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Abstract

We investigate the influence of the U.S. government’s spending and taxation decisions,
along with the monetary policy choices made by the Federal Reserve, on the dynamics
of the nominal yield curve. Aggregate government spending moves the long end of the
yield curve, whereas monetary policy and changes in taxation move the short end of
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1 Introduction

How do policy actions influence the yield curve? In this paper, we study this question using
a flexible statistical framework paired with standard identification assumptions on fiscal and
monetary policy shocks. Why is this an interesting question? First, the yield curve is
important to the economy because many interest rates (such as mortgage rates) move closely
with the yield curve.

Second, macroeconomists have recently uncovered conditions under which fiscal and mon-
etary policies can have the same effect on economic outcomes (Correia et al., 2008; Wolf,
2021). Our paper complements those theoretical studies and highlights that, at least his-
torically, fiscal policy (in particular, government spending) has moved the yield curve in a
different fashion than monetary policy. Finally, in a more narrow sense, our results have
implications for how government and central bank decisions change the borrowing costs of
the government. Governments finance a substantial fraction of their outlays through debt
issuance. Although there is a large literature on how government decisions affect aggregate
macroeconomic outcomes (for example, Romer and Romer (2010) and Mertens and Ravn
(2013) study the effects of various tax changes, while Blanchard and Perotti (2002), Auer-
bach and Gorodnichenko (2012), Ramey (2011), and Ramey and Zubairy (2018) study the
effects of government spending), there is surprisingly no work on the effects of government
decisions on its borrowing costs encoded in the yield curve of government liabilities.1 Our
paper tackles this question.

The question of how much a government’s decisions change its borrowing costs is crucial
for determining fiscal policies. This is most clearly evident from the literature on optimal
fiscal policies in equilibrium models, where a government has to take into account how its
actions (and central bank actions, if a central bank is present in the model) will shift the yield
curve (see, for example, Lucas and Stokey (1983), Barro (1979), and in particular models of
optimal fiscal policy that explicitly incorporate the yield curve such as Buera and Nicolini
(2004) and Angeletos (2002))2. We want to contrast the effects of fiscal policy on the yield
curve with those of monetary policy in the same framework instead of relying on the large

1In the current paper we focus on the yields on nominal U.S. government debt.The reasons for this choice
are threefold: First, the inflation-indexed bond market (TIPS) is substantially smaller and less liquid than
the corresponding market for nominal debt, the time series on TIPS yields is much shorter, and finally, the
nominal yield curve itself is a prominent object of study in economics and finance.

2While this point is clearly evident in models of optimal fiscal policy under rational expectations, knowl-
edge about the effect of fiscal policies on prices are key ingredients in any model of fiscal policy - for a model
of fiscal policy where policymakers do not have rational expectations see for example Karantounias (2020).
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literature that already exists that studies the effects of monetary policy on the yield curve
(e.g. Piazzesi, 2005; Ireland, 2015), because it removes the risk that different specification
choices across studies influence the results.

Not only is there a theoretical motivation for studying the effects of fiscal policy on the
yield curve, there is also indirect evidence that fiscal policy could have substantial effects
on the yield curve. In particular, we are motivated by two sets of empirical findings: Ang
and Piazzesi (2003) and Evans and Marshall (2007) highlight that macroeconomic factors are
important drivers of the nominal yield curve. Furthermore, the literature on the macroeco-
nomic impact of fiscal policy changes cited above generally finds substantial macroeconomic
effects of fiscal policies.

Figure 1: Correlation Between Policy Shocks and Changes in the Yield Curve
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Note: Scatter-plots showing changes in yields ∆yt and instruments for policy shocks: monetary policy (Aruoba and Drechsel, 2022) and government
spending shock (Auerbach and Gorodnichenko, 2012). We report the estimated correlation in the legend of each panel, where the significance levels
are denoted by ∗ : 10%, ∗∗ : 5%, ∗∗∗ : 1%. Information on data sources can be found in Appendix B.

To give examples of direct empirical evidence on the effect that government decisions
have on the yield curve, Figure 1 shows scatterplots of yield changes at various maturities
versus instruments for monetary policy shocks (Aruoba and Drechsel, 2022) and government
spending shocks (Auerbach and Gorodnichenko, 2012) in the same quarter. We can see that
there are significant correlations between these shocks and the yield curve, but the policy
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action affects different maturities of the yield curve - monetary policy affects the short end
of the yield curve, whereas government spending affects the long end. This plot is only
suggestive because (i) it does not take into account that the measures of policy shocks we use
are only instruments, and (ii) it does not jointly study the entire yield curve. Our empirical
approach addresses both these shortcomings (and also studies tax changes as well as more
disaggregated government spending categories). However, this difference between policies is
a key and robust takeaway of our paper.

We want to analyze the yield curve without imposing too much structure. Thus, we take
advantage of recent advances in the theory of functional time series (Chang et al., 2016).
We view the yield curve at each point in time as the realization of a random function.
With minimal structure imposed on the yield curve, we can write this random function as
a combination of countably many basis functions with time-varying weights. Furthermore,
one can approximate this functional process well (in a sense we make precise later) using
only a finite number of basis functions. This leaves us with only the task of tracking the
finite-dimensional weights on these basis functions to characterize movements in the yield
curve. We show how this approach can be cast as a state-space model to aid interpretation.

Our approach uses all available data on the yield curve and directly models the entire
yield curve, allowing us to represent changes in yields over time more effectively compared to
standard approaches such as principal component analysis, which achieves dimension reduc-
tion simply by focusing on specific combinations of interest rates with different maturities
and does not explore how the yield curve itself as a curve changes over time. For more
discussions and demonstrations of the relative advantage of the functional approach over the
conventional approach, see Chang, Durlauf, Lee and Park (2023a) and Bjørnland, Chang and
Cross (2023).

While this approach allows us to track movements in the yield curve, we want to go
further and identify the causal link between a government’s actions and changes in the yield
curve. Our identification is completely standard in that we use well-established instruments
for policy shocks: We borrow measures of exogenous variation (or shocks) to total govern-
ment spending, defense spending, government consumption, and government investment from
Auerbach and Gorodnichenko (2012), exogenous tax changes identified by Romer and Romer
(2010), as well as the monetary policy shock measure of Aruoba and Drechsel (2022). We
then estimate how these measures of policy changes are related to changes in the yield curve
(the aforementioned weights in the basis functions, to be exact), which allows us to compute
impulse responses of the entire yield curve to these policy changes.
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In terms of related literature, one relatively close paper in terms of topic to ours is Berndt
et al. (2012), who study the effects of defense spending shocks on the government’s financing
decision, i.e., whether the return on the government’s portfolio changes after a defense shock
or net surpluses change. Instead, our paper focuses on how different fiscal decisions affect
nominal borrowing costs at different maturities. Plosser (1987) studies how forecast errors
in fiscal variables propagate to the yield curve. Instead, we focus on the causal effects of
changes in fiscal and monetary policy on the yield curve. Dai and Philippon (2005) study
the effects of fiscal policy on the yield curve using a no-arbitrage framework and Blanchard
and Perotti (2002) type identification assumptions. We study a broader set of fiscal (and
monetary) policies, use a flexible statistical framework to model the dynamics of the yield
curve, and exploit instruments to identify causal effects. The closest applied paper that uses
ideas about estimating responses of entire functions to economic shocks is Inoue and Rossi
(2021), who incorporate level, slope, and curvature yield curve factors from a Nelson-Siegel
type approach in a VAR to assess the effects of unconventional monetary shocks. Chang
et al. (2021) use functional methods to study how distributions at the micro-level are related
to aggregate variables and how these distributions react to aggregate shocks.

In the next section, we use insights from the government budget constraint and the
consumption Euler equation to both further motivate our study and provide possible ex-
planations for how government policies can influence the yield curve. In Section 3 we give
an overview of our econometric methodology aimed at economists interested in empirical
applications. After that, we turn to our main results.

2 Two Concepts from Economic Theory

In this section, we highlight two concepts that are helpful in motivating our analysis and
interpreting the link between changes in fiscal or monetary policies and any associated changes
in the yield curve for nominal government securities.

First, following Berndt et al. (2012), we analyze the government budget constraint. In
contrast to Berndt et al. (2012), we will analyze the nominal budget constraint due to our
focus on the nominal yield curve. In nominal terms, the government’s budget constraint is
given by

Bt+1 =Rbt+1 (Bt−St) (1)

where Bt is the nominal value of outstanding government debt at the beginning of period t,
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St is the nominal primary surplus, and Rbt+1 is the nominal gross return on the government’s
portfolio between t and t+1 3. Directly borrowing from Berndt et al. (2012), the government
budget constraint can be approximated via log-linearization as follows:4

nst− bt = Et
∞∑
j=1

ρj
(
rbt+j−∆nst+j

)
(2)

where nst is the weighted log nominal primary surplus ratio (for our purposes it will suffice
to think of it as a measure of nominal surpluses), bt = logBt, rbt = logRbt , and ρ is a parameter
between 0 and 1.

The key insight for our analysis is that changes in the surplus-to-debt ratio nst− bt will
have to manifest themselves in changes in expectations of (i) returns on the government
portfolio or (ii) net surpluses. Berndt et al. (2012) focus on tracing out how changes in
defense spending affect this decomposition. Our focus is different: We ask how changes in
different fiscal policies such as changes in different components of government spending and
changes in different tax rates as well as monetary policy affect the government’s borrowing
costs. While these costs are encoded in rbt (see Hall and Sargent (2011) for a clear exposition),
we want to disentangle how borrowing costs change across maturities, i.e., we directly study
the effects of fiscal policies on the entire yield curve.

More information on the impact of policies on the yield curve can be obtained using
the insight that government securities must be priced in such a manner as to entice market
participants to purchase these securities.

To analyze this angle further, we turn to standard consumption-based asset pricing (see,
for example, Cochrane (2001) and Campbell (2017)). In particular, we assume the existence
of a positive real stochastic discount factorMt (which might not be unique). We will now
study the yield of a (zero-coupon) nominal government bond that matures next period. Such
a bond pays a nominal return Rnt,t+1 which is known at time t. We can use the stochastic
discount factor to determine the yield via

1 = Et

(
Mt+1

Rnt,t+1
πt,t+1

)
(3)

3Hall and Sargent (2011) have made substantial progress in computing theory-consistent measures of
Rbt+1. Other papers that have used the government budget constraint to analyze fiscal policy include Hilscher
et al. (2014), Giannitsarou and Scott (2008), and Chung and Leeper (2007).

4One can verify that the analogous conditions derived by Berndt et al. (2012) for their log-linearization
of the real budget constraint also hold for our log-linearization of the nominal counterpart.
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where π denotes (gross) inflation.
Given that the yield is known at time t, we get that

1
Rnt,t+1

= Et

(
Mt+1

1
πt,t+1

)
(4)

Next, we turn to multi-period risk-free nominal bonds (which deliver a known nominal return
Rt,t+j in j periods) in order to study the entire yield curve. Note that for zero-coupon bonds,
the yield is just R1/j

t,t+j .
The stochastic discount factorMt implies an associated discount factor M∗t such that the

following equation holds:

1 =Rnt,t+jEt

(
M∗t+j

1
πt,t+j

)

Re-arranging this equation yields

1
Rnt,t+j

= covt

(
M∗t+j ,

1
πt,t+j

)
+Et(M∗t+j)Et

(
1

πt,t+j

)
= covt

(
M∗t+j ,

1
πt,t+j

)
+ 1
Rt,t+j

Et

(
1

πt,t+j

)

where Rt,t+j is the j-period return on a risk-free real asset.5 We can use this equation to
identify important drivers of the nominal yield curve. Note that the terms on the right-hand
side of the previous equation are not independent, so shocks could move all objects on the
right-hand side. Both the levels of the real interest rate and expected inflation as well as
the covariance between the inverse of inflation and the stochastic discount factor can be
important. In particular, we now know that if a shock moves the nominal yield curve, and
in particular Rnt,t+j , such a shock has to move either expectations of the (inverse of) inflation
and real returns or the comovement between inflation and the stochastic discount factor (or
a combination of these terms).

For illustrative purposes, we find it useful to make a strong assumption on M: We use
the stochastic discount factor based on the consumption Euler equation for log utility.6 In
that case we get

Mt+1 = β
Ct
Ct+1

This tells us that an investor with log-utility really cares about states of the world where

5The inverse of this return is equal to the expected j period stochastic discount factor, adjusted for
inflation.

6Unfortunately log utility does not fit assets prices well generally, but it is useful to gain intuition.
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consumption growth is low.7 In term of the earlier decomposition, the key covariance term
on the right-hand side now becomes

covt

(
βj

Ct
Ct+j

,
1

πt,t+j

)

What we can take away from this analysis is that fiscal or monetary policy induced changes in
nominal yields must make investors either update their views on average real returns (which
are directly linked to real consumption growth with this specific stochastic discount factor)
and average inflation or the comovement between inflation and real consumption growth
growth.8 In particular, changes in fiscal and monetary policies could change investors’ views
of the government and thus lead them to update their perceptions of future economic growth
and/or future inflation.

3 A Hitchhiker’s Guide to Functional Time Series Meth-
ods

In this section, we give a high-level overview of the functional time series methodology that we
use throughout our paper.9 When large amounts of data are available on economic variables
that are theoretically linked via a functional relationship (such as various nominal yields
linked via the yield curve), such a functional approach can efficiently exploit this functional
relationship.

We assume that observations of the nominal yield curve in a period t can be described
by a function yt(τ) defined over an interval I of possible maturities (between three months
and 30 years in our case) taking real values ( that is, yt : I → R). The yield at time t for
a security that matures in t+ τ is thus given by yt(τ) where τ is a value taken from the
set I. We treat the function yt(τ) as a random variable in a functional space, as it varies
non-deterministically from one period to the next. To be concise, we will drop the argument
τ from the yt function unless needed.

The functional form of the yield curve we use here (Gürkaynak, Sack and Wright, 2007)

7The risk free real return on a j-period security with log utility is given by
[
Et

(
βj Ct

Ct+j

)]−1
.

8Even with richer stochastic discount factors such as those derived using Epstein-Zin utility, consumption
growth is still a key determinant - see for example Campbell (2017).

9More details are provided in the appendix or in Chang, Hu and Park (2022) and Chang, Park and Pyun
(2023b).
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allows us to obtain a yield for all values of τ between the aforementioned bounds of three
months to thirty years. We describe in Appendix D how we, in practice, use a grid of values
to represent the interval I and their corresponding images (yields) for each quarter t.

So far we have not restricted the yield curve in any way - the function yt(τ) can take on
arbitrary value for each maturity τ at any point in time t. We next describe the mild restric-
tion we impose on the function yt(τ) before turning to a description of a finite-dimensional
approximation of this function, which we can then exploit in our empirical analysis.

3.1 Restrictions on the Yield Curve

In order to econometrically exploit the fact that all yields are linked via the yield curve, we
will put one mild restriction on the yield curve. We only study yield curves that are in the
space H = L2(I), the space of square integrable functions.10 While this space of functions
is very general (it includes functions that are not continuous, for example), it still imposes
a surprising amount of regularity. In particular, we can now define a scalar product and a
norm in H: For f and g in the space H we obtain

〈f,g〉=
∫
I
f(x)g(x)dx and ‖f‖=

√
〈f,f〉. (5)

In addition to the inner product and the norm, we also can define a tensor11.

(f ⊗g)v = 〈v,g〉f (6)

for all v in H. In Appendix E we show how to use these constructs (scalar and tensor
products) to define the expectation function and the covariance operator of random functions
in H.

Using results from functional analysis12 we find that the space H is a separable Hilbert
space. These are spaces that admit a scalar product, such as the one defined above, and
have countable bases. This means that every yield curve in H can be expressed as the linear

10The space of all (real) functions ft defined over I such that
∫
I |f(x)|2dx <∞.

11If H ≡Rn, we have f⊗g = fg′, i.e., f⊗g reduces to the outer product, in contrast to the inner product
〈f,g〉= f ′g, where f ′ and g′ are the transposes of f and g. Note that (f⊗g)v = (fg′)v = (v′g)f for all v ∈Rn
in this case

12See for example Folland (1999).
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combination of countable many functions {vi}i=1,2,3,...:13

yt =
∞∑
i=1

αitvi. (7)

Since the functions {vi} are independent of t, once they are determined, the yield curve
yt is fully characterized by the sequence of real numbers (α1t,α2t, . . .). In other words, the
yield curve can be analyzed through a sequence of real numbers, and every sequence of real
numbers can be traced back to a yield curve by combining the basis functions {v1,v2, . . .}
with the sequence (α1t,α2t, . . .).

This approach is different from models of the yield curve that start with focusing on the
level, slope, and curvature of the yield curve (Diebold and Rudebusch, 2012): We are not
imposing a particular set of functions to describe the yield curve - instead, we choose basis
functions that jointly describe most of the fluctuations in the yield curve.

3.1.1 A Finite Dimensional Representation of the Yield Curve

The dimension of a space is given by the number of elements in its basis. By this logic, the
space H is infinite dimensional as the basis {vi}i=1,2,3,... that we used in (7) has infinitely
many elements.

The next step in our approach is to define a finite-dimensional subspace of H. We do this
by considering only functions resulting from a linear combination of the first m elements of
the basis {v1,v2, . . . ,vm}, these functions define the finite-dimensional space Hm (a subspace
of H).

The function yt is not an element of Hm given that we need more than just the first m
elements of the basis to represent it as we can see in (7). However, we can consider the
projection of yt on Hm given by

ỹt =
m∑
i=1

αitvi. (8)

This gives us an equation akin to an observation equation in a state space model

yt =
m∑
i=1

αitvi+wt, (9)

13Note that we have omitted the argument τ of the function, but vi (and yt) still refers to a function.
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where wt = yt− ỹt is the approximation error we make by restricting ourselves to Hm. Under
suitable conditions, this approximation error becomes asymptotically negligible. In what
follows, we assume that {vi} is an orthonormal basis, i.e. ‖vi‖ = 1 for all i and 〈vi,vj〉 = 0
for all i 6= j. Under this assumption, we have

αit = 〈vi,yt〉

for all i and t.
Let us now introduce a mapping from Hm to Rm

Hm 3 ỹt 7→ αt =


α1t

α2t
...

αmt

 ∈ Rm.

This mapping is one-to-one correspondence between Hm and Rm.Therefore, with the basis
{v1,v2, . . . ,vm} and αt = (α1t,α2t, . . . ,αmt)′ we can recover ỹt through (8). The mapping is
an isometry between Hm and Rm, which preserves the norm.14As a result, we can study a
vector autoregression (VAR) for αt by least squares, rather than having to work directly in
a functional space.

Using functional principal components, whose properties we discuss in Appendix C, we
determine a basis of functions {vi}i=1,2,3,... such that its first m elements generate y(m)

t = αt ∈
Rm a “best” approximation of yt. Note that we can thus effectively choose a very efficient set
of basis functions for our purposes rather than restrict ourselves to an a priori chosen basis
function such as monomials {1, τ, τ2, ...}.

Since functional principal components algorithm depend on the data, and since the sample
of the yield curve we use vary with the external shock being analyzed, so does the portion of
the variability explained by these approximations. Our choice of m = 3 explains more than
90% of the variability of yt in every case. This principal components analysis (detailed in the
appendix) also delivers a time series for the vector of weights αt =

(
α1t α2t . . . αmt

)′
.

14We can show that

‖ỹt‖2 =
m∑
i=1
〈vi,yt〉2 =

m∑
i=1

α2
it = ‖αt‖2,

where we use the same notation ‖ · ‖ to denote the norm of a function in Hm and the norm of a vector in
Rm.
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Figure 2: Description of the Functional Principal Components

Note: The first column shows the time series of weights (αit) for each component (one in each row, NBER
recessions in gray). The shape of the component is described in the second column. The last column shows
the range of effects that each component has on the yield curve using the sample mean yield curve (black
line) as a benchmark. The blue (red) lines in the top/middle/bottom panel signify the yield curves obtained
with positive (negative) realizations of the first/second/third weight and the associated basis function.

Figure 2 shows an example of the αit values (left column), the vi’s (center column), and
the range of yield curves generated by time series fluctuations in the α vector, using our yield
curve data as described in Section 4, and in particular the sample mean as the benchmark
value that is perturbed by movements in α.

This vector αt cannot be directly interpreted as yields, as the measurement equation
highlights that only together with the basis functions {v1,v2, . . . ,vm} can we recover the
yield curve. It does, however, serve as the state in our state-space model for the yield
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curve.15 An important feature of this approach is that for a fixed value of τ , the yield yt(τ)
is a linear combination of the elements of αt, which makes construction of impulse responses
straightforward since we assume a linear law of motion for that vector, as we discuss next.

3.2 The Dynamics of αt and the Identification of Impulse Re-
sponses

We posit a VAR law of motion for αt and the instrument for the policy shock of interest
mt.16 In particular, we focus on a VAR(1) for the sake of parsimony:

γt = Aγt−1 +ut, (10)

where γt≡ [mt α
′
t]′. From an applied perspective, our approach can be thought of as modeling

observations on the yield curve (and the instrument) at each point in time t through a state-
space framework with a set of observation equations (equation 9 and the identity mt = mt)
that link the yield of an asset with a specific maturity to a set of basis functions that depend
on the maturity and weights on each basis function, which vary over time, but do not depend
on maturity. These weights represent (a subset of) the states in our state-space model, which
we model as a Vector Autoregression (VAR) as in equation 10.

We identify the shock of interest by assuming a linear relationship between the forecast
error ut and the vector of structural shocks of interest et as

ut = Ωet, (11)

and assume that Ω is computed via the lower triangular Cholesky decomposition of the co-
variance matrix of ut so that E(ete′t) = I,17 as proposed by Plagborg-Møller and Wolf (2021).
The policy shock of interest is related to the first element of et, as we discuss below. This
approach has a number of advantages, even beyond its simplicity. First, it automatically cor-

15The analogy to state space models might be slightly misleading because we first compute the states via
principal components and then go on to model the law of motion for the estimated states, whereas standard
applications of state space models often employ a filtering algorithm (think about the Kalman Filter, for
example) that exploits a posited law of motion for the states when estimating the states. Our approach is
instead very much reminiscent of the standard two-step approach to linear factor models in standard time
series analyses (see, for example, Stock and Watson (2016)). The resulting model of the yield curve is still
in state-space form.

16We estimate a separate VAR for each instrument because the sample sizes for the different instruments
are not the same.

17I denotes the identity matrix.
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rects for possible autocorrelation of the instrument and dependence of the instrument on past
yield curve movements (which are generally thought to encode macroeconomic outcomes).
To see this, it is useful to write the first equation of the set of Equations (10), using Equation
(11):

mt = A1,1mt−1 +
m∑
j=1

A1,j+1αjt+ Ω1,1e
1
t , (12)

where Ai,j is the element of the matrix A in row i and column j. Following Plagborg-
Møller and Wolf (2021), it is worthwhile to point out that this identification approach will
correctly identify normalized impulse responses even if the yield curve itself does not contain
enough information to identify the shock of interest εt (i.e., non-invertibility) and if there is
measurement error wt present in e1

t , so that e1
t = θεt +wt, where θ 6= 0 is a parameter that

influences the strength of identification and wt is an i.i.d. measurement error. This comes
at a cost, as we can only identify normalized impulse responses if there is non-invertibility.
Throughout this paper, we plot impulse responses that increase the first element of et by one
unit (which is equal to a one standard deviation change in the first element of the one-step
ahead forecast error ut). This has the advantage of giving us some sense of magnitude of the
effects of the shock is indeed invertible.

In terms of inference, we use a bootstrap procedure that is detailed in Appendix F. 18

αt and its associated basis functions have a clear interpretation in our application, as we
highlight in Figure (2), which plots the basis functions (center column) associated with the
first three elements of αt - the basis functions resemble the level, slope, and curvature of the
yield curve (Diebold and Rudebusch, 2012). Note, however, that we did not impose these
shapes ex ante.

4 Yield Curve Data and Instruments

For the nominal yield curve, we use the data constructed by Gürkaynak, Sack and Wright
(2007) that can be downloaded from the Board of Governors’ website19. Our sample for
the yield curve begins in June 1961. We use quarterly data; in particular, we use the curve
observed the last day of each quarter as our quarterly yield curve. This ensures that shocks
occurring at any point in a quarter can influence the yield curve in that same quarter. The
exact sample to determine the response of the yield curve to each policy shock is the largest

18This bootstrap procedure is valid, as shown by Chang, Park and Pyun (2023b).
19https://www.federalreserve.gov/data/nominal-yield-curve.htm
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intersection of the yield curve sample and the corresponding shock sample.
As instruments for various government spending shocks we use shocks identified using a

linear VAR as described by Auerbach and Gorodnichenko (2012).20 Using shocks identified
by a VAR as an instrument is common in applied work (see Känzig, 2021, for example). For
tax shocks, we use the series of exogenous shocks extracted and described by Romer and
Romer (2010).

Our instrument for monetary policy shocks is taken from Aruoba and Drechsel (2022),
who use machine learning techniques and natural language processing to supplement Federal
Open Market Committee (FOMC) staff numerical forecasts with information from FOMC
staff documents to predict FOMC decisions. The difference between actual decisions and the
forecasts is then our instrument for a monetary policy shock. One key advantage of using
Aruoba and Drechsel (2022) is that it is available for much longer periods than the popular
instruments based on the high frequency variation of interest rate futures around FOMC
meetings (Kuttner, 2001; Gertler and Karadi, 2015). In Appendix A.1 we show that our
findings are robust to using the instrument created by Miranda-Agrippino and Ricco (2021)
instead.

5 Response of the Yield Curve to Policy Shocks

Throughout, we will present impulse responses for the yield curve by plotting how the entire
yield curve changes h periods after a shock. We refer to h as the horizon of the response,
not to be confused with the maturity of the yield curve, which is represented on the x-axis
in our response plots (measured in years).

First, we focus on the impact response (h= 0) - remember that our yield curve data are
the value of the yields on the last day of the quarter. The responses to fiscal shocks are
plotted using red/orange for various measures of government spending shocks, and green for
tax shocks. To aid comparison with monetary policy, we always plot the responses of the
yield curve to a monetary policy shock in light blue in each figure. The left panel of Figure
5 shows the response to overall government spending, estimated using as an instrument the
government spending shock constructed as in Auerbach and Gorodnichenko (2012). While

20One slight deviation from that paper is that we control for forecasts of overall government spending in
all our VAR specifications. We do so to ensure that our identified shocks are truly unforecastable (Auerbach
and Gorodnichenko (2012) do not do this for all specifications). However, it turns out that the impact of
this change is minimal; the results are very similar if we take the exact specifications from Auerbach and
Gorodnichenko (2012).
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monetary policy moves the short end of the yield curve (the response is significant at the
90 percent level up to a maturity of approximately 10 years), the response to government
spending shocks shows the exact opposite response: there is no significant response up to a
maturity of 12 years, after which the response turns significant.

The right panel shows the response to a tax shock, where the instrument for a tax shock
is those tax changes labeled exogenous by Romer and Romer (2010). Interestingly, the
response to tax shocks is approximately the mirror image of the monetary policy response,
both changing the yield curve on impact (though in opposite directions). Taxes have a more
persistent effect than monetary policy, affecting the yield curve significantly up to a maturity
of 15 years.

Figure 3: Response at Impact of the Yield Curve to a Government Spending Shock (Auerbach and Gorod-
nichenko, 2012) and Exogenouse Tax Change (Romer and Romer, 2010)

Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in blue. The lighter
(darker) shade signifies 90 % (68%) confidence bands. 90% and 68% confidence bands estimated using bootstrap methods.

Next, we ask whether different components of government spending have the same in-
fluence on the yield curve. This question is motivated by Boehm (2020), who shows that
the spending multiplier can differ substantially between government investment and con-
sumption. We construct the instruments for defense spending, government consumption,
and government investment following Auerbach and Gorodnichenko (2012). The left panel of
Figure 4 shows that defense spending shocks qualitatively induce the same pattern as overall
government spending, only the long end of the yield curve moves significantly.21 The same is
true for government investment, as the right panel shows. Government consumption, on the

21Readers might wonder why we don’t use the government defense spending news shock of Ramey (2011)
- our sample only starts after the Korean war, and it is well known (Ramey, 2016) that this instrument has
low instrument relevance in any sample starting after the Korean war.
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Figure 4: Response at Impact of the Yield Curve to a Government Defense Spending Shock (left), Govern-
ment Consumption Spending Shock (center), and, Government Investment Spending Shock (right) (Auerbach
and Gorodnichenko, 2012)

Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in blue. The
lighter (darker) shade signifies 90 % (68%) confidence bands. 90% and 68% confidence bands estimated using bootstrap methods.

Figure 5: Response One Year After of the Yield Curve to a Government Spending Shock (Auerbach and
Gorodnichenko, 2012) and Exogenous Tax Change (Romer and Romer, 2010)

Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in blue. The lighter
(darker) shade signifies 90 % (68%) confidence bands. 90% and 68% confidence bands are estimated using bootstrap methods.

other hand, only moves the very short end of the yield curve, with an even shorter impact
than monetary policy.

Finally, we now look at responses not on impact but one year after the shock happened.
Figure 5 focuses on overall government spending and taxes - the response to components of
government spending one year after the shock can be found in Appendix A.2. We see that at
the 90 percent significance level, all responses are insignificantly different from zero after one
year. The initial effects of any policy shock on the yield curve thus wear off relatively quickly.
Any prolonged effects on the real economy of policy shocks, as long as they are transmitted
through yields, must therefore come from persistent effects of short-term changes in yields.

17



6 Conclusion

We study the effects of monetary and fiscal policies on the yield curve and find that they have
qualitatively very different consequences for the yield curve. These findings are useful for
both policymakers, who often view the yield curve as a major aspect of policy transmission,
in addition to directly encoding a government’s borrowing costs. Furthermore, our results
can be useful as calibration targets for macroeconomists who want to develop quantitative
equilibrium models that take the yield curve seriously.
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A Additional Figures

A.1 Response of the Yield Curve to Monetary Policy Shocks Iden-
tified Using High Frequency Variation

When comparing the responses of the yield curve to monetary policy shocks, two different
studies provide valuable insights. Aruoba and Drechsel (2022) and Miranda-Agrippino and
Ricco (2021) utilize different shocks to analyze the transmission of monetary policy to the
yield curve. The shock identified by Aruoba and Drechsel (2022) focuses on a natural language
analysis, while the shock from Miranda-Agrippino and Ricco (2021) represents a different
perspective, based on high frequency estimation.

Figure A-1: Response at Impact of the Yield Curve to a Monetary Policy Shock (Miranda-Agrippino and
Ricco, 2021)

Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in light blue. The
lighter (darker) blue shade signifies the 90% (68%) confidence band for the response to high frequency monetary policy shock (Miranda-Agrippino
and Ricco, 2021). The confidence bands are estimated using bootstrap methods.

A.2 Additional Results

The following figure shows the response of the yield curve to components of government
spending one year after the shock. These plots confirm that the effects of fiscal policy
become very weak or even negligible after just one year.
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Figure A-2: Response after one year of the yield curve to a Government Defense Spending Shock (left),
Government Consumption Spending Shock (center), and, Government Investment Spending Shock (right)
(Auerbach and Gorodnichenko, 2012)

Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in light blue. The
lighter (darker) blue shade signifies the 90% (68%) confidence band for the response to high frequency monetary policy shock (Miranda-Agrippino
and Ricco, 2021). The confidence bands are estimated using bootstrap methods.

B Data

In this section of the paper, we provide a comprehensive overview of the various data sources
utilized in this paper.

B.1 Yield Curve Data

The yield curve data we use as starting point are taken from the Federal Reserve Board1 based
on the model by Gürkaynak, Sack and Wright (2007). There we obtain a daily estimation
of six parameters β0,β1,β2,β3,φ1 and φ2. These parameters are used to obtain the following
function:

yt(τ) = β0 +β1w
φ1
1 (τ) +β2w

φ1
2 (τ) +β3w

φ2
3 (τ) (A-1)

where the functions wφ1
1 (τ),wφ1

2 (τ), and wφ2
3 (τ) are defined as follows:

wφ1
1 (τ) = 1− e−

τ
φ1

τ
φ1

wφ1
2 (τ) = 1− e−

τ
φ1

τ
φ1

− e
−τ
φ1

wφ2
3 (τ) = 1− e−

τ
φ2

τ
φ2

− e
−τ
φ2

1https://www.federalreserve.gov/data/nominal-yield-curve.htm
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Conditional on φ1 and φ2 these specification is a linear combination of three basis functions
but since these parameters vary over time, contrary to our approach in the main text, the
basis functions are not time-invariant. The daily sample of the yield curve starts from June
14th 1961 and is updated weekly.

B.2 External Shocks

Throughout the paper, we make use of several external shocks borrowed from the literature.
We consider three main groups of shocks: Monetary Policy, Government Spending, and Tax
Changes. In the following section, we describe the data that provides the information for
generating each of these external shocks.

B.2.1 Monetary Policy.

The main references to obtain measures of monetary policy changes are: Aruoba and Drechsel
(2022) and Miranda-Agrippino and Ricco (2021). Additionally, we also consider Romer and
Romer (2004), but in order to obtain the largest sample possible (intersection with the yield
curve), we consider the extension of Romer and Romer (2004) by Silvia Miranda-Aggripino
reported in her personal webpage: http://silviamirandaagrippino.com/s/Narrative-MP.zip

Aruoba and Drechsel (2022) In this paper, the authors apply natural language pro-
cessing techniques to analyze documents prepared by economists at the FOMC meetings.
The goal is to capture the information available to the committee at the time of policy
decisions. Using machine learning techniques, they then predict changes in the target in-
terest rate based on this information and obtain a measure of monetary policy shocks as
the residual. This shock is available from 1982Q3 to 2008Q4. This shock is available at:
http://econweb.umd.edu/ drechsel/files/Aruoba_Drechsel_Data.xlsx

Miranda-Agrippino and Ricco (2021) This shock uses a high-frequency instrument
for monetary policy shocks that accounts for informational rigidities. The series of shocks
are available in the following link: http://silviamirandaagrippino.com/s/Instruments_web-
x8wr.xlsx. This shock’s sample is from 1991Q1 to 2009Q4.

Romer and Romer (2004) In this paper the authors develop a measure of U.S. monetary
policy shocks for the period 1969–1996. Quantitative and narrative records are used to infer
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the Federal Reserve’s intentions for the federal funds rate around FOMC meetings. This
series is regressed on the Federal Reserve’s internal forecasts to derive a measure free of
systematic responses to information about future developments. As mentioned earlier, we
use an extension of this shock provided in the webpage of Silvia Miranda-Aggripino. The
sample period for the extended shock is 1969Q1 to 2007Q4.

B.2.2 Government Spending

We considered two main references to obtain government spending shocks: Auerbach and
Gorodnichenko (2012) and Ramey (2011).

Auerbach and Gorodnichenko (2012) We use the linear (without regime switching)
version of the VAR model described in Auerbach and Gorodnichenko (2012) to obtain gov-
ernment spending shocks. The identification (ordering of the variables), decomposition of
the government spending variable, and the way they control for predictable components of
fiscal shocks are maintained in our analysis.

The variables included in the model are as follows: government spending, which represents
the log real government (federal, state, and local) purchases (consumption and investment);
government revenue, which represents the log real government receipts of direct and indirect
taxes net of transfers to businesses and individuals; and output, which represents the log real
gross domestic product (GDP) in chained 2000 dollars.

To remove the effects of anticipated shocks, we also consider quarterly forecasts of fis-
cal and aggregate variables (government purchases, output, taxes) from the University of
Michigan’s Research Seminar in Quantitative Economics (RSQE) macroeconometric model,
the Survey of Professional Forecasters (SPF) and the forecasts prepared by the staff of the
Federal Reserve Board (FRB) for the meetings of the FOMC. These forecasts are included
in the SVAR to eliminate the effects of “innovations" in fiscal variables that were predicted
by professional forecasters.

The resulting shocks are obtained using the inverse of the Cholesky decomposition of the
estimated covariance matrix and the estimated residuals. The sample period for the shocks is
from 1967Q3 to 2008Q4. Replication files are obtained from http://doi.org/10.3886/E114783V1

Ramey (2011) A narrative method is used to construct richer government spending news
variables from 1939 to 2008. The author uses Business Week, as well as several newspaper
sources, to construct an estimate of changes in the expected present value of government
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spending. The series are extended to 2013 by the author after the publication. Although the
shock series goes back much further, its intersection with the yield curve sample covers only
from 1961Q2 to 2013Q4. https://econweb.ucsd.edu/ vramey/research/govdat3908.csv.

B.2.3 Tax Changes.

For tax changes we replicate the estimation by Mertens and Ravn (2013) to obtain measures
of personal and corporte income tax changes. We also estimate the response of the yield
curve to changes in tax legislation described in Romer and Romer (2010).

Personal and Corporate Income Tax Changes The authors distinguish between changes
in personal and corporate income taxes and develop a new narrative account of federal tax
liability changes in these two tax components. They develop an estimator which uses nar-
ratively identified tax changes as proxies for structural tax shocks and apply it to quarterly
post-WWII data. The sample period for this shock is 1961Q2 to 2006Q4. The replication
files can be obtained from: http://doi.org/10.3886/E112644V1

Tax Changes The authors use the narrative record, such as presidential speeches and con-
gressional reports, to identify the size, timing, and principal motivation for all major postwar
tax policy actions. With their analysis they separate legislated changes into those taken
for reasons related to prospective economic conditions and those taken for more exogenous
reasons. The sample period for this shock is 1961Q3 to 2007Q4, and the shock series can be
obtained from https://www.aeaweb.org/aer/data/june2010/20080421_app.zip.

C Functional Principal Components

The eigenvalues of a compact operator are defined as the non-zero scalars λ for which there
exists a non-zero function v in the underlying vector space such that the operator S applied
to v is a scalar multiple of v. More formally, for a compact operator S defined on a Banach
space or a Hilbert space, the eigenvalue-eigenvector equation is given by:

Sv = λv

Here, v is the eigenfunction associated with the eigenvalue λ, and λ is a scalar. Compact

A-6



operators are typically defined on infinite-dimensional spaces, and their eigenvalues may
include accumulation points or have a discrete or continuous spectrum depending on the
properties of the operator and the underlying space. The eigenvalues of a compact operator
provide important information about its spectral properties and behavior. In the case of a
bounded compact operator on a Hilbert spaces, the eigenvalues are a sequence of numbers
with 0 as only acummulation point.

For a time series of functions y1,y2,y3, . . . ,yT with sample mean ȳ we define the operator

S = T−1
T∑
i=1

(yi− ȳ)⊗ (yi− ȳ)

the operator S is the sample covariance operator of yt.
Let λ1 ≥ λ2 ≥ λ3 ≥ ·· · the eigenvalues of S we call the eigenfunctions v1,v2,v3, . . . the

functional principal components of yt.
There are multiple norms we can use for S. We use the trace norm ‖S‖ to measure the

variability of yt. The trace norm equals the summation of all eigenvalues of the compact
operator

‖S‖= λ1 +λ2 +λ3 + · · ·

A screeplot measures the amount of the total variability explained by a subset of principal
components:

s(m) = λ1 +λ2 + · · ·+λm
λ1 +λ2 +λ3 + · · ·

In the Appendix D we show how to computationally obtain the functional principal
components of a functional time series.

D How to Model the Yield Curve Computationally?

In the main text, we use the interval I = [0.25,30] representing maturities from three months
to 30 years. We use a grid of 1024 equidistant points, from x1 = 0.25 to x1024 = 30.

Computationally, the sample of the yield curve is a matrix Y of dimensions T × 1024,
where each row contains the values yit for i = 1, . . . ,1024 and t = 1,2,3, . . . ,T , representing
the yield in period t and maturity xt.
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The main operation using the data are described as follows:

1. Sample mean yield curve: ȳ = (ȳ·1, ȳ·2, . . . , ȳ·1024). This represents the mean yield curve
in the sample.

2. The scalar product between two functions, is the inner product of their vector repre-
sentation.

3. The tensor product is the outter product of their vector representation.

4. The sample variance matrix S with dimensions 1024×1024, calculated as:

S = (Y − ȳ)′(Y − ȳ)

5. The estimated functional principal components are obtained from the eigenvalue de-
composition of the matrix S. The principal components are given by the eigenvectors
of S, and the portion of the variance explained by each component is given by the
eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ ·· ·

E Random Functions

In this section, we describe some of the main concepts of random functions. Similar to random
variables and random vectors, we define a random function on a probability space (Ω,A,P ),
which consists of a sample space, an event space, and a probability measure, respectively.

Expected function. Given a random function f and an arbitrary element v of H, the
scalar product 〈f,v〉 becomes a random variable. This random variable has an expected
value denoted as E〈f,v〉. The mapping

v 7→ E〈f,v〉

is proven to be a linear functional from H to R. By Riesz’ representation theorem, there
exists a non-random element in H referred to as "Ef", such that

v 7→ E〈f,v〉= 〈Ef,v〉
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In other words, we use the representation of a linear functional as the scalar product with a
fixed element of H to characterize the expected function of the random function f .

Covariance operator. If f and g are random functions taking values in H, then their
covariance operator E(f ⊗g) is generally defined as a linear operator satisfying

〈
u, [E(f ⊗g)]v

〉
= E〈u,f〉〈v,g〉

for all u and v in H.
The combination of these two concepts allows us to define, for example, a functional white

noise (εt) as follows: We set Eεt = 0 for all t ≥ 1, and (εt) to be serially uncorrelated with
E(εt⊗ εt) = Σ for all t≥ 1.

F Bootstrapping

We use the bootstrap to determine confidence intervals for the statistics we estimate regarding
the yield curve and its reactions to external shocks.

In our investigation of the yield curve’s response to an external shock, we consider a
sample of the yield curve that corresponds to the sample of the external shock. The majority
of the external shocks examined in this study occur at a quarterly frequency, so we utilize
the most recent daily observation of the yield curve from the corresponding quarter. This
ensures that we have two identical samples, in terms of size and frequency, for both the yield
curve and the external shock.

In the following, we outline the procedure for generating copies of functional time series
and the external shock, each of size n:

1. Obtain the residuals from estimating model (10): ût = γt− Âγt−1.

2. Randomly select, with replacement, a sample of n residuals from the set {û1, û2, . . . , ûn},
and center (demean) it to obtain a new set of residuals (u∗t ).

3. Generate a new time series γ∗t using the equation γ∗t = Âγ∗t−1 +u∗t with the (u∗t ) gener-
ated in the previous step and the initial value γ∗0 = γ0. Note that Â is the same as in
the first step.

With the new copy of the time series {γ∗t }t=0,1,2,...,n, estimate model (10) and obtain
û∗t = γ∗t − Â∗γ∗t−1. With the new estimation, obtain impulse response functions of γ∗ as
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discussed in the main text. Then, use the basis functions v1,v2,v3, . . . ,vm to recover a yield
curve from the components of the response that belong to the α vector. Repeat the steps
2-3 a large number B of times (e.g., B = 1000). Calculate the desired confidence bands as
the quantiles of the B saved estimates.
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