) Disagreement functions. Nominal disagreement 1[x �= y], quadratic disagreement
(x − y)2, and absolute value disagreement |x − y|.

(iv) Methods.Abasic interval without transformations, an arcsine-transformed interval, and
a Fisher transformed interval.

5.1.1. A Perreault–Leigh Model Perreault and Leigh (1989) discussed a particular model
for ratings in which each rated user either knows the correct answer or guesses uniformly at
random. Similar models have been used by Gwet (2008); Maxwell (1977), among others; see
Moss (2023) for a thorough discussion of such models. We assume there are five categories
encoded as C = {−2,−1, 0, 1, 2}, and the distribution of the true classification distribution is
uniform. For each item rated, the r th rater knows the correct classification with probability

√
0.8.

If not, he guesses, picking a number from C uniformly at random. Then κd = πd = 0.8 for all
weights and the number of raters, as can be verified by following the arguments of Perreault and
Leigh (1989). We run each simulation N = 10, 000 times.

The simulated lengths and coverages for Cohen’s kappa are given in Table 5. Two features
stand out in Table 5. First, the confidence intervals have almost indistinguishable lengths and
coverages when either R or n is large. Second, the basic interval has worse coverage than the
arcsine and Fisher intervals when n is small, with the Fisher interval having coverage slightly
closer to nominal than the arcsine interval. However, the better nominal coverage comes at the
expense of greater lengths. In particular, for the absolute value weight, the coverage of the arcsine
interval is greater than the coverage of the Fisher interval, but its length is shorter! The table for
Fleiss’s kappa is similar and can be found in Appendix, Table 8.

5.1.2. Normal Model In this study, the rating data is distributed according to the multivariate
normal N (0, �), where � is the R × R correlation matrix with off-diagonal elements �ri r j = ρ.
Since the data is continuous, we study the absolute value disagreement d1 and the quadratic
disagreement d2

2 only. The true values are κd2 = πd2
2

= ρ and κd1 = πd1 = 1 − √
1 − ρ. See

Appendix (Sect. 6) for details on the computation of these true values. We use ρ = 0.7, and
hence, κd2

2
= 0.7 and κd1 = 0.45. We run each simulation N = 1, 000 times.5 We note that

agreement coefficients are often called concordance coefficients when dealing with continuous
data, especially when the quadratic distance is used. Lin’s concordance coefficient (Lin, 1989,
1992) is a prominent example.

The simulated lengths and coverages for Cohen’s kappa are given in Table 6. There is barely
any difference between the three confidence interval constructions. Taken together with the results
for the Perreault–Leigh model, where the basic interval performs worse than the other two, we
would recommend the usage of either the arcsine or Fisher interval. Again, the table for Fleiss’s
kappa is very similar and can be found in Appendix (Table 9).

5.2. Simulation of Confidence Sets when g �= 2

Table 7 contains simulations from the Perreault–Leigh model (Sect. 5.1.1) with N = 1000
repetitions and R = 5 raters using the Fréchet variances V (d0), V (d1), and Hubert’s disagreement
function.We drop V (d2

2 ) since it does not vary with g. To save space, we drop the basic confidence

5We use fewer simulations (1, 000) than in the previous simulation (10, 000) since estimation is far more computa-
tionally expensive when dealing with continuous data, as it does not allow for binning.
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Table 5.
Coverage (first entry) and lengths (second entry) of confidence intervals: Perreault–Leigh model, Cohen’s kappa.

Method Perreault–Leigh model, Cohen’s kappa
R = 2 R = 5 R = 20

n 10 40 100 10 40 100 10 40 100

Weights
Nominal Basic 0.81 0.96 0.96 0.92 0.95 0.95 0.96 0.95 0.95

0.53 0.30 0.18 0.41 0.18 0.11 0.23 0.09 0.06
Arcsine 0.98 0.95 0.95 0.97 0.95 0.95 0.95 0.95 0.95

0.73 0.29 0.18 0.43 0.18 0.11 0.23 0.09 0.06
Fisher 0.97 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.95

0.91 0.32 0.19 0.50 0.19 0.11 0.24 0.09 0.06
Quadratic Basic 0.65 0.87 0.92 0.84 0.93 0.95 0.94 0.95 0.95

0.58 0.39 0.26 0.49 0.26 0.16 0.34 0.14 0.08
Arcsine 0.82 0.89 0.93 0.88 0.94 0.95 0.94 0.95 0.95

0.78 0.39 0.25 0.55 0.26 0.16 0.34 0.14 0.08
Fisher 0.95 0.91 0.95 0.90 0.94 0.95 0.93 0.95 0.95

0.94 0.44 0.27 0.65 0.27 0.16 0.37 0.14 0.08
Absolute value Basic 0.80 0.91 0.93 0.90 0.94 0.95 0.95 0.95 0.95

0.55 0.33 0.21 0.44 0.21 0.13 0.27 0.11 0.06
Arcsine 0.98 0.94 0.95 0.94 0.95 0.95 0.95 0.95 0.95

0.75 0.33 0.21 0.47 0.21 0.13 0.27 0.11 0.06
Fisher 0.97 0.95 0.95 0.95 0.95 0.96 0.94 0.95 0.95

0.93 0.35 0.21 0.55 0.21 0.13 0.28 0.11 0.07

Coverages greater than 0.95 are in bold.

Table 6.
Coverage (first entry) and lengths (second entry) of confidence intervals: normal model, Cohen’s kappa.

Cohen’s kappa: normal model
Method R = 2 R = 5 R = 20

n 10 40 100 10 40 100 10 40 100

Weights
Quadratic Basic 0.88 0.92 0.95 0.91 0.95 0.94 0.88 0.93 0.95

0.66 0.32 0.20 0.50 0.23 0.14 0.43 0.20 0.12
Arcsine 0.88 0.93 0.95 0.90 0.95 0.94 0.87 0.92 0.94

0.67 0.32 0.20 0.49 0.23 0.14 0.42 0.20 0.12
Fisher 0.90 0.94 0.94 0.88 0.94 0.94 0.86 0.92 0.94

0.70 0.33 0.20 0.51 0.23 0.14 0.43 0.20 0.12
Absolute value Basic 0.92 0.94 0.94 0.92 0.93 0.95 0.87 0.94 0.94

0.67 0.31 0.19 0.46 0.21 0.13 0.38 0.18 0.11
Arcsine 0.93 0.94 0.94 0.92 0.93 0.95 0.87 0.94 0.94

0.65 0.31 0.19 0.45 0.21 0.13 0.38 0.18 0.11
Fisher 0.93 0.94 0.95 0.92 0.93 0.95 0.86 0.94 0.94

0.65 0.31 0.19 0.45 0.21 0.13 0.38 0.18 0.11

Coverages greater than 0.95 are in bold.
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Table 7.
Coverage (first entry) and lengths (second entry) of confidence intervals for g-wise coefficients: Perreault–Leigh model,
Cohen’s kappa.

Method Perreault–Leigh model, Cohen’s kappa
g = 3 g = 4 g = 5

n 10 40 100 10 40 100 10 40 100

Weights
V (d0) Arcsine 0.98 0.96 0.94 0.97 0.95 0.94 0.98 0.93 0.93

0.41 0.16 0.10 0.39 0.16 0.10 0.38 0.15 0.09
Fisher 0.96 0.96 0.94 0.96 0.96 0.94 0.96 0.94 0.94

0.46 0.17 0.10 0.44 0.16 0.10 0.42 0.15 0.09
V (d1) Arcsine 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.95 0.95

0.49 0.21 0.13 0.45 0.19 0.11 0.44 0.19 0.11
Fisher 0.96 0.94 0.95 0.95 0.95 0.95 0.96 0.95 0.95

0.55 0.21 0.13 0.51 0.19 0.12 0.51 0.19 0.12
Hubert Arcsine 0.98 0.95 0.96 0.98 0.95 0.96 0.98 0.95 0.95

0.52 0.22 0.13 0.62 0.26 0.16 0.71 0.31 0.19
Fisher 0.97 0.96 0.96 0.97 0.96 0.96 0.98 0.96 0.94

0.57 0.22 0.13 0.67 0.27 0.16 0.77 0.31 0.19

Coverages greater than 0.95 are in bold.

interval in the simulation. As before, we show the results only for the Cohen-type disagreement,
with the Fleiss-type disagreement relegated to Appendix (Table 10). All coverages are decent,
and the coverages and lengths are similar across the board.

6. Concluding Remarks

When choosing an agreement coefficient one has to carefully think through exactly what
one wishes to measure. The Fréchet variances are attractive because of their interpretation. You
measure howmuch the raters disagree with the generalized mean rater, and then adjust for chance.
In the case of nominal data, we measure the disagreement with the modal rater. When dealing
with numerical data, we may measure disagreement with the median rater (using the absolute
value distance), or the mean rater (using the quadratic distance), or use any other Fréchet variance
defined on numeric data.

When dealing with nominal data, we believe that using the Fréchet variance, which measures
the distance from the mode, is a reasonable choice. But other options are certainly possible, even
when dealing with g-wise agreement measures. For example, one could use the entropy instead,
with distance measure d(x1, x2, . . . , xg) = −∑g

i=1
#i
g log #i

g , where #i counts the number of
elements in (x1, x2, . . . , xg) classified as i , which could be useful when the number of raters is
finite but large. The topic of how to choose reasonable distance measures for g-wise agreement
studies has not been thoroughly studied, and there might be options preferable to the Fréchet
variances that have not yet been found.

We have only covered rectangular design, where every item is rated by the same number of
raters. It is quite easy to generalize the definitions of κd and πd to non-rectangular designs, as
we have done in Appendix, Sect. 6. But inference appears to be quite difficult, probably requiring
additional assumptions for the case of non-exchangeable ratings.

In Sect. 4, we introduced the U -statistic-based estimators of Cd and Fd , but only used them
for theoretical purposes. The U -statistic-based estimators may plausibly outperform the classi-
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Figure 2.
Sample distribution of κ̂d for nominal (left) and absolute value (right) weights. Both plots omit a dominating spike at
1. Here n = 20 and j = 5, and we use the Perreault–Leigh model (same parameters as in Sect. 5.1) to simulate the
data. There were 2573 unique values for the nominal weight and 8790 unique values for the absolute value weight after
N = 200,000 simulations.

cal V -statistic-based estimators since they are minimum variance unbiased estimators. It would
be interesting to see whether the U -statistic-based estimators could outperform the traditional
V -statistic-based estimators when n is small, for example in terms of mean squared error or
confidence interval coverage.

The confidence intervals based on the arcsine and Fisher transforms perform better than the
basic, untransformed interval. It is unclear which one of these intervals to prefer, but it barely
matters when the sample size is sufficiently large. It might be possible to improve all of these
intervals. Small-sample corrections to the variance appear feasible, with potential openings in the
application of the delta rule and in the calculation of � of Lemma 1. We have used the arcsine
and Fisher transforms to improve approximate normality of κ̂d and π̂d , but this choice is semi-
arbitrary. Better variance-stabilizing transformations might be found by inspecting the formula
for the variances of κ̂d and π̂d in Proposition 1. The confidence intervals used in the simulation
are only known to be first-order accurate. To make second-order accurate confidence intervals, it
would be possible to use the explicit formula for the variances to construct studentized confidence
intervals, i.e., bootstrap-t intervals (Efron, 1987), which are second-order accurate.

None of these approaches is guaranteed to help when n is small, especially when dealing with
categorical data, as the sampling distributions of κ̂d and π̂d are discrete and highly irregular. For
example, consider the sample distribution of the Perreault–Leigh model (Sect. 5.1) when n = 20
and R = 20, displayed in Fig. 2. (We omit a dominating spike at 1.) As there are C = 5 < ∞
categories, there is a finite number of possible values for κ̂d to take, which is strongly reflected in
the plots, especially for the nominal weight.

The superior performance of methods such as the bootstrap-t depends on the quantity θ̂−θ
se

being approximately pivotal, that is, approximately the same for all parameters, possibly after
applying a transformation. Judging from the plots in Fig. 2, there is no such transformation.
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Appendix

Agreement Versus Disagreement

Agreement weighting functions are frequently standardized to guarantee that w(x1, x2) ≥ 0,
e.g., w(x1, x2) = 1 − |x1 − x2|/max(|x1 − x2|) for the absolute value weights. Standardization
is not necessary, as they do not change the values of κd and πd when it is possible (i.e., when
max(|x1 − x2|) < ∞), and is not defined otherwise. We choose not to use this operation, as it
does not change the value of the agreement coefficients in this paper and is impossible to do when
the range of x1, x2 is unbounded.

Proof of Equivalence Between V (dp)(x1, x2) and ||x1 − x2||
Proof. We will show that

V (dp)[x1, x2] = 1

2
||x1 − x2||p, V (d p

p )[x1, x2] = 1

2p
||x1 − x2||p

p.

First, consider the case when p ≥ 1. Using translation invariance and homogeneity of the norm,

||x1 − μ||p + ||x2 − μ||p,

= ||x1 − x1 + x2
2

− μ + x1 + x2
2

||p + ||x2 − x1 + x2
2

− μ + x1 + x2
2

||p,

= || x1 − x2
2

− ν||p + || − x1 − x2
2

− ν||p,

= ||a − ν||p + ||a + ν||p,

where a = x1−x2
2 and ν = μ − x1+x2

2 .
Observe that

argminν ||a + ν||p + ||a − ν||p = 0, for all a

implies μ = x1+x2
2 .

By the Minkowski inequality,

2p||a||p = ||a + ν + a − ν||p ≤ (||a − ν|| + ||a + ν||)p.

This is an equality if ||a − ν|| = ||a + ν|| = ||a||, i.e., when ν = 0, as the left side equals
(||a − μ|| + ||a + μ||)p = 2p||a||p. Now it is easy to verify that V (dp) and V (d p

p ) have the
claimed form; just substitute the value μ = x1+x2

2 into the formula for the Fréchet variance,
1
2 (||x1 − μ||p + ||x2 − μ||p).

http://creativecommons.org/licenses/by/4.0/
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When 0 < p < 1, the function μ 
→ ||x1 − μ||p + ||x2 − μ||p is stepwise concave on
[−∞, x1],[x1, x2], and [x2,∞); hence, its minimum is either x1, x2, or both. It is clear that both
x1 and x2 maps to ||x1 − x2||p; hence, both are Fréchet means. The case p = 0 is obvious and
omitted. ��

True Values in the Normal Simulation

We give a brief explanation why the true values of κd and πd are 0.8 for the quadratic weights
and 1 − √

0.2 for the absolute value weights.
First notice that, since the marginals of Xr1 and Xr2 are equal for all r1, r2, we have that

κd = πd . Moreover, we can ignore the number of raters, since the pairwise distribution do not
depend on them. Then, from standard theory about the multivariate and folded normal, we find
that

E(|Xr1 − Xr2 |) = 2

√
1 − ρ

π
, E(|Xr1 − Xr2 |2) = 2(1 − ρ).

Let X ′
r1be a copy of Xr1 that is independent of Xr2 . Then E(|X ′

r1 − Xr2 |) = 2/
√

π and E(|X ′
r1 −

Xr2 |2) = 2. Now rewrite the kappas using disagreement instead of agreement. Use the fact
that (pwa − p f a)/(1 − p f a) = 1 − dwa/d f a , where dwa = 1 − E(w(Xr1 , Xr2)) and d f a =
1 − E(w(X ′

r1 , Xr2)), where X ′
r1 is a copy of Xr1 that is independent of Xr2 .

Thus, κd = πd = 1− E(|Xr1 − Xr2 |)/E(|X ′
r1 − Xr2 |2) = 1−√

1 − ρ for the absolute value
weights and 1 − E(|Xr1 − Xr2 |2)/E(|X ′

r1 − Xr2 |2) = ρ for the quadratic weights.

Variance of U-Statistics

Let U 1
n and U 2

n be two U -statistics of n observations with symmetric kernelsψ1,ψ2 of dimension
k1 and k2. Define

σ 2
cc = Cov(E[ψ1(X1, . . . , Xk1) | X1, . . . , Xc)], E[ψ2(X1, . . . , Xk2) | X1, . . . , Xc)]). (6.1)

Proposition 2. The exact covariance of U n
1 and U n

2 is

Cov(U n
1 , U n

2 ) =
(

n

k1

)−1 k1∑
c=1

(
k2
c

)(
n − k2
k1 − c

)
σ 2

cc.

If k1 and k2 are fixed, its asymptotic variance is n Cov(U n
1 , U n

2 ) → k1k2σ12.

Proof. See (Lee, 2019, Theorem 2, p. 17) and (Lee, 2019, Theorem 2, p. 76). ��
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Table 8.
Coverage (first entry) and lengths (second entry) of confidence intervals: Perreault–Leigh model, Fleiss’s kappa.

Method Fleiss’s kappa: Perreault–Leigh model
R = 2 R = 5 R = 20

n 10 40 100 10 40 100 10 40 100

Weights
Nominal Basic 0.82 0.95 0.95 0.93 0.95 0.95 0.96 0.95 0.96

0.55 0.30 0.18 0.41 0.18 0.11 0.23 0.09 0.06
Arcsine 0.98 0.94 0.94 0.98 0.95 0.95 0.95 0.95 0.95

0.76 0.30 0.18 0.44 0.18 0.11 0.23 0.09 0.06
Fisher 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.95

0.95 0.32 0.19 0.51 0.19 0.11 0.24 0.09 0.06
Quadratic Basic 0.65 0.86 0.92 0.85 0.93 0.94 0.94 0.95 0.95

0.60 0.39 0.26 0.50 0.26 0.16 0.34 0.14 0.08
Arcsine 0.83 0.89 0.93 0.89 0.94 0.94 0.94 0.95 0.95

0.82 0.39 0.25 0.56 0.26 0.16 0.34 0.14 0.08
Fisher 0.96 0.91 0.94 0.91 0.94 0.95 0.93 0.95 0.95

0.98 0.44 0.27 0.67 0.27 0.16 0.37 0.14 0.08
Absolute value Basic 0.81 0.92 0.94 0.91 0.95 0.95 0.95 0.95 0.95

0.57 0.33 0.21 0.44 0.21 0.13 0.27 0.11 0.06
Arcsine 0.99 0.93 0.95 0.94 0.95 0.95 0.95 0.95 0.95

0.79 0.33 0.21 0.48 0.21 0.13 0.27 0.11 0.06
Fisher 0.97 0.95 0.95 0.96 0.95 0.95 0.94 0.95 0.95

0.97 0.36 0.21 0.56 0.21 0.13 0.28 0.11 0.07

Expanding the Definitions

Here is sketch of how we could expand the definitions in Sect. 2 to encompass more complicated
scenarios. We restrict ourselves to g = 2, but the analysis can be expanded to arbitrary g. Suppose
that any finite number of raters R is possible, the raters are not exchangeable, and that not every
item is rated by every rater.

Let X denote a rating, R be the raters, and I be the items rated. Suppose we sample pairs
(X1, R1, I1), (X2, R2, I2) independently from the same distribution F . Then we may define

Dd = E[d(X1, X2) | I1 = I2, R1 �= R2],
Cd = E[d(X1, X2) | R1 �= R2],
Fd = E[d(X1, X2)]. (6.2)

These quantities have natural sample analogues; e.g.,

D̂d = N−1
n∑

i=1

∑
r1 �=r2

d(xir1 , xir2),

where N is the total number of paired observations and the rater indices run over the raters who
observed at the i th observation x . Population and sample definitions of Cohen’s kappa and Fleiss’
kappa follow as laid out in the main text, e.g., κd = 1 − Dd/Cd .
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Table 9.
Coverage (first entry) and lengths (second entry) of confidence intervals: Normal model, Fleiss’s kappa.

Method Fleiss’s kappa: normal model
R = 2 R = 5 R = 20

n 10 40 100 10 40 100 10 40 100

Weights
Quadratic Basic 0.89 0.93 0.95 0.90 0.95 0.94 0.90 0.93 0.95

0.70 0.33 0.20 0.50 0.23 0.14 0.42 0.20 0.12
Arcsine 0.90 0.93 0.95 0.90 0.95 0.94 0.90 0.92 0.94

0.71 0.32 0.20 0.49 0.23 0.14 0.42 0.20 0.12
Fisher 0.92 0.93 0.95 0.89 0.94 0.94 0.88 0.92 0.94

0.74 0.33 0.20 0.51 0.23 0.14 0.43 0.20 0.12
Absolute value Basic 0.92 0.95 0.95 0.91 0.96 0.93 0.90 0.93 0.93

0.71 0.32 0.20 0.47 0.21 0.13 0.39 0.18 0.11
Arcsine 0.92 0.95 0.95 0.90 0.95 0.92 0.89 0.93 0.93

0.69 0.32 0.20 0.46 0.21 0.13 0.39 0.18 0.11
Fisher 0.92 0.95 0.95 0.90 0.95 0.93 0.89 0.93 0.93

0.68 0.32 0.20 0.46 0.21 0.13 0.39 0.18 0.11

Table 10.
Coverage (first entry) and lengths (second entry) of confidence intervals: Perreault–Leigh model, Fleiss’ kappa (R = 5).

Method Perreault–Leigh model, Fleiss’ kappa
g = 3 g = 4 g = 5

n 10 40 100 10 40 100 10 40 100

Weights
V (d0) Arcsine 0.98 0.96 0.95 0.98 0.95 0.95 0.98 0.95 0.95

0.41 0.16 0.1 0.4 0.16 0.1 0.38 0.15 0.09
Fisher 0.96 0.96 0.95 0.96 0.96 0.95 0.97 0.96 0.95

0.46 0.17 0.1 0.45 0.16 0.1 0.43 0.15 0.09
V (d1) Arcsine 0.94 0.95 0.96 0.93 0.95 0.95 0.94 0.95 0.95

0.5 0.21 0.13 0.46 0.19 0.11 0.46 0.19 0.11
Fisher 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.95 0.95

0.57 0.21 0.13 0.52 0.19 0.12 0.52 0.19 0.12
V (d22 ) Arcsine 0.88 0.94 0.94 0.88 0.94 0.94 0.88 0.94 0.94

0.59 0.26 0.16 0.59 0.26 0.16 0.59 0.26 0.16
Fisher 0.91 0.94 0.95 0.91 0.94 0.95 0.9 0.94 0.95

0.68 0.27 0.16 0.68 0.27 0.16 0.68 0.27 0.16
Hubert Arcsine 0.98 0.96 0.96 0.97 0.96 0.96 0.97 0.96 0.96

0.52 0.22 0.13 0.61 0.26 0.16 0.71 0.31 0.19
Fisher 0.97 0.96 0.96 0.97 0.96 0.96 0.97 0.97 0.96

0.58 0.22 0.13 0.67 0.27 0.16 0.77 0.31 0.19
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Krippendorff’s Alpha Now suppose that the ratings can take on only a finite number C distinct
values. Define ock as the number of times a pair of raters has classified an item into c and k, i.e.,

ock =
n∑

i=1

∑
r1 �=r2

1[xir1 = c, xir2 = k].

Then N = ∑
c,k ock and D̂d = N−1 ∑

c,k ockd(c, k). Moreover, define nc as the number of items

classified as c. Then nc = ∑
k ock ,

∑
c nc = N , and

∑
c,k ncnkd(c, k) = N 2 F̂d .

Proposition 3. Using the above definitions, α̂d = π̂d + 1
N (1 − π̂d). Since there are N = 2Rn

rating pairs in the rectangular setup used in Sect.2, α̂d = π̂d + 1
2Rn (1 − π̂d) in that case.

Proof. The definition of α̂d can be found on Krippendorff (2018, p.235),

α̂d = 1 − (N − 1)

∑
c �=k ockd(c, k)∑

c �=k ncnkd(c, k)
.

From the above definitions, and the fact that d(c, k) = 0 when c = k, we find that

∑
c �=k

ockd(c, k) =
∑
c,k

ockd(c, k) = N D̂d .

In the same way,

∑
c �=k

ncnkd(c, k) =
∑
c,k

ncnkd(c, k) = N 2 F̂d .

Thus,

α̂d = 1 − (N − 1)

N

D̂d

F̂d
= 1 − D̂d

F̂d
+ 1

N

D̂d

F̂d
,

and using that π̂d = 1 − D̂d

F̂d
, we are done. ��

Proof of Correspondence with Gwet (2021)

Using the nominal disagreement function, Gwet (2021) uses the following estimator for the
asymptotic variance of the pairwise Fleiss’ kappa:

σ̂ 2 = 1

n − 1

n∑
i=1

(κ�
i − κ̂)2.

Translating into our notation (dropping the dependence on the disagreement d), we have that
κ̂ = 1 − D̂/F̂ . Moreover, one can verify that κ�

i equals

κ�
i = 1 − μ̂(xi )

F̂
− 2

D̂

F̂

(
1 − μ̂F (xi )

F̂

)
,
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where μ̂(xi ) and μ̂F (xi ) were defined in Sect. 4.
Following a small reorganization of the terms, we find that

1

n − 1

n∑
i=1

(κ�
i − κ̂)2 = 1

F̂2

1

n − 1

n∑
i=1

(
2

D̂

F̂

[
μ̂F (xi ) − F̂

]
− [μ̂d(xi ) − D̂]

)2

.

Using the definitions of σ̂ 2
D, σ̂F D and σ̂ 2

F (c.f. Section4.2), one can verify using simple algebraic
manipulations that

1

n − 1

n∑
i=1

(
κ�

i − κ̂
)2 = 1

F̂2

(
σ̂ 2

D − 2σ̂F D
D̂d

F̂d
+ σ̂ 2

F
D̂2

d

F̂2
d

)
;

hence, the estimator of Gwet (2021) is a special case of the proposed estimator in Sect. 4.2.

Simulation of Fleiss’s Kappa

Here are the results of the simulation study in 5.1 for Fleiss’s kappa (Tables 8, 9, 10).
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