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Abstract. We consider a situation where agents are updating their probabilistic
opinions on a set of issues with respect to the confidence they have in each other’s
judgements. We adapt the framework for reaching a consensus introduced in [2]
and modified in [1] to our case of uncertain probabilistic judgements on logically
related issues. We discuss possible alternative solutions for the instances where
the requirements for reaching a consensus are not satisfied.
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1 Introduction

Judgement aggregation (JA) is concerned with aggregating categorical judgements about
the truth values of logically related issues (propositions) [7,4]. An example is given in
Table 1, where the rows contain judgements of agents over the issues p, q, and p∧ q. As
observed from the example, pooling the truth valuations on each issue does not always
lead to a consistent set of collective judgements. JA designs and studies aggregators that
produce a consistent outcome.

Table 1: An example of a judgement aggregation using the simple majority rule.

p q p ∧ q
agent 1 true true true
agent 2 true false false
agent 3 false true false

Majority true true false

Aggregation problems, however, are not always Boolean, since the judgements on
whether an issue is true or false are not always certain. In order to deal with this kind
of uncertainty, in [6] we define a framework that aims at aggregating judgements about
the probabilities of issues, as in the example given in Table 2.



2 Ivanovska, Slavkovik

Table 2: An example of probabilistic judgement aggregation with a threshold majority rule. The
numbers in each row represent the probabilities of the issues being true according to the corre-
sponding agent.

p q p ∧ q
agent 1 0.7 0.8 0.7
agent 2 0.6 0.7 0.5
agent 3 0.2 0.8 0.2

Majority≥0.6 true true false

One way of aggregating judgements into a consistent collective opinion would be
to modify (update) some of the individual judgements until the chosen aggregation rule
produces a consistent judgement. This idea is obviously more applicable to probabilistic
judgements than to categorical ones, since the modification there amounts to adjusting
a probability value rather than completely changing the attitude about the truth of an is-
sue. As can be observed in the example in Table 2, a small modification of an individual
opinion (in this case agent 2’s judgement on p∧q) could result in obtaining a consistent
collective judgement.

In this paper we consider a setting where agents update their individual opinions to
align with each other and eventually converge to a consensual opinion. We adopt the
model for reaching a consensus over probability distributions described in [2] and show
that it is applicable to the case of probabilistic opinions on logically related issues as
well. The model presumes a confidence matrix representing the trust the agents have
in each other’s opinions. The opinion updating is performed based on the confidence
matrix. In the cases where the repeated updates converge to a consensus, the aggregated
opinion is obtained from the individual opinions through a linear function, and some
desirable properties follow by definition. We discuss possible solutions to the cases
where this repeated update will not lead to a consensus due to the properties of the
confidence matrix and the particular opinions that are to be aggregated.

2 Framework

We use a slightly modified version of the framework defined in [6] which we include
for self-sufficiency.

2.1 Probabilistic Judgement Profiles

Let L be a set of propositional logic formulas. An agenda is a finite set Φ ⊂ L,

Φ = {ϕ1, . . . , ϕm} , (1)

s.t. ϕi is neither a tautology nor a contradiction. We call the elements of the agenda
issues. For example, in Table 1, we have Φ = {p, q, p ∧ q}. We are interested in ag-
gregating a collection of judgements on the agenda issues coming from a group of
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information sources (we will also call them agents) into a collective judgement repre-
sentative for the group. Let Φ∪ = Φ∪{¬ϕ | ϕ ∈ Φ}. We model the information sources
as sets of likelihood judgements on Φ∪.

A likelihood judgement on the issue ϕ ∈ Φ∪ is a simple likelihood formula of the
type:

`(ϕ) ≥ a , (2)

where a ∈ [0, 1]. The likelihood judgement `(ϕ) ≥ a expresses that the likelihood
(probability)3 of the statement ϕ being true is at least a. The formula (2) is an instance
of the logic of likelihood (see [3] and [5]), the language of which consists of Boolean
combinations of linear likelihood formulas of the type

a1`(ϕ1) + . . .+ an`(ϕn) ≥ b , (3)

where ai, b are real numbers, and ϕi are pure propositional formulas.4 The likelihood
formulas are interpreted in probability spaces M = (W,F, µ), where W is a set of
possible worlds, F is a σ-algebra on W , and µ : F → [0, 1] is a probability measure.
The propositional formulas are given possible world semantics in the standard way:

ϕM = {w ∈W | w |= ϕ} , (4)

and the term `(ϕ) is interpreted as µ(ϕM )5, i.e. as the probability of the set of worlds
at which ϕ is true. This leads to the following interpretation of (3):

a1µ(ϕ
M
1 ) + . . .+ anµ(ϕ

M
n ) ≥ b , (5)

i.e. (3) is true in M if and only if (5) holds. The interpretation of Boolean combinations
of formulas of type (3) is defined in the standard way.

The axiomatic system for the logic of likelihood consists of axioms for propositional
reasoning, reasoning about inequalities, and reasoning about probabilities. In particular,
for every propositions ϕ and ψ, and every likelihood formulas f and g, the following
are axioms:

– (Prop) All substitution instances of tautologies in propositional logic,
– (MP) From f and f → g, infer g,
– (Inq) All substitution instances of valid linear inequality formulas,
– (L1) `(ϕ) ≥ 0,
– (L2) `(>) = 1,
– (L3) `(ϕ) = `(ϕ ∧ ψ) + `(ϕ ∧ ¬ψ),
– (L4) From ϕ↔ ψ infer `(ϕ) = `(ψ).

The above set of axioms is shown to be sound and complete with respect to the above
interpretation [3].

3 In this paper we interpret likelihood as probability and we use the two terms interchangeably.
Note that, however, likelihood can also be interpreted as another measure of belief, see [5].

4 Expressions containing all the other types of inequalities or equality can be defined as abbre-
viations.

5 To ensure that every ϕM is measurable, we may take F = 2W .



4 Ivanovska, Slavkovik

Each of the information sources is represented as a set of likelihood judgements Ĵ .
The set Ĵ has one likelihood judgement on each of the issues in Φ∪:

Ĵ ={`(ϕ) ≥ a(ϕ) | ϕ ∈ Φ∪} , (6)

where a(ϕ) ∈ [0, 1] is called a judgement coefficient of ϕ.
From a given judgement set Ĵ as defined in (6), using the above axioms, we can

derive `(ϕ) ≤ 1 − a(¬ϕ). This means that providing likelihood formulas for both ϕ
and ¬ϕ in the judgement set Ĵ is equivalent to providing intervals for the likelihood of
ϕ. In the cases where a(ϕ) + a(¬ϕ) = 1, these intervals collapse to a point, i.e. we
obtain precise likelihood judgement. Judgements in Ĵ can also be Boolean, since we
can represent by `(ϕ) ≥ 1 that ϕ is true, and by `(¬ϕ) ≥ 1 that ϕ is false.

Given a set of n agents N = {1, . . . , n}, a likelihood profile:

P̂ = (Ĵ1, . . . , Ĵn) , (7)

is a collection of sets of likelihood judgements for an agenda Φ, each representing one
agent k ∈ N . We slightly abuse notation and write Ĵk ∈ P̂ to denote that Ĵk is the k-th
likelihood judgement set in P̂ :

Ĵk = {`(ϕ) ≥ ak(ϕ) | ϕ ∈ Φ∪} , (8)

where ak(ϕ) ∈ [0, 1] are the judgement coefficients of the k-th agent, k = 1, . . . , n. An
example of a likelihood profile is given in Table 3.

Table 3: An example of a likelihood profile over the agenda Φ = {p, q, p ∧ q}. The set of
likelihood judgements of agent 1 is J1 = {`(p) ≥ 0.7, `(¬p) ≥ 0.2, `(q) ≥ 0.8, `(¬q) ≥
0.1, `(p ∧ q) ≥ 0.7, `(¬(p ∧ q)) ≥ 0.2}. Similarly, for J2 and J3.

p ¬p q ¬q p ∧ q ¬(p ∧ q)
agent 1 ≥ 0.7 ≥ 0.2 ≥ 0.8 ≥ 0.1 ≥ 0.7 ≥ 0.2
agent 2 ≥ 0.6 ≥ 0.2 ≥ 0.7 ≥ 0.3 ≥ 0.5 ≥ 0.5
agent 3 ≥ 0.2 ≥ 0.2 ≥ 0.8 ≥ 0.2 ≥ 0.2 ≥ 0.4

The example in Table 2 is a special case of a likelihood profile for the agenda
Φ = {p, q, p ∧ q}, where each row represents a judgement set with precise likelihood
judgements. For example, 0.6 in the row of agent 2 stands for `(p) = 0.6, or, equiva-
lently, `(p) ≥ 0.6 and `(¬p) ≥ 0.4.

2.2 Rationality of Probabilistic Judgement Sets

We require that the sets of likelihood judgements in the profile are rational. We now
define what are rational likelihood judgements sets.

A probabilistic judgement set is consistent if it is a consistent set of formulas in the
logic of likelihood. A probabilistic judgement set is not always consistent. Consider, for
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example, the agenda Φ = {p1 ∧ p2, p1 ∧ ¬p2} and a set Ĵ containing the judgements
`(p1 ∧ p2) ≥ 0.4 and `(p1 ∧ ¬p2) ≥ 0.7. The set Ĵ is an inconsistent set of formulas,
because it implies `(p1) ≥ 1.1 by axiom (L3). Furthermore, note that for a judgement
set Ĵ defined as in (6) to be consistent, it has to satisfy a(ϕ) + a(¬ϕ) ≤ 1, for every
ϕ ∈ Φ.

A set of likelihood judgements is always complete in the sense that it contains a
likelihood judgement for each of the issues. This assumption does not limit the freedom
of not having a specific likelihood estimate for a given issue ϕ. To represent the absence
of a specific likelihood or an “abstention” on an issue ϕ, we can use the tautologies
`(ϕ) ≥ 0 and `(¬ϕ) ≥ 0.

In classical judgement aggregation, a judgement set is rational if it is consistent and
complete, which means it provides a truth value for each of the issues in the agenda,
and these values are consistent. In the probabilistic case, consistency and completeness
are not enough of conditions for rationality. For example, Ĵ = {`(p1) ≥ 0.3, `(¬p1) ≥
0.5, `(p1 ∧ p2) ≥ 0.4, `(¬(p1 ∧ p2)) ≥ 0.5} is a consistent set. However, if we use the
axioms, we can easily derive `(p1) ≥ 0.4, which is stronger than the existing `(p1) ≥
0.3 and, as such, is a more valuable judgement. In general, we say that `(ϕ) ≥ a is a
stronger judgement than `(ϕ) ≥ b iff a > b. To ensure that we always have the strongest
possible judgements in the consistent judgement sets, we introduce the notion of a final
judgement. A consistent probabilistic judgement set is final if it does not imply stronger
judgements than the ones it contains, i.e. a judgement set Ĵ as defined by (6) is final
iff Ĵ ` `(ϕ) ≥ c implies c ≤ a(ϕ), for every ϕ ∈ Φ∪. We say that the probabilistic
judgement set Ĵ is rational if it is consistent and final. A profile is rational if all the
judgement sets in it are rational.

3 Updating Probabilistic Judgements

One can imagine there are many different ways the agents can update their judgements,
depending on the kind of information the update is based upon. Here, we handle the
situation where there is no new factual information that the agents receive, but they are
able to observe each other’s judgements and update their own judgement sets based on
this observation. Similarly as in [2], we assume that each agent has certain degrees of
confidence in the other agents’ opinions and in her own, and updates her probabilistic
judgements upon observing the judgements of others based on these confidence degrees.
More formally, let

tk = (tk1, . . . , tkn) , (9)

where tkr ∈ [0, 1], for every r, and
∑n

r=1 tkr = 1, be the confidence distribution of
the k-th agent, k = 1, . . . , n. tkr is interpreted as the degree of confidence the agent k
assigns to the agent r, r = 1, . . . , n. We call the matrix T = [tkr]n×n, where each row
represents a confidence distribution of the corresponding agent, a confidence matrix.

Given a likelihood profile P̂ = (Ĵ1, . . . , Ĵn), we assume that the agent k is updat-
ing her judgements by calculating new judgement coefficients as weighted average of
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everyone’s judgement coefficients wrt. her confidence distribution tk:

Ĵ1
k = {`(ϕ) ≥

n∑
r=1

tkrar(ϕ) | ϕ ∈ Φ∪} . (10)

The updating process can iterate several times, and the result of each iteration is defined
recursively:

Ĵ i
k = {`(ϕ) ≥ aik(ϕ) | ϕ ∈ Φ∪} , (11)

where the judgement coefficients are determined by

aik(ϕ) =

n∑
r=1

tkra
i−1
r (ϕ) , (12)

for k = 1, . . . , n, where a0r(ϕ) = ar(ϕ). P̂ i = (Ĵ i
1, . . . , Ĵ

i
n) is the i-th update of the

profile P̂ = (Ĵ1, . . . , Ĵn), for i ∈ N.

Theorem 1. Let P̂ = (Ĵ1, . . . , Ĵn) be a rational profile and T = [tkr]n×n be a confi-
dence matrix. Then P̂ i = (Ĵ i

1, . . . , Ĵ
i
n) is a rational profile, for every i ∈ N.

The proof of the above theorem follows directly from the following proposition.

Proposition 1. Let P̂ = (Ĵ1, . . . , Ĵn) be a rational profile and t = (t1, . . . , tn) be a
vector of coefficients such that tk ∈ [0, 1], for every k = 1, . . . , n, and

∑n
k=1 tk = 1.

Then the judgement set Ĵ = {`(ϕ) ≥
∑n

k=1 tkak(ϕ) | ϕ ∈ Φ∪} is rational.

Proof. Consistency: Let W be a set of possible worlds and let F = 2W be the σ-
algebra of all the subsets of W . Since the profile P̂ is rational, the set Ĵk = {`(ϕ) ≥
ak(ϕ) | ϕ ∈ Φ∪} is a consistent set of formulas, for every k = 1, . . . , n. This means
that there exist probability measures on (W,F ), µk : F → [0, 1], k = 1, . . . , n, such
that the inequalities in the sets {µk(ϕ

M ) ≥ ak(ϕ) | ϕ ∈ Φ∪} hold. Then the lin-
ear function of these measures with the components of the vector t as coefficients,
µ =

∑
k tkµk, is a probability measure on (W,F ) for which the set of inequalities

{µ(ϕM ) ≥
∑

k tkak(ϕ) | ϕ ∈ Φ∪} holds. The last implies consistency of the judge-
ment set Ĵ = {`(ϕ) ≥

∑
k tkak(ϕ) | ϕ ∈ Φ∪}.

Finality: Let us denote by a(ϕ) =
∑

k tkak(ϕ) the likelihood coefficients of the
set Ĵ . Suppose that the set Ĵ is not final. This means that there exists ϕi ∈ Φ∪, and
c > a(ϕi), such that Ĵ ` `(ϕi) ≥ c, i.e. that using the formulas in Ĵ and the axioms of
the logic, one can derive `(ϕi) ≥ c. Since c > a(ϕi), this derivation needs to include
axioms (L3), (L4) and some of the likelihood judgements of Ĵ referring to issues other
than ϕi. In particular, ϕi must "include" some of the other issues, i.e. there must exist
issues ϕi1 , . . . , ϕir ∈ Φ∪, other than ϕi, such that

` `(ϕi) ≥ `(ϕi1) + · · ·+ `(ϕir ) , (13)

and their judgement coefficients are such that:

a(ϕi1) + · · ·+ a(ϕir ) ≥ c . (14)
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Now, from (13) and the consistency of Ĵk, for every k, we will have

Ĵk ` `(ϕi) ≥ ak(ϕi1) + · · ·+ ak(ϕir ) . (15)

From this and the finality of Ĵk, we obtain

ak(ϕi) ≥ ak(ϕi1) + · · ·+ ak(ϕir ) , (16)

for every k. But then,∑
k

tkak(ϕi) ≥
∑
k

tkak(ϕi1) + · · ·+
∑
k

tkak(ϕir ) , (17)

which with the shortened notation becomes

a(ϕi) ≥ a(ϕi1) + · · ·+ a(ϕir ) (18)

The last, together with (14), implies a(ϕi) ≥ c, which is in contradiction with the initial
assumption.

4 Convergence to a Consensus

Let us denote akj = ak(ϕj), for ϕj ∈ Φ∪, and k = 1, . . . , n. Then A = [akj ]n×2m is a
matrix consisting of the judgement coefficients of the n agents on the set of propositions
Φ∪, with each row corresponding to one agent, and each column corresponding to one
issue of the extended agenda Φ∪. We call it a judgement matrix of the profile P̂ =
(Ĵ1, . . . , Ĵn). For example, the likelihood profile given in Table 3 is represented by the
judgement matrix given in Fig.1.

A =

0.7 0.2 0.8 0.1 0.7 0.2
0.6 0.2 0.7 0.3 0.5 0.5
0.2 0.2 0.8 0.2 0.2 0.4


Fig. 1: An example of a judgement matrix of three agents on the extended agenda Φ∪ =
{p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}.

IfA is a judgement matrix of the profile P̂ and T is a confidence matrix, then the matrix

A1 = TA

will be the judgement matrix of the profile P̂ 1, we denote it byA1 = [a1kj ]. For example,
if T is defined as:

T =

1/2 1/2 0
1/4 3/4 0
1/3 1/3 1/3
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then the judgement matrix given in Fig.1 will be updated as follows:

A1 =

0.650000 0.200000 0.750000 0.200000 0.600000 0.350000
0.625000 0.200000 0.725000 0.250000 0.550000 0.425000
0.500000 0.200000 0.766667 0.200000 0.466667 0.366667


In general, if we denote A0 = A, from Eq.(12) we will have

Ai = TAi−1 , (19)

for i ∈ N, where the matrices Ai = [aikj ] and Ai−1 = [ai−1kj ] are the judgement
matrices of the profiles P̂ i and P̂ i−1, correspondingly. Applying the associativity of
matrix multiplication at Eq.(19), we obtain:

Ai = T iA , (20)

which means that for every i ∈ N, the matrix of the profile P̂ i can be obtained from the
matrix of the initial profile P̂ and the i-th power of the confidence matrix T .

Let us assume that the agents continue to update their judgement sets, i.e. iterations
continue indefinitely, or until for some i, we obtain Ai+1 = Ai, which would mean that
the opinions are no longer being updated. During this updating process, we assume that
a consensus is reached if the opinions of the agents converge to the same judgement
set, i.e. there exists a judgement set Ĵ∗, such that

lim
i→∞

Ĵ i
k = Ĵ∗ , (21)

for every k = 1, . . . , n. This amounts to all the rows of the matrix Ai, we denote them
by Ai

k, converging to the same row vector, i.e. convergence to a consensus presumes
existence of a vector a∗ = (a∗1, . . . , a

∗
2m), such that:

lim
i→∞

Ai
k = a∗ , (22)

for every k = 1, . . . , n, and equivalently, due to Eq.(20):

lim
i→∞

T i
kA = a∗ , (23)

for every k = 1, . . . , n, where T i
k is the k-th row of the matrix T i.

Now, from Eq.(23) we can observe the following: If the rows of T i converge to the
same row vector i.e., if there exists a vector π = (π1, . . . , πn) such that:

lim
i→∞

T i
k = π , (24)

for every k = 1, . . . , n, then the matrix product in Eq.(23) will converge to πA, hence
this product will determine a vector a∗ with the above requirements. Now, having the
vector a∗ defined as:

a∗ = πA , (25)
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the corresponding consensual judgement set will be given by:

Ĵ∗ = {`(ϕj) ≥ a∗j | j = 1, . . . , 2m} , (26)

or, in terms of the input judgement sets and the notation in Section 2:

Ĵ∗ = {`(ϕ) ≥
n∑

r=1

πrar(ϕ) | ϕ ∈ Φ∪} . (27)

5 A Necessary and Sufficient Condition for Reaching a Consensus

According to the discussion in the previous section, the existence of a vector π such
that Eq.(24) holds is a sufficient condition for reaching a concensus and the consensual
solution in the case this condition is satisfied is obtained by mutiplying the initial opin-
ion matrix A by π. It is worth noticing that, if such a vector π = (π1, . . . , πn) exists,
then its components are non-negative and

∑n
r=1 πr = 1. Let us now see when such π

exists.
Observe that the matrix T is a row stochastic matrix (the sum of each row is 1). This

means that it can be regarded as the transition probability matrix of a time-homogeneous
Markov chain with n states. With this interpretation of T , the condition in Eq.(24)
means that π is the limiting distribution of T , which (since T is time-homogeneous) is
also a stationary distribution, i.e. satisfies the equation πT = π. Hence, if a solution π
to the last equation exists, then a consensus is reached, and the vector π provides the co-
efficients for the linear combination of individual judgements that gives the consensual
solutiuon a∗, i.e. a∗ = πA.

In the example of a confidence matrix of three agents given in the previous section,
the corresponding stationary solution will be:

π = (1/3, 2/3, 0) ,

and the corresponding consensual vector a∗ = πA, where A is the judgement matrix
given in Fig.1, will be the following:

a∗ = (0.633333, 0.200000, 0.733333, 0.233333, 0.566667, 0.400000) .

Now, the existence of a limiting distribution is equivalent to the Markov chain be-
ing irreducible and aperiodic. This means that all the agents need to form one closed
communicating aperiodic class for a global consensus to be reached. In cases where
T is block-diagonal, like the one in Fig.2, i.e. there are smaller groups of agents that
only give positive confidence to members of their own group, a global consensus will
not be reached in the way described above, that is through the stationary distribution
of the confidence matrix. Here, a possible solution would be to determine the consen-
sual opinions of each of the groups and then aggregate them, for example, by taking an
average.

However, as observed in [1], it is not hard to imagine a case where a consensus ob-
viously exists no matter of the matrix T (and the existence of a stationary distribution).
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1/3 2/3 0 0
1/2 1/2 0 0
0 0 1/4 3/4
0 0 1/2 1/2


Fig. 2: A confidence matrix of a group of four agents. Each row is a distribution of trust that an
agent has in the opinions of the other agents. Agents 1 and 2 "listen" to each other and form
one closed reccurent group of agents that will reach a consensus between themselves. Similarly,
agents 3 and 4 communicate between each other and will reach a consensus.

For example, in the trivial case where all the agents have the same probabilistic judge-
ment set Ĵ , the consensus is the set Ĵ itself, no matter of the confidence matrix T . The
authors of [1] proceed further with the above observation and derive a necessary and
sufficient condition for a consensus to be reached that applies to any possible choice of
T and A: For each reccurent class of agents, they construct a certain linear combina-
tion of the agents’ probability distrubutions, and show that the consensus exists if and
only if all of these linear combinations lead to the same probability distribution. For
example, for the confidence matrix given in Fig.3, they calculate that the consensus is
reached if and only if 3

8p1 +
3
11p2 +

4
11p3 = 11

25p4 +
14
25p5 = 9

25p6 +
16
25p7 holds for the

probability distributions p1, . . . , p8 of the agents. We refer the reader to Theorem 2 in
[1] for the latter result as stating it properly here would require intruducing terminology
and notation that is beyond the scope of this paper.



1/2 1/4 1/4 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
1/4 1/4 1/2 0 0 0 0 0
0 0 0 0 0 1/2 1/2 0
0 0 0 0 0 1/4 3/4 0
0 0 0 1/3 2/3 0 0 0
0 0 0 1/2 1/2 0 0 0
1/3 0 0 1/3 0 0 0 1/3


Fig. 3: A confidence matrix of a group of eight agents.

The work in both [2] and [1] considers the case where the opinions of the agents are
expressed in terms of (precise) probability distributions over a set of mutually exclusive
propositions, while in our case, the opinions of the agents are effectively expressed as
probability intervals over logically related issues. While the result of [2] applies directly
to our case as it depends solely on the matrix T , it is not immediately clear how to
apply the result of [1] to our case. One way to proceed would be to form a system of
equations based on the linear combinations of distributions as defined in Theorem 2 in
[1] and the initial intervals for each probability value, and try to find a solution in terms
of imprecise probabilities over the issues (probabilistic judgement set). Another idea
would be to look at the intersection of the sets of all possible probability distributions
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of each agent (if non-empty) determined by the initial probabilistic profile and try to find
those probability distributions among them that satisfy the requirement for convergence
given in [1]. Exploring these ideas is a future work.

There will still be many cases of a periodic or reccurent confidence matrix not sat-
isfying the necessary and sufficient conditions for reaching a consensus as given in [1],
even in the case of imprecise probabilities. A possible general solution would then be
to require a modification of the confidence matrix T to an aperiodic irreducible matrix
that will have a stationary solution. In practice, this means the agents to be required to
redistribute their confidence degrees in a certain way that enables the resulting confi-
dence matrix to have a stationary solution. Finding out how exactly this should be done
is also a part of our future work.

6 Conclusions

In this paper we refine our framework for probabilistic judgement aggregation defined
in [6] and we propose a new method for aggregating probabilistic judgement of agents
based on the method for aggregating probability distributions described in [2]. In order
to apply the method from [2] to our case, we prove that any linear combination of the
judgements of all the agents leads to a rational judgement if the individual judgements
are rational, which we consider a central result of the paper.

By defining the judgement coefficients of the collective judgement as a linear com-
bination of the judgement coefficients of the individual judgements, we satisfy certain
aggregation properties by definition: Universal domain will certainly hold, as J∗ in
Eq.(27) is well-defined for every choice of ar(ϕ), by construction. Proposition 1 proves
the property of rationality. If all the individual judgements assign a probability estimate
larger than c ∈ [0, 1], then the linear combination of these estimates will also be larger
than c, hence unanimity will as well be satisfied. If the matrix T has a column k that
contains only 1’s (while all the other elements are 0), then Ĵ∗ = Ĵk and the aggregation
is dictatorial.

According to [2], the convergence to a consensus relies on the properties of the
confidence matrix which can be regarded as a transition probability matrix of a time-
homogeneous Markov chain with n states and hence, according to the theory of Markov
chains and their properties, a consensus exists whenever this matrix has a stationary
solution. However, as observed in [1], the existence of a stationary vector for the matrix
T is just a sufficient, but not a necessary condition for a consensus to be reached, and
we discuss how a consensual solution could be reached in cases when the properties of
the matrix T do not guarantee one.

There exist other works on aggregating opinions on logically related issues by con-
vergence to a consensus using the DeGroot framework [8]. However, the way these
works express and deal with the logical relatedness of the issues is different than ours,
namely, they express the opinions of agents as subjective degrees of pair-wise logical
relatedness of the issues. In our case, the logical relatedness of the issues is prede-
termined (by an agenda setter, for example) and formalized in their representation as
propositional formulas, while the opinions of the agents are probabilistic estimates of
the truth of the issues.
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