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Abstract
In this study, we present a formal definition of the probabilistic digital twin (PDT). Digital twins are emerging in many 
industries, typically consisting of simulation models and data associated with a specific physical system. In order to define 
probabilistic digital twins, we discuss how epistemic uncertainty can be treated using measure theory, by modelling epis-
temic information via �-algebras. A gentle introduction to the necessary mathematical theory is provided throughout 
the paper, together with a number of examples to illustrate the core concepts. We then introduce the problem of optimal 
sequential decision making. That is, when the outcome of each decision may inform the next. We discuss how this prob-
lem may be solved theoretically, and the current limitations that prohibit most practical applications. As a numerically 
tractable alternative, we propose a generic approximate solution using deep reinforcement learning together with neural 
networks defined on sets. We illustrate the method on a practical problem, considering optimal information gathering 
for the estimation of a failure probability.

Keywords Probabilistic digital twin · Epistemic uncertainty · Sequential decision making · Partially observable Markov 
decision process · Deep reinforcement learning

1 Introduction

1.1  Probabilistic digital twins

The use of digital twins has emerged as one of the major 
technology trends the last couple of years. In essence, 
a digital twin (DT) is a digital representation of some 
physical system, including data from observations of the 
physical system, which can be used to perform forecasts, 
evaluate the consequences of potential actions, simulate 
possible future scenarios, and in general inform decision 
making without requiring interference with the physical 

system. From a theoretical perspective, a digital twin may 
be regraded to consist of the following two components:

• A set of assumptions regarding the physical system 
(e.g. about the behaviour or relationships among sys-
tem components and between the system and its envi-
ronment), often given in the form of a physics-based 
numerical simulation model.

• A set of information, usually in the form of a set of 
observations, or records of the relevant actions taken 
within the system.
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In some cases, a digital twin may be desired for a system 
whose attributes and behaviours are not deterministic, 
but stochastic. For example, the degradation and failure 
of physical structures or machinery is typically described 
as stochastic processes. A system’s performance may be 
impacted by weather or financial conditions, which also 
may be most appropriately modelled as stochastic. Some-
times the functioning of the system itself is stochastic, 
such as supply chain or production chains involving sto-
chastic variation in demand and performance of various 
system components.

Even for systems or phenomena that are deterministic 
in principle, a model will never give a perfect rendering of 
reality. There will typically be uncertainty about the mod-
el’s structure and parameters (i.e. epistemic uncertainty), 
and if consequences of actions can be critical, such uncer-
tainties need to be captured and handled appropriately 
by the digital twin. In general, the system of interest will 
have both stochastic elements (aleatory uncertainty) and 
epistemic uncertainty.

If we want to apply digital twins to inform decisions 
in systems where the analysis of uncertainty and risk is 
important, certain properties are required:

1. The digital twin must capture uncertainties: This could 
be done by using a probabilistic representation for uncer-
tain system attributes.

2. It should be possible to update the digital twin as new 
information becomes available: This could be from new 
evidence in the form of data, or underlying assumptions 
about the system that have changed.

3. For the digital twin to be informative in decision mak-
ing, it should be possible to query the model suffi-
ciently fast: This could mean making use of surrogate 
models or emulators, which introduces additional uncer-
tainties. 

These properties are paraphrased from [1], which provides 
a detailed discussion on the use of digital twins for on-line 
risk assessment.

A digital twin that complies with these properties is 
referred to as a probabilistic digital twin (PDT). Other for-
mulations of PDTs have also been proposed in the recent 
years. In [2] the PDT is characterized through probabilistic 
machine learning from a physical system’s observables, 
that are associated with properties such as parameters or 
state variables of a physics-based model. The PDT is first 
trained as a predictive model before it is exercised in a 
decision making context. A similar framework is outlined 
in [3], where the PDT takes the form of a dynamic decision 
network (an extension of a dynamic Bayesian network with 
decision nodes). The time evolution of the physical asset 
and the dynamical updating of the PDT is emphasized with 

this approach. Other applications of PDTs can be found in 
[4], here also starting from a Bayesian network perspec-
tive, or [5] which instead deals with uncertainty model-
ling through polynomial chaos expansion. These methods 
may differ in their specific mathematical implementation, 
but the general idea is the same, with the main goal of 
combining physics-based and probabilistic modelling to 
support decision making under uncertainty.

In this paper we propose a mathematical framework for 
defining PDTs, starting from a measure-theoretic perspec-
tive. This is not in conflict with the current literature on 
PDTs, but we take a slightly more generic approach which 
will give us the vocabulary to properly separate between 
aleatory and epistemic uncertainty. This will let us analyze 
the effect of gathering information, which is needed e.g. 
for optimal experimental design, and which is also impor-
tant for many safety-critical applications.

With respect to the three properties of PDTs described 
above, we will build on the Bayesian probabilistic frame-
work which is a natural choice to satisfy Items 1 and 2.

A numerical model of a complex physical system can 
often be computationally expensive, for instance if it 
involves the numerical solution of nontrivial partial differ-
ential equations. In a probabilistic setting this is prohibi-
tive, as a large number of evaluations (e.g. PDE solves) is 
needed for tasks involving uncertainty propagation, such 
as prediction and inference. Applications towards real-
time decision making also sets natural restrictions with 
respect to the runtime of such queries. This is why property 
3 is important, and why probabilistic models of complex 
physical phenomena often involve the use of approximate 
alternatives, usually obtained by “fitting” a computation-
ally cheap model to the output of a few expensive model 
runs. These computationally cheap approximations are 
often referred to as response surface models, surrogate 
models or emulators in the literature.

Introducing this kind of approximation for computa-
tional efficiency also means that we introduce additional 
epistemic uncertainty into our modelling framework. 
By epistemic uncertainty we mean, in short, any form 
of uncertainty that can be reduced by gathering more 
information (to be discussed further later on). In our con-
text, uncertainty may in principle be reduced by running 
the expensive numerical modes instead of the cheaper 
approximations.

1.2  Sequential decision making

Many interesting sequential decision making problems 
arise from the property that our knowledge about the sys-
tem we operate changes as we learn about the outcomes. 
That is, each decision may affect the epistemic uncertainty 
which the next decision will be based upon.
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For certain applications it is also important that deci-
sions are robust with respect to what we do not know, i.e. 
with respect to epistemic uncertainty. Although we will 
not restrict the framework presented in this paper to any 
specific type of sequential decision making objectives, we 
will mainly focus on problems related to optimal informa-
tion gathering. That is, where the decisions we consider 
are related to acquiring information (e.g. by running an 
experiment) in order to reduce the epistemic uncertainty 
with respect to some specified objective (e.g. estimating 
some quantity of interest). This is referred to as optimal 
experimental design in the statistics literature [6] and active 
learning within machine learning [7].

If we have a probabilistic model of some data generat-
ing process (for instance given by a PDT), we can simulate 
posterior distributions (of some quantity of interest) corre-
sponding to what we might observe after a specific action. 
If we combine this with a utility function, given as a func-
tional of the posterior distribution, we can try to optimize 
our decisions with respect to this utility. Methods of this 
sort are called Bayesian optimal designs [8]. Some exam-
ples are utility functions based on the Kullback–Leibler 
divergence between the prior and posterior [9, 10], mutual 
information [11], predictive uncertainty [6] or the cost of 
uncertainty [12]. For further details see e.g. the review in 
[8] and the references therein.

In the sequential setting, it is quite common to search 
for a myopic strategy, which means that we look one time 
step into the future and only consider the immediate con-
sequence of a decision. This is of course generally subop-
timal, compared to considering all future decisions and 
the observations they might produce. However, for non-
trivial models, finding an exact solution for the multi-step 
alternative is usually computationally intractable. An alter-
native that has received increasing attention the recent 
years is to make use of reinforcement learning to find an 
approximate solution in the multi-step case. Some exam-
ples of this approach by the use of policy gradient rein-
forcement learning can be found in [13–15]. The examples 
presented in this paper (Sect. 5) show a different approach 
using Q-learning.

An example that we will consider in this paper, is the 
problem of optimal experimental design for structural 
reliability analysis. This is when information is acquired 
sequentially in order to evaluate the reliability of a physi-
cal operation, something which is a relevant application 
of a PDT. The quantity of interest here is the probability 
of structural failure (e.g. structural collapse due to loads 
caused by wind and waves). Assume that to estimate this 
probability, a large number of physics-based simulation 
(e.g. Finite Element Analysis) related to the relevant failure 
mechanism (e.g. fracture) is needed. Usually, only a small 
number of such simulations can be performed in practice. 

The experimental design problem is then to decide which 
experiments (here simulation runs) to perform in order to 
build a surrogate model that can be used to estimate a 
failure probability with sufficient level of confidence. This 
is a problem that has received considerable attention (see 
e.g. [16–22]). These methods all make use of a myopic 
(one-step lookahead) criterion to determine the “optimal” 
experiment, as a multi-step or full dynamic programming 
formulation of the optimization problem becomes numeri-
cally infeasible. In [16] the authors consider the case where 
there are different types of experiments to choose from. 
Here, the myopic (one-step lookahead) assumption can 
still be justified, but if the different types of experiments 
are associated with different costs, then it can be difficult 
to apply in practice (e.g. if a feasible solution requires 
expensive experiments with delayed reward). We will 
revisit this example in this paper, but with a method that 
looks multiple steps ahead.

1.3  Contribution of this paper

In this paper we will review the mathematical framework 
of sequential decision making, and connect this to the 
definition of a PDT. Traditionally, there are two main solu-
tion strategies for solving discrete time sequential deci-
sion making problems: Maximum principles, and dynamic 
programming. We review these two solution methods, 
and conclude that the PDT framework is well suited for 
a dynamic programming approach. However, dynamic 
programming suffers from the curse of dimensionality, 
i.e. possible sequences of decisions and state realizations 
grow exponentially with the size of the state space. In fact, 
when doing numerical backward induction in dynamic 
programming, the objective function must be computed 
for each combination of values. This makes the method 
too computationally demanding to be applicable in prac-
tice for problems where the state space is large, see Agrell 
and Dahl [16] for a discussion of this. Hence, we are typi-
cally not able to solve a PDT sequential decision making 
problem in practice directly via dynamic programming.

As a generic solution to the problem of optimal sequen-
tial decision making we instead propose an alternative 
based on reinforcement learning. This means that when 
we consider the problem of finding an optimal decision 
policy, instead of truncating the theoretical optimal solu-
tion by e.g. looking only one step ahead, we try to approxi-
mate the optimal policy. This approximation can be done 
by using e.g. a neural network. Here we will frame the 
sequential decision making setup as a Markov decision 
process (MDP), in general as a partially observable MDP 
(POMDP), where a state is represented by the information 
available at any given time. This kind of state specifica-
tion is often referred to as the information state-space. As 
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a generic approach to deep reinforcement learning using 
PDTs, we propose an approach using neural networks that 
operate on the information state-space directly.

Main contributions. In this paper we will: 

(i)  Propose a mathematical framework for modelling 
epistemic uncertainty based on measure theory.

(ii)  Present a mathematical definition of the probabilistic 
digital twin (PDT). This is a mathematical framework 
for modelling physical systems with aleatory and 
epistemic uncertainty.

(iii)  Introduce the problem of sequential decision mak-
ing, and illustrate how this problem can be solved 
(at least in theory) via maximum principle methods 
or the dynamic programming principle.

(iv)  Discuss the curse of dimensionality for these solution 
methods, and illustrate how the sequential decision 
making problem in the PDT can be viewed as a par-
tially observable Markov decision process.

(v)  Explain how reinforcement learning (RL) can be 
applied to find approximate optimal strategies for 
sequential decision making in the PDT, and propose 
a generic approach using a deep sets architecture 
that enables RL directly on the information state-
space. We end with a numerical example to illustrate 
this approach.

The paper is structured as follows: In Sect. 2 we intro-
duce epistemic uncertainty and suggest modeling this via 
�-algebras. In Sect. 3, we present the mathematical frame-
work, as well as a formal definition, of a probabilistic digital 
twin (PDT), and discuss how such PDTs are used in prac-
tice. Then, in Sect. 4, we introduce the problem of stochas-
tic sequential decision making. We discuss the traditional 
solution approaches, in particular dynamic programming 
which is theoretically a suitable approach for decision 
problems that can be modelled using a PDT. However, 
due to the curse of dimensionality, using the dynamic pro-
gramming directly is typically not tractable. We therefore 
turn to reinforcement learning using function approxima-
tion as a practical alternative. In Sect. 5, we show how an 
approximate optimal strategy can be achieved using deep 
reinforcement learning, and we illustrate the approach 
with a numerical example. Finally, in Sect. 6 we conclude 
and sketch some future works in this direction.

2  A measure‑theoretic treatment 
of epistemic uncertainty

In this section, we review the concepts of epistemic and 
aleatory uncertainty, and introduce a measure-theoretic 
framework for modelling epistemic uncertainty.

2.1  Motivation

In uncertainty quantification (UQ), it is common to con-
sider two different kinds of uncertainty: Aleatory (sto-
chastic) and epistemic (knowledge-based) uncertainty. 
We say that uncertainty is epistemic if we foresee the 
possibility of reducing it through gathering more or 
better information. For instance, uncertainty related to 
a parameter that has a fixed but unknown value is con-
sidered epistemic. Aleatory uncertainty, on the other 
hand, is the uncertainty which cannot (in the modeller’s 
perspective) be affected by gathering information alone. 
Note that the characterization of aleatory and epistemic 
uncertainty has to depend on the modelling context. For 
instance, the result of a coin flip may be viewed as epis-
temic, if we imagine a physics-based model that could 
predict the outcome exactly (given all initial conditions, 
etc.). However, under most circumstances it is most natu-
ral to view a coin flip as aleatory, or that it contains both 
aleatory and epistemic uncertainty (e.g. if the bias of 
the coin is unknown). Der Kiureghian and Ditlevsen [23] 
provide a detailed discussion of the differences between 
aleatory and epistemic uncertainty.

In this paper, we have two main reasons for distin-
guishing between epistemic and aleatory uncertainty. 
First, we would like to make decisions that are robust 
with respect to epistemic uncertainty. Secondly, we are 
interested in studying the effect of gathering informa-
tion. Modelling epistemic uncertainty is a natural way 
of doing this.

In the UQ literature, aleatory uncertainty is typically 
modelled via probability theory. However, epistemic 
uncertainty is represented in many different ways. For 
instance, Helton et al. [24] consider four different ways of 
modelling epistemic uncertainty: Interval analysis, possi-
bility theory, evidence theory (Dempster-Shafer theory) 
and probability theory.

In this paper we take a measure-theoretic approach. 
This provides a framework that is relatively flexible with 
respect to the types of assumptions that underlie the epis-
temic uncertainty. As a motivating example, consider the 
following typical setup used in statistics:

Example 2.1 (A parametric model)
Let X = (Y , �) where Y is a random variable representing 

some stochastic phenomenon, and assume Y is modelled 
using a given probability distribution, P(Y |�) , that depends 
on a parameter � (e.g. Y ∼ N(�, �) with � = (�, �) ). Assume 
that we do not know the value of � , and we therefore con-
sider � as a (purely) epistemic parameter. For some fixed 
value of � , the random variable Y is (purely) aleatory, but in 
general, as the true value of � is not known, Y is associated 
with both epistemic and aleatory uncertainty.



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:114  | https://doi.org/10.1007/s42452-023-05316-9 Research Article

The model X in Example 2.1 can be decoupled into an 
aleatory component Y |� and an epistemic component � . 
Any property of the aleatory uncertainty in X is determined 
by P(Y |�) , and is therefore a function of � . For instance, the 
probability P(Y ∈ A|�) and the expectation E[f (Y)|�] , are 
both functions of � . There are different ways in which we 
can choose to address the epistemic uncertainty in � . We 
could consider intervals, for instance the minimum and 
maximum of P(Y ∈ A|�) over any plausible value of � , or 
assign probabilities, or some other measure of belief, to 
the possible values � may take. However, in order for this 
to be well-defined mathematically, we need to put some 
requirements on A, f and � . By using probability theory to 
represent the aleatory uncertainty, we implicitly assume 
that the set A and function f are measurable, and we will 
assume that the same holds for � . We will describe in detail 
what is meant by measurable in Sect. 2.2 below. Essen-
tially, this is just a necessity for defining properties such 
as distance, volume or probability in the space where � 
resides.

In this paper we will rely on probability theory for han-
dling both aleatory and epistemic uncertainty. This means 
that, along with the measurability requirement on � , we 
have the familiar setup for Bayesian inference:

Example 2.2 (A parametric model—Inference and 
prediction)

If � from Example 2.1 is a random variable with distribu-
tion P(�) , then X = (Y , �) denotes a complete probabilis-
tic model (capturing both aleatory and epistemic uncer-
tainty). X is a random variable with distribution

Let I be some piece of information from which Bayesian 
inference is possible, i.e. P(X|I) is well defined. We may then 
define the updated joint distribution

and the updated marginal (predictive) distribution for Y 
becomes

Note that the distribution Pnew(X) in Example 2.2 is 
obtained by only updating the belief with respect to epis-
temic uncertainty, and that

For instance, if I corresponds to an observation of Y, 
e.g. I = {Y = y} , then P(Y |I) = �(y) , the Dirac delta at y, 
whereas P(�|I) is the updated distribution for � having 
observed one realization of Y. In the following, we will 

P(X) = P(Y |�)P(�).

Pnew(X) = P(Y |�)P(�|I),

Pnew(Y) = ∫ P(Y |�)dP(�|I).

Pnew(X) ≠ P(X|I) = P(Y |I, �)P(�|I).

refer to the kind of Bayesian updating in Example 2.2 as 
epistemic updating.

This epistemic updating of the model considered in 
Examples 2.1 and 2.2 should be fairly intuitive, if

1 All epistemic uncertainty is represented by a single 
parameter � , and

2 � is a familiar object like a number or a vector in ℝn.

But what can we say in a more general setting? It is com-
mon that epistemic uncertainty comes from lack of knowl-
edge related to functions. This is the case with probabilistic 
emulators and surrogate models. The input to these func-
tions may contain epistemic and/or aleatory uncertainty 
as well. Can we talk about isolating and modifying the 
epistemic uncertainty in such a model, without making 
reference to the specific details of how the model has 
been created? In the following we will show that with the 
measure-theoretic framework, we can still make use of a 
simple formulation like the one in Example 2.2.

2.2  The probability space

Let X be a random variable containing both aleatory and 
epistemic uncertainty. In order to describe how X can be 
treated like in Examples 2.1 and 2.2, but for the general 
setting, we will first recall some of the basic definitions 
from measure theory and measure-theoretic probability.

To say that X is a random variable, means that X is 
defined on some measurable space (Ω,F) . Here, Ω is a 
set, and if X takes values in ℝn (or some other measur-
able space), then X is a so-called measurable function, 
X ∶ Ω → ℝ

n (to be defined precisely later). Any random-
ness or uncertainty about X is just a consequence of uncer-
tainty regarding � ∈ Ω . As an example, X could relate to 
some 1-year extreme value, whose uncertainty comes from 
day to day fluctuations, or some fundamental stochastic 
phenomenon represented by � ∈ Ω . Examples of natural 
sources of uncertainty are weather or human actions in 
large scale. Therefore, whether modeling weather, option 
prices, structural safety at sea or traffic networks, stochas-
tic models should be used.

The probability of the event {X ∈ E} , for some subset 
E ⊂ ℝ

n , is really the probability of 
{
� ∈ X−1(E)

}
 . Techni-

cally, we need to ensure that 
{
� ∈ X−1(E)

}
 is something 

that we can compute the probability of, and for this we 
need F  . F  is a collection of subsets of Ω , and represents 
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all possible events (in the “ Ω-world”). When F  is a �-algebra1 
the pair (Ω,F) becomes a measurable space.

So, when we define X as a random variable taking val-
ues in ℝn , this means that there exists some measurable 
space (Ω,F) , such that any event {X ∈ E} in the “ ℝn-world” 
(which has its own �-algebra) has a corresponding event {
� ∈ X−1(E)

}
∈ F  in the “ Ω-world”. It also means that we 

can define a probability measure on (Ω,F) that gives us 
the probability of each event, but before we introduce any 
specific probability measure, X will just be a measurable 
function2.

• We start with assuming that there exists some measur-
able space (Ω,F) where X is a measurable function.

The natural way to make X into a random variable is then 
to introduce some probability measure3 P on F  , giving us 
the probability space (Ω,F, P).

• Given a probability measure P on (Ω,F) we obtain the 
probability space (Ω,F, P) on which X is defined as a 
random variable.

We have considered here, for familiarity, that X takes val-
ues in ℝn . When no measure and �-algebra is stated explic-
itly, one can assume that ℝn is endowed with the Lebesgue 
measure (which underlies the standard notion of length, 
area and volume, etc.) and the Borel �-algebra (the small-
est �-algebra containing all open sets). Generally, X can 
take values in any measurable space. For example, X can 
map from Ω to a space of functions. This is important in the 
study of stochastic processes.

2.3  The epistemic sub �‑algebra E

In the probability space (Ω,F, P) , recall that the �-algebra 
F  contains all possible events. For any random variable 
X defined on (Ω,F, P) , the knowledge that some event 
has occurred provides information about X . This informa-
tion may relate to X in a way that it only affects epistemic 
uncertainty, only aleatory uncertainty, or both. We are 

interested in specifying the events e ∈ F  that are associ-
ated with epistemic information alone. It is the probability 
of these events we want to update as new information is 
obtained. The collection E of such sets is itself a �-algebra, 
and we say that E ⊆ F  is the sub �-algebra of F  represent-
ing epistemic information.

We illustrate this in the following examples. In Exam-
ple 2.3, we consider the simplest possible scenario repre-
sented by the flip of a biased coin, and in Example 2.4 a 
familiar scenario from uncertainty quantification involving 
uncertainty with respect to functions.

Example 2.3 (Coin flip)
Define X = (Y , �) as in Example 2.1, and let Y ∈ {0, 1} 

denote the outcome of a coin flip where “heads” is rep-
resented by Y = 0 and “tails” by Y = 1 . Assume that 
P(Y = 0) = � for some fixed but unknown � ∈ [0, 1] . For 
simplicity we assume that � can only take two values, 
� ∈ {�1, �2} (e.g. there are two coins but we do not know 
which one is being used).

T h e n ,  Ω = {0, 1} ×
{
�1, �2

}
 ,  F = 2Ω  a n d 

E = {�,Ω,
{
(0, �1), (1, �1)

}
,
{
(0, �2), (1, �2)}

}
.

Example 2.4 (UQ)
Let X = (x, y) where x is an aleatory random variable, 

and y is the result of a fixed but unknown function applied 
to x . We let y = ̂f (x) where ̂f  is a function-valued epistemic 
random variable.

If x is defined on a probability space (Ωx,Fx, Px) and ̂f  is 
a stochastic process defined on (Ωf ,Ff , Pf ) , then (Ω,F, P) 
can be defined as the product of the two spaces and E as 
the projection E =

{
Ωx × A|A ∈ Ff

}
.

In the following, we assume that the epistemic sub �
-algebra E has been identified.

Given a random variable X , we say that X is E-meas-
urable if X is measurable as a function defined on (Ω, E) . 
We say that X is independent of E , if the conditional prob-
ability P(X|e) is equal to P(X) for any event e ∈ E . With our 
definition of E , we then have for any random variable X 
on (Ω,F, P) that

• X is purely epistemic if and only if X is E-measurable,
• X is purely aleatory if and only if X is independent of E.

2.4  Epistemic conditioning

Let X be a random variable on (Ω,F, P) that may contain 
both epistemic and aleatory uncertainty, and assume that 
the epistemic sub �-algebra E is given. By epistemic con-
ditioning, we want to update the epistemic part of the 
uncertainty in X using some set of information I. In Exam-
ple 2.3 this means updating the probabilities P(� = �1) and 

1 This means that 1) Ω ∈ F  , 2) if S ∈ F  then also the complement 
Ω ⧵ S ∈ F  , and 3) if S1, S2,⋯ is a countable set of events then also 
the union S1 ∪ S2 ∪… is in F  . Note that if these properties hold, 
many other types of events (e.g. countable intersections) will have 
to be included as a consequence.
2 By definition, given two measure spaces (Ω,F) and (�,X) , the 
function X ∶ Ω → � is measurable if and only if X−1(A) ∈ F  for 
each A ∈ X .
3 A function P ∶ F → [0, 1] such that 1) P(Ω) = 1 and 2) 
P(∪Ei) =

∑
P(Ei) for any countable collection of pairwise disjoint 

events Ei.
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P(� = �2) , and in Example 2.4 this means updating Pf  . In 
order to achieve this in the general setting, we first need a 
way to decouple epistemic and aleatory uncertainty. This 
can actually be made fairly intuitive, if we rely on the fol-
lowing assumption:

Assumption 2.5 There exists a random variable � ∶ Ω → Θ 
that generates4 E.

If this generator � exists, then for any fixed value � ∈ Θ , 
we have that X|� is independent of E . Hence X|� is purely 
aleatory and � is purely epistemic.

We will call � the epistemic generator, and we can inter-
pret � as a signal that reveals all epistemic information 
when known. That is, if � could be observed, then knowing 
the value of � would remove all epistemic uncertainty from 
our model. As it turns out, under fairly mild conditions one 
can always assume existence of this generator. One suf-
ficient condition is that (Ω,F, P) is a standard probability 
space, and then the statement holds up to sets of measure 
zero. This is a technical requirement to avoid pathological 
cases, and does not provide any new intuition that we see 
immediately useful, so we postpone further explanation 
to Appendix A.

Example 2.6 (Coin flip—epistemic generator)
In the coin flip example, the variable � ∈ {�1, �2} which 

generates E is already specified.

Example 2.7 (UQ – epistemic generator)
In this example, when (Ω,F, P) is the product of an alea-

tory space (Ωx,Fx, Px) and an epistemic space (Ωf ,Ff , Pf ) , 
we could let � ∶ Ω = Ωx × Ωf → Ωf  be the projection 
�(�x,�f ) = �f .

Alternatively, given only the space (Ω,F, P) where both 
x and ̂f  are defined, assume that ̂f  is a Gaussian process (or 
some other stochastic process for which the Karhunen-
Loéve theorem holds). Then there exists a sequence of 
deterministic functions �1,�2,… and an infinite-dimen-
sional variable � = (�1, �2,…) such that ̂f (x) =

∑∞

i=1
𝜃i𝜙i(x) , 

and we can let E be generated by �.

The decoupling of epistemic and aleatory uncertainty 
is then obtained by considering the joint variable (X, �) 
instead of X alone, because

(1)P(X, �) = P(X|�)P(�).

From (1) we see how the probability measure P becomes 
the product of the epistemic probability P(�) and the alea-
tory probability P(X|�) when applied to (X, �).

Given new information, I, we will update our beliefs 
about � , P(�) → P(�|I) , and we define the epistemic con-
ditioning as follows:

2.5  Two types of assumptions

Consider the probability space (Ω,F, P) , with epistemic 
sub �-algebra E . Here E represents epistemic information, 
which is the information associated with assumptions. 
In other words, an epistemic event e ∈ E represents an 
assumption. In fact, given a class of assumptions, the fol-
lowing Remark 2.8, shows why �-algebras are appropriate 
structures.

Remark 2.8 Let E be a collection of assumptions. If e ∈ E , 
this means that it is possible to assume that e is true. If 
it is also possible to assume that that e is false, then 
ē ∈ E as well. It may then also be natural to require that 
e1, e2 ∈ E ⇒ e1 ∩ e2 ∈ E , and so on. These are the defining 
properties of a �-algebra.

For any random variable X defined on (Ω,F, P) , when E 
is a sub �-algebra of F  , X|e for e ∈ E is well defined, and 
represents the random variable under the assumption e. In 
particular, given any fixed epistemic event e ∈ E we have a 
corresponding aleatory distribution P(X|e) over X , and the 
conditional P(X|E) is the random measure corresponding 
to P(X|e) when e is a random epistemic event in E . Here, 
the global probability measure P when applied to e, P(e), 
is the belief that e is true. In Sect. 2.4 we discussed updat-
ing the part of P associated with epistemic uncertainty. 
We also introduced the epistemic generator � in order to 
associate the event e with an outcome �(e) , and make use 
of P(X|�) in place of P(X|E) . This provides a more intuitive 
interpretation of the assumptions that are measurable, i.e. 
those whose belief we may specify through P.

Of course, the measure P is also based on assumptions. 
For instance, if we in Example 2.1 assume that Y follows a 
normal distribution. One could in principle specify a (meas-
urable) space of probability distributions, from which the 
normal distribution is one example. Otherwise, we view 
the normality assumption as a structural assumption 
related to the probabilistic model for X , i.e. the measure P. 
These kinds of assumptions cannot be treated the same 
way as assumptions related to measurable events. For 
instance, the consequence of the complement assumption 
“Y does not follow a normal distribution” is not well defined.

Pnew(X, �) = P(X|�)P(�|I).

4 There exists some measurable space (Θ, T) and a F -measurable 
function � ∶ Ω → Θ such that E = �(�) , that is the smallest �-alge-
bra containing all of the sets �−1(T ) for T ∈ T .
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In order to avoid any confusion, we split the assump-
tions into two types:

1 The measurable assumptions represented by the �
-algebra E , and

2 the set M of structural assumptions underlying the 
probability measure P.

This motivates the following definition.

Definition 2.9 (Structural assumptions) We let M denote 
the set of structural assumptions that defines a probability 
measure on (Ω,F) , which we may write PM( ⋅ ) or P( ⋅ |M).

We may also refer to M as the non-measurable assump-
tions, to emphasize that M contains all the assumptions 
not covered by E . When there is no risk of confusion we 
will also suppress the dependency on M and just write 
P( ⋅ ) . Stating the set M explicitly is typically only relevant 
for scenarios where we consider changes being made to 
the actual system that is being modelled, or for evaluat-
ing different candidate models, e.g. through the marginal 
likelihood P(I|M). In practice one would also state M so that 
decision makers can determine their level of trust in the 
probabilistic model, and the appropriate level of caution 
when applying the model.

As we will see in the upcoming section, making changes 
to M and making changes to how PM acts on events in E 
are the two main ways in which we update a probabilistic 
digital twin.

3  The Probabilistic Digital Twin

The object that we will call probabilistic digital twin, PDT 
for short, is a probabilistic model of a physical system. It is 
essentially a (possibly degenerate) probability distribution 
of a vector X , representing the relevant attributes of the 
system, but where we in addition require the specifica-
tion of epistemic uncertainty (assumptions) and how this 
uncertainty may be updated given new information.

Before presenting the formal definition of a probabil-
istic digital twin, we start with an example showing why 
the identification of epistemic uncertainty is important.

3.1  Why distinguish between aleatory 
and epistemic uncertainty?

The decoupling of epistemic and aleatory uncertainty (as 
described in Sect. 2.4) is central in the PDT framework. 
There are two good reasons for doing this:

1 We want to make decisions that are robust with respect 
to epistemic uncertainty.

2 We want to study the effect of gathering information.

Item 1 relates to the observation that decision theoretic 
approaches based on expectation may not be robust. That 
is, if we marginalize out the epistemic uncertainty (and 
considering only E

�
[P(X|�)] = ∫ P(X|�)dP

�
 ). We give two 

examples of this below, see Examples 3.1 and 3.2. Item 
2 means that by considering the effect of information 
on epistemic uncertainty, we can evaluate the value of 
gathering information. This is discussed in further detail 
in Sect. 4.6.

In the context of PDTs, it is essential that the sources of 
epistemic uncertainty are understood. First of all, because 
we need to understand how it may be reduced (as it per 
definition is a reducible uncertainty), but also if we want 
to understand the criticality with respect to assumptions 
made with imperfect or lack of knowledge. Within risk 
analysis of engineering systems, which is a relevant appli-
cation area for PDTs, this is important. This is discussed 
from a general risk perspective in [25, 26] and specifically 
for PDTs in [1].

Example 3.1 (Coin flip – robust decisions)
Continuing from the coin flip example (see Exam-

ple 2.3), we let �1 = 0.5 and �2 = 0.99 . Assume that you 
are given the option to guess the outcome of X . If you 
guess correct, you collect a reward of R = 106 , otherwise 
you have to pay L = 106 . A priori your belief about the 
bias of the coin is that P(� = 0.5) = P(� = 0.99) = 0.5 . 
If you consider betting on X = 0 , then the expected 
return, obtained by marginalizing over � , becomes 
P(� = 0.5)(0.5R − 0.5 L) + P(� = 0.99)(0.99R − 0.01 L) = 490.000.

This is a scenario where decisions supported by tak-
ing the expectation with respect to epistemic uncertainty 
is not robust, as we believe that � = 0.5 and � = 0.99 are 
equally likely, and if � = 0.5 we will lose 106 50% of the time 
by betting on X = 0.

Example 3.2 (UQ – robust decisions)
This example is a continuation of Examples 2.4 and 2.7.
In structural reliability analysis, we are dealing with 

an unknown function g with the property that the event 
{y = g(x) < 0} corresponds to failure. When g is repre-
sented by a random function ĝ with epistemic uncertainty, 
the failure probability is also uncertain. Or in other words, 
if ĝ is epistemic then ĝ is a function of the generator � . 
Hence, the failure probability is a function of � . We want 
to make use of a conservative estimate of the failure prob-
ability, i.e. use a conservative value of � . P(�) tells us how 
conservative a given value of � is.



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:114  | https://doi.org/10.1007/s42452-023-05316-9 Research Article

3.2  The attributes X

To define a PDT, we start by considering a vector X con-
sisting of the attributes of some system. This means that 
X is a representation of the physical object or asset that 
we are interested in. In general, X describes the physical 
system. In addition, X must contain attributes related to 
any type of information that we want to make use of. 
For instance, if the information consists of observations, 
the relevant observable quantities, as well as attributes 
related to measurement errors or noise, may be included 
in X . In general, we will think of a model of a system as a 
set of assumptions that describes how the components 
of X are related or behave. The canonical example here is 
where some physical quantity is inferred from observa-
tions including errors and noise, in which case a model of 
the physical quantity (physical system) is connected with 
a model of the data generating process (observational 
system). We are interested in modelling dependencies 
with associated uncertainty related to the components 
of X , and treat X as a random variable.

The attributes X characterise the state of the system 
and the processes that the PDT represents. X may for 
instance include:

• System parameters representing quantities that have 
a fixed, but possibly uncertain, value. For instance, 
these parameters may be related to the system con-
figuration.

• System variables that may vary in time, and whose value 
may be uncertain.

• System events i.e. the occurrence of defined state transi-
tions.

In risk analysis, one is often concerned with risk meas-
ures given as quantified properties of X , usually in terms 
of expectations. For instance, if X contains some extreme 
value (e.g. the 100-year wave) or some specified event of 
failure (using a binary variable), the expectations of these 
may be compared against risk acceptance criteria to deter-
mine compliance.

3.3  The PDT definition

Based on the concepts introduced so far, we define the 
PDT as follows:

Definition 3.3 (Probabilistic Digital Twin) A Probabilistic 
Digital Twin (PDT) is a triplet (X,A, I) , where X is a vector of 
attributes of a system, A contains the assumptions needed 
to specify a probabilistic model, and I contains information 
regarding actions and observations:

• A = ((Ω,F), E,M) , where (Ω,F) is a measure space 
where X is measurable, and E is the sub �-algebra rep-
resenting epistemic information. M contains the struc-
tural assumptions that define a probability measure PM 
on (Ω,F).

• I is a set consisting of events of the form (d, o), where 
d encodes a description of the conditions under which 
the observation o was made, and where the likelihood 
P(o|X, d) is well defined. For brevity, we will write this 
likelihood as P(I|X) when I contains multiple events of 
this sort.

When M is understood, and there is no risk on confu-
sion, we will drop stating the dependency on M explicitly 
and just refer to the probability space (Ω,F, P).

It is important to note that consistency between I and 
P(X) is required. That is, when using the probabilistic 
model for X , it should be possible to simulate the type of 
observations given by I. In this case the likelihood P(I|X) 
is well defined, and the epistemic updating of X can be 
obtained from Bayes’ theorem.

Finally, we note that with this setup the information I 
may contain observations made under different conditions 
than what is currently specified through M. The information 
I is generally defined as a set of events, given as pairs (d, o), 
where d encodes the relevant action leading to observing 
o, as well as a description of the conditions under which o 
was observed. Here d may relate to modifications of the 
structural assumptions M, for instance if the causal relation-
ships that describe the model of X under observation of o 
is not the same as what is currently represented by M. This 
is the scenario when we perform controlled experiments. 
Alternatively, (d, o) may represent a passive observation, 
e.g. d = ’measurement taken from sensor 1 at time 01:02:03’ 
and o = 1.7 mm. We illustrate this in the following example.

Example 3.4 (Parametric regression)
Let (x1, x2) denote two physical quantities where x2 

depends on x1 , and let (y, �) represent an observable quan-
tity where y corresponds to observing x2 together with 
additive noise � . Set X = (x1, x2, y, �).

We define a model M corresponding to x1 ∼ px1(x1|�1) , 
x2 = f (x1, �2) , y = x2 + � and � ∼ p

�
 , where px1 is a prob-

ability density depending on the parameter �1 and f (⋅, �2) 
is a deterministic function depending on the parameter 
�2 . �1 and �2 are epistemic parameters for which we define 
a joint density p

�
.

Assume that I =
{(

d(1), o(1)
)
,… ,

(
d(n), o(n)

)}
 is a set of 

controlled experiments, where d(i) =
(
set x1 = x

(i)

1

)
 and o(i) 

is a corresponding observation of y|
(
x1 = x

(i)

1
, � = �

(i)
)

 for 

a selected set of inputs x(i)
1
,… , x

(n)

1
 and unknown i.i.d. 
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�
(i) ∼ p

�
 . In this scenario, regression is performed by updat-

ing the distribution p
�
 to agree with the observations:

where Z is a constant ensuring that the updated density 
integrates to one.

If instead I corresponds to direct observations, 
d(i) =

(
observe y(i)

)
 , o(i) = y(i) , then p

�
(�|I) corresponds to 

using x1 instead of x(i)
1

 and multiplying with px1
(
x1|�1

)
 in 

(2).

Note that the scenario with controlled experiments in 
Example 3.4 corresponds to a different model than the one 
in Fig. 1. This is a familiar scenario in the study of causal 
inference, where actively setting the value of x1 is the do-
operator (see Pearl [27]) which breaks the link between 
x1 and x2.

3.4  Corroded pipeline example

To give a concrete example of a system where the PDT 
framework is relevant, we consider the following model 
from Agrell and Dahl [16]. This is based on a probabilis-
tic structural reliability model for assessment of corroded 
pipelines, which is the basis for the recommended prac-
tice DNV GL RP-F101 [28]. It is a model of a physical failure 
mechanism called pipeline burst, which may occur when 
the pipeline’s ability to withstand the high internal pres-
sure has been reduced as a consequence of corrosion. We 
will describe just a general overview of this model, and 
refer to (Example 4 in Agrell and Dahl [16]) for specific 
details. Later, in Sect. 5.6, we will revisit this example and 
make use of reinforcement learning to search for an opti-
mal way of updating the PDT.

A graphical representation of the model is shown in 
Fig. 2. The steel thickness t and the diameter D repre-
sent the pipeline geometry, and the material is repre-
sented by the ultimate tensile strength s. The pipeline 
has a defect, in the form of a rectangle with depth d 
and length l. For some pipeline (D, t, s) with defect (d, l), 
the pipeline’s pressure resistance capacity (the maxi-
mum differential pressure the pipeline can withstand 
before bursting) can be determined. By running a Finite 

(2)

p
�
(�|I) = p

�

(
�1|�2

)
p
�
(�2|I)

=
1

Z

(
n∏

i=1

p
�

(
o(i) − f (x

(i)

1
, �2)

))
p
�
(�),

Element simulation of the physical mode of failure, we 
obtain the theoretical capacity pFE . We then model the 
true capacity of the pipeline as a function of pFE and the 
model discrepancy Xm (representing the difference 
between true and theoretical capacity). We assume that 
Xm is independent of the type of pipeline and defect, and 
also that �m is fixed, where it is only the mean �m that 
is inferred from experiments. The limit state equation 
representing the transition from a safe to failed state is 
expressed as g = pc − pd , where pd is the pressure load. 
The probability of failure is defined as P(g ≤ 0).

If we let X be the random vector containing all of the 
nodes in Fig. 2, then X represents a probabilistic model 
of the physical system. In this example, we want to 
model some of the uncertainty related to the defect size, 
the model uncertainty, and the capacity as epistemic. We 
assume that the defect depth d has a fixed but unknown 
value, that can be inferred through observations that 
include noise. Similarly, the model uncertainty Xm can be 
determined from experiments. Uncertainty with respect 
to pFE comes from the fact that evaluating the true value 
of pFE|(D, t, s, d, l) involves a time-consuming numerical 
computation. Hence, pFE can only be known for a finite, 
and relatively small set of input combinations. We can let 
p̂FE denote a stochastic process that models our uncer-
tainty about pFE . To construct a PDT from X we will let p̂FE 
take the place of pFE , and specify that d,�m and p̂FE are 
epistemic, i.e. E = 𝜎(d,𝜇m, p̂FE).

If we want a way to update the epistemic uncertainty 
based on observations, we also need to specify the 
relevant data generating process. In this example, we 
assume that there are three different ways of collecting 
data:

Fig. 1  A standard regression model as a PDT

Fig. 2  Graphical representation of the corroded pipeline structural 
reliability model. The shaded nodes d, p

FE
 and �

m
 have associated 

epistemic uncertainty



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:114  | https://doi.org/10.1007/s42452-023-05316-9 Research Article

1 Defect measurement: We assume that noise per-
turbed observations of the relative depth, d∕t + � , can 
be made.

2 Computer experiment: Evaluate pFE at some selected 
input (D, t, s, d, l).

3 Lab experiment: Obtain one observation of Xm.

As the defect measurements require the specification of 
an additional random variable, we have to include � or 
(d∕t)obs = d∕t + � in X as part of the complete probabilis-
tic model. This would then define a PDT where epistemic 
updating is possible.

The physical system that the PDT represents in this 
example is rarely viewed in isolation. For instance, the 
random variables representing the pipeline geometry and 
material are the result of uncertainty or variations in how 
the pipeline has been manufactured, installed and oper-
ated. And the size of the defect is the result of a chemi-
cal process, where scientific models are available. It could 
therefore be natural to view the PDT from this example as 
a component of a bigger PDT, where probabilistic models 
of the manufacturing, operating conditions and corro-
sion process, etc. are connected. This form of modularity 
is often emphasized in the discussion of digital twins, and 
likewise for the kind of Bayesian network type of models 
as considered in this example.

4  Sequential decision making

We now consider how the PDT framework may be adopted 
in real-world applications. As with any statistical model of 
this form, the relevant type of applications are related to 
prediction and inference. Since the PDT is supposed to 
provide a one-to-one correspondence (including uncer-
tainty) with a real physical system, we are interested in 
using the PDT to understand the consequences of actions 
that we have the option to make. In particular, we will con-
sider the discrete sequential decision making scenario, 
where we get the opportunity to make a decision, receive 
information related to the consequences of this decision, 
and use this to inform the next decision, and so on.

In this kind of scenario, we want to use the PDT to deter-
mine an action or policy for how to act optimally (with 
respect to some case-specific criterion). By a policy here 
we mean the instructions for how to select among multi-
ple actions given the information available at each discrete 
time step. We describe this in more detail in Sect. 4.3 where 
we discuss how the PDT is used for planning. When we 
make use of the PDT in this way, we consider the PDT as a 
“mental model” of the real physical system, which an agent 
uses to evaluate the potential consequences of actions. The 
agent then decides on some action to make, observes the 

outcome, and updates its beliefs about the true system, as 
illustrated in Fig. 3.

Whether the agent applies a policy or just an action (the 
first in the policy) before collecting information and updat-
ing the probabilistic model depends on the type of applica-
tion at hand. In general it is better to update the model as 
often as possible, preferably between each action, but the 
actual computational time needed to perform this updating 
might make it impossible to achieve in practice.

4.1  Mathematical framework of sequential decision 
making

In this section, we briefly recap the mathematical framework 
of stochastic, sequential decision making in discrete time. 
We first recall the general framework, and in the following 
Sect. 4.2, we show how this relates to our definition of a PDT.

Let t = 0, 1, 2,… ,N − 1 and consider a discrete time sys-
tem where the state of the system, {xt}t≥1 , is given by

Here, xt is the state of the system at time t, ut is a control and 
wt is a noise, or random parameter at time t. Note that the 
control, ut , is a decision which can be made by an agent 

(3)xt+1 = ft(xt , ut ,wt), t = 0, 1, 2,… ,N − 1.

Fig. 3  A PDT as a mental model of an agent taking actions in the 
real world. As new experience is gained, the PDT may be updated 
by changing the structural assumptions M that defined the prob-
ability measure P, or updating belief with respect to epistemic 
events through conditioning on the new set of information I. The 
changes in structural assumptions and epistemic information are 
represented by ΔM and ΔI respectively. As part of the planning pro-
cess, the PDT may simulate possible scenarios as indicated by the 
inner circle



Vol:.(1234567890)

Research Article SN Applied Sciences           (2023) 5:114  | https://doi.org/10.1007/s42452-023-05316-9

(the controller) at time t. This control is to be chosen from 
a set of admissible controls At (possibly, but not neces-
sarily depending on time). Also, ft , t = 0, 1, 2,… ,N − 1 are 
functions mapping from the space of state variables (state 
space), controls and noise into the set of possible states 
of {xt}t≥0 . The precise structure of the state space, set of 
admissible controls and the random parameter space 
depends on the particular problem under consideration. 
Note that due to the randomness in wt , t = 0, 1, 2,… ,N − 1 , 
the system state xt and control ut , t = 1, 2,… ,N − 1 also 
become random variables.

We remark that because of this, the state equation is 
sometimes written in the following form,

where � ∈ Ω is a scenario in a scenario space Ω (represent-
ing the randomness). Sometimes, the randomness is sup-
pressed for notational convenience, so the state equation 
becomes xt+1 = ft(xt , ut) , t = 0, 1, 2,… ,N − 1.

Note that in the state Eq. (3) (alternatively, Eq. (4)), xt+1 
only depends on the previous time step, i.e. xt , ut ,wt . This 
is the Markov property (as long as we assume that the 
distribution of wt does not depend on past values of ws , 
s = 0, 1,… t − 1 , but only on xt , ut ). That is, the next sys-
tem state only depends on the previous one. Since this 
Markovian framework is what will be used throughout 
this paper as we move on to reinforcement learning for 
a probabilistic digital twin, we focus on this. However, 
we remark that there is a large theory of sequential deci-
sion making which is not based on this Markovianity. 
This theory is based around maximum principles instead 
of dynamic programming.

The aim of the agent is to minimize a cost function 
under the state constraint (3) (or alternatively, (4)). We 
assume that this cost function is of the following, addi-
tive form,

where the expectation is taken with respect to an a priori 
given probability measure. That is, we sum over all instan-
taneous rewards ht(xt , ut ,wt) , t = 0, 1,… ,N − 1 which 
depend on the state of the system, the control and the 
randomness and add a terminal reward g(xN) which only 
depends on the system state at the terminal time t = N . 
This function is called the objective function.

Hence, the stochastic sequential decision making 
problem of the agent is to choose admissible controls 
ut , t = 0, 1, 2,… ,N − 1 in order to optimize

(4)xt+1(�) = ft(xt(�), ut(�),�)

E

[
g(xN) +

N−1∑

t=0

ht
(
xt , ut ,wt

)
]

Typically, we assume that the agent has full information in 
the sense that they can choose the control at time t based 
on (fully) observing the state process up until this time, 
but that they are not able to use any more information 
than this (future information, such as inside information).

This problem formulation is very similar to that of con-
tinuous time stochastic optimal control problem.

Remark 4.1 (A note on continuous time) This framework is 
parallel to that of stochastic optimal control in continuous 
time. The main differences in the framework in the con-
tinuous time case are that the state equation is typically a 
stochastic differential equation, and the sum is replaced by 
an integral in the objective function. For a detailed intro-
duction to continuous time control, see e.g. Øksendal [29].

Other versions of sequential decision making prob-
lems include inside information optimal control, partial 
information optimal control, infinite time horizon opti-
mal control and control with various delay and memory 
effects. One can also consider problems where further 
constraints, either on the control or the state, are added 
to problem (5).

In Bertsekas [30], the sequential decision making prob-
lem (5) is studied via the dynamic programming algorithm. 
This algorithm is based on the Bellman optimality principle, 
which says that an optimal policy chosen at some initial 
time, must be optimal when the problem is re-solved at a 
later stage given the state resulting from the initial choice.

4.2  Sequential decision making in the PDT

Now, we show how the sequential decision making frame-
work from the previous section can be used to solve 
sequential decision making problems in the PDT.

We may apply this sequential decision making frame-
work to our PDT by letting

That is, the state process for the PDT sequential decision 
making problem is the random vector of attributes Xt . 
Note that in Definition 3.3, there is no time-dependency in 
the attributes X . However, since we are interested in con-
sidering sequential decision making in the PDT, we need to 
assume that there is some sort of development over time 
(or some indexed set, e.g. information) of the PDT.

(5)

min
ut∈At ,t≥0 E

[
g(xN) +

N−1∑

t=0

ht
(
xt , ut ,wt

)
]

such that xt+1 = ft
(
xt , ut ,wt

)
,

t = 0, 1, 2,… ,N − 1.

xt ∶= Xt .



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:114  | https://doi.org/10.1007/s42452-023-05316-9 Research Article

Hence, the stochastic sequential decision making prob-
lem of the PDT-agent is to choose admissible controls ut , 
t = 0, 1, 2,… ,N − 1 in order to optimize

Here, the set of admissible controls, {ut}t≥0 ∈ A , are prob-
lem specific. So are the functions ht , gt and ft for t ≥ 0 . 
Given a particular problem, these functions are defined 
based on the goal of the PDT-agent as well as the updating 
of the PDT given new input.

4.3  Planning in the PDT

In this section, we discuss how the PDT can be used for 
planning. That is, how we use the PDT to identify an opti-
mal policy, without acting in the real world, but by instead 
simulating what will happen in the real world given that 
the agent chooses specific actions (or controls, as they are 
called in the sequential decision making literature, see 
Sect. 4.1). We use the PDT as a tool to find a plan (policy), 
or a single action (first action of policy), to perform in the 
real world.

In order to solve our sequential decision making prob-
lem in the PDT, we have chosen to use a reinforcement 
learning formulation. This essentially corresponds to 
choosing the dynamic programming method for solving 
the optimal control problem. Because we will use a DPP 
(Dynamic Programming Principle) approach, we need all 
the assumptions that come with this: A Markovian frame-
work, or the possibility of transforming the problem to 
something Markovian. We need the Bellman equation to 
hold in order to avoid issues with time-inconsistency. In 
order to ensure this, we for example need to use expo-
nential discounting and not have e.g. conditional expecta-
tion of state process in a non-linear way in the objective 
function. Finally, our planning problem cannot have state 
constraints.

Starting with an initial PDT as a digital representation 
of a physical system given our current knowledge, we 
assume that there are two ways to update the PDT:

1. Changing or updating the structural assumptions M, 
and hence the probability measure PM.

2. Updating the information I.

The structural assumptions M are related to the proba-
bilistic model for X . Recall from Sect.  2.4, that these 
assumptions define the probability measure PM . Often, 

(6)

min
ut∈At ,t≥0 E

[
g(XN) +

N−1∑

t=0

ht
(
Xt , ut ,wt

)
]

such that Xt+1 = ft
(
Xt , ut ,wt

)
,

t = 0, 1, 2,… ,N − 1.

this probability measure is taken as given in stochastic 
modeling. However, in practice, probability measures are 
not given to us, but decided by analysts based on previ-
ous knowledge. Hence, the structural assumptions M may 
be updated because of new knowledge, external to the 
model, or for other reasons the analysts view as important.

Updating the information is our main concern in this 
paper, since this is related to the agent making costly deci-
sions in order to gather more information. An update of 
the information also means (potentially) reducing the epis-
temic uncertainty in the PDT. Optimal information gather-
ing in the PDT will be discussed in detail in the following 
Sect. 4.6.

4.4  MDP, POMDP and their relation to DPP

In this section, we briefly recall the definitions of Markov 
decision processes, partially observable Markov decision 
processes and explain how these relate to the sequential 
decision making framework of Sect. 4.1.

Markov decision processes (MDPs) are discrete-time sto-
chastic control processes of a specific form. An MDP is a 
tuple

where S is a set of states (the state space) and A is a set of 
actions (action space). Also,

is the probability of going from state s at time t to state s′ 
at time t + 1 if we do action a at time t. Finally, Ra(s, s�) is 
the instantaneous reward of transitioning from state s at 
time t to state s′ at time t + 1 by doing action a (at time t).

An MDP satisfies the Markov property, so given that the 
process is in state s and will be doing a at time t, the next 
state st+1 is conditionally independent of all other previous 
states and actions.

Remark 4.2 (MDP and DPP)
Note that this definition of an MDP is essentially the 

same as our DPP framework of Sect. 4.1. In the MDP nota-
tion, we say actions, while in the control notation, it is 
common to use the word control. In Sect. 4.1, we talked 
about instantaneous cost functions, but here we talk about 
instantaneous rewards. Since minimization and maximiza-
tion problems are equivalent (since inf{z} = − sup{−z} ), 
so are these two concepts. Furthermore, the definition of 
the transition probabilities Pa in the MDP framework cor-
responds to the Markov assumption of the DPP method. In 
both frameworks, we talk about the system states, though 
in the DPP framework we model this directly via Eq. (3).

(S,A, Pa, Ra),

Pa(s, s
�) = Pa

(
st+1 = s�|at = a, st = s

)
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A generalization of MDPs are partially observable Markov 
decision processes (POMDPs). While an MDP is a 4-tuple, a 
POMDP is a 6-tuple,

Here (like before), S is the state space, A is the action space, 
Pa gives the conditional transition probabilities between 
the different states in S and Ra gives the instantaneous 
rewards of the transitions for a particular action a.

In addition, we have ̄Ω , which is a set of observations. In 
contrast to the MDP framework, with POMDPs, the agent 
no longer observes the state s directly, but only an obser-
vation o ∈ ̄Ω . Furthermore, the agent knows O which is a 
set of conditional observation probabilities. That is,

is the probability of observing o ∈ ̄Ω given that we do 
action a from state s′.

The objective of the agent in the POMDP sequential 
decision problem is to choose a policy, that is actions at 
each time, in order to optimize

where rt is the reward earned at time t (depending on st , at 
and st+1 ), and � ∈ [0, 1] is a number called the discount fac-
tor. The discount factor can be used to introduce a prefer-
ence for immediate rewards as opposed to more distant 
rewards, which may be relevant for the problem at hand, 
or used just for numerical efficiency. Hence, the agent 
aims to maximize their expected discounted reward over 
all future times. Note that is it also possible to consider 
problem (7) over an infinite time horizon or with a separate 
terminal reward function as well. This is similar to the DPP 
sequential decision making framework of Sect. 4.1.

In order to solve a POMDP, it is necessary to include 
memory of past actions and observations. Actually, the 
inclusion of partial observations means that the prob-
lem is no longer Markovian. However, there is a way to 
Markovianize the POMDP by transforming the POMDP into 
a belief-state MDP. In this case, the agent summarizes all 
information about the past in a belief vector b(t), which is 
updated as time passes. See [31], Chapter 12.2.3 for details.

4.5  MDP (and POMDP) in the PDT framework

In this section, we show how the probabilistic digital twin 
can be incorporated in a reinforcement learning frame-
work, in order to solve sequential decision problems in 
the PDT.

(
S,A, Pa, Ra,

̄Ω,O
)
.

O(o|s�, a)

(7)max
{at}∈A

E

[
T∑

t=0

�
t rt

]

In Sect.  4.2, we showed how we can use the math-
ematical framework of sequential decision making to 
solve optimal control problems for a PDT-agent. Also, in 
Sect. 4.4, we saw (in Remark 4.2) that the MDP (or POMDP 
in general) framework essentially corresponds to that of 
the DPP. In theory, we could use the sequential decision 
making framework and the DPP to solve optimal control 
problems in the PDT. However, due to the curse of dimen-
sionality, this will typically not be practically tractable. In 
order to resolve this, we cast the PDT sequential decision 
making problem into a reinforcement learning, in particu-
lar a MDP, framework. This will enable us to solve the PDT 
optimal control problem via deep reinforcement learning, 
in which there are suitable tools to overcome the curse of 
dimensionality.

To define a decision making process in the PDT as a 
MDP, we need to determine our state space, action space, 
(Markovian) transition probabilities and a reward function.

• The action space A: These are the possible actions 
within the PDT. These may depend on the problem 
at hand. In the next Sect. 4.6, we will discuss optimal 
information gathering, where the agent can choose 
between different types of experiments, at different 
costs, in order to gain more information. In this case, 
the action space is the set of possible decisions that the 
agent can choose from in order to attain more informa-
tion.

• The state space S: We define a state as a PDT (or equiva-
lently a version of a PDT that evolves in discrete time 
t = 0, 1,… ). A PDT represents our belief about the 
current physical state of a system, and it is defined by 
some initial assumptions together with the informa-
tion acquired through time. In practice, if the structural 
assumptions are not changed, we may let the informa-
tion available at the current time represent a state. This 
means that our MDP will consist of belief-states, repre-
sented by information, from which inference about the 
true physical state can be made. This is a standard way 
of creating a MDP from a POMDP, so we can view the 
PDT state-space as a space of beliefs about some under-
lying partially observable physical state. Starting from a 
PDT, we define the state space as all updated PDTs we 
can reach by taking actions in the action space A.

• The transition probabilities Pa : Based on our chosen 
definition of the state space, the transition probabili-
ties are the probabilities of going from one level of 
information to another, given the action chosen by the 
agent. For example, if the agent chooses to make deci-
sion (action) d, what is the probability of going from 
the current level of information to another (equal or 
better) level. This is given by epistemic conditioning 
of the PDT with respect to the given information set 
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I = {(d, o)} , which is based on the decision d and the 
new observation o. When it comes to updates of the 
structural assumptions M, we consider this as deter-
ministic transitions.

• The reward Ra : The reward function, or equivalently, 
cost function, will depend on the specific problem at 
hand. To each action a ∈ A , we assume that we have 
an associated reward Ra . In the numerical examples in 
Sect. 5, we give specific examples of how these rewards 
can be defined.

As mentioned in Sect. 4.3, there are two ways to update 
the PDT: Updating the structural assumptions M and 
updating the information I. If we update the PDT by (only) 
adding to the information set I, we always have the Markov 
property.

If we also update M, then the preservation of the 
Markov property is not given. In this case, using a maxi-
mum principle deep learning algorithm instead of the DPP 
based deep RL is a possibility, see [32].

Remark 4.3 Note that in the case where we have a very 
simple PDT with only discrete variables and only a few 
actions, then the RL approach is not necessary. In this 
case, the DPP method as done in traditional optimal con-
trol works well, and we can apply a planning algorithm 
to the PDT in order to derive an optimal policy. However, 
in general, the state-action space of the PDT will be too 
large for this. Hence, traditional planning algorithms, and 
even regular RL may not be feasible due to the curse of 
dimensionality. In this paper, we will consider deep rein-
forcement learning as an approach to deal with this. We 
discuss this further in Sect. 5.

Note that what determines an optimal action or policy 
will of course depend on what objective the outcomes are 
measured against. That is, what do we want to achieve in 
the real world? There are many different objectives we 
could consider. In the following we present one generic 
objective related to optimal information gathering, where 
the PDT framework is suitable.

4.6  Optimal information gathering

A generic, but relevant, objective in optimal sequential 
decision making is simply to “improve itself”. That is, to 
reduce epistemic uncertainty with respect to some quan-
tity of interest. Another option, is to consider maximizing 
the Kullback–Leibler divergence with respect to epistemic 
uncertainty as a general objective. This would mean that 
we aim to collect the information that “will surprise us the 
most”. See for instance [8] for a review of some common 
alternatives.

By definition, a PDT contains an observational model 
related to the data generating process (the epistemic con-
ditioning relies on this). This means that we can simulate 
the effect of gathering information, and we can study how 
to do this optimally. In order to define what we mean by an 
optimal strategy for gathering information, we then have 
to specify the following:

• Objective: What we need the information for. For exam-
ple, what kind of decision do we intend to support 
using the PDT? Is it something we want to estimate? 
What is the required accuracy needed? For instance, 
we might want to reduce epistemic uncertainty with 
respect to some quantity, e.g. a risk metric such as a 
failure probability, expected extreme values, etc.

• Cost: The cost related to the relevant information-gath-
ering activities.

Then, from the PDT together with a specified objective and 
cost, one alternative is to define the optimal strategy as 
the strategy that minimizes the (discounted) expected cost 
needed to achieve the objective (or equivalently achieves 
the objective while maximizing reward).

Example 4.4 (Coin flip – information gathering) Continuing 
from Example 3.1, imagine that before making your final 
bet, you can flip the coin as many times as you like in order 
to learn about � . Each of these test flips will cost 10.000 . 
You also get the opportunity to replace the coin with a 
new one, at the cost of 100.000.

An interesting problem is now how to select an optimal 
strategy for when to test, bet or replace in this game. And 
will such a strategy be robust? What if there is a limit on 
the total number of actions than can be performed? In 
Sect. 5.5 we illustrate how reinforcement learning can be 
applied to study this problem, where the coin represents 
a component with reliability � , that we may test, use or 
replace.

5  Deep Reinforcement Learning with PDTs

In this section we give an example of how reinforcement 
learning can be used for planning, i.e. finding an optimal 
action or policy, with a PDT. The reinforcement learning 
paradigm is especially relevant for problems where the 
state and/or action space is large, or dynamical models 
where specific transition probabilities are not easily attain-
able but where efficient sampling is still feasible. In prob-
abilistic modelling of complex physical phenomena, we 
often find ourselves in this kind of setting.



Vol:.(1234567890)

Research Article SN Applied Sciences           (2023) 5:114  | https://doi.org/10.1007/s42452-023-05316-9

5.1  Reinforcement Learning (RL)

Reinforcement learning, in short, aims to optimize sequen-
tial decision problems through sampling from a MDP (Sut-
ton and Barto [33]). We think of this as an agent taking 
actions within an environment, following some policy 
�(a|s) , which gives the probability of taking action a if the 
agent is currently at state s. Generally, �(a|s) represents a 
(possibly degenerate) probability distribution over actions 
a ∈ A for each s ∈ S . The agent’s objective is to maximize 
the amount of reward it receives over time, and a policy � 
that achieves this is called an optimal policy.

Given a policy � we can define the value of a state s ∈ S 
as

where rt is the reward earned at time t (depending on 
st , at and st+1 ), given that the agent follows policy � start-
ing from s0 = s . That is, for Pa and Ra given by the MDP, 
at ∼ �

(
at|st

)
 , st+1 ∼ Pat

(
st , st+1

)
 and rt ∼ Rat

(
st , st+1

)
 . Here 

we make use of a discount factor � ∈ [0, 1] in the defini-
tion of cumulative reward. If we want to consider T = ∞ 
(continuing tasks) instead of T < ∞ (episodic task), then 
𝜆 < 1 is generally necessary.

The optimal value function is defined as the one that 
maximizes (8) over all policies � . The optimal action at 
each state s ∈ S then corresponds to acting greedily with 
respect to this value function, i.e. selecting the action at 
that in expectation maximises the value of st+1 . Likewise, 
it is common to define the action-value function q

�
(s, a) , 

which corresponds to the expected cumulative return of 
first taking action a in state s and following � thereafter. 
RL generally involves some form of Monte Carlo simula-
tion, where a large number of episodes are sampled from 
the MDP, with the goal of estimating or approximating the 
optimal value of states, state-action pairs, or an optimal 
policy directly.

Theoretically this is essentially equivalent to the DPP 
framework, but with RL we are mostly concerned with 
problems where optimal solutions cannot be found easily 
and some form of approximation is needed. By the use of 
flexible approximation methods combined with adaptive 
sampling strategies, RL makes it possible to deal with large 
and complex state and action spaces.

5.2  Function approximation

One way of using function approximation in RL is to 
define a parametric function v̂(s|w) ≈ v

𝜋
(s) , given by a 

set of weights w ∈ ℝ
d , and try to learn the value func-

tion of an optimal policy by finding an appropriate value 

(8)v
�
(s) = E

[
T∑

t=0

�
t rt|s0 = s

]

for w . Alternatively, we could approximate the value 
of a state-action pair, q̂(s, a|w) ≈ q

𝜋
(s, a) , or a policy 

�̂�(a|s,w) ≈ 𝜋(a|s) . The general goal is then to optimize w , 
using data generated by sampling from the MDP; the RL 
literature contains many different algorithms designed for 
this purpose. In the case where a neural network is used 
for function approximation, it is often referred to as deep 
reinforcement learning. One alternative, which we will 
make use of in an example later on, is the deep Q-learning 
approach (DQN) as introduced by van Hasselt et al. [34], 
which represents the value of a set of m actions at a state 
s using a multi-layered neural network

Note here that q̂(s|w) is a function defined on the state 
space S. In general, any approximation of the value func-
tions v or q, or the policy � are defined on S or S × A . A 
question that then arises, is how can we define parametric 
functions on the state space S when we are dealing with 
PDTs? We can assume that we have control over the set of 
admissible actions A, in the sense that this is something 
we define, and creating parametric functions defined on 
A should not be a problem. But as discussed in Sect. 4.5, S 
will consist of belief-states.

5.3  Defining the state space

We are interested in an MDP where the transition prob-
abilities Pa(s, s�) correspond to updating a PDT as a conse-
quence of action a. In that sense, s and s′ are PDTs. Given a 
well-defined set of admissible actions, the state space S is 
then the set of all PDTs that can be obtained starting from 
some initial state s0 , within some defined horizon.

Recall that going from s to s′ then means keeping track 
of any changes made to the structural assumptions M 
and the information I, as illustrated in Fig. 3. From now on, 
we will for simplicity assume that updating the PDT only 
involves epistemic conditioning with respect to the infor-
mation I. This is a rather generic situation. Also, finding a 
way to represent changes in M will have to be handled for 
the specific use case under consideration. Assuming some 
initial PDT s0 is given, any state st at a later time t is then 
uniquely defined by the set of information It available at 
time t. Representing states by information in this way is 
something that is often done to transform a POMDP to a 
MDP. That is, although the true state st at time t is unknown 
in a POMDP, the information It , and consequently our belief 
about st , is always known at time t. Inspired by the POMDP 
terminology, we may therefore view a PDT as a belief-state, 
which seems natural as the PDT is essentially a way to 
encode our beliefs about some real physical system.

(9)q̂(s|w) ∶ S → ℝ
m.
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Hence, we will proceed with defining the state space S 
as the information state-space, which is the set of all sets 
of information I. Although this is a very generic approach, 
we will show that there is a way of defining a flexible para-
metric class of functions on S. But we must emphasize that 
if there are other ways of compressing the information I, 
for instance due to conjugacy in the epistemic updating, 
then these are probably much more efficient. Example 5.1 
below shows exactly what we mean by this.

Example 5.1 (Coin flip – information state-space) In the 
coin flip example (Example 2.3), all of our belief with 
respect to epistemic uncertainty is represented by 
the number � = P(� = �1) . Given some observation 
Y = y ∈ {0, 1} , the epistemic conditioning corresponds to

where, for j = 1, 2 , �j(y) = �j if y = 0 and �j(y) = 1 − �j if 
y = 1.

In this example, the information state-space consists of 
all sets of the form It = {y1,… , yt} where each yi is binary. 
However, if the goal is to let It be the representation of a 
PDT, we could just as well use �t , i.e. define S = [0, 1] as the 
state space. Alternatively, the number of heads and tails 
(0 s and 1 s) provides the same information, so we could 
also make use of S = {0,… ,N} × {0,… ,N} where N is an 
upper limit on the total number of flips we consider.

5.4  Deep learning on the information state‑space

Let S be a set of sets I ⊂ ℝ
d . We will assume that each set 

I ∈ S consists of a finite number of elements y ∈ ℝ
d , but 

we do not require that all sets I have the same size. We are 
interested in functions defined on S.

A  func t ion f  i s  per mutat ion invar iant  i f 
f
({

y1,… , yN
})

= f
({

y
�(1),… , y

�(N)

})
 for any permutation 

� . It can been shown that under fairly mild assumptions, 
such functions have the following decomposition

These sum decompositions were studied by Zaheer 
et al. [35] and later by Wagstaff et al. [36], which showed 
that if |I| ≤ p for all I ∈ S , then any continuous function 
f ∶ S → ℝ can be written as (10) for some suitable func-
tions � ∶ ℝ

d
→ ℝ

p and � ∶ ℝ
p
→ ℝ . The motivation in 

[35, 36] was to enable supervised learning of permutation 
invariant and set-valued functions, by replacing � and � 
with flexible function approximators, such as Gaussian 

� →
�1(y)�

�1(y)� + �2(y)(1 − �)
,

(10)f (I) = �

(
∑

y∈I

�(y)

)
.

processes or neural networks. Other forms of decomposi-
tion, by replacing the summation in (10) with something 
else that can be learned, have also been considered by 
Soelch et al. [37]. For reinforcement learning, we will make 
use of the form (10) to represent functions defined on 
the information states space S, such as v̂(s|w) , q̂(s, a|w) , 
or �̂�(a|s,w) , using a neural network with parameter w . In 
the remaining part of this paper we present two examples 
showing how this works in practice.

5.5  The “coin flip” example

Throughout this paper we have presented a series of 
small examples involving a biased coin, represented by 
X = (Y , �) . In Example 4.4 we ended by introducing a game 
where the player has to select whether to bet on, test or 
replace the coin. As a simple illustration we will show how 
reinforcement learning can be applied in this setting.

But now, we will imagine that the coin Y represents a 
component in some physical system, where Y = 0 corre-
sponds to the component functioning and Y = 1 repre-
sents failure. The probability P(Y = 1) = 1 − � is then the 
component’s failure probability, and we say that � is the 
reliability.

For simplicity we assume that � ∈ {0.5, 0.99} , and that 
our initial belief is P(� = 0.5) = 0.5 . That is, when we buy a 
new component, there is a 50% chance of getting a “bad” 
component (that fails 50% of the time), and consequently 
a 50% probability of getting a “good” component (that fails 
1% of the time).

We consider a project going over N = 10 days. Each day 
we will decide between one of the following 4 actions:

1. Test the component (flip the coin once). Cost 
r = −10.000.

2. Replace the component (buy a new coin). Cost 
r = −100.000.

3. Use the component (bet on the outcome). Obtain a 
reward of r = 106 if the component works ( Y = 0 ) and 
a cost of r = −106 if the component fails ( Y = 1).

4. Terminate the project (set t = N ), r = 0.

We will find a deterministic policy � ∶ S → A that maps 
from the information state-space to one of the four 
actions. The information state-space S is here represented 
by the number of days left of the project, n = N − t , and 
the set It of observations of the component that is cur-
rently in use at time t. If we let SY contain all sets of the 
form I = {Y1,… , Yt} , for Yt ∈ {0, 1} and t < N , then

(11)S = SY × {1,… ,N}
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represents the information state-space. In this example we 
use the deep Q-learning (DQN) approach described by van 
Hasselt et al. [34]. Here we define a neural network

that represents the action-value of each of the 
four actions. The optimal policy is then obtained 
by at each state s selecting the action correspond-
ing to the maximal component of q̂ . We implement 
this by writing q̂(I, n|w) = h(f (I|wf ), n|wh) ,  where 
h(f , n|wh) ∶ ℝ

4 ×ℝ → ℝ
4 , and the function f (I|wf ) tak-

ing sets as input is defined as in (10) using two func-
tions �( ⋅ |w

�
) ∶ ℝ → ℝ

4 and �( ⋅ |w
�
) ∶ ℝ

4
→ ℝ

4 . We let 
h( ⋅ |wh) , �( ⋅ |w�

) and �( ⋅ |w
�
) be multi-layer perceptrons 

so that q̂( ⋅ |w) becomes a feedforward neural network 
with a combined parameter vector w = (wh,w�

,w
�
) that 

is optimized using the Q-learning algorithm5.
We start by finding a policy that optimizes the cumu-

lative reward over the 10 days (without discounting). To 
test the model, we run a large number of episodes and 
store the total reward after each episode. As it turns out, 
this policy prefers to “gamble” that the component works 
rather than performing tests. In the case where the start-
ing component is reliable (which happens 50% of the 
time), a high reward can be obtained by selecting action 
3 at every opportunity. The general “idea” with this policy, 
is that if action 3 results in failure, the following action is 
to replace the component (action 2), unless there are few 
days left of the project in which case action 4 is selected. 
We call this the “unconstrained” policy.

Although the unconstrained policy gives the largest 
expected reward, there is an approximately 50% chance 
that it will produce a failure, i.e. that action 3 is selected 
with Y = 1 as the resulting outcome. One way to reduce 
this failure probability, is to introduce the constraint that 
action 3 (using the component) is not allowed unless we 
have a certain level of confidence in that the component is 
reliable. We introduce this type of constraint by requiring 
that P(𝜃 = 0.99) > 0.9 (a constraint on epistemic uncer-
tainty). The optimal policy under this constraint will start 
with running experiments (action 1), before deciding 
whether to replace (action 2), use the component (action 

q̂(s|w) = q̂(I, n|w) ∶ S → ℝ
4,

3), or terminate the project (action 4). Figure 4 shows the 
distributions of the cumulative reward over 1000 simu-
lated episodes, for the constrained and unconstrained 
policies obtained by RL, together with a completely ran-
dom policy for comparison.

In this example, the information state-space could 
also be defined in a simpler way, as explained in Exam-
ple 5.1. As a result the reinforcement learning task will 
be simplified. Using the different state-space represen-
tations, we obtained the same results shown in Fig. 4. 
Finally, we should note that in the case where defining 
the state space as in (11) is necessary, the constraint 
P(𝜃 = 0.99) > 0.9 is not practical. That is, if we could esti-
mate this probability efficiently, then we also have access 
to the compressed information state-space. One alterna-
tive could then be to instead consider the uncertain fail-
ure probability pf (�) = P(Y = 1|�) , and set a limit on e.g. 
E[pf ] + 2 ⋅ Std(pf ) . This is the approach taken in the fol-
lowing example concerning failure probability estimation.

5.6  Corroded pipeline example

Here we revisit the corroded pipeline example from 
Agrell and Dahl [16] which we introduced in Sect. 3.4. In 
this example, we specify the epistemic uncertainty with 
respect to model discrepancy, the size of a defect, and 
the capacity pFE coming from a Finite Element simula-
tion. If we let � be the epistemic generator, we can write 
the failure probability conditioned on epistemic informa-
tion as pf (�) = P(g ≤ 0|�) . In [16] the following objective 
was considered: Determine with confidence whether 
pf (𝜃) < 10−3 . That is, when we consider pf  as a purely 
epistemic random variable, we want to either confirm 
that the failure probability is less than the target 10−3 
(in which case we can continue operations as normal), 

Fig. 4  Total reward after 1000 episodes for a random policy, the 
unconstrained policy, and the agent which is subjected to the con-
straint that action 3 is not allowed unless P(𝜃 = 0.99) > 0.9

5 For our experiments we used a PyTorch (v 1.13.0) implementa-
tion of the Q-learning algorithm with experience replay (100 epi-
sode batch size) and a target network (10 episode frequency) as 
described in Algorithm 1 in [38]. For the neural network q̂(s|w) , we 
used 3 hidden layers of size 150 for � , 2 hidden layers of size 150 for 
� , and 2 hidden layers of size 50 for h, all with ReLU activations. Dur-
ing training, random actions were taken with a probability � decay-
ing from 0.5 with steps 0.001, the discount factor � was set to 0.999 
and the Adam optimizer was used with a learning rate of 0.001 for 
gradient descent.
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or to detect with confidence that the target is exceeded 
(and we have to intervene). We say the objective is 
achieved if we obtain either E[pf ] + 2 ⋅ Std(pf ) < 10−3 or 
E[pf ] − 2 ⋅ Std(pf ) > 10−3 (where E[pf ] and Std(pf ) can be 
efficiently approximated using the method developed 
in [16]). There are three ways in which we can reduce 
epistemic uncertainty: 

1 Defect measurement: Noise perturbed measurement 
that reduces uncertainty in the defect size d.

2 Computer experiment: Evaluate pFE at some selected 
input (D, t, s, d, l), to reduce uncertainty in the surro-
gate p̂FE used to approximate pFE.

3 Lab experiment: Obtain one observation of Xm , which 
reduces uncertainty in �m.

The set of information corresponding to defect meas-
urements is IMeasure ⊂ ℝ as each measurement is a real 
valued number. Similarly, ILab ⊂ ℝ as well, and IFE ⊂ ℝ

6 
when we consider a vector y ∈ ℝ

6 as an experiment 
[D, t, s, d, l, pFE] . In this example, we exploit conjugacy 
in the representation of IMeasure and ILab as discussed in 
Example 5.1. All relevant information from IMeasure is rep-
resented by the posterior distribution of the quantity 
that is measured, which is normally distributed defined 
by its mean and standard deviation. The same is true for 
ILab . Hence, the information represented by IMeasure and 
ILab can be represented by a single vector in ℝ4 (see [16] 
for details). We therefore define the information state-
space as S = SFE ×ℝ

4 , where SFE consists of finite sub-
sets of ℝ6 . We use RL to determine which of the three 
types of experiments to perform, and define the action 
space A = {Measurement, FE, Lab} . Note that when we 
decide to run a computer experiment, we also have to 
specify the input (D, t, s, d, l). This is a separate decision 
making problem regarding design of experiments. For 
this we make use of the myopic (one-step lookahead) 
method developed in [16], although one could in prin-
ciple use RL for this as well. This kind of decision mak-
ing, where one first decides between different types of 
tasks to perform, and then proceeds to find a way to 
perform the selected task optimally, is often referred to 
as hierarchical RL in the reinforcement learning litera-
ture. Actually, [16] considers a myopic alternative for also 
selecting between the different types of experiments, 
and it was observed that this might be challenging in 
practice if there are large differences in cost between the 
experiments. This was the motivation for studying the 
current example, where we now define the reward (cost) 
r as a direct consequence of a ∈ A as follows: r = −10 
for a = Measurement , r = −1 for a = Lab and r = −0.1 for 
a = FE.

In this example we also use the DQN approach of van 
Hasselt et al. [34], where we define a neural network

that gives, for each state s, the (near optimal) value of each 
of the three actions. The neural network is constructed in 
the same way as in the “coin flip” example in Sect. 5.5, and 
trained with the same Q-learning approach (Algorithm 1 
[38]).

The objective in this RL example is to estimate a failure 
probability using as little resources as possible. If an agent 
achieves the criterion on epistemic uncertainty reduc-
tion, that the expected failure probability plus/minus two 
standard deviations is either above or below the target 
value, we say that the agent has succeeded and we report 
the sum of the cost of all performed experiments. We also 
set a maximum limit of 40 experiments. I.e. after 40 tries 
the agent has failed. To compare the policy obtained by 
RL, we consider the random policy that selects between 
the three actions uniformly at random. We also consider a 
more “human like” benchmark policy, that corresponds to 
first running 10 computer experiments, followed by one 
lab experiment then one defect measurement, then 10 
new computer experiments, and so on.

The final results from simulating 100 episodes with each 
of the three policies are shown in Fig. 5.

6  Concluding remarks

To conclude our discussion, we recall that in this paper, 
we have:

q̂(s,w) ∶ S = SFE ×ℝ
4
→ ℝ

3,

Fig. 5  Total cost (negative reward) after 100 successful episodes. 
For the random and benchmark policy, the success rate was around 
60% (to achieve the objective within 40 experiments in total), 
whereas 94% was successful for the RL agent
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• Given a measure-theoretic discussion of epistemic 
uncertainty and formally defined epistemic condition-
ing.

• Provided a mathematical definition of a probabilistic 
digital twin (PDT).

• Connected PDTs with sequential decision making 
problems, and discussed several solution approaches 
(maximum principle, dynamic programming, MDP and 
POMDP).

• Argued that using (deep) reinforcement learning to 
solve sequential decision making problems in the PDT 
is a good choice for practical applications today.

• For the specific use-case of optimal information gather-
ing, we proposed a generic solution using deep rein-
forcement learning on the information state-space.

Further research in this direction includes looking at 
alternative solution methods and reinforcement learning 
algorithms in order to handle different PDT frameworks. 
A possible idea is to use a maximum principle approach 
instead of a DPP approach (as is done in reinforcement 
learning). By using one of the MP based algorithms in 
[32], we may avoid the Markovianity requirement, possi-
ble time-inconsistency issues (see e.g. Rudloff et al. [39]) 
and can also allow for state constraints. For instance, this 
is of interest when the objective of the sequential decision 
making problem in the PDT is to minimize a risk measure 
such as CVaR or VaR , see Cheridito and Stadje [40], and 
Artzner et al. [41] respectively. Both of these risk meas-
ures are known to cause time-inconsistency in the Bell-
man equation, and hence, the DPP (and also reinforcement 
learning) cannot be applied in a straightforward manner. 
Another relevant topic is whether formal methods for 
model checking can be applied for the reinforcement 
learning approach considered in this paper. This is par-
ticularly important for extending beyond cost optimiza-
tion towards optimizing decisions that may also impact 
the level of safety of the physical system. The application 
of PDTs for safe reinforcement learning (see e.g. [42]) is 
therefore a relevant topic. This is work in progress.
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Appendices

A Existence of the epistemic generator

The purpose of this section, is to explain why Assump-
tion 2.5 (of the existence of a generating random variable 
for the epistemic �-algebra) holds under some very mild 
assumptions.

In order to do this, we consider a standard probability 
space. Roughly, this is a probability space consisting of an 
interval and/or a countable (or finite) number of atoms. 
Formally, a probability space is standard if it is isomorphic 
(up to P-null sets) with an interval equipped with the Leb-
esgue measure, a countable (or finite) set of atoms, or a 
disjoint union of both of these types of sets.

The following proposition says that in a standard prob-
ability space, any sub �-algebra is generated by a random 
variable up to P-null sets. For a proof, see e.g. Greinecker 
[43].

Proposition A.1 Let (Ω,F, P) be a standard probability space 
and E ⊆ F  a sub �-algebra.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Then there exists an F -measurable random variable � such 
that

Hence, as long as our probability space is standard 
(which is a mild assumption), we can assume that our sub 
�-algebra of epistemic information, E , is generated (up to 
P-null sets) by a random variable � without loss of gen-
erality. Note that for the purpose of this paper, the mod 
0 ( i.e. up to P-null sets) is not a problem. Since we are 
only considering conditional expectations (or in particular, 
expectations), the P-null sets disappear.

Actually, this generating random variable, � , can always 
be modified to another random variable, �̂� , which is E
-measurable (purely epistemic) by augmenting the P-null 
sets. This means that � and �̂� are the same with respect to 
conditional expectations.

Furthermore, if X is a random variable on this standard 
probability space, X|� , is purely aleatory, i.e. independent 
of E . This follows because X|� is independent of �(�) and 
independence holds P-almost surely, so mod 0 does not 
affect this.
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