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Abstract

This paper examines the dependence between electricity prices, demand, and
renewable energy sources by means of a multivariate copula model while
studying Germany, the widest studied market in Europe. The inter-dependencies
are investigated in-depth and monitored over time, with particular empha-
sis on the tail behavior. To this end, suitable tail dependence measures are
introduced to take into account a multivariate extreme scenario appropri-
ately identified through the Kendall’s distribution function. The empirical
evidence demonstrates a strong association between electricity prices, renew-
able energy sources, and demand within a day and over the studied years.
Hence, this analysis provides guidance for further and different incentives
for promoting green energy generation while considering the time-varying
dependencies of the involved variables.
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1. Introduction1

In recent years, the electricity generation from renewable energy sources2

(RES) has increased in importance in the economies of all countries, espe-3

cially in Europe, due to stringent regulations to reduce carbon emissions and4

to provide incentives for investments in clean technologies. However, the5

interrelationships between RES and demand, and their combined effect on6

electricity prices have been under-investigated and there are still few works7

focusing on this multivariate dependence. These relations are particularly8

important since RES can reduce the demand for electricity if weather condi-9

tions allow. Indeed, it has been largely proved that wind generation reduces10

the mean (and the skewness) of the distribution of electricity price while in-11

creasing the price variability. In contrast, there is no clear understanding of12

the effect of solar power generation, especially regarding its interactions with13

demand, and eventually with wind power generation. Therefore, this paper14

aims at exploring these interdependencies in details.15

To this aim, a new database is compiled using hourly electricity prices16

determined on the day-ahead German market together with predictions for17

both RES and demand. This allows to consider the dependence between18

these variables and the effects of their different combinations across all 2419

hours and across a sample of years, going from 2011 (a year in which RES20

were at their early introduction) to 2019. Note that Germany is the largest21

European electricity market for traded volume and production (see [15]).22

Moreover, it is a leading country for the total wind power capacity per inhab-23

itant (jointly with Denmark) and solar PV capacity per inhabitant (recently24

flanked by Italy and Spain).1 Therefore, studying the German market allows25

us to understand the dependence structure among prices, demand, and RES,26

which could provide useful guidance for policymakers. In particular, the un-27

covered multivariate dependence structure could display important effects28

due to the increasing RES penetration and could provide support for further29

investments to reduce carbon emissions.30

1Indeed, the RES share of total power capacity increased from 24% to 44% from 2010
to 2015 in the major European countries.

2



Here, the dependence among prices, demand, and RES is investigated31

by using a copula approach. This method is appropriate since it allows for32

a careful description of the multivariate stochastic behavior and for an ac-33

curate analysis of different types of association and tail dependence. This34

is particularly important since, for example, situations in which high wind35

generation is coupled with high demand levels, together with high solar pro-36

duction, may represent co-movements in extreme behavior that are not easily37

detected with other methodologies. In particular, copulas allow to proceed38

in two steps: first, individual variables are modelled according to their fea-39

tures; and, then, the dependencies between price, demand, wind, and solar40

generation are described with a greater flexibility.41

Several papers have applied copula models for modelling energy markets.42

[21] adopt copulas to evaluate investment decisions regarding the placement43

of wind turbines with respect to wind speed in order to reduce output fluc-44

tuations and stabilize the supply. [7] use copulas to model and investigate45

the complementarity between hydro and wind, aiming at reducing the risk46

of shortages in water inflows. Multivariate copulas are instead considered to47

inspect the integration of wind energy in the European grid; see [22]. [48]48

implement a multivariate non-normal copula model for studying the behavior49

of wind speed, solar radiation, and load profiles of a network.50

Moreover, copulas have been used for the relationships between electricity51

prices observed over different regions, or to depict the relationships between52

prices and fundamental variables. For example, robust partial correlations53

are estimated between changes in electricity prices in the connected zones of54

New York state in [10]. In addition, [24] examine the dependence structure55

of electricity spot prices across Australian regional markets. Several regime-56

switching AR–GARCH copulas are proposed in [38] to study the pairwise57

behavior of electricity prices over interconnected European markets (Ger-58

many, France, Netherlands, Belgium, and Western Denmark). In particular,59

the skewed t distribution is considered because it describes the marginal dy-60

namics better than the normal distribution and can also capture the pair-wise61

tail dependence.62

Regarding the study of the dependence between electricity prices and/or63

renewable energy sources, the literature has focused largely on bivariate mod-64

els, mainly by considering prices and wind generation. For instance, the de-65

pendence between wind power production and electricity prices is examined66

in [29], [39], [43] and [47]. [14] develop stochastic simulation model able to67

capture the full spatial dependence structure of wind power by using copula68
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models incorporating also demand and supply information.69

Regarding solar power, [36] show that it decreases price volatility and70

more recently, [18] show that both wind and solar power reduce mean elec-71

tricity prices, but increase their volatility. More importantly, they provide72

new insights regarding the negative effect of wind on the skewness of price73

distributions, hence suggesting to control for the behavior of the tails.74

Therefore, this paper extends the recent literature on the multivariate75

dependence of electricity prices by providing first new methodological tools76

for the joint tail behavior and then new empirical results based on a novel77

dataset.78

Tri- and quadrivariate copulas are used in order to capture the depen-79

dence (at an hourly level) between the stochastic variables that are different80

in their nature, namely, electricity prices, forecasted electricity demand and81

forecasted wind, together with the newly included forecasted solar PV gen-82

eration. Note that in a previous study, [30] consider the dependence between83

electricity prices and demand by means of functional factor models, without84

including solar and wind power.85

Second, to explore the dependence structure and demonstrate the impor-86

tance of considering all possible interaction effects, two analyses are imple-87

mented: a global and static one, over the full sample of studied years; and a88

dynamic inspection, using an approach of rolling windows.89

Third, coefficients for the multivariate tail dependence are proposed in90

order to detect possible joint tail dependencies. Following [44], [33] and also91

[3], who introduced these indices based on the concept of Kendall extreme92

scenario in the analysis of (environmental) risks, we consider these novel mea-93

sures for the inspection of extreme scenarios that market operators, analysts94

and policymakers may be forced to face.95

Specifically, following a copula-based ARMA-GARCH model for multi-96

variate time series, we describe the relationships between prices, demand,97

and RES; and, those among RES and demand. Additionally, and if neces-98

sary, one could also detect relations across solar and wind power production.99

In particular, we focus on the relationship between (i) demand and prices,100

(ii) prices and wind, or (iii) demand and solar. In case (i), one should expect101

a positive dependence, as demand increases (even if ‘corrected’ or reduced102

by solar generation), prices should increase as well. An inverse relation is103

instead expected in case (ii), i.e., prices should decrease as wind increases104

(and solar is considered an additional supply factor reducing the demand).105

In the latter case (iii), again a negative dependence is expected, since when106
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solar PV increases, demand is expected to be reduced. Our results confirm107

these expectations, indicating a strong negative dependence between elec-108

tricity prices and RES variables during the day; and the evidence is identical109

using different copula models.110

The paper is organized as follows. Section 2 describes the German market111

and the dataset employed. Section 3 briefly recalls the notion of copula, the112

methodology, and the estimation procedure. Here, the coefficients for the113

multivariate tail dependence are also introduced. Section 4 is devoted to114

both the global and time-varying analyses on the dependence parameter of115

tri- or quadrivariate dimensional copulas. Finally, conclusions are presented116

in Section 5.117

2. Data description118

This empirical study relies on a new hourly dataset consisting of German119

electricity prices, forecasted demand, forecasted wind, and forecasted solar120

PV generation from January 1, 2011, to December 31, 2019. Electricity121

prices are quoted in e/MWh on a daily basis. They have been pre-processed122

for time-clock changes, that is the 25th hour in October has been excluded,123

whereas the missing 24th hour in March has been interpolated. Hence, there124

are no missing observations.125

The hourly auction prices in Germany are determined on the day-ahead126

market before noon, and then, in practice, they are forward prices for delivery127

during the predetermined hours on the following day. These prices have been128

collected directly from the German power market, European Energy Exchange129

(EEX). In addition, by considering the day-ahead determination of prices, the130

forecasted values for demand, wind, and solar PV generation have been used,131

as provided by Thomson Reuters with an hourly frequency. Specifically, the132

forecasts used in this analysis are those obtained by the European Centre for133

Medium-Range Weather Forecast (ECMWF), which result from the running134

of the operational model at midnight (technically, the model is said to run at135

hour 00). This represents the latest information available to market operators136

before they submit their bids/offers, because this model updates from 05.40137

a.m. to 06.55 a.m.138

It is important to emphasize that other data sources are commonly used139

in similar research about forecasted consumption, wind, and solar generation.140

Specifically, researchers collect this information from the official websites of141

the transmission system operators (TSOs) of the market under investigation142
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and, then, they additionally provide these data to the European network143

of the TSOs for electricity (ENTSOE)2. As far as the consumption forecasts144

are concerned, the transparency data, provided as a day-ahead forecast of the145

total load, are published (hence, publicly available) per time unit (currently146

having a quarter hourly frequency) either at the latest two hours before the147

gate closure time of the day-ahead market or at 12:00 (in local time) at148

the latest when the gate closure time does not apply. This represents the149

publication deadline for ENTSOE (as named on the website) and refers to150

data available to market operators at (the latest) 10 a.m., whereas the data151

used in this analysis is published immediately after the update and is already152

accessible at 8 a.m. when traders start to run their forecasting models to153

construct a portfolio of 24 hourly prices representing their bidding strategy154

submitted on the day-ahead market before noon.155

More importantly, the relevance and novelty of the database used in this156

research are highlighted when considering the public availability of RES fore-157

casts. Indeed, ENTSOE publishes also day-ahead forecasted values of elec-158

tricity generated by wind and solar photo-voltaic plants but only by 6.00159

p.m. (in Brussels time). Recently, ENTSOE started to provide additional160

current and intraday forecasts representing the last current update and the161

most recent intraday forecasts, respectively, at 8.00 a.m. for all 24 hours162

of the day of delivery, which are not expected to be regularly updated after163

8.00. However, at the time of writing this paper, the field of current fore-164

casts was still empty, whereas the field for intraday forecasts was available165

for wind offshore only from 01/01/2018, whereas those for wind onshore and166

solar were available only from the 26th February 2018 (hence the lenght of167

the series is too short for historical dynamic analyses). Instead, the database168

used here contains RES forecasts produced by early hours in the mornings169

and consistently from 2011, thus representing an extremely important source170

of information for detecting dependencies and comparing their historical evo-171

lution.172

Regarding the details of the ECMWF forecasts, and as far as demand173

forecasts are concerned, weather forecasts (accounting for temperature, pre-174

cipitation, pressure, wind speeds, and cloud cover or radiation) are used175

in the models, whereas the forecasts for wind generation make use of wind176

2For further details see www.entose.org and its transparency platform at
https://transparency.entsoe.eu

6



speed and installed capacity. Finally, PV installations, solar radiation, and177

installed capacity (because of the predominance of photovoltaic plants over178

solar thermal ones) are used to generate forecasts for solar power generation.179

Figure 1 shows the dynamics of all time series. The hourly electricity180

prices in panel (a) show “downside” spikes together with mean-reversion and181

seasonality, especially in the last years of the sample, when negative prices182

also reduced their occurrences. The behavior of the forecasted demand series183

is shown in panel (b), with peaks during winters and lows during summers,184

representing the typical calendar seasonality. The forecasted wind genera-185

tion is depicted in panel (c), and it shows high variability due to weather186

conditions, together with a sharp increasing trend due to new investments in187

additional wind capacity. Finally, the forecasted solar generation is shown188

in panel (d), where strong seasonal patterns are again visible through the189

calendar year.190

Interestingly, the panels in Figure 2 show the profiles for demand, wind191

and solar generation forecasted over 24 hours, across days of the week and192

months of the years. These clearly support the importance of modelling193

weekly and monthly seasonality before undertaking further analysis. In ad-194

dition, these emphasize the different intra-daily dynamics of demand and195

RES, which influence the multivariate dependence. In fact, higher demand196

is available during peak periods (from hour 8 to hour 20), similarly for solar197

power, with its peaks around noon, whereas wind is higher during off-peak198

periods (that is in early mornings and late afternoons) but lower during peak199

hours.200

3. Methodology201

The main purpose of the paper is to develop a joint stochastic model202

that characterizes the marginal behavior of electricity prices, demand, and203

renewable energy sources by capturing the related dependence structure. To204

this end, we exploit the advantages of the copula methodology, which has205

been used for economic and financial applications in a number of works (e.g.,206

[4], [6] and [31], references therein). Specifically, an n−dimensional copula207

is a distribution function supported on the unit cube [0, 1]n with a uniform208

marginal distribution. As well-known, an n−dimensional joint distribution209

function can be decomposed into its n univariate marginal distributions and210

an n−dimensional copula, which is unique when the marginal distributions211

are continuous. For more details, see also [13] and [34].212
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Figure 1: Hourly Time Series for Electricity Day-ahead Prices (panel a), Forecasted De-
mand (panel b), Forecasted Wind Generation (panel c) and Forecasted Solar PV Genera-
tion (panel d) observed in Germany from 01/01/2011 to 31/12/2019.

Specifically, in view of Sklar’s theorem, given an n-dimensional distribu-213

tion function F with marginals Fj, for j = 1, . . . , n, a copula C : [0, 1]n →214

[0, 1] exists that satisfies215

F (y) = C(F1(y1), . . . , Fn(yn))

for every y = (y1, . . . , yn) ∈ Rn. If F is continuous, then the copula is
uniquely determined by

C(u) = F (F−11 (u1), . . . , F
−1
n (un)), u ∈ [0, 1]n,

where F−11 , . . . , F−1n are the quantile functions of F1, . . . , Fn, respectively. In
particular, for an absolutely continuous F , its density f can be decomposed
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Figure 2: Intra-daily profiles for the different days of the week (top row) and for different
months (bottom row) for German Forecasted Demand (left column), Forecasted Wind
Generation (middle column) and Forecasted Solar PV Generation (right column). [Sat
(◦), Sun (+), Mon (?), Tue (•), Wed (×), Thu (�), Fri (�)]. [Jan (black), Feb (dark blue),
Mar (blue), Apr (light blue), May (green), Jun (light green), Jul (yellow), Aug (light
orange), Sep (orange), Oct (red), Nov (dark red), Dec (brown).]

in the form

f(y) = c(F1(y1), . . . , Fn(yn))
n∏
i=1

fi(yi),

where c and f1, . . . , fn are the density of the copula and of the marginals,216

respectively.217

Here, a version of Sklar’s Theorem, adapted to the case of a time series,218

is considered. Specifically, let yh,i,t be the value of variable i at hour h219

and on day t. To simplify the notation in what follows, the subscript h is220

suppressed and whenever yi,t is considered, it refers to the electricity price or221

the renewable energy sources for some given hour of the day (h = 1, . . . , 24).222

Moreover, Yt = (Y1,t, . . . , Yn,t) denotes the random vector for the different223

variables and for t = 1, . . . , T .224

Following [37], the conditional information generated by past observa-
tions of the variables is considered, called Fht−1, for each hour h. For sim-
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plicity, hereafter Ft−1 denotes the information set containing past observa-
tions. If we let F (·|Ft−1) be the multivariate conditional distribution func-
tion of the random vector Yt with conditional marginal distribution func-
tions (F1(·|Ft−1), . . . , Fn(·|Ft−1)), then a multi-dimensional conditional cop-
ula C(·|Ft−1) exists such that

F ((y1,t, . . . , yn,t)|Ft−1) = C (F1(y1,t|Ft−1), . . . , Fn(yn,t|Ft−1)|Ft−1) .

Moreover, if the marginal distribution functions are continuous, then the225

copula is unique. On the opposite side, given the conditional marginal dis-226

tributions, a copula can be used to link the variables to form a conditional227

joint distribution with the specified margins.228

Furthermore, the pseudo-observations are defined as follows:

ui,t = Fi(yi,t|Ft−1), for i = 1, . . . , n

and we denote ut = (u1,t, . . . , un,t). If the marginal models are correctly spec-229

ified, then ui,t is uniformly distributed on (0, 1) and the conditional copula230

can be estimated from ut|Ft−1.231

As emphasized in [16] and [37], note that here the same information232

set is used in each of the marginals and for the copula, then the resulting233

function is a joint (conditional) distribution function. However, empirically,234

we can assume that Fi(yi,t|Ft−1) = Fi(yi,t|F it−1) for i = 1, . . . , n, i.e. each235

variable depends on its own past information F it−1 but not directly on the236

past information of any other variable.237

3.1. The marginal models238

To find proper marginal distribution models, we consider the four target239

variables (electricity prices, forecasted demand, wind, and solar PV) sepa-240

rately. Then, following [37, 39], AR-GARCH copula models are considered241

for each hour of the day.242

The modelling procedure can be divided into two steps. In the first step,
AR-GARCH models are applied to the individual series of prices, demand,
and renewable energies, and in addition a deseasonalization is implemented
by using dummy variables, for months of the year and weekends. In the
second step, the dependence among innovations is studied by applying the
copula models proposed in the literature. These two steps are described in
what follows. Initially, the AR-GARCH marginals are considered to model
the conditional mean and the conditional variance of every single marginal
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variable. In particular, the AR(p)-GARCH(1,1) model for the marginal dis-
tributions is defined as

yi,t =

p∑
j=1

φi,jyi,t−j +
K∑
k=1

ψkdk,t + εi,t,

εi,t = σi,tηi,t for i = 1, . . . , n,

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1,

where dk,t are the dummy variables representing the twelve months of the243

year plus Saturdays and Sundays, hence K = 14. Moreover, the parameters244

ωi, αi, βi follow the usual restrictions for GARCH models, that is ωi > 0 and245

αi + βi < 1 (e.g., [35]).246

In our empirical application, the total number of variables n is equal247

to 4 (which are the electricity prices, forecasted demand, forecasted wind,248

and forecasted solar PV generation). Following [19] for the choice of the lag249

parameters of the different AR-GARCH models, p = 3 is assumed for the250

electricity prices; including only the first, the second, and the seventh lag251

of the hourly prices, hence with a slight abuse of notation. On the other252

hand, p = 1 is considered for demand and renewable energy sources, since253

forecasted variables are used.254

Using the AR(p)-GARCH(1,1) representation described above, the resid-
uals ηi,t can be represented as follows:

ηi,t|Ft−1 ∼ Fi for i = 1, 2, . . . , n and ∀t,

where Fi comes from the Gaussian distribution. It can be observed that255

the AR-GARCH models, when properly fitted to univariate time series, pro-256

duce innovation processes (η1,t, . . . , ηn,t) that can be considered as serially257

independent (see [42]). Recalling the previous description, the variables of258

interest are modelled separately for each hour of the day by using four AR(p)-259

GARCH(1,1) models with different lags. The following part describes the260

copula model employed for the residuals.261

3.2. The copula model262

After having modelled individually the four different variables, their pos-263

sible dependence is described, at one specific hour of a day, by means of a264

multivariate copula that capture the relationships among the residuals of the265

estimated univariate time series. In particular, here we use vine copulas.266
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Introduced by [2] and [26], vine copulas are built using a cascade of bi-267

variate copulas, called pair copulas. This cascade is identified using a set268

of nested trees called a regular vine tree sequence or regular vine (in short,269

R–vine), which allows to organize and illustrate the needed pairs of variables270

and their corresponding sets of conditioning variables (see [1] and [6]). In271

particular, examples of (simplified) regular vine copulas are: (a) multivari-272

ate Gaussian copulas, where the pair copulas are bivariate Gaussian copulas273

with dependence parameter given by the corresponding partial correlation;274

(b) multivariate Student t copulas with ν degrees of freedom.275

The estimation procedure for R-vine copulas requires a vine tree structure276

and the associated bivariate copula families with corresponding parameters.277

For the selection of vine tree structures, we follow the sequential top-down278

approach proposed by [9]. It starts with the tree level one and finds the279

maximum spanning tree, where each edge has a predefined weight, e.g., the280

absolute value of the empirical Kendall’s τ between the nodes forming the281

edge. Then, from a set of bivariate copula families, we select the optimal pair282

copula families using the Akaike Information Criterion (AIC). For these latter283

steps, we benefit from the estimation and simulation procedures implemented284

in [32, 45]. More details about R-vines and related inference procedures are285

given by [6, 27]. For a historical account about their use, see [17].286

3.3. Modelling tail dependencies287

Different copula types can accommodate flexible dependence patterns in288

the multivariate case. However, classical families may have some limitations.289

For instance, the multivariate Gaussian copula does not accommodate any290

tail dependence and has been criticized after the financial crisis in 2008 (see291

[40]). On the other hand, the multivariate Student’s t copula does not capture292

any asymmetry in the tails.293

To accommodate a great variety of dependence structures in higher di-294

mensions and overcome the issues of the multivariate elliptical and Archimedean295

copulas, vine copulas have been used in this analysis. As emphasized by [28],296

these copulas allow a variety of joint tail behavior of the related distributions.297

In order to quantify the degree of dependence in the tails, the so-called298

tail dependence coefficients can be used (see 11). Let us recall that, given299

continuous random variables X and Y defined on the same probability space300

(Ω,F ,P) with distribution functions FX and FY , respectively, the lower tail301
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dependence coefficient λL of (X, Y ) is defined by302

λL(X, Y ) = lim
t→0+

P
(
Y ≤ F

(−1)
Y (t) | X ≤ F

(−1)
X (t)

)
;

and the upper tail dependence coefficient λU of (X, Y ) is defined by303

λU(X, Y ) = lim
t→1−

P
(
Y > F

(−1)
Y (t) | X > F

(−1)
X (t)

)
;

provided that the above limits exist. Here, given a random variable X with304

distribution function F , the quantile function associated with X is given by305

F (−1)(t) = inf{x ∈ R : F (x) ≥ t}.306

The upper tail dependence coefficient indicates the asymptotic limit of307

the probability that one random variable exceeds a high quantile, given that308

the other variable exceeds a high quantile. A similar interpretation holds for309

the case of the lower tail dependence coefficient. As known (see, for instance,310

[13]), tail dependence coefficients only depend on the copula C of (X, Y ) in311

view of the formulas:312

λL = lim
t→0+

C(t, t)

t
and λU = lim

t→1−

1− 2t+ C(t, t)

1− t
.

Clearly, both coefficients take values in [0, 1]. In particular, X and Y are313

said to be asymptotically independent in the lower (respectively, upper) tail314

when λL(X, Y ) = 0 (respectively, λU(X, Y ) = 0).315

Now, let us assume to have a multidimensional random vector and there316

is an interest in the tendency of some of the components to achieve extreme317

values simultaneously, that is taking extremely small or extremely large val-318

ues. Given that there are more than two components, it is not obvious how319

to define a tail dependence index, and several contributions attempting to320

provide a solution appeared in the literature (see [12, 25, 20]). Here, in order321

to describe the tail dependence in a multivariate setting, we propose two322

novel tail dependence coefficients, inspired by the recent studies in condi-323

tional value-at-risk in [3].324

Specifically, in order to quantify how high (respectively, small) values of325

one variable, say Y , are influenced by two or more variables, say X1, . . . , Xl,326

we proceed as follows. First, we select a given threshold level for the variable327

Y , corresponding to its β quantile. Second, we select a suitable region B ⊆328

Rl such that P((X1, . . . , Xl) ∈ B) = α. Such a region B collects all the329

realizations of the vector (X1, . . . , Xl) that are judged to be extreme (i.e.330
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either very small or very high). Finally, given a copula-based model for the331

random vector (X1, . . . , Xl, Y ) we calculate, for a suitable β ∈ (0, 0.5),332

qL(α, β) = P(Y ≤ F−1Y (β)|(X1, . . . , Xl) ∈ BL); (1)

to take into account negative tails, and333

qU(α, β) = P(Y ≥ F−1Y (1− β)|(X1, . . . , Xl) ∈ BU); (2)

instead for positive tails, for some sets BL and BU in Rl.334

Example 1. Consider, for instance, l = 1, i.e. we are interested in the335

random pair (X, Y ). Then it is natural to select BL = (−∞, F−1X (α)], and336

BU = [F−1X (1− α),+∞) for α ∈ (0, 0.5). Then337

qL(β) = P(Y ≤ F−1Y (β)|X ≤ F−1X (α)) =
C(α, β)

α
, (3)

where C is the copula of (X, Y ) and β ∈ (0, 0.5). For α = β, qL(β) defines338

the tail concentration function used in [11, 37]. Analogously, it holds339

qU(β) = P(Y ≥ F−1Y (1− β)|X ≥ F−1X (1− α)) =
C(1− α, 1− β)

α
, (4)

where Ĉ is the survival copula associated with C, given by Ĉ(x, y) = x+ y−340

1 +C(1− x, 1− y) for every (x, y) ∈ [0, 1]2. For α = 0.05 we show in Figure341

3 the graphs of qL(β) and qU(β) for three families of copulas with the same342

Spearman’s correlation equal to 0.5, namely Gaussian copula (that is symmet-343

ric in the tail), Gumbel copula (that has an upper tail dependence coefficient344

different from 0, while it shows asymptotic independence in the lower tail),345

Clayton copula (that has a lower tail dependence coefficient different from 0,346

while it shows asymptotic independence in the upper tail).347

The selection of the region B is crucial and depends on the application.348

As in [8], [5] and [44], the notion of Kendall scenario is used. Specifically,349

let LF (t) denote the t-level curve of the joint distribution function F of350

(X1, . . . , Xl). Thus, we set351

• BL =
⋃

0≤t≤tαL
LF (t) = {x ∈ Rl : F (x) ≤ tαL},352

• BU =
⋃
tαU≤t≤1

LF (t) = {x ∈ Rl : F (x) ≥ tαU},353
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Figure 3: Graphs of the functions qL in (3) and qU in (4) for α = 0.05 and different copula
models with the same Spearman’s correlation equal to 0.5

where tαL and tαU are suitable values so that the probability that (X1, . . . , Xl)354

belongs to BL (respectively, BU) is equal to α.355

Now, let α, β ∈ (0, 0.5). If we denote by FX the distribution function of
the random vector (X1, . . . , Xl), then it holds

qKL (α, β) = P(Y ≤ F−1Y (β) | X ∈ BL)

=
P(FX(X) ≤ tαL, FY (Y ) ≤ β))

P(X ∈ BL)
=
D(KX(tαL), β)

α
,

where KX is the distribution function of FX(X), known as Kendall function356

associated with X (see [13, 23, 33]). Moreover, D is the copula associated357

with the random pair (FX(X), FY (Y )). Note that FY (Y ) is uniformly dis-358

tributed on [0, 1], and it is known as the probability integral transform of Y .359

However, FX(X) is not uniformly distributed on [0, 1] and it can be consid-360

ered as a multivariate probability integral transform.361

Analogously, let α, β ∈ (0, 0.5). It holds

qKU (α, β) = P(Y ≥ F−1Y (1− β) | X ∈ BU)

=
P(FX(X) ≥ tαU , FY (Y ) ≥ 1− β)

P(X ∈ BU)
=
D̂(1−KX(tαU), 1− β)

α
,

where KX is the distribution function of FX(X), and D̂ is the survival copula362

of (FX(X), FY (Y )).363
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Remark 3.1. Note that, under independence of Y and X, it holds that

qKL (α, β) = β, qKU (α, β) = 1− β.

Therefore, the ratio qKL (α, β)/β (respectively, qKU (α, β)/(1−β)) quantifies the364

relative effect on the tail of Y provided by an extreme scenario related to X.365

Now, analogously to bivariate tail dependence coefficients, we can intro-366

duce the following multivariate versions of tail dependence coefficients367

λKL (Y | X) = lim
α→0+

qKL (α, α), λKU (Y | X) = lim
α→0+

qKU (α, α), (5)

provided that the above limits exist and are finite. Here, the suffix K is368

helpful to remind that the conditional event is obtained from the Kendall369

distribution.370

Operationally, the coefficients defined in Eq. (5) are classical (bivariate)371

tail dependence coefficients between Y and FX(X), that is an aggregation of372

X via the collapsing function FX (see [23]). Then, their estimation depends373

on the bivariate copula of (FX(X), Y ) and it can be obtained by implementing374

standard techniques like those described in [46].375

4. Empirical Results376

Given the high penetration of wind and solar power in Germany, it is377

interesting to consider a joint model for electricity prices, demand, and RES378

to capture the dependence effects. Specifically, first it is considered the re-379

lationships between prices, demand, and wind, since solar is only available380

during midday hours (that is from hour 8 to hour 16). Then, we focus on381

a more interesting quadrivariate copula model to account for the possible382

interactions between prices, wind, and demand, while also considering so-383

lar power. To understand the dependence structure, vine copula models are384

used to account for possible different behaviors in the tails. In what follows, a385

global analysis of the whole dataset is presented, and subsequently, a rolling386

window approach is considered to depict the time-varying correlations.387

4.1. Global analysis over the full sample of years 2011-2019388

Using the entire sample of the full nine years, the joint dependence struc-389

ture between electricity prices, forecasted demand, and RES is investigated390

through vine copula models.391
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First, the R-vine copula is estimated for each hour, i.e., h = 1, . . . , 24, by392

determining the tree structure and the involved pair-copulas. An example is393

visualized in Figure 4, where results for hours 8, 12, and 20 are presented.394

Other results are omitted but are available upon request.395

Figure 4: Tree Structure of a Vine Copula Model for Hours 8 to 12 and 20. Note that 1
stands for the Electricity Prices; 2 for the Forecasted Demand; 3 for the Forecasted Wind
and 4 for the Forecasted Solar PV. From 17 to midnight and from midnight to 7, we run
a trivariate copula (without Forecasted Solar PV).

Then, the induced pairwise (Spearman’s) correlation is computed for each396

hour and presented in Figure 5. Note that the link between the forecasted397

solar power generation and the other variables is included only from hour 8398

to hour 16. In particular, Figure 5 shows a positive dependence between the399

electricity prices and the forecasted demand during the entire 24 hours. The400

correlation falls during the early morning (i.e. from 5 to 6 approximately401
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at 0.2), and in the late evening after 20); hence, confirming the known fact402

that prices follow the intra-day dynamics of demand, being higher during403

peak hours and lower in off-peak hours. When the relation between electric-404

ity prices and forecasted wind generation is instead considered, a negative405

correlation is detected, recalling the reverse dynamics of the intra-daily wind406

profile. Indeed, the negative correlation is larger when wind generation is407

high (during early or late hours) and it diminishes, keeping its sign, when408

wind generation decreases (during peak hours, as shown on the left side of409

Figure 2). As expected, the correlation between forecasted demand and wind410

fluctuates around zero and indeed this is not of concern for this analysis since411

both variables are influenced by weather conditions.412

The most interesting results concern the dependence of electricity prices413

on solar power (see right side of Figure 2). Similar to wind, a reverse situation414

to the intra-daily profile observed for the forecasted solar generation can be415

detected, with the correlation becoming progressively more negative when416

solar generation increases over the central hours. More specifically, the hours417

between 8 and 16 show a correlation found to be mostly negative, apart from418

the first hours when the sun is weakly shining (that is at 8 and 9 in the419

morning). This confirms that the increasing forecasted solar PV production420

leads to a decrease in electricity prices. In particular, the lowest negative421

value of −0.25 is observed at midday.422

Moving forward and considering the less investigated dependencies be-423

tween demand and solar, we do empirically observe a negative correlation424

between the forecasted demand and solar PV production, with a major im-425

pact around noon, recalling again the intra-day dynamics of solar PV gener-426

ation. In this way, an increase in the forecasted PV production at noon leads427

to a decrease in the forecasted demand. Finally, the correlation between fore-428

casted wind and solar PV is also considered. And, in this case, interestingly,429

the correlation is found to be negative across all considered central hours.430

Results regarding the negative correlation between demand and solar are in431

agreement with the common practice of thinking of solar power as negative432

demand.433

Overall, these results confirm the well-known merit order effect, according434

to which RES (wind and solar) decrease the electricity prices because they435

enter the supply curve before the other generation sources and, consequently,436

they shift the supply curve towards the right, thus decreasing the equilibrium437

price. However, the results presented in this specific analysis do refer to438

correlations when considering a multivariate dependence model, that is when439
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all possible interactions between involved variables are considered. More440

explicitly, correlations are studied when prices interact with individual RES441

and when RES interact with demand as well. The same results may not442

occur, for instance, when simple pair-wise correlations or regression models443

are considered, in which the marginal effects of RES are hypothesized ceteris444

paribus.445
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Figure 5: Pairwise Spearman’s correlations induced by the R-Vine Copula model spec-
ification over the 24 Hours between Electricity Prices (1), Forecasted Demand (2) and
Forecasted Wind (3) on the left; and, among Forecasted Solar PV (4) and the other
variables on the right.

Apart from the global correlation, measures of tail dependence have been446

considered and computed, as described before, between the different variables447

during the whole 24 hours. Figure 6 shows the model-based pairwise upper448

and lower tail dependence coefficients (UTDC and LTDC, in short) to capture449

the extra effect of one variable on the high/low values of the other variable450

in a pairwise tail dependence, resulting from the multivariate structure.451

It can be easily observed that independently from the tails, the coefficient452

of tail correlation between prices and demand is always positive and varying453

over the day with dynamics recalling the intra-daily profiles: lower correla-454

tions early in the morning and in the evening, higher ones during the middle455

of the day. This comes with no surprise apart the magnitudes expected to be456

higher over the right tail when demand pushes power plants under pressures,457

hence resulting in higher equilibrium prices. However, here the multivariate458

dependence detects also the interaction between demand and wind, which is459
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indeed higher on the left tail during central hours, and thus resulting in a460

higher influence on prices. Instead, the most striking result is the asymptotic461

tail independence between prices and wind on both tails and across all hours,462

since previous studies have shown how wind instead does influence the left463

tail of prices at finite, i.e. non-extreme, quantile levels.464

When also solar is included in the model, the tail dependence coefficients465

with prices are extremely low: around 0.005 at 11 for the LTDC and 0.0055466

at 10 for the UTDC. In the former case, it may indicate some residual effect467

of high demand, whereas in the latter case it clearly shows the dependence468

exactly out of the solar peak generation, that is from 9 to 11 and from 14 to469

16. Moreover, the correlation between demand and solar is at its maximum470

values at hours 13 and 16; again recalling the intra-daily profiles.471

Together with the pairwise analysis, it is relevant to visualize the joint472

effect of two or more variables on electricity prices. In particular, it is rel-473

evant to inspect whether high (respectively, low) values of electricity prices474

are influenced by extreme events occurring to: a) both forecasted demand475

and forecasted wind; b) both forecasted demand and forecasted solar; c)476

forecasted solar and forecasted wind; and finally, d) all the three previous477

variables together. To this end, we use the indices λKL and λKU discussed478

in section 3.3 to quantify how much high (respectively, small) values of one479

variable are influenced by simultaneous extreme values of two or more vari-480

ables. To visualize the case when high (respectively, small) price values are481

influenced by extreme high (respectively, low) values for all the other three482

variables, the multivariate tail dependence coefficients are considered as de-483

picted by the R-Vine Copula model related to prices. Results are shown in484

Figure 7.485

According to the same methodology, we also describe how high electricity486

prices are linked with high demand, but low wind and solar power (this is487

identified as the HLL scenario); or with high demand and wind, but low488

solar (the HHL scenario); and finally, with high demand, low wind and high489

solar (HLH scenario). These different combinations of variables reflect the490

idea of looking at the dependence structure from many facets of the joint491

distribution; see for instance [41].492

Figure 8 shows the multivariate upper tail dependence coefficients induced493

by the R-Vine Copula model related to prices. In the HLL scenario, high494

prices confirm a clear positive dependence from demand, especially at 11 and495

14. In the HHL scenario, prices exhibit a positive dependence but much lower496

than the previous situation, with more remarkable reductions especially at497
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Figure 6: Pairwise lower (a-b) and upper (c-d) tail dependence coefficients induced by
the R-Vine Copula model specification over the 24 hours between Electricity Prices (1),
Forecasted Demand (2), Forecasted Wind (3), and Forecasted Solar PV (4).

hour 11 (from 0.21 to 0) and at hour 14 (from around 0.35 to 0.09), as an498

effect of high wind. In the HLH scenario, instead, it is possible to detect the499

effect of solar peaking reducing the multivariate dependence, for instance at500

hour 10 from 0.15 (in HLL) to 0.03, at hour 13 from 0.25 (in HLL) to 0.08,501

or at hour 14 from around 0.35 (in HLL) to 0.06.502
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When the multivariate lower tail dependence is considered, the most in-503

teresting results refer to low prices in conjunction with low demand levels504

and high wind infeed. Then, results for the LH scenarios are considered with505

respect to the levels of solar power, reported in Figure 9. All show positive506

dependence between low prices and demand but high wind, in both cases of507

high and low solar, but again with reduced magnitudes in the latter case.508

4.2. Time-varying Analysis with Rolling Windows509

Differently from what done previously, where the dependence parameters510

have been estimated using the whole time series as having static trivariate511

and quadrivariate copulas, in what follows, instead, it is briefly inspected512

whether a time-varying dynamics of the involved variables can describe some513

additional features. Then the analysis starts by estimating the dependence514

model using a subset of the data and adopting a year rolling window ap-515

proach. Using a window size of 2 years, the first estimate of the dependence516

model is based on the window from 01 January 2011 to 31 December 2012;517

the second estimate is based on the window from 02 January 2011 to 01 Jan-518

uary 2013 and so on until the last window is rolled to the end of the sample519

on December 31, 2019.520

Specifically, Figures 10 and 11 show the time-varying pairwise correlation521

induced by the trivariate and quadrivariate estimated vine copula models522

at five different hours (8, 10, 12, 14, and 16). For a matter of comparison,523

the horizontal line indicates the related correlation calculated on the whole524

sample.525

Observing the first row in Figure 10, the dependence between electricity526

prices and forecasted demand changes slightly but consistently across the527

selected hours of the day and, more importantly, over the studied years.528

First, for every hour, the dependence seems to decrease through the sample,529

with a sharp decline around January 2015. Moreover, it can be observed that530

the static dependence parameter over the entire sample (represented with a531

red dashed line) seems to overestimate the dependence during the years 2015-532

2019, whereas it was underestimating the dependence at the beginning of the533

sample, that is over years 2013-2014.534

In the second row (of the same Figure), the dependence between prices535

and forecasted wind is depicted. Again, the dependence seems to act similarly536

across the hours of the day, with some differences in line with the amount of537

wind power produced, which differs across the hours of the day (as shown by538

its intra-daily profile). It is interesting to observe that the correlation was539
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negative at the beginning of the sample and it has become progressively more540

negative through the years, which is consistent with the increasing generation541

of wind power.542

The rolling approach emphasizes the different behavior shown by the543

global dependence parameter, which underestimates at the beginning and544

overestimates at the end of the sample, corresponding to years in which545

wind had lower and then progressively higher levels of penetration.546

For completeness, the last row shows the dependence structure between547

the forecasted demand and forecast wind. As expected, this time-varying548

dependence does not seem to move strongly away from zero across hours and549

years. In other words, forecasted wind does not affect the demand, but only550

the supply curve and, through it, prices are consequently affected. However,551

both are influenced by weather conditions (even if with different magnitudes552

and together with other factors), therefore some correlation is observed.553

Moving to a quadrivariate dependence structure, Figure 11 shows the554

time-varying correlations, at the five previously selected hours, for the de-555

pendencies between the forecasted solar PV and the remaining three vari-556

ables (prices, demand, and wind). Results for the other dependencies are in557

line with results shown in Figure 10 for the trivariate copula and have been558

omitted.559

The time-varying dependence between electricity prices and forecasted560

solar is shown in the first row. As anticipated by other studies, this rela-561

tion is found to be marginal and negative across central hours, whereas it562

appears with slight different dynamics at hour 8, when, however, solar pro-563

duction is limited. The negative time-varying dependence is decreasing and564

approaching null values over the more recent years. Notice that this comes565

with no surprise, since the main price reductions are induced by wind gen-566

eration, and solar is expected to directly affect the level of demand. To this567

aim, the second row shows the dependence between forecasted demand and568

forecasted solar PV production, which is found to be strictly negative and569

erratic (especially at the central hours 10, 12, and 14), thus reflecting the570

weather conditions for solar radiation.571

5. Conclusions572

Using a new compiled dataset, this paper investigates the multivariate de-573

pendence between hourly electricity prices, demand, and two different sources574

of renewable energy (wind and solar PV) in one of the largest producing575
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countries of renewable energy in Europe, i.e., Germany. However, consid-576

ering multivariate dependence structures is important in all countries for577

driving policy decisions, since increasing RES generation immediately affects578

both prices and demand. Therefore, identifying and adopting the appropriate579

methodology are two important tasks not only for the market studied in this580

analysis but also for all countries wishing to increase their green generation581

and reduce carbon emissions.582

By considering forecasted wind, solar PV generation, demand, and elec-583

tricity prices, this work studies their joint dependence with a flexible copula584

approach. Moreover, the introduced multivariate tail dependence coefficients585

(depending on more than one variable) provide additional insights in the586

understanding of these relationships in the tail of their joint distribution.587

Indeed, applying suitable copula-based models for time series, a strong de-588

pendence is depicted and mapped between electricity prices, demand and589

RES during the day with important intra-daily and seasonal patterns.590

Apart from the methodological contribution related to the study of tail591

behavior in a multivariate setting, from an applied point of view, this paper592

contributes to the literature by filling the gap regarding the interrelationships593

between RES and demand and their combined effect on the electricity prices,594

given that there was no clear understanding of the effect of solar, especially its595

interactions with demand, and, eventually, with wind during central hours;596

however, here, this issue is addressed, and answers are provided.597
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Figure 7: Multivariate lower (top) and upper (bottom) tail dependence coefficients induced
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