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Abstract 

 

Crude oil is a valuable commodity that significantly impacts the global economy. 

Therefore, protecting against the risks associated with its price volatility is 

necessary. This thesis focuses on regime shift periods and the structural breaks in 

the oil price. We do this by focusing on seven historical events significantly 

influencing the oil price's volatility structure. The models we use are naïve 1-to-1 

hedge, OLS, standard GARCH, GJR-GARCH, and exponential GARCH. We find 

the minimum variance hedge ratio of hedge portfolios and that no model 

outperforms the others. We see that to estimate the volatility accurately, it is crucial 

to consider the characteristics of the given historical event. Additionally, imposing 

a perfect correlation between spot and futures diminishes the model's efficacy, 

emphasizing the significance of precisely measuring their correlation when 

selecting an appropriate strategy for an oil shock. 
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1. Introduction 

1.1 Motivation 

 

The crude oil market is highly volatile and has suffered several price shocks. Crude 

oil is one of the world's most essential commodities, significantly impacting global 

economic growth. However, the price of crude oil can be highly volatile, with sharp 

fluctuations caused by factors such as changes in supply and demand and 

geopolitical tensions. For many oil-exporting countries, oil or gas reserves are the 

single most important national asset, and any change in the price of this asset affects 

the nation's wealth and the well-being of its citizens. Therefore, hedging crude oil 

exposure, among exposure to other volatile commodities, is an important aspect of 

risk management for sovereign wealth funds, oil producers, exporters, and 

importers. Changes in the price of oil are very volatile, and hedging this exposure 

during high volatility regimes is increasingly important (Scherer, B, 2010). 

However, the effectiveness of these hedging strategies can depend on the volatility 

model used to estimate risk.  

  

This thesis aims to compare the performance of different volatility (GARCH) 

models in hedging against crude oil price shocks, using empirical data to test their 

effectiveness in different market conditions. By doing so, this study seeks to provide 

insights into the best practices for managing crude oil price risk in other contexts 

and contribute to the ongoing research in the field of risk management. We will add 

the Covid-19 pandemic and the Ukraine war to the high volatility events we want 

to cover. By adding events that have had a considerable volatility impact on the 

crude oil market, we aim to arrive at conclusions that support the existing literature 

on this field. The number of studies on forecasting oil price volatility has gradually 

increased, indicating its growing importance in the literature. 
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1.2 Contribution to existing literature and the industry 

 

We want to examine if there is one universally best solution when determining how 

to hedge crude oil returns. More specifically, when estimating the hedge ratio in-

sample, which statistical model yields the best hedging result measured in variance 

reduction in the out-sample when the out-sample contains a shock to Brent oil 

returns. We want to compare the results of using different hedging strategies; these 

five hedging strategies are: 

• Naïve 1-to-1 hedge. One long unit of spot Brent is hedged by shorting 1 

unit of Brent futures. This static 1-to-1 hedge ratio is carried out throughout 

the out-samples. 

• Simple OLS hedge. This method runs simple linear regression in-sample, 

and the resulting static beta (𝛽) coefficient is used as the hedge ratio out-

sample. 

• Standard GARCH, GJR-GARCH, and E-GARCH. The GARCH model is 

fitted in-sample, and volatility is forecasted one day ahead. This forecast is 

then rolled throughout the out-sample and the hedge is adjusted based on 

the output. Static correlation from the in-sample is used to calculate the 

time-varying hedge ratio. 

 

With this method, we want to find out which strategy performs best, considering 

the regime shift due to the shock in oil markets. To the best of our knowledge, this 

study has yet to be conducted, including the more recent oil shocks resulting from 

Covid-19 and the Ukraine war.   

 

Chun et al. (2020) compared volatility models, more specifically standard GARCH, 

SV (stochastic volatility), and diagonal BEKK (named after Baba, Engle, Kraft & 

Kroner, 1990), in terms of crude oil price shocks and hedging performance. They 

test the models on five historical events. We aim to build upon this study by 

extending the number of historical events by including the recent Covid-19 

pandemic and Russia-Ukraine war, as these events have significantly impacted the 

global oil market. We want to see if incorporating models with asymmetric behavior 
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and leverage effects on these historical events using GJR-GARCH and E-GARCH 

will prove valuable models for crude oil volatility. A study by Hansen et al. (2003) 

aims to select the superior forecasting models from a more extensive set containing 

various GARCH models and SV using the MCS (model confidence set) method. 

Here the superior forecasting model is the one that produces the minimum expected 

loss. They find that the best-performing models have a leverage effect, which is the 

asymmetric response in volatility to positive and negative shocks. The leverage 

effect is vital for understanding stock return dynamics, as it is observed empirically 

that the volatility tends to rise in response to bad news and tends to fall after good 

news. It is desirable if the GARCH models prove useful since GARCH models are 

more computationally convenient than, e.g., SV. 

 

Furthermore, we will consider more simple hedging approaches. This should 

contribute to academia and industry practitioners by showing if there is a universal 

best way to hedge Brent oil exposure. If there is one best way in terms of variance 

reduction, will it also be the best strategy considering transaction costs, simplicity, 

and practical replication of the hedge. 

 

Using daily data of Brent crude oil prices (both spot and futures) from 1988 to 

2022, we use five strategies to find one universal method to hedge crude oil in 

volatile regimes during this period. Specifically, we employ the naïve 1-to-1 

hedge, OLS hedge, and three different GARCH models. We train the models in-

sample, which is before the shock has occurred. Then we test it on the out-sample, 

the volatile period resulting from the oil shock.  None of the five strategies we 

covered significantly outperformed the other. We highlight the importance of 

correctly estimating the correlation between spot and futures returns to choose the 

most suitable model. Our findings reveal a trade-off between risk and return, 

indicating that risk-return preferences and the abovementioned factors must be 

carefully considered to find an appropriate yet efficient hedging strategy for 

various oil shocks. 

 

Six sections make up the remainder of this thesis. Section 2 gives some 

background information on the oil market, a description of the historical events, 
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how to hedge oil price volatility, and the current hedging practices of oil 

companies. Section 3 is a review of the prior literature that is relevant to this topic. 

Section 4  outlines the methodology, Section 5 describes the data,  and Section 6 

discusses the findings. Finally, Section 7 concludes the thesis. 
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2.0 Background 

2.1. Characteristics and risk factors of the oil market  

 

The oil market is a complex and dynamic system influenced by a wide range of 

factors, including geopolitical tensions, changes in the global economy, and supply 

and demand dynamics. For many industries, oil is a necessary input and has few 

substitutes, which means that oil demand is often relatively inelastic in the short 

term. The Organization of Petroleum Exporting Countries (OPEC) controls a 

significant portion of global oil production and can influence prices through 

production quotas. According to the International Energy Agency's Oil Market 

Report, the global oil market has experienced significant price volatility in recent 

years. In addition, the report notes that the global oil market is increasingly 

interconnected, with production levels in one country impacting prices and supply 

across the entire market. Also, the oil market involves complex supply chains, 

including drilling, refining, transportation, and storage, making it difficult to predict 

and manage risks. These characteristics make the oil market challenging and 

unpredictable for companies and governments.  (Oil Market Report, 2021) 

 

The oil market is also influenced by the increasing role of financial markets, where 

oil prices are driven by financial speculation rather than just supply and demand 

factors. Using monthly data from January 1990 to May 2019, Chatziantoniou et al. 

(2021) examined the determinants of oil price volatility. They found that financial 

indicators have the most significant influence on the oil market. Changes in investor 

sentiment and speculation can drive oil prices up or down, even without 

fundamental changes in supply and demand.  The financialization of the oil market 

makes it vulnerable to financial bubbles that can contribute to systemic and non-

systemic crises. 

  

Geopolitical events are a crucial risk factor for oil price volatility. According to 

pioneering research by Hamilton (1983), the fact that a relatively small number of 

firms produce most of the crude oil is what essentially causes historical oil price 

shocks.  Geopolitical events like the Gulf War and Iraq War have caused disruptions 
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in oil supplies from central global producers. If there are to be supply and demand 

imbalances for oil, this can lead to price volatility and create risks for producers, 

consumers, and traders. Meng & Liu (2019) have shown that oil production 

uncertainty can affect future volatility. 

 

Additionally, weather-related disruptions can lead to oil price fluctuations. Extreme 

weather events, such as hurricanes, can disrupt oil production. Furthermore, 

changes in environmental regulations and climate change concerns can affect the 

oil demand and create new risks for producers and investors. (U.S. Energy 

Information Administration, 2023) 

  

Overall, the oil market is a complex and dynamic system influenced by various 

factors, from global economic trends to natural disasters and geopolitical tensions. 

Understanding these characteristics is essential for companies and governments 

seeking to manage their oil price risk exposure and navigate this critical market's 

challenges. 

2.2 The historical events 

 

Seven historical events that have influenced the volatility of the oil price are 

considered in this study. In this subsection, we will go into more detail about the 

crisis and the type of oil shock it brought about. 

  

During the 1990-1991 Gulf War, oil price volatility increased as prices rose in 

response to concerns about supply disruptions in the Middle East. In the months 

after Iraq’s invasion of Kuwait in August 1990, oil prices increased more than 

100%, according to the US Energy Information Administration. The price spike 

was driven by concerns that the conflict could spread to other oil-producing regions 

and disrupt global supplies.  In addition to fears of supply disruptions, the Gulf War 

boosted oil demand as countries built up stockpiles of reserves in anticipation of 

potential supply shortages. This increased demand further contributed to the upward 

pressure on prices. The Gulf War price shock significantly impacted the global 

economy, with rising energy costs leading to inflation and slowing economic 
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growth in many countries. The effect was particularly pronounced in the United 

States, where high oil prices led to a recession in 1991. (Looney, 2003) 

  

The Asian financial crisis of 1997-1998 caused a significant decline in oil prices. 

The crisis was triggered by a combination of factors, including substantial capital 

inflows to Southeast Asia, high levels of debt, and fixed exchange rates that made 

countries vulnerable to speculative attacks. As a result of the crisis, several 

Southeast Asian economies experienced severe economic downturns, with a sharp 

drop in consumer demand and industrial production. The decline in economic 

activity in Asia led to a significant decrease in oil demand, as the region was a major 

consumer of oil and petroleum products. The crisis increased uncertainty in the 

global oil market as investors and traders became more risk-averse and focused on 

the potential for further economic turmoil in Asia. This increased volatility in the 

oil market, with daily price swings becoming more pronounced. (Yue, 1998) 

  

The Iraq war in 2003 significantly impacted world oil prices, resulting in the so-

called “fear premium” price shock. The fear premium is a term that describes rising 

oil prices due to fear of potential supply disruptions or geopolitical instability rather 

than actual supply disruptions. In the case of the Iraq war, concerns about possible 

damage to Iraq’s oil infrastructure and the possibility of broader conflict in the 

Middle East gave rise to fears of supply disruptions. When tensions between the 

United States and Iraq grew in the months before the war, oil prices steadily 

increased. Brent crude oil prices increased from about $25 per barrel in early 2003 

to over $40 per barrel by April 2003 after the beginning of the conflict in March 

2003. Fears that the conflict would cause interruptions in Middle Eastern oil 

supplies, which make up a sizable share of the world’s oil production, led to the 

price shock. The fear premium continued to be a factor in oil markets for several 

years after the war ended, as ongoing conflicts and tensions in the region led to 

ongoing concerns about potential supply disruptions. (Looney, 2003) 

  

The Great Financial Crisis of 2007–2008 caused individuals and businesses to cut 

back on spending, which resulted in a significant decline in oil consumption. The 

collapse of the U.S. housing market set off the crisis, which resulted in a global 
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recession and a sharp decline in demand for oil and other commodities. As a result, 

there was an excess of oil on the market, and oil prices dropped. For instance, the 

cost of Brent crude oil dropped from a peak of over $145 per barrel in July 2008 to 

under $40 per barrel in December of that same year. There was a massive decline 

in oil demand as the crisis moved from the US to other regions, which pushed oil 

prices lower. The financial crisis not only affected demand but also significantly 

affected financial investors, which in turn had a significant impact on oil markets. 

Several investors withdrew their funds from oil and other commodities as the crisis 

worsened in favor of safer alternatives like Treasury bonds. This increased the 

downward pressure on oil prices even more. This crisis demonstrated the 

interconnectedness of financial markets and the real economy. (Hamilton, 2009) 

The shale boom in the early 2010s caused a significant increase in oil production. 

The development of shale oil production technology led to an increase in oil supply 

in the US, which disrupted the global oil market and contributed to a period of low 

oil prices. The shale boom caused a shift in the balance of power in the oil market, 

with the US becoming a major producer and exporter of oil. However, the rapid 

expansion of shale oil production also led to an oversupply of oil, which put 

downward pressure on prices and increased market volatility. As output from shale 

formations increased, it became more difficult to predict future supply and demand 

levels, contributing to increased volatility. (Bjørnland & Zhulanova, 2019) 

  

The COVID-19 pandemic led to a global economic downturn and a sharp decrease 

in oil demand, as travel restrictions and lockdown measures reduced transportation 

and economic activity. Before and during the COVID-19 pandemic, the paper of 

Altig et al. (2020) considered several economic uncertainty indicators for the US 

and UK: implied stock market volatility, newspaper-based policy uncertainty, 

Twitter chatter about economic uncertainty, subjective uncertainty about business 

growth, forecaster disagreement about future GDP growth, and a model-based 

measure of macro uncertainty. In response to the pandemic and its economic 

impact, all indicators show massive uncertainty rises, with most indicators reaching 

all-time highs. According to the Current Population Survey, unemployment 

increased from 3.5% in February 2020, the lowest rate in more than 60 years, to 

14.7% in April, the highest rate in 80 years. Between 2019Q4 and 2020Q2, the US 
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GDP fell 11.2%, the most significant drop since the Great Depression. In the UK, 

an identical scenario of dramatically declining output emerged, with GDP plunging 

a record 20.4% in April-June after falling 2.2% in January-March. The COVID-19 

contraction surpasses any prior US or UK incident in the modern era in terms of 

pace and scope. The paper also gathered evidence that the COVID-19 epidemic and 

its economic consequences have no comparable historical counterparts in at least 

two ways: The suddenness and magnitude of the significant job losses and the 

severity of the economic collapse compared to the scale of the mortality shock. The 

unusual scope and character of the COVID-19 crisis help to understand why it has 

resulted in such a dramatic increase in economic uncertainty. This economic 

uncertainty undoubtedly led to increased oil price volatility. As uncertainty about 

the pandemic and its economic impact grew, oil prices became more volatile, with 

daily price swings of 10% or more becoming increasingly common (Sharif et al., 

2020). In March 2020, the price of Brent crude oil fell to its lowest level in nearly 

two decades, as concerns about the pandemic and its impact on the global economy 

led to a collapse in demand for oil. West Texas Intermediate (WTI) crude oil futures 

dropped to negative prices for the first time in April 2020, indicating that producers 

were willing to pay buyers to take oil off their hands. 

  

In 2022, Russia invaded Ukraine, disrupting oil and gas markets. The Russia-

Ukraine war has been described as the most severe war in Europe after the second 

world war (Adekoya et al., 2022). Russia is one of the largest producers and 

exporters of crude oil. Therefore, the war caused a shortage of supply of the 

commodity and increased prices. It has been eight years since the price of crude oil 

reached such a high level.  Although the war is between Russia and Ukraine, it has 

caused discussion internationally with economic sanctions against Russia placed by 

the U.S. and much of the West. One could expect that the supply shock followed 

by the Russia-Ukraine war will influence European countries and China because 

they import much oil from Russia. Other non-European countries are industrialized 

countries that use crude oil in their production activities. 

 

These events underscore the importance of understanding the relationship between 

the oil market and the global economy and the potential impact of economic and 

political events on oil price volatility. Most of the circumstances referred to above 
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can be classified as geopolitical shocks, primarily caused by political tensions and 

conflicts that significantly impacted the global oil market. These events include the 

Gulf War, the Iraq War, the Russia-Ukraine War, and the COVID-19 pandemic.  

However, the shale boom in the United States was primarily driven by changes in 

the domestic oil industry rather than global political events. Similarly, the Great 

Financial Crisis was caused by financial and economic factors rather than 

geopolitical tensions, although it significantly impacted the global oil market. 

 

Understanding the source of oil price volatility for various crises can improve the 

accuracy and reliability of a volatility model. The model can be tailored to better 

capture and forecast changes in oil volatility by identifying the specific factors that 

drive oil price fluctuations during various crises. This information can also be 

helpful in developing hedging strategies better suited to each crisis's specific 

characteristics. For example, during a crisis caused by geopolitical tensions, such 

as the Russia-Ukraine war, hedging strategies that focus on political risk may be 

more effective than those that rely solely on market fundamentals. 

2.3 Hedging crude oil price risk 

 

According to Daniel´s (2002) research, hedging strategies can significantly 

decrease oil price volatility while not affecting returns significantly. Moreover, 

hedging provides the additional advantage of increased predictability and certainty.  

 

Market participants and investors can hedge against oil price risk using futures 

contracts. Crude oil futures markets are vital to global commodity trading, allowing 

producers, traders, and investors to manage their price risk exposure. The primary 

function of crude oil futures markets is to provide a mechanism for buyers and 

sellers to hedge against price fluctuations by agreeing to a future price for oil. In 

the case of crude oil, futures contracts typically involve the delivery of a specified 

quantity of crude oil at a future date. Hedging through trading futures contracts is a 

method used to limit or minimize the risk of adverse price movements. The 

underlying principle is that cash and futures prices for the same commodity 
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typically have a correlated movement. Consequently, the fluctuations in the value 

of a cash position can be countered by corresponding changes in the value of an 

opposite futures position (Chang et al., 2011). Futures contracts are a preferred 

hedging instrument because they offer high liquidity, fast execution, and lower 

transaction costs.  

 

Salisu & Adediran (2020) investigated gold as a hedge against crude oil price risk 

during Covid-19. Their results showed that gold could be a safe haven against oil 

price risk. Other precious metals like silver, platinum, and palladium can also be 

used as portfolio rebalancing tools to minimize risks associated with volatile oil 

prices. Adekoya & Oliyide (2020) examined seven industrial metals as a potential 

hedge against oil price shocks. They found they can provide a partial or complete 

hedge against oil demand shocks, not supply shocks. Wu et al. (2011) found 

significant spillovers from crude oil prices to corn crashes and futures prices, and 

that after the introduction of the Energy Policy Act of 2005, corn markets have 

become much more connected to the crude oil markets. They tried implementing a 

cross-hedging strategy for managing corn price risk using oil futures. However, this 

provided only a slightly better hedging performance than traditional hedging in corn 

futures markets alone. Yahya et al. (2019) argue that the correlations between oil 

and agricultural commodities have strengthened since 2006. Consequently, the 

higher correlations limit the hedging capabilities of commodities against the oil 

price movements and find that commodities are neither a safe haven nor a hedge 

against oil volatility. 

 

Mokni et al. (2022) investigated the hedge and safe-haven properties of green bonds 

against oil price shocks and uncertainty, comparing them to the roles of gold, 3m 

European government bills, and 3m T-bills in the United States. They separate oil 

shocks into supply, demand, and risk shocks. The study's findings indicate that 

green bonds are more appropriate as hedging and safe-haven tools against oil price 

shocks and uncertainty, depending on whether the oil shocks are supply, demand, 

or risk shocks. They discover that under bearish green bond market conditions, 

green bonds act as a powerful hedge and safe haven against structural oil shocks. 

The findings reveal that green bonds outperform gold and conventional bonds as 
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hedging and safe-haven strategies against oil price shocks and uncertainties. Green 

bonds fund environmentally friendly projects that should withstand recessions and 

weak markets. Other assets, such as equities and commodities, suffer during this 

stage of the business cycle. 

 

Moreover, Dogan et al. (2023) examined the dynamic interdependence and 

causality of crude oil, green bonds, commodities, geopolitical risks, and policy 

uncertainty. They confirm the existence of bidirectional causality between green 

bonds and commodities markets. Their findings support the idea that green bonds 

are safe havens in times of turmoil. Green bonds' hedging properties suggest that 

they will be more utilized in investor portfolio distribution in the future. 

 

The primary challenge of futures hedging revolves around identifying the optimal 

hedge ratio (OHR), which denotes the proportion of exposure to a hedging 

instrument concerning the value of the hedged asset. The minimum-variance hedge 

ratio (MVHR) model is one of the most employed hedging techniques, whereby the 

goal is to minimize the variance of the hedged portfolio. By employing the 

minimum variance hedge ratio, investors can produce a more efficient and effective 

hedge against price changes in a specific asset or portfolio. The objective is to 

reduce the total position's exposure to market volatility while leaving room for 

potential gains from upward price moves. The minimum variance hedge ratio is 

crucial in risk management and hedging methods, especially in unpredictable 

markets and ambiguous economic situations. 

 

2.4. How oil firms hedge in practice 

 

Compared to the intense margin of hedging, fewer studies have explored how 

corporations effectively hedge, most likely due to a lack of firm-level data on 

derivatives portfolios. The accounting rules for hedging require entities to disclose 

the level of an entity´s derivative activity. However, there can be some variances in 

practice regarding how much information each company discloses about the 

instrument types, hedging volume, and average hedge price. 
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Ferriani and Veronese (2022) explore hedging and investment trade-offs in the oil 

industry in the United States. The research is based on a new firm-level dataset of 

over 100 E&P US oil producers from 2007 to 2016. They manually collected 

detailed data on derivative contracts to hedge against oil price risk from the 

corporations' annual reports (10-K). The corporations' stated hedging instruments 

are grouped into seven distinct groups. Examples include futures/forward contracts, 

swaps, collars, and options. They note that roughly one-third of firms do not hedge, 

with a notable peak around the 2008 oil price slump. Furthermore, hedging activity 

is concentrated in several derivative instruments, mainly swaps, collars, and three-

way collars. According to the survey, swaps are the most employed hedging 

instrument, accounting for almost 50% of the sample. Collars and three-way collars 

prove to be attractive since they are less expensive.   

 

Mnasri et al. (2017)  investigate the motive for hedging across US oil producers 

from 1998 to 2010. Their findings highlight the importance of oil market conditions 

in determining hedging strategies. They show that when oil prices fall, producers 

utilize stricter linear hedging tactics to lock in predetermined prices and eliminate 

any deficit in future earnings. On the contrary, when oil prices rise, oil producers 

prefer nonlinear hedging contracts alone or in combination with linear contracts to 

profit from the price increase. They also collected information about the nature of 

hedging instruments in use. Swap contracts, put options, costless collars, forward 

or futures contracts, and three-way collars are the most common hedging products. 

Swap contracts are the most often used hedging vehicles, accounting for 45.25% of 

all oil hedging. With 37.11%, the costless collar is the second most common 

instrument. Next is put options with 11.85%. Forward or futures contracts, with 

2.78%, and three-way collars, with 3.02%, are the least common instruments. 

 

Oil prices experienced major shocks from late 1997 to 2010, including the Asian 

crisis in late 1997, the Iraq conflict in early 2003, and the global financial crisis that 

began in 2007. Some of these shocks disturbed oil supply and demand, resulting in 

short-term price swings, but others had a longer-term impact. For example, the Iraq 

war increased oil prices from 2003 to early 2006, resulting in a protracted fall in the 

frequency with which oil companies used pure linear hedging contracts. Regarding 

uncertainty, firms using linear contracts have higher oil production uncertainty. As 

predicted, oil producers prefer using nonlinear instruments to profit from upside 
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potential when oil prices are increasing. The median comparison shows that oil 

producers that use linear hedges have larger firms than users of nonlinear contracts. 

 

It is worth mentioning that integrated firms tend not to hedge. Integrated firms have 

a combination of midstream and downstream operations that act as a natural hedge 

against commodity price volatility. As such, integrated firms are less likely to hedge 

in any particular year, given their ability to partially offset any losses from declining 

commodity prices through higher margins on refining and retail operations. Also, 

very few of them report hedging positions. (Mo et al., 2021) 

 

In this study, we are constructing a minimum-variance hedge using futures 

contracts. Futures contracts are widely recognized as a good risk management tool, 

and they are regularly utilized to hedge a commodities obligation (Yu et al., 2023).  

Trading futures contracts is popular among oil market players because it often 

includes low transaction costs. However, research suggests that oil companies 

rarely employ futures contracts. Swaps are the most frequently used linear contract, 

while collars are the most used non-linear contract. 
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3.0. Literature Review 

 
Since markets are efficient and investors can hedge themselves, according to 

Modigliani and Miller (1958), hedging cannot create value. Nonetheless, the 

hedging literature offers theoretical justifications and, to some extent, empirical 

proof that hedging can increase a firm's value. As McDonald (2014) specified, a 

hedge is an investment in a derivative whose value is based on an underlying asset, 

such as oil price. Old corporate finance hedging ideas like Keynes' thesis, which 

contends that the derivative market is an insurance mechanism, provide the basis 

for modern hedging theories (Keynes, 1930). 

 

We will compare different models to estimate the optimal minimum-variance hedge 

ratio (MVHR). MVHR is the most widely used hedging strategy to find the ratio of 

futures to hedge. Due to the imperfect correlation between spot and future prices, 

Johnson and Stein (1960) suggested a minimum-variance hedge ratio strategy. This 

strategy was formally proposed by Ederington (1979), in which the ideal hedging 

ratio is calculated by regressing spot prices on future prices using ordinary least 

squares (OLS). Additionally, he put forth a metric for measuring the success of 

hedging, which compares the variance reduction of a portfolio with hedging to an 

unhedged spot position. 

 

Given that spot and futures prices vary over time, Ederington (1979) and Baillie & 

Myers (1991) suggest using a time-varying variance and covariance to measure the 

volatility of the financial and macroeconomic variables. Floros & Vougas (2004) 

and Salvador & Aragó (2014) found that a time-varying MVHR outperforms a 

constant MVHR regarding hedge performance. 

 

Wang et al. (2019) compared the minimum-variance and minimum-risk 

frameworks for futures hedging in crude oil markets, and they found that the 

optimal hedge ratio is different for the two frameworks. They used both constant 

hedge ratio models and dynamic hedge ratio models. They found that constant 

hedge ratio models, like OLS, performed best when the goal was to minimize the 

portfolio variance. If the objective is to reduce riskiness, the dynamic hedge models 

performed best. Byström (2003) claims that while GARCH techniques reduce 

return volatility, they fall short of the traditional OLS strategy in terms of lowering 



 

 16 

 

 

 

portfolio variance. They suggest that hedgers use a combination of both constant 

and dynamic models to obtain the optimal hedge. 

 

Given its simplicity, companies have widely used the naive 1-to-1 hedge as a 

benchmark. Furthermore, the transaction costs are minimal since there is no need 

to rebalance the hedge position (Wang et al., 2015). Theoretically, one could expect 

that the minimum variance framework would outperform the naive strategy. 

However, several studies have shown that this may not be the case. Complex and 

more sophisticated strategies do not necessarily provide better hedging performance 

than simple ones, given that more parameters need to be estimated. Hence it may 

produce larger estimation errors in the estimates. Nonetheless, Wang et al. (2015) 

examined the performance of naive and minimum variance hedging strategies for 

24 different futures markets, including underlying assets like commodities, 

currencies, and stock indices. They find that the naive strategy gets outperformed 

by 18 other hedging strategies, such as OLS and regime-switching models. 

 

One limitation of OLS is the constant variance-covariance matrix, which is difficult 

to accept for a highly volatile oil market. Therefore, researchers have turned to 

using time-varying hedge ratios. Engle (1960) proposed the autoregressive 

conditional heteroscedasticity (ARCH) model to better describe financial time 

series characteristics. Bollerslev (1986) extended this model to generalized 

autoregressive conditional heteroscedasticity to suit more general situations. 

Parametric models, such as GARCH models, assume that the underlying 

distribution of oil price returns follows a certain statistical form and estimate the 

parameters of this form using historical data. According to Kroner and Sultan 

(1993) and Baillie and Myers (1991), bivariate GARCH models produce better 

hedge performance than the OLS method. The advantage of these models is their 

simplicity and interpretability, but they may not accurately capture more complex 

patterns in the data. The paper of Chun et al. (2019) highlights the importance of 

considering structural breaks in the oil price when measuring its volatility, or else 

the results may lead to biased or misleading estimates. They found that the GARCH 

model often fails when this matter occurs. Bina & Vo (2007) showed that the 
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GARCH model fits crude oil returns well because they are heavy-tailed distributed. 

Zanotti et al. (2010) found that dynamic GARCH models perform significantly 

better than other models in the case of high standard deviation of returns and 

conditional correlations. Hence, many studies have used GARCH models to 

investigate the volatility of oil returns. 

 

A well-known addition to the basic GARCH model, the GJR-GARCH model, 

provides for the asymmetric impacts of positive and negative returns on conditional 

volatility. It has been demonstrated in numerous studies to be effective at capturing 

the volatility dynamics of financial time series. Glosten et al. (1993) examined the 

performance of the GJR-GARCH model. They found that the GJR-GARCH model 

provided a good fit for the volatility dynamics of stock returns and outperformed 

other models, such as the standard GARCH and exponential GARCH models. In 

recent years, studies have also shown that the GJR-GARCH model performs well 

in capturing the volatility dynamics of other financial time series, such as exchange 

rates, commodities, and interest rates. Engle et al. (1990) found that the GJR-

GARCH model outperformed other models in estimating the volatility of exchange 

rates, while Liu et al. (2015) found that the GJR-GARCH model was the best 

performer in estimating the volatility of commodity futures. 

  

E-GARCH is a popular extension of the standard GARCH model, allowing for 

asymmetry and leverage effects in the volatility process. One of the early studies 

that examined the performance of the EGARCH model is the work of Nelson 

(1991). He found that the EGARCH model provided a good fit for the volatility 

dynamics of stock returns and outperformed other models, such as the standard 

GARCH model. Since then, numerous studies have used the EGARCH model to 

model the volatility dynamics of various financial time series, such as exchange 

rates, stock market indices, and commodity prices. Ding et al. (1993) found that the 

EGARCH model provided a better fit to the volatility of exchange rates than other 

models, while Baillie and Bollerslev (1990) found that the EGARCH model was 

the best performer in modeling the volatility of stock market indices. Runfang et al. 

(2017) estimated the crude oil market volatility using GARCH and EGARCH 
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models and found that EGARCH outperforms GARCH in terms of RMSE (reduced 

mean squared error). Also, they applied an MSGARCH (Markov-switching) model 

and found that it could further improve forecasting accuracy. 

  

Wei et al. (2010) used linear and non-linear GARCH class models to forecast crude 

oil price volatility. Their research concluded that none of the GARCH-class models 

outperformed the others in all situations. Still, the nonlinear models perform better 

than the linear ones in long-run volatility forecasting of crude oil prices. Herrera et 

al. (2018) found that GARCH (1,1) has good forecast accuracies for short forecast 

horizons, EGARCH (1,1) gives the most accurate forecast for medium horizons, 

and MSGARCH shows superior forecast predictivity for longer horizons.  

 

Previous studies have argued for using regime-shifting models to capture the 

changes and volatility shocks in oil prices. Vo (2009) incorporated regime shifting 

in a stochastic volatility model and found clear evidence of regime shifting in the 

oil market. Regime-shifting models can be a valuable tool for capturing the 

structural breaks in the data. Ewing and Malik (2017) modeled asymmetric oil price 

volatility under structural breaks. They found that both good and bad news has a 

significant effect on the oil price volatility if structural breaks are accounted for in 

the model, and to estimate the oil price volatility accurately, it is best to include 

both asymmetric effects and structural breaks.  

  

Pan et al. (2017) proposed a regime-switching GARCH-MIDAS (Mixed Data 

Sampling) model to investigate the relationship between oil price volatility and 

macroeconomic fundamentals and to account for structural breaks in the oil price 

volatility. One of their findings was that macroeconomic fundamentals could 

provide helpful information regarding future oil volatility beyond historical 

volatility. Zhao (2022) used a GARCH-MIDAS model to investigate influencing 

factors on oil price volatility from four perspectives: macroeconomic factors, 

commodity attributes, geopolitical events, and alternative energy. His findings were 

that, in the long run, supply and demand continue to be the most influential factors 
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of oil price volatility. The U.S. dollar exchange rate, inventories, and geopolitical 

events have roughly the same effect on oil price volatility.  

 

In contrast, alternative energy has a negligible effect and almost no influence on the 

volatility. Huang et al. (2023) used a rational GARCH-MIDAS model to investigate 

which uncertainty index is most suitable in terms of forecasting performance for the 

Chinese crude oil futures markets, and according to their empirical findings, their 

chosen uncertainty indices most definitely forecast the Chinese crude oil futures 

volatility. Including the uncertainty index, GPR provides more accurate volatility 

estimates than other models. Zavadska et al. (2018) analyzed the volatility in the oil 

market during crises with GARCH models. They found that the series exhibited 

higher volatility spikes for oil supply and demand shocks like, e.g., the Gulf War. 

However, for Asia and GFC, the market volatility indirectly impacted the oil 

market. Supply and demand-related shocks are associated with higher levels of 

uncertainty, while economic and financial crises exhibit more prolonged levels of 

persistence.  

 

Fang et al. (2017) found that economic policy uncertainty (EPU) significantly and 

positively influences the long-run oil-stock correlation. Liu et al. (2018) 

investigated the role of GPR (geopolitical risk) and GPRS in forecasting oil 

volatility. They found that serious geopolitical risk (GPRS) contains valuable 

information for the recent future oil volatility and can provide the best economic 

gains. Oil market investors and government policymakers should pay more 

attention to extreme geopolitical events and serious geopolitical risks in the context 

of risk management and portfolio allocation. Kang et al. (2013) showed that 

increases in the price of oil are associated with significant increases in economic 

policy uncertainty if not explained by changes in global oil production or global 

demand. Also, structural oil price shocks have long-term consequences for EPU.   

  

To conclude, the crude oil market is complex, making it difficult to find an accurate 

model for the volatility, and there is still an ongoing debate among researchers and 

practitioners on which model is the most accurate for predicting oil price 
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movements. The various models perform differently in different market conditions. 

Because of the difficulty with finding an accurate volatility model, it is also 

challenging to find the optimal hedge ratio, as well as the optimal hedge ratio may 

change over time as market conditions and other factors evolve.  
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4.0 Methodology 

4.1 Minimum Variance Hedge Ratio 

 

The return of a hedged crude oil portfolio can be expressed as: 

 

𝑅𝐻,𝑡 =  𝑅𝑆,𝑡 − 𝜆𝑡𝑅𝐹,𝑡 

 

Where 𝑅𝑆,𝑡 and 𝑅𝐹,𝑡 are the logarithmic crude oil return of the spot and futures at 

time 𝑡, respectively. 𝜆𝑡 is the hedge ratio at time 𝑡. Hedgers should derive the hedge 

ratio to minimize the conditional variance of the return of the hedged portfolio. This 

minimum variance hedge ratio (MVHR) can be defined as the hedge ratio that 

minimizes the conditional variance of the hedged portfolios' return given the 

information set Ω𝑡−1 (Johnson, 1960):  

 

𝜆𝑡
∗ =  𝑎𝑟𝑔𝑚𝑖𝑛 𝑉𝐴𝑅(𝑅𝐻,𝑡|Ω𝑡−1) 

 

Time-varying MVHR can be constructed as the ratio of conditional covariance to 

conditional variance of futures return: 

 

𝜆𝑡
∗ =  

𝐶𝑂𝑉(𝑅𝑆,𝑡 , 𝑅𝐹,𝑡|Ω𝑡−1)

𝑉𝐴𝑅(𝑅𝐹,𝑡|Ω𝑡−1)
=

ℎ𝑆𝐹,𝑡

ℎ𝐹,𝑡
= 𝜌√

ℎ𝑆,𝑡

ℎ𝐹,𝑡
 

 

Where ℎ𝑆,𝑡 and ℎ𝐹,𝑡 denote the conditional variance of spot and futures returns, ℎ𝑆𝐹,𝑡 

and 𝜌𝑡 are the conditional covariance and correlation of spot and futures returns. 

We can measure the hedging efficiency with a measure of variance reduction (VR): 

 

𝑉𝑅 =  
𝑉𝐴𝑅(𝑈) − 𝑉𝐴𝑅(𝐻)

𝑉𝐴𝑅(𝑈)
 

 

Where 𝑉𝐴𝑅(𝑈) and 𝑉𝐴𝑅(𝐻) are the variances of unhedged and hedged portfolios, 

respectively. Higher VR can be interpreted as a better hedging performance than 

smaller. 
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4.2 Estimating Hedge Ratios 

 

We estimate the out-sample hedge ratio using the methods described below. With 

the simple OLS hedge, the hedge ratio is estimated in-sample and used for the whole 

out-sample without adjusting it. The daily rolling method is used with standard 

GARCH, GJR-GARCH, and E-GARCH. This means that the model is fitted in the 

in-sample and estimated for one day ahead for out-sample forecasting. The 

estimation is then rolled daily throughout the out-sample, resulting in one day ahead 

forecast. One-day forecast is used as ARCH family models are not tended to use for 

multi-step ahead forecasts, as the estimated parameters tend to degrade rapidly 

when the forecast horizon is extended (Figlewski, 1997).   

4.2.1 Naive 1-to-1 hedge 

 

The naive 1-to-1 hedge is constructed by shorting futures contracts in the same ratio 

as we are long the spot. This strategy assumes that covariance between spot and 

futures returns would equal the variance of futures returns (Brooks, 2019). For 

example, a long position of 1000 barrels of Brent oil would be hedged by shorting 

one Brent oil futures contract with a contract size of 1000 barrels (Intercontinental 

Exchange, 2023). 

4.2.2 Simple OLS hedge 

 

The Simple Ordinary Least Squares (OLS) hedge ratio is estimated by running a 

simple linear regression with spot returns as the dependent variable and futures 

returns as the independent variable (Brooks, 2019). The slope coefficient 𝛽 is the 

static OLS MVHR in the equation below. The intercept 𝛼 can be interpreted as the 

mean of the change of the basis of the hedged portfolio (Miffre, 2004). 

 

𝑠𝑡 =  𝛼 +  𝛽𝑓𝑡 + 𝜀𝑡 

 

4.2.3 Standard GARCH 

 

Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity 

(ARCH) process, which recognizes the difference between unconditional and 

conditional variance. In this process, conditional variance varies based on the 
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function of past errors. A fixed lag structure is generally imposed to avoid negative 

variance parameter estimates in empirical analysis (Engle, 1983). Due to this, 

Bollerslev (1986) proposed the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) process as a practical extension. The GARCH model 

is an attractive way to model financial data due to its ability to capture volatility 

clustering and unconditional return distributions with heavy tails, both being 

characteristics that commodity returns entail (Morana, 2001). Another advantage of 

the GARCH formulation is that while all past disturbances can enter the equation, 

only a few parameters fit, increasing the likelihood that they are well-behaved 

(Figlewski, 1997). The GARCH can be expressed as: 

 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖ℎ𝑡−𝑖
2 +

𝑞

𝑖=1

∑ 𝛽𝑖𝜀𝑡−𝑖 +

𝑝

𝑖=1

, 𝜀𝑡|𝜓𝑡−1~𝑁(0, ℎ𝑡) 

 

Where 𝛼0, 𝛼𝑖 and 𝛽𝑖 are the model parameters and ℎ𝑡 is the conditional variance of 

the vector correction model (VECM) error 𝜀𝑡. 

4.2.4 GJR-GARCH 

 

The extension of the GARCH model, proposed by Glosten, Jagannathan, and 

Runkle (1993), sometimes also referred to as threshold GARCH (T-GARCH), 

offers what standard GARCH captures, plus asymmetric behavior by allowing the 

current conditional variance to respond differently to positive and negative returns. 

The GJR-GARCH can be expressed as: 

 

ℎ𝑡+1 = 𝛼0 + (𝛼 + 𝛾𝟏{𝑟<𝑐})𝑟𝑡
2 + 𝛽ℎ𝑡 

 

Where 1 is the indicator value, that equals one if the previous return is below 

threshold 𝑐. If negative returns in oil prices cause more volatility than positive 

returns, then 𝛾 should be positive (Brownlees, Engle & Kelly, 2011). 

4.2.5 Exponential GARCH 

 

The Exponential Generalized Autoregressive Conditional Heteroskedasticity (E-

GARCH) model was first proposed by Nelson (1991) as an extension of standard 

GARCH to capture the asymmetric effect of positive and negative shocks on 

volatility. It differs from the standard GARCH model by allowing asymmetric 
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volatility responses to positive and negative shocks, whereas standard GARCH 

assumes a symmetric response to both. Also, the parameter values are not restricted 

as they are in standard GARCH. It differs from GJR-GARCH, in which asymmetric 

response is only allowed to occur above a certain threshold, whereas, in E-GARCH, 

the impact of negative shocks on volatility is greater than positive shocks of the 

same magnitude. This is often referred to as the leverage effect, which is captured 

by the parameter 𝛾. If negative shocks to oil returns cause volatility to rise more 

than positive, 𝛾 should be above 0. Additionally, the E-GARCH model is more 

flexible in the sense that it can capture both asymmetry and leverage effects 

simultaneously. In contrast, the GJR-GARCH model only captures asymmetry in 

the presence of a threshold. The E-GARCH can be expressed as: 

 

ln(𝜎𝑡
2) = ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖

|𝜀𝑡−𝑖| + 𝛾𝑖𝜀𝑡−𝑖

𝜎𝑡−𝑖
+ ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑝

𝑗=1

𝑞

𝑖=1
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5.0. Data 

 

In our thesis, we take the view of a hedger who has a long position in physical Brent 

crude oil and uses Brent futures contracts to hedge the price risk. In order to do so, 

we need both spot and futures price data. 

5.1. Data description 

 

According to US Energy Information Administration (2023), Brent oil is a blended 

crude stream that is produced in the North Sea region and serves as a proxy to price 

many other crude streams. The spot price is defined as the one-time transaction 

price that you were to pay for immediate delivery at the current market rate. 

 

For Brent futures price data, we use the generic first month daily close price data 

from Bloomberg with a ticker ‘CO1’. The data is collected from the 23rd of June 

1988 to the 28th of October 2022. We use the one-month contracts as the hedging 

instrument because moving further out the curve increases basis risk. This is 

because the price of the futures contract is not directly tied to the spot price prior to 

the maturity date. This difference becomes larger when the time until maturity is 

increased (Byström, 2013). As defined by the U.S Energy Information Agency 

(2023), the Brent futures price is denominated as $/barrel, and one barrel equals 

roughly 159 liters. 

 

We use the daily European crude oil spot prices from the Federal Reserve Bank of 

St. Louis (‘DCOILBRENTEU’) for Brent spot prices. The data was also collected 

from the 23rd of June 1988 to the 28th of October 2022 and is also denominated in 

$/barrel. 

 

5.2. Data transformation 

 

We first match the spot price and futures price based on the date. There are some 

observations where the spot price is obtained, but the future price is not. This is 

mainly due to exchange holidays. Thus, those observations have been removed. 

After this, price data is converted into daily log returns as per the below equation: 
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𝑟𝑡 = ln (
𝑝𝑡

𝑝𝑡−1
) 

 

Where 𝑟𝑡 is the log return at time 𝑡, 𝑙𝑛 is the natural logarithm, and 𝑝𝑡 is the 

underlying price at time 𝑡. Log returns are used instead of prices for a few reasons: 

for one, they exhibit greater stationarity and are less likely to be influenced by non-

stationary components like trends or seasonality (Bollerslev, 1986). Also, 

percentages matter more than price changes for hedgers, and log returns are more 

likely to be normally distributed, which is our assumption in GARCH modeling 

(Fama, 1965). 

 

After converting our futures and spot prices to daily log returns and omitting empty 

cells, we are left with 8672 observations from June 1988 to October 2022 for both 

spot and futures. 

 

We then split our data into subsamples based on historical events we want to 

investigate more closely, as seen in Table 1. These events are the Gulf War in the 

early 1990s that started from the Kuwait Invasion, the Asian Financial Crisis in the 

late 1990s, the Iraq War in the early 2000s, the Great Financial Crisis from 2008 to 

2009, the Shale Oil Boom from 2014 to 2017 that caused the oil prices to drop, 

Covid-19 Crisis from early 2020 and finally the Russian invasion of Ukraine in 

early 2022. In addition to these subsamples, we also define a placebo period that 

acts as a control sample. 

 

The samples are further divided into in-sample periods and out-sample periods to 

analyze these periods. The in-sample periods are before the oil price shocks and are 

used to train the models. The out-sample period is the period that contains the high 

volatility regime. In most cases, the in-sample period starts three years until one 

day before the event starts, and the out-of-sample is chosen to contain the high 

volatility regime after the initial shock. Three years are set so that we have enough 

observations to estimate the models. For example, sample 2 (Asian Financial Crisis) 

in-sample period starts in 1995 and ends in 1998, one day before the out-sample 

period begins. Some in-sample periods have been cut smaller to avoid overlapping 

periods between different crises. Also, since Bloomberg only has CO1 price data 

from 23rd June 1988, the Gulf War sample in-sample period is less than two years. 
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Figure 1. Different crises illustrated on a graph. 

 

 

Table 1. Sample periods. 

 

  Main Event In-Sample period Out-of-Sample period 

S1 Gulf War 06/24/1988–04/26/1990 04/27/1990–03/22/1991 

S2 Asian Financial Crisis 02/27/1995–02/26/1998 02/27/1998–02/05/1999 

S3 Iraq War 02/08/1999–08/23/2001 08/24/2001–04/25/2003 

S4 GFC 06/13/2005–06/12/2008 06/13/2008–03/27/2009 

S5 Shale Boom 10/31/2011–10/30/2014 10/31/2014–09/29/2017 

S6 Covid Crisis 09/30/2017-01/07/2020 01/08/2020-06/08/2020 

S7 Ukraine Invasion 06/09/2020-02/23/2022 02/24/2022-27/09/2022 

S8 Placebo Sample 11/30/1992-11/29/1995 11/30/1995-09/27/1998 

 

 

 



 

 28 

 

 

 

 

5.2.1. Placebo Commodities 

 

For comparison, we also use data from commodities that are not considered good 

hedging tools for exposure in spot Brent crude oil. These commodities are gold, 

silver, corn, aluminum, natural gas, and copper. We have both their spot and futures 

price data for all these commodities from the 23rd of July 1997 until the 28th of 

October 2022. The reason for the shorter data range compared to Brent spot and 

futures, which we have from June 1988, is that the data is only readily available for 

some of the commodities that far back. Only from July 1997 can we fetch data for 

all commodities, making it more accessible in terms of comparison. The price data 

is also converted into log returns for the mentioned reasons. Another reason for 

using log returns instead of prices is the different way of quotation between some 

of the commodity spot prices with their respective future prices. This is not so 

apparent when looking at Brent spot and futures prices that are both quoted at price 

per barrel. Still, for some commodities, historical spot prices are readily available 

in index form, whereas futures are quoted in USD per certain measurements like 

bushels. This can be seen in Appendix L.2, where aluminum futures are quoted 

differently than their respective Bloomberg spot index. 

5.3. Descriptive statistics 

 

Looking at the correlation matrix (Appendix M.1), it is notable how relatively low 

the correlation is between the Brent pair (spot to its future) compared to other 

commodities. With other commodities, the spot correlation with its corresponding 

future is above 0.90, whereas for the Brent pair, it is merely 0.71. This imperfect 

correlation will result in lower variance reduction. In fact, in Table 2, it is seen that 

the correlation between Brent spot and futures log-returns only cross above 0.90 in 

the Ukraine subsample. 
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Table 2. Correlations of Brent spot to Brent futures log-returns between 

subsamples. 

 

  In-Sample Out-Sample Whole sample 

S1 0,85 0,84 0,84 

S2 0,74 0,71 0,73 

S3 0,59 0,67 0,63 

S4 0,58 0,61 0,60 

S5 0,71 0,72 0,72 

S6 0,77 0,79 0,77 

S7 0,96 0,95 0,95 

S8 0,67 0,74 0,72 

 

5.3.1. Tests between in-sample and out-sample 

 

To test for the difference between in-sample and out-sample means, we use the two-

sample Welch t-test. It is a hypothesis test introduced by Welch (1947) to compare 

the means of two samples when we assume that the variances of those two samples 

are not equal. This should be the assumption in our case as we are comparing the 

in-sample, where oil returns are more stable, to our out-samples, where a shock has 

hit the oil markets. The null and alternative hypotheses can be represented as 

follows: 

𝐻0: 𝜇1 = 𝜇2 

𝐻1: 𝜇1 ≠ 𝜇2 

 

Where 𝜇1 is the mean of sample 1 and 𝜇2 is the mean of sample 2. 

 

To test for the difference between the variances of our in-sample and out-sample, 

we use the F-test. F-test is a hypothesis test used to test if the variances of two 

populations are not equal (Montgomery et al. 2012). The null and alternative 

hypotheses can be represented as follows: 

 

𝐻0: 𝜎1
2 = 𝜎2

2 

𝐻1: 𝜎1
2 ≠ 𝜎2

2 
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Where 𝜎1
2 is the variance of sample 1 and 𝜎2

2 is the variance of sample 2. 

 

The results of both tests are presented in Table 3. We can see that the null hypothesis 

is not rejected in any of the Welch t-tests at a significance level of 5%, indicating 

that none of the crises significantly affected returns. On the other hand, the null 

hypothesis of F-tests is rejected in every sample at the same significance level. In 

other words, the structural changes in the oil volatility are evident, and the oil 

volatility is followed by high volatility regimes after an oil price shock.  

 

Table 3. Tests between mean and variances of samples. 

 

    Mean F Mean S Sd. F Sd. S 

S1 In-Sample 0 0 0,019 0,021 

  Out-sample 0 0,001 0,051*** 0,05*** 

S2 In-Sample 0 0 0,019 0,019 

  Out-sample -0,001 -0,001 0,027*** 0,031*** 

S3 In-Sample 0,001 0,001 0,024 0,025 

  Out-sample 0 0 0,025** 0,028 

S4 In-Sample 0,001 0,001 0,018 0,019 

  Out-sample -0,005* -0,005* 0,043*** 0,042*** 

S5 In-Sample 0 0 0,012 0,012 

  Out-sample -0,001 -0,001 0,025*** 0,025*** 

S6 In-Sample 0 0 0,018 0,019 

  Out-sample -0,005 -0,005 0,065*** 0,110*** 

S7 In-Sample 0 0 0,022 0,020 

  Out-sample -0,001 -0,001 0,034*** 0,035*** 

S8 In-Sample 0 0 0,015 0,015 

  Out-sample 0 0 0,022*** 0,023*** 

Superscripts *, **, and *** denote the statistical significance between the difference 

of means and variance of in -and out-of-sample log returns in Brent spot and futures, 

with significance levels of 10%, 5%, and 1%, respectively. A two-sided Welch t-

test is used to compare the means of the two samples, and a two-sided F-test to test 

the difference of variances. 

 



 

 31 

 

 

 

5.3.2. Tests for autocorrelation and ARCH-effects 

 

To test for autoregressive conditional heteroskedasticity (ARCH) in our residuals, 

we use the weighted Ljung-Box test on standardized squared residuals (LB-

Squared) and the ARCH-LM test. These are statistical tests used to determine the 

presence of ARCH effects in the residuals of a time series model (Wooldridge, 

1991). It is an extension of the Ljung-Box test on standardized residuals (LB-test), 

which is used to test if residuals exhibit autocorrelation, meaning that the residuals 

are not independent of each other (Francq & Zakoian, 2010).  

 

The null hypothesis of the LB-Squared and the ARCH-LM is that there is no 

autoregressive conditional heteroskedasticity among the squared residuals, while 

the alternative hypothesis is that ARCH-effects are present. The null hypothesis for 

LB-Test is that there is no autocorrelation in standardized residuals. The alternative 

hypothesis states that there is autocorrelation present in the standardized residuals. 

It is worth mentioning that autocorrelation and ARCH are different, as one can have 

either or both in time series. (Ljung & Box, 1978) 

  

If the null hypothesis is rejected, it might be better to use a model that does not 

assume constant variance or, in case of violations in standard GARCH, use different 

lag orders or modifications of the model like E-GARCH. It is essential that this 

assumption is satisfied in GARCH models, as the model assumes standardized 

residuals are independently and identically distributed. 

 

In Appendix B.3, where OLS residuals are tested, we can see that the null 

hypothesis for the Ljung-Box tests is rejected for most samples at 1% confidence. 

In Sample 1, the LB-Squared null hypothesis is not rejected. Thus, it does not 

exhibit ARCH-effects. For the rest, we conclude that the standardized residuals 

exhibit both autocorrelation and ARCH-effects and a model that does not assume 

constant variance should be more suitable. 

 

Appendix B.1 shows us the LB-Test results for our standard GARCH model for 

different lags. It can be concluded from the p-values that the standardized residuals 

do not exhibit autocorrelation at a 5% confidence level. From Appendix B.2, we 

can see that only in Sample 2 with lag=1 we may reject the null hypothesis at a 5% 
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confidence level and conclude that the standardized squared residuals exhibit 

ARCH-effects. Appendix B.4 shows that Sample 1 exhibits ARCH effects for 

ARCH lags 3, 5, and 7. In other samples, we fail to reject any null hypotheses. 

5.3.3. Tests for normality and stationarity 

 

In addition, tests on the normality and stationarity of Brent spot and futures 

returns were conducted on the different samples. Jarque-Bera test was used to test 

if the sample follows a normal distribution, and Augmented Dickey-Fuller (ADF) 

test was used to test if the time series are stationary.  

 

The Jarque-Bera test is a goodness-of-fit test that evaluates whether a given 

sample follows a normal distribution based on its skewness and kurtosis. It tests 

the null hypothesis that the sample comes from a normally distributed population 

(Jarque & Bera, 1980). The null hypothesis was rejected for all samples 

(Appendix E.1-E.3) for both spot and futures returns. This indicates that the 

returns do not follow a normal distribution. 

 

The ADF test is a unit root test used to determine whether a time series is 

stationary or contains a unit root, which indicates non-stationarity. Stationarity is 

an important assumption in time series analysis, and the ADF test examines the 

autoregressive structure of the series to test the null hypothesis of a unit root 

(Dickey & Fuller, 1979). In all samples, the p-values are less than 0.05 (Appendix 

F.1-F.3). Therefore, we can conclude that the spot and futures returns are 

stationary. 
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6.0. Results 

6.1. Hedge effectiveness 

 

The hedge effectiveness, measured by variance reduction, is reported in Table 4. 

The naïve 1-to-1 hedge is the worst in 4 out of the eight samples, but it performs 

the best in the Ukraine war sample. Although, outperformance is only 14 basis 

points better than the OLS hedge. Where the naïve hedge is the worst out of the five 

methods compared, it tends to underperform the others a lot, making it the worst 

hedging strategy based on variance reduction. This result is expected, as the strategy 

assumes covariance between spot and futures returns to equal the variance of futures 

returns (Brooks, 2019). In fact, it is the best-performing strategy in the Ukraine 

sample because that sample exhibits by far the highest correlation between spot and 

futures log returns. 

 

The simple OLS hedge performs relatively well, being the best hedging strategy in 

three samples and the worst only in one. It is also a relatively simple strategy 

compared to rolling GARCH hedging to perform and yield good results. 

 

The differences between the three GARCH models are quite tame. Standard 

GARCH is not the best method in any of the samples, but neither is the worst. E-

GARCH is the best in three of the samples but also the worst in two. GJR-GARCH 

falls between these two being the best strategy in one and the worst in none. 

 

The results from Table 5 illustrate the importance of considering the correlation 

between the spot and future returns in the hedging process. When ρ is assumed to 

be 1, which means perfect positive correlation, the hedge effectiveness is 

significantly lower across most samples and models. This underlines that the 

correlation between spot and futures prices is usually less than 1, and assuming 

otherwise could lead to suboptimal hedging outcomes. 
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Table 4. Hedge effectiveness by variance reduction 

 

Sample 1-to-1 OLS sGARCH GJR-GARCH E-GARCH 

Kuwait 66,48 % 67,45 %* 62,51 % 62,32 % 59,84 %† 

Asia 48,55 % 50,44 %* 45,43 %† 45,49 % 45,49 % 

Iraq 39,33 %† 43,73 % 50,52 % 50,06 % 50,80 %* 

GFC 21,68 %† 37,57 %* 29,39 % 35,70 % 34,53 % 

Shale 43,09 %† 51,60 % 51,30 % 51,34 % 51,94 %* 

Covid 58,56 % 52,81 %† 61,87 % 62,93 %* 60,61 % 

Ukraine 89,42 %* 89,28 % 88,23 % 87,36 % 56,34 %† 

Placebo 50,19 %† 54,03 % 54,28 % 54,28 % 54,66 %* 

Superscript * denotes the best-performing hedging strategy of that subsample. † 

denotes the worst-performing hedge. 

 

 

Table 5. Hedge effectiveness with correlation assumption 

 

Sample 
sGARCH 

sGARCH 

(ρ=1) GJR-GARCH 

GJR-GARCH 

(ρ=1) E-GARCH 

E-GARCH 

(ρ=1) 

Kuwait 62,51 % 49,72 % 62,32 % 49,35 % 59,84 % 44,94 % 

Asia 45,43 % 34,98 % 45,49 % 31,74 % 45,49 % 33,35 % 

Iraq 50,52 % 43,15 % 50,06 % 41,29 % 50,80 % 43,87 % 

GFC 29,39 % 35,76 % 35,70 % 28,76 % 34,53 % 32,72 % 

Shale 51,30 % 41,03 % 51,34 % 39,98 % 51,94 % 39,56 % 

Covid 61,87 % 63,26 % 62,93 % 64,93 % 60,61 % 66,31 % 

Ukraine 88,23 % 88,69 % 87,36 % 86,90 % 56,34 % 52,20 % 

Placebo 54,28 % 46,99 % 54,28 % 47,39 % 54,66 % 47,97 % 
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Table 6. Average Rolling Hedge Ratios 

 

Sample 
sGARCH 

sGARCH 

(ρ=1) 

GJR-

GARCH 

GJR-GARCH 

(ρ=1) E-GARCH 

E-GARCH 

(ρ=1) 

Kuwait 0,972 1,146 0,972 1,146 0,978 1,154 

Asia 0,648 1,090 0,658 1,107 0,655 1,102 

Iraq 0,824 1,108 0,846 1,137 0,818 1,100 

GFC 0,382 0,662 0,525 0,910 0,481 0,834 

Shale 0,743 1,047 0,749 1,055 0,757 1,068 

Covid 1,037 1,344 1,037 1,343 0,912 1,181 

Ukraine 0,993 1,35 0,964 1,005 1,006 1,048 

Placebo 0,699 1,044 0,698 1,043 0,700 1,046 

 

 

Table 6 presents the average rolling hedge ratios of different models. The ratios 

indicate the proportion of the spot position that needs to be hedged to achieve the 

lowest variance according to the model’s estimation. The results show that the 

hedge ratio is lower than 1 for every model and sample when ρ is not assumed to 

be 1. In contrast, the hedge ratio is higher than 1 when ρ is assumed to be 1. This 

again emphasizes the importance of correctly estimating the correlation between 

spot and futures prices in the hedging process. 

 

Table 7. Portfolio Returns in percentages. 

 

  No Hedge 1-to-1 OLS S-GARCH GJR-GARCH E-GARCH 

S1 13,25* 3,50 3,76 7,71 -2,50† 8,27 

S2 -20,48† 0,69* -5,13 -0,89 -0,32 -1,01 

S3 -6,24† -1,34 -3,19 1,48 6,65 7,26* 

S4 -60,72† -0,01* -30,67 -43,55 -41,72 -38,32 

S5 -31,23† 3,31* -8,57 -8,54 -10,33 -8,96 

S6 -40,35† -3,74* -12,08 -39,29 -23,14 -39,25 

S7 -16,86† -4,22 -3,99 -8,56 3,33* -9,22 

S8 -15,90† -0,45* -5,49 -5,43 -5,80 -5,67 

Superscript * denotes hedging strategy of the subsample with the highest return. † 

denotes the hedging strategy with the lowest return. 
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Table 8. Portfolio Returns in USD for 10 000 invested. 

 

 

No Hedge 1-to-1 OLS S-GARCH 
GJR-

GARCH 

E-

GARCH 

S1 1325,30* 350,24 375,85 771,12 -250,17 827,14 

S2 -2047,83† 69,40* -512,84 -89,33 -32,30 -100,98 

S3 -623,54† -134,10 -319,38 148,06 664,76 726,04* 

S4 -6072,21† -1,26* -3066,52 -4355,13 -4172,46 -3832,46 

S5 -3122,81† 330,76* -857,25 -853,72 -1032,51 -895,79 

S6 -4035,50† -373,60* -1207,58 -3929,07 -2314,34 -3924,68 

S7 -1685,97† -421,95 -399,02 -856,50 333,27* -921,88 

S8 -1589,60† -45,07* -549,24 -543,15 -580,23 -566,72 

Superscript * denotes the hedging strategy of the subsample with the highest return. 

† denotes the hedging strategy with the lowest return. 

 

 

Comparing these results of Table 4 to Tables 7 and 8, we notice that the percentage 

and dollar returns differ significantly from the variance reduction rankings. In some 

cases, the best-performing strategy based on variance reduction does not necessarily 

yield the highest percentage return. For instance, in Sample 1, the No Hedge 

strategy attains the highest return of 13.25%, while the GJR-GARCH method yields 

a negative return of 2.5%. This shows that although the GJR-GARCH method might 

have reduced variance effectively in Sample 1, it did not generate the highest returns 

in the same sample. This should come as no surprise, as the essential goal of hedging 

is not to generate high returns but to minimize risk. Had the hedged portfolios 

generated higher positive returns or lower negative returns than the unhedged 

portfolio, it would have indicated that the hedging strategy or the instrument was 

flawed. 
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Table 9. Portfolio Returns in percentages for different hedge horizons. 

 

1-month No Hedge 1-to-1 OLS S-GARCH GJR-GARCH E-GARCH 

S1 -6,75 % -4,28 %* -4,35 % -41,35 % -41,34 % -41,47 %† 

S2 11,51 % 1,59 %† 4,01 % 45,73 % 45,07 % 52,31 %* 

S3 -19,60 % -6,53 %* -11,63 % -91,04 %† -90,42 % -90,63 % 

S4 7,81 % 1,95 %† 4,21 % 62,23 %* 53,32 % 53,40 % 

S5 -17,11 % -1,46 %* -6,44 % -87,11 %† -86,75 % -86,35 % 

S6 -12,94 %† -0,38 % -2,89 % 0,60 % 0,71 %* -8,64 % 

S7 7,19 %* -0,76 % -0,89 % -4,67 %† -2,21 % -0,27 % 

S8 9,54 % 0,48 %† 3,19 % 175,83 % 176,29 %* 174,27 % 

2-months No Hedge 1-to-1 OLS S-GARCH GJR-GARCH E-GARCH 

S1 -7,65 %† 0,46 %* 0,23 % -4,87 % -4,84 % -5,10 % 

S2 5,31 % 3,68 %† 4,09 % 20,49 %* 17,54 % 17,26 % 

S3 -19,88 % -2,04 %* -9,11 % -57,58 %† -53,20 % -54,50 % 

S4 -17,51 % 1,00 %* -6,70 % -39,25 %† -31,12 % -32,18 % 

S5 -35,36 % -2,76 %* -13,98 % -90,20 %† -89,82 % -89,32 % 

S6 -23,59 %† 0,22 % -4,79 % 0,89 % 1,79 %* -7,38 % 

S7 24,72 %* 1,74 % 1,39 %† 5,41 % 9,13 % 12,89 % 

S8 -3,87 % -0,61 %* -1,63 % -21,19 % -21,98 % -22,56 %† 

3-months No Hedge 1-to-1 OLS S-GARCH GJR-GARCH E-GARCH 

S1 12,83 %* 0,12 % 0,45 % 0,39 % 0,17 % -4,72 %† 

S2 2,09 % 0,66 %† 1,02 % 10,17 % 12,77 % 14,48 %* 

S3 -28,14 % -1,78 %* -12,57 % -58,33 % -58,43 % -59,19 %† 

S4 -27,33 % 1,29 %* -11,06 % -44,43 %† -36,06 % -38,20 % 

S5 -39,49 % -4,68 %* -16,83 % -85,39 %† -85,15 % -85,07 % 

S6 -67,22 %† -10,00 %* -25,67 % -13,02 % -12,26 % -21,31 % 

S7 40,55 %* 2,21 % 1,66 %† 2,72 % 4,94 % 8,29 % 

S8 8,67 % 4,51 %† 5,78 % 81,71 %* 80,74 % 77,95 % 

Superscript * denotes the hedging strategy of the subsample with the highest return. 

† denotes the hedging strategy with the lowest return. 
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Table 10. Variance reduction for different hedge horizons. 

 

1-month 1-to-1 OLS S-GARCH GJR-GARCH E-GARCH 

S1 53,41 %* 53,66 % 51,72 %† 51,79 % 52,01 % 

S2 84,53 %* 69,60 %† 80,08 % 81,14 % 82,06 % 

S3 87,22 %* 74,03 %† 76,25 % 80,66 % 79,78 % 

S4 20,85 %† 32,66 % 33,91 %* 33,08 % 31,56 % 

S5 35,49 %† 58,01 % 56,78 % 55,59 % 58,72 %* 

S6 44,95 %† 50,49 % 51,38 % 51,47 %* 49,04 % 

S7 24,67 %† 53,56 % 93,66 % 94,03 %* 65,83 % 

S8 96,93 %* 36,01 % 36,38 % 36,55 % 35,98 %† 

2-month 1-to-1 OLS S-GARCH GJR-GARCH E-GARCH 

S1 40,12 %† 40,97 % 45,45 %* 45,39 % 43,34 % 

S2 67,21 % 60,45 %† 69,00 %* 68,67 % 68,76 % 

S3 72,30 %* 64,66 %† 65,70 % 68,84 % 68,18 % 

S4 0,07 %† 22,87 % 25,28 %* 25,12 % 24,96 % 

S5 11,37 %† 42,59 % 42,16 % 40,14 % 44,17 %* 

S6 73,21 %* 72,29 % 71,97 % 71,33 %† 72,34 % 

S7 58,52 % 35,65 %† 93,98 % 94,27 %* 54,34 % 

S8 96,36 %* 59,82 % 60,05 % 59,66 %† 60,08 % 

3-month 1-to-1 OLS S-GARCH GJR-GARCH E-GARCH 

S1 28,03 %† 29,19 % 32,48 %* 32,38 % 29,60 % 

S2 58,75 % 55,64 %† 60,76 %* 60,48 % 60,42 % 

S3 67,53 %* 57,67 %† 60,01 % 61,84 % 61,66 % 

S4 26,74 %† 35,52 %* 34,53 % 34,63 % 34,44 % 

S5 6,00 %† 33,05 % 30,78 % 29,89 % 33,68 %* 

S6 72,68 %† 73,00 % 73,10 % 73,02 % 73,65 %* 

S7 54,83 % 34,26 % 81,13 %* 81,08 % 32,79 %† 

S8 83,13 %* 62,65 % 62,83 % 62,59 %† 62,91 % 

Superscript * denotes the best-performing hedging strategy of that subsample 

measured by variance reduction. † denotes the worst-performing hedge. 

 

Table 9 presents the portfolio return for the subsamples and six different hedge 

strategies across three different horizons (1 month, 2 months, and 3 months). In this 

context, the hedge horizon refers to the period during which the hedging strategy is 

implemented. For example, the 1-month horizon result shows the return of the 
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strategy for the first 21 days after the initial shock. The table shows that the returns 

vary widely across the different samples and hedge strategies. Table 10, on the other 

hand, shows the variance reduction of five different hedge strategies across the 

same three horizons. Similarly, with Tables 4 and 7, when comparing Tables 9 and 

10 together, it becomes evident that the best-performing strategies in terms of 

returns do not necessarily correspond to the best strategies in terms of variance 

reduction. Thus, it should be noted that a strategy yielding higher returns often 

comes with a higher risk, which is reflected in the negative returns of the no-hedge 

strategy in other samples. These results highlight the inherent trade-off between risk 

and return in portfolio management. Therefore, the choice of a hedging strategy 

depends on the risk-return preferences of the hedger. 

 

In conclusion, our analysis shows that there is no universally optimal hedging 

strategy. The effectiveness of different strategies varies depending on the 

characteristics of the specific sample, including the correlation between spot and 

futures returns, as well as the risk-return preferences of the investor. Therefore, it 

is recommended to consider both variance reduction and return performance when 

evaluating different hedging strategies. 

6.2. Volatility estimation 

 

Table 11, Table 12, and Table 13 present the estimates for standard GARCH, GJR-

GARCH, and E-GARCH parameters. All standard GARCH (𝛽1) coefficients are 

significant at the 1% level for both spot and futures returns, and most of the ARCH 

(𝛼1) coefficients are significant. The GARCH coefficients are relatively high, 

ranging from 0.73 to 0.99, indicating high persistence of shocks. The samples also 

exhibit significant volatility clustering, given by the high persistence of volatility. 

 

Table 12 gives the estimates of the GJR-GARCH model. When 𝛾 > 0, we observe 

asymmetrical effects in the volatility process, leading us to the conclusion that 

negative return shocks cause larger variance. For spot and futures, some estimates 

are significant at the 1% and 5% levels, while some estimates are not. Sample 5, 

Sample 6, and Sample 7 all have positive and significant leverage effect 

coefficients, implying positive leverage effects. The coefficient for leverage effect 
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in Sample 3 for spot and futures is negative and significant, indicating that positive 

shocks have a greater effect on the returns than bad shocks.  

 

The E-GARCH estimates are presented in Table 13.  If 𝛾 < 0, good news creates 

less volatility than bad news, and 𝛾 > 0 indicates that negative news is less 

disruptive. For Sample 4, the coefficient is negative for spot and positive for futures. 

The gamma estimates for the other samples, both spot and futures, are positive and 

significant. Thus, positive shocks impact oil returns more than negative shocks. 

 

Table 11. S-GARCH estimates for spot and futures. 

 

 𝜇 Ω 𝛼1 𝛽1 

Spot     

S1 0,0000 0,0000 0,142*** 0,8409*** 

S2 0,0019* 0,0000 0,0473** 0,898*** 

S3 -0,0001 0,0000 0,0464*** 0,9442*** 

S4 0,0013* 0*** 0,0000 0,999*** 

S5 -0,0004 0,0000 0,0461 0,9402*** 

S6 0,0010 0*** 0,0634*** 0,9009*** 

S7 0,0025** 0** 0,0791** 0,8255*** 

S8 -0,0002 0,0000 0,0378 0,9517*** 

Futures     

S1 0,0003 0** 0,2304 0,7254*** 

S2 0,0014 0*** 0,0199*** 0,9664*** 

S3 -0,0005 0 0,0586** 0,9353*** 

S4 0,0013** 0 0,0416** 0,9028*** 

S5 -0,0002 0 0,045*** 0,9345*** 

S6 0,001 0*** 0,0529*** 0,9246*** 

S7 0,0022** 0** 0,0793*** 0,8266*** 

S8 -0,0004 0 0,0483** 0,9377*** 

 

Superscripts *, **, and *** denote the statistical significance of sGARCH 

parameter estimates for log returns in Brent spot and futures, with significance 

levels of 10%, 5%, and 1%, respectively. 
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Table 12. GJR-GARCH estimates. 

 

 𝜇 Ω 𝛼1 𝛽1 𝛾 

Spot      

S1 0 0 0,1395*** 0,8394*** 0,0069 

S2 0,0019* 0,0001 0,0057 0,839*** 0,0915 

S3 0,0001 0 0,0671** 0,9531*** -0,0495** 

S4 0,0014 0,0001 0 0,7643*** 0,1119 

S5 -0,0006 0 0 0,9647*** 0,0575*** 

S6 0,0005 0*** 0,0051 0,9226*** 0,0776*** 

S7 0,0022** 0** 0 0,8329*** 0,1348** 

S8 -0,0002 0 0,0317 0,9532*** 0,0102 

Futures      

S1 0.0003 0.0000** 0.2233*** 0.7245*** 0.0145 

S2 0.0014 0*** 0.0205** 0.9663*** -0.0007 

S3 0.0001 0.0000 0.1002*** 0.9419*** -0.0862*** 

S4 0.0013** 0.0000 0.0412* 0.902*** 0.0009 

S5 -0.0005 0.0000 0.0000 0.9589*** 0.0557*** 

S6 0.0005 0.0000*** 0.0043 0.9392*** 0.0702*** 

S7 0.0018** 0.0000*** 0 0.8410*** 0.1470** 

S8 -0.0004 0.0000 0.0504** 0.9369*** -0.0029 

Superscripts *, **, and *** denote the statistical significance of GJR-GARCH 

parameter estimates for log returns in Brent spot and futures, with significance 

levels of 10%, 5%, and 1%, respectively. 
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Table 13. E-GARCH estimates. 

 𝜇 Ω 𝛼1 𝛽1 𝛾 

Spot      

S1 -0,0003 -0,3417** 0,0038 0,9535*** 0,3265*** 

S2 0,0018* -1,0197** -0,0918** 0,862*** 0,1255** 

S3 0,0003 -0,0739*** 0,0444*** 0,9902*** 0,1088*** 

S4 0,0012** -1,4805*** -0,1615*** 0,8142*** -0,0511* 

S5 -0,0007* -0,0137*** -0,0571*** 0,9983*** 0,0399*** 

S6 0,0007 -0,2806*** -0,0847*** 0,9647*** 0,0762*** 

S7 0,0019*** -0,7453*** -0,1622*** 0,9039*** 0,0998*** 

S8 -0,0003 -0,1005*** -0,0109 0,9879*** 0,0897*** 

 

Futures      

S1 0,0007* -0,5748** 0,0009 0,928*** 0,3968*** 

S2 0,0013 -0,1006*** -0,0017 0,9865*** 0,0461*** 

S3 0,0003 -0,0878*** 0,0731*** 0,9877*** 0,1377*** 

S4 0,0013* -0,3413*** -0,009 0,9576*** 0,0762*** 

S5 -0,0006 -0,0503*** -0,0537*** 0,9941*** 0,0436*** 

S6 0,0003 -0,1873*** -0,1031*** 0,9765*** 0,0433*** 

S7 -0,0016*** -0,7591*** -0,1955*** 0,9038*** 0,0407** 

S8 -0,0003 -0,1336*** 0,0079 0,9836*** 0,1138*** 

Superscripts *, **, and *** denote the statistical significance of E-GARCH 

parameter estimates for log returns in Brent spot and futures, with significance 

levels of 10%, 5%, and 1%, respectively. 
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7. Conclusion 

 

The oil market is characterized by high volatility and susceptibility to various 

shocks. This study examined the effectiveness of different hedging strategies and 

volatility models in the context of various oil shocks. The findings highlight the 

importance of considering both variance reduction and return performance when 

evaluating hedging strategies. 

 

The analysis of hedge effectiveness by variance reduction, as presented in Table 4, 

showed that there is no universally optimal hedging strategy. The simple OLS 

hedge performed well in three samples, while the naïve hedge consistently 

underperformed the others. Table 5 emphasizes the significance of considering the 

correlation between spot and futures returns in the hedging process, highlighting 

the suboptimal outcomes when assuming a perfect positive correlation. 

Additionally, the average rolling hedge ratios in Table 6 underscored the 

importance of accurately estimating the correlation between spot and futures prices. 

 

The comparison of hedge effectiveness from a return perspective to variance 

minimization, as shown in Tables 7 and 8, revealed a trade-off between risk 

reduction and return maximization. The strategy that minimized variance did not 

always yield the highest returns. This should be obvious, as the goal of hedging is 

not to maximize returns but to cover losses. Had the hedged portfolios generated 

higher positive returns or lower negative returns than the unhedged portfolio, it 

would have indicated that the hedging strategy or the instrument was flawed. 

 

These findings emphasize the different needs and risk tolerance of different types 

of oil market participants. Consider company A, which is active in drilling and 

selling oil, and company B, a large consumer of oil (or oil-based products) such as 

an airline. In some situations, it might make sense to fully or partially hedge the 

price risk for A and not for B and vice versa. This is because the different nature of 

their business gives them opposite-side exposure to oil prices. Naturally, company 

A has long exposure since the higher oil price increases their profit margins. For B, 

higher fuel costs lower their profit margins. Thus, they have short exposure. For 

example, in March and April 2020, when the price of oil was plummeting, it might 

not make sense for A to lock in the near-zero prices by fully hedging their oil price 
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exposure. However, at least in hindsight, perhaps they should lower the hedge ratio 

to increase the long-exposure to the price of oil. For B, locking in the historically 

low oil prices would make more sense than for A. Then consider February of 2022 

when Russia invaded Ukraine and oil prices shot up. For A, locking in the high 

prices by selling futures might make sense if they believe the price movement is 

temporary. For B, the situation is likely less fortunate, and they must consider if 

hedging more heavily at these levels makes sense or if they should even sell some 

of their futures and hope that prices go down. However, the above examples all 

depend on their current hedge and position before the shock and their risk tolerance.  

 

Furthermore, the estimation of GARCH model parameters in Tables 11, 12, and 13 

provided insights into the persistence of shocks, volatility clustering, and 

asymmetrical effects. The results of the autocorrelation and ARCH-effect tests 

indicated the presence of autocorrelation and volatility clustering in the oil market. 

These findings suggest the inadequacy of assuming constant variance and highlight 

the importance of models that can capture time-varying volatility. 

 

In conclusion, there is no universally best hedging strategy. This study contributes 

to the understanding of hedging strategies and volatility modeling in the oil market. 

The findings highlight the need to consider the specific characteristics of each 

sample, such as correlation and risk-return preferences when selecting a hedging 

strategy. Moreover, the results emphasize the importance of accurately estimating 

volatility using appropriate models that capture the oil market dynamics. By 

considering these findings, market participants can improve risk management and 

develop more effective hedging strategies tailored to the oil market's unique 

characteristics. 

 

Future research can further explore additional factors and refine models to enhance 

hedging effectiveness and risk management in the dynamic and complex oil market. 

By addressing these research gaps, we can contribute to the development of more 

robust and accurate models for effective risk mitigation in the oil market. 
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Appendices 

 

Appendix A.1: In-Sample statistics. 

 

    Min Max Mean Sd. Kurtosis Skew 

S1 Future -0,089 0,126 0,000 0,019 5,758 0,385 

  Spot -0,100 0,124 0,000 0,021 4,643 0,365 

S2 Future -0,112 0,068 0,000 0,019 4,208 -0,624 

  Spot -0,067 0,075 0,000 0,019 1,091 -0,002 

S3 Future -0,102 0,084 0,001 0,024 1,367 -0,430 

  Spot -0,102 0,072 0,001 0,025 0,975 -0,307 

S4 Future -0,055 0,077 0,001 0,018 0,172 0,020 

  Spot -0,056 0,082 0,001 0,019 0,398 0,017 

S5 Future -0,044 0,068 0,000 0,012 2,085 -0,037 

  Spot -0,052 0,047 0,000 0,012 1,253 -0,153 

S6 Future -0,074 0,136 0,000 0,018 6,749 -0,020 

  Spot -0,064 0,111 0,000 0,019 2,597 0,060 

S7 Future -0,123 0,072 0,000 0,020 4,104 -0,893 

  Spot -0,126 0,053 0,000 0,022 8,489 -1,882 

S8 Future -0,080 0,083 0,000 0,015 3,447 -0,264 

  Spot -0,069 0,078 0,000 0,015 2,098 -0,074 
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Appendix A.2: Out-Sample statistics. 

 

    Min Max Mean Sd. Kurtosis Skew 

S1 Future -0,427 0,132 0,000 0,051 21,458 -2,719 

  Spot -0,361 0,173 0,001 0,050 13,211 -1,826 

S2 Future -0,086 0,129 -0,001 0,027 2,274 0,585 

  Spot -0,091 0,163 -0,001 0,031 3,536 0,778 

S3 Future -0,144 0,084 0,000 0,025 3,107 -0,567 

  Spot -0,199 0,129 0,000 0,028 7,839 -1,085 

S4 Future -0,109 0,127 -0,005 0,043 0,260 0,125 

  Spot -0,168 0,181 -0,005 0,042 2,543 0,326 

S5 Future -0,103 0,104 -0,001 0,025 1,461 0,245 

  Spot -0,081 0,099 -0,001 0,025 1,518 0,399 

S6 Future -0,280 0,191 -0,005 0,065 5,508 -1,001 

  Spot -0,644 0,412 -0,005 0,110 12,290 -1,427 

S7 Future -0,141 0,084 -0,001 0,034 1,574 -0,687 

  Spot -0,133 0,082 -0,001 0,035 0,897 -0,492 

S8 Future -0,112 0,129 0,000 0,022 3,887 0,046 

  Spot -0,076 0,163 0,000 0,023 4,302 0,658 
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Appendix A.3: Whole sample statistics. 

 

    Min Max Mean Sd. Kurtosis Skew 

S1 Future -0,427 0,132 0,000 0,033 43,195 -3,233 

  Spot -0,361 0,173 0,000 0,033 23,663 -1,887 

S2 Future -0,112 0,129 -0,000 0,021 3,893 -0,024 

  Spot -0,091 0,163 0,000 0,023 4,557 0,506 

S3 Future -0,144 0,084 0,001 0,024 2,184 -0,496 

  Spot -0,199 0,129 0,001 0,026 4,548 -0,687 

S4 Future -0,109 0,127 0,000 0,025 3,185 -0,145 

  Spot -0,168 0,181 0,000 0,026 6,101 0,059 

S5 Future -0,103 0,104 -0,000 0,020 3,192 0,236 

  Spot -0,081 0,099 0,000 0,019 3,209 0,383 

S6 Future -0,280 0,191 -0,000 0,030 25,355 -1,727 

  Spot -0,644 0,412 0,000 0,041 84,066 -3,294 

S7 Future -0,141 0,084 0,000 0,025 3,910 -0,924 

  Spot -0,133 0,082 0,000 0,029 2,776 -0,815 

S8 Future -0,112 0,129 -0,000 0,018 4,789 -0,036 

  Spot -0,076 0,163 0,000 0,019 4,990 0,507 

 

 

Appendix B.1: Ljung-Box test on standardized residuals for standard GARCH. 

 

 

 

 

 

 

 

Ljung-Box test on standardized residuals 

S1 p-value S5 p-value 

Lag=1 0,07 Lag=1 0,15 

Lag=5 0,11 Lag=5 0,26 

Lag=9 0,19 Lag=9 0,58 

S2  S6  
Lag=1 0,96 Lag=1 0,68 

Lag=5 0,42 Lag=5 0,48 

Lag=9 0,60 Lag=9 0,50 

S3  S7  
Lag=1 0,66 Lag=1 0,48 

Lag=5 0,44 Lag=5 0,43 

Lag=9 0,60 Lag=9 0,40 

S4  S8  
Lag=1 0,10 Lag=1 0,49 

Lag=5 0,16 Lag=5 0,29 

Lag=9 0,33 Lag=9 0,03 
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Appendix B.2: Ljung-Box test on standardized squared residuals for standard 

GARCH. 

 

Ljung-Box test standardized squared residuals 

S1 p-value S5 p-value 

Lag=1 0,18 Lag=1 0,31 

Lag=5 0,06 Lag=5 0,51 

Lag=9 0,09 Lag=9 0,65 

S2  S6  
Lag=1 0,04 Lag=1 0,90 

Lag=5 0,09 Lag=5 0,99 

Lag=9 0,09 Lag=9 0,98 

S3  S7  
Lag=1 0,88 Lag=1 0,46 

Lag=5 0,96 Lag=5 0,65 

Lag=9 0,88 Lag=9 0,85 

S4  S8  
Lag=1 0,70 Lag=1 0,66 

Lag=5 0,26 Lag=5 0,43 

Lag=9 0,37 Lag=9 0,41 

 

Appendix B.3: Ljung-Box and Ljung-Box on squared residuals for simple OLS. 

 

 

 

 

 

 

 

 

 

 

 

OLS with lag = 20 

Sample LB p-value LB squared p-value 

S1 0.003 0.423 

S2 0.000 0.000 

S3 0.000 0.006 

S4 0.000 0.000 

S5 0.000 0.000 

S6 0.000 0.000 

S7 0.006 0.004 

S8 0.000 0.000 
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Appendix B.4: LM-ARCH test for standard GARCH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D.1: Percentage returns of all commodities during out-samples. 

 

 

 

 

 

 

 

 

 

 

 

 

ARCH LM-test 

S1 p-value S5 p-value 

ARCH Lag=3 0,01 ARCH Lag=3 0,28 

ARCH Lag=5 0,02 ARCH Lag=5 0,36 

ARCH Lag=7 0,04 ARCH Lag=7 0,53 

S2  S6  
ARCH Lag=3 0,10 ARCH Lag=3 0,37 

ARCH Lag=5 0,19 ARCH Lag=5 0,65 

ARCH Lag=7 0,16 ARCH Lag=7 0,85 

S3  S7  
ARCH Lag=3 0,80 ARCH Lag=3 0,66 

ARCH Lag=5 0,83 ARCH Lag=5 0,95 

ARCH Lag=7 0,68 ARCH Lag=7 0,99 

S4  S8  
ARCH Lag=3 0,92 ARCH Lag=3 0,37 

ARCH Lag=5 0,65 ARCH Lag=5 0,11 

ARCH Lag=7 0,81 ARCH Lag=7 0,18 

  Corn Gold Silver Aluminum Natural Gas Copper  Brent 

Asia -31,7 -1,1 -6,7 -21,3 -51,4 -20,9 -19,9 

Iraq -17,8 11,1 -1,9 -9,3 24,5 -7,4 -22,3 

GFC -46,9 7,3 -26,5 -52,4 -67,3 -41,7 -53,6 

Shale -28,8 10,5 4,6 0,6 -59,6 5,3 -15,5 

Covid -15,5 3,7 -10,1 -17,7 -32,1 -13,1 -36,4 

Ukraine 0,9 -13,0 -22,7 -27,9 45,7 -24,3 -6,2 

Placebo -22,7 -8,4 23,1 -22,0 -16,3 -27,4 -10,8 
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Appendix E.1: Jarque-Bera on out-samples. 

 Spot Future 

 Test Statistic P-value Test Statistic P-value 

S1 1792,5 0,00 4675,30 0,00 

S2 155,4 0,00 68,10 0,00 

S3 1157,7 0,00 191,40 0,00 

S4 56,9 0,00 1,10 0,60 

S5 91,2 0,00 73,60 0,00 

S6 29457,7 0,00 4714,00 0,00 

S7 32,0 0,00 69,30 0,00 

S8 593,5 0,00 443,50 0,00 

 

Appendix E.2: Jarque-Bera on in-samples. 

  Spot Future 

  Test Statistic P-value Test Statistic P-value 

S1 428,0 0,00 653,80 0,00 

S2 37,2 0,00 602,10 0,00 

S3 35,4 0,00 69,50 0,00 

S4 5,0 0,08 1,00 0,60 

S5 52,3 0,00 136,80 0,00 

S6 162,4 0,00 1123,60 0,00 

S7 388,0 0,00 429,60 0,00 

S8 139,5 0,00 383,60 0,00 

 

Appendix E.3: Jarque-Bera on the whole sample. 

 

  Spot Future 

  Test Statistic P-value Test Statistic P-value 

S1 16627,1 0,00 55242,40 0,00 

S2 908,9 0,00 632,20 0,00 

S3 997,1 0,00 254,20 0,00 

S4 1485,0 0,00 407,70 0,00 

S5 679,8 0,00 650,50 0,00 

S6 280867,0 0,00 26867,40 0,00 

S7 136,4 0,00 224,70 0,00 

S8 1579,2 0,00 1397,10 0,00 

     



 

 60 

 

 

 

 

Appendix F.1: ADF on out-sample. 

  Spot  Future 

  Statistic p-value Lag  Statistic p-value Lag 

S1 -6,45 0,01 6 S1 -6,32 0,01 6 

S2 -6,31 0,01 6 S2 -6,42 0,01 6 

S3 -7,58 0,01 7 S3 -7,36 0,01 7 

S4 -7,03 0,01 5 S4 -6,38 0,01 5 

S5 -8,05 0,01 9 S5 -7,84 0,01 9 

S6 -5,94 0,01 7 S6 -6,61 0,01 7 

S7 -7,84 0,01 5 S7 -7,70 0,01 5 

S8 -9,10 0,01 8 S8 -9,35 0,01 8 

 

Appendix F.2: ADF on in-sample. 

  Spot  Future 

  Statistic p-value Lag  Statistic p-value Lag 

S1 -8,47 0,01 7 S1 -8,61 0,01 7 

S2 -7,72 0,01 9 S2 -8,13 0,01 9 

S3 -7,24 0,01 8 S3 -7,99 0,01 8 

S4 -8,42 0,01 9 S4 -8,37 0,01 9 

S5 -8,16 0,01 9 S5 -8,20 0,01 9 

S6 -7,72 0,01 8 S6 -7,82 0,01 8 

S7 -4,05 0,01 4 S7 -4,32 0,01 4 

S8 -9,46 0,01 9 S8 -8,51 0,01 9 

 

Appendix F.3: ADF on whole sample. 

  Spot 
 

Future 

  Statistic p-value Lag 
 

Statistic p-value Lag 

S1 -10,02 0,01 8 S1 -10,18 0,01 8 

S2 -9,80 0,01 9 S2 -10,17 0,01 9 

S3 -9,04 0,01 10 S3 -9,41 0,01 10 

S4 -9,48 0,01 9 S4 -9,17 0,01 9 

S5 -10,88 0,01 11 S5 -10,85 0,01 11 

S6 -9,05 0,01 9 S6 -9,39 0,01 9 

S7 -7,86 0,01 6 S7 -8,13 0,01 6 

S8 -12,29 0,01 11 S8 -11,93 0,01 11 
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Appendix G.1: Rolling 1-year correlation and volatility of spot and futures prices. 

 

 

Appendix H.1: Commodity returns for GFC and Shale. 
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Appendix H.2: Commodity returns for Covid and Ukraine. 

 

 

Appendix H.3: Commodity returns for Iraq and Asia. 
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Appendix I.1: Daily rolling volatility forecast for Kuwait (Gulf War), the Asian 

Financial Crisis, the Iraq war, and the Great Financial Crisis. 

 

Appendix I.2: Daily rolling volatility forecast for the Shale boom, Covid-19, the 

Russia-Ukraine war, and the Placebo sample. 
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Appendix J.1: Daily rolling minimum variance hedge ratio for Kuwait (Gulf 

War), the Asian Financial Crisis, the Iraq war, and the Great Financial Crisis 

 

 

 

 

 

 

 

Appendix J.2: Daily rolling minimum variance hedge ratio for the Shale boom, 

Covid-19, the Russia-Ukraine war, and the Placebo sample. 
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Appendix K.1: Returns with different hedges for the Asian Financial Crisis. 

 
 



 

 66 

 

 

 

Appendix K.2: Returns with different hedges for Covid-19. 
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Appendix K.3: Returns with different hedges for GFC. 

 

 

 

 

 

 



 

 68 

 

 

 

Appendix K.4: Returns with different hedges for Kuwait (Gulf War). 
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Appendix K.5: Returns with different hedges for Iraq. 
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Appendix K.6: Returns with different hedges for Ukraine  
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Appendix K.7: Returns with different hedges for Shale. 
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Appendix L.1: Spot and Futures prices and log returns. 

 

Appendix L.2: Placebo sample prices. 
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Appendix L.3: Placebo sample log returns. 

 

 

Appendix M.1: Correlation matrix. 
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