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Abstract

The nonlinear nexus between financial conditions indicators and the conditional
distribution of GDP growth has recently been challenged. We show how one can
use textual economic news combined with a shallow Neural Network to construct an
alternative financial indicator based on word embeddings. By design the index asso-
ciates growth-at-risk to news about credit, leverage and funding, and we document
that the proposed indicator is particularly informative about the lower left tail of the
GDP distribution and delivers significantly better out-of-sample density forecasts
than commonly used alternatives. Speaking to theories on endogenous information
choice and credit-market sentiment we further document that the news-based index

likely carries information about beliefs rather than fundamentals.
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1 Introduction

Macro-prudential policies, adopted by numerous institutions around the world, rely on
economic models highlighting the role of the financial sector in creating and propagat-
ing vulnerabilities in the economy (Minsky, 1977, 1986; Kindleberger, 1978; Gertler and
Bernanke, 1989; Kiyotaki and Moore, 1997; Bernanke et al., 1999). From a time series
perspective this theory and practice have spurred a large literature documenting how fi-
nancial indicators of, e.g., credit, leverage, and funding, have a strong association with
the downside risk, as opposed to the central tendency, of future output growth. The
work by Giglio et al. (2016) and Adrian et al. (2019) have been particularly influential,
showing how financial indicators combined with quantile regressions, or related non-linear
methods, can be used to produce out-of-sample growth predictions with potentially fat
tails capturing growth-at-risk (GaR).!

However, the nonlinear relationship between financial conditions indicators and the
conditional distribution of GDP growth has not been uncontested. Hasenzagl et al. (2020),
henceforth HPRR, have recently convincingly argued that the financial indicators usually
considered, with the National Financial Condition Index (NFCI) in the U.S. being a
leading example, do not provide robust and precise advance warnings about any features
of the GDP growth distribution other than the mean. In particular, they argue, the
NFCI contribute little to such distributional forecasts beyond the information contained
in real indicators, such as the first common factor (FMDF) extracted from the FRED-MD
dataset.?

Motivated by this debate and its policy relevance, we show how one can use textual
economic news combined with a shallow Neural Network to construct an alternative fi-
nancial indicator based on word embeddings. We then evaluate this index relative to
the NFCI in terms of how well it characterizes and forecasts U.S. GDP growth using a
parametric skewed Student-t (Skew-t) distribution with, building on Delle Monache et al.
(2021) and Labonne (2022), time-varying location, scale, and shape parameters. Finally,

Following Adrian et al. (2022) GaR is typically defined as the value of GDP growth at the lower fifth
percentile of the predicted growth distribution, conditional on an index of financial stress. Prasad et al.
(2019) provides a description of the use of this framework at, e.g., the IMF, and Greenspan (2004) and
Kilian and Manganelli (2008) shows how forecasting can be looked upon as a risk-managing exercise. See,
e.g., Loria et al. (2022), Brownlees and Souza (2021), Figueres and Jarocinski (2020), and Chernis et al.

(2023) for recent contributions to the GaR literature.
2This dataset is compiled by McCracken and Ng (2016), contains over 100 monthly economic indicators,

and builds upon the seminal contribution by Stock and Watson (1989), and the literature that followed,
using large datasets for macroeconomic forecasting and monitoring. Similarly, the NFCI, developed by
Brave et al. (2012), is constructed as the common factor extracted from over 100 financial variables,

covering four categories of data; credit quality, funding risk, nonfinancial and financial leverage.



we dissect the informational content of the derived index by linking it to shocks to ex-
pectations about the current state of the economy and popular sentiment-driven views on
the credit cycle (Greenwood et al., 2016; Bordalo et al., 2018; Lépez-Salido et al., 2017).

Our usage of economic news is motivated by the fact that it is timely, seldom subject
to revisions, and might contain new information about economic fundamentals as well as
fluctuations in sentiment. Similarly, word embeddings represent words in vector space
and have been crucial for scientific advances and improvements on down stream tasks in
the Natural Language Processing (NLP) literature over the last decade. The reason is
they capture well shared context of words in the corpus, densely encode many linguistic
regularities and patterns, and allow for arithmetic operations capturing associative mean-
ing. Here we take advantage of these properties by constructing monthly word embedding
matrices based on a large corpus of business news provided by the Dow Jones Newswires
Archive (DJ) covering the sample 1985M1 to 2020M4. At each point in time (month),
we then regress a word vector pointing in the growth-at-risk (recession risk) dimension in
vector space on a word vector related to credit, leverage, and funding, and use the size of
the association as a measure of financial conditions relevant for growth.

As seen in Figure 1, the proposed indicator, which we label the Risky News Index
(RNI), tend to increase at least one year prior to economic recessions. Compared to the
NFCI and FMDF the RNI is more volatile but also seems to be leading. Consistent with
this, we show more formally later that the RNI Granger-causes these variables and that
it is only weakly contemporaneously correlated with them. In line with these statistics,
we document using the Skew-t model that the RNI performs on-par with the NFCI for
one-quarter-ahead predictions, but significantly improves upon it at the one-year-ahead
horizon and during recessions periods. Figure 1 provides an example, showing how down-
side risk predictions become much more informative when using the RNI relative to the
NFCI during the Great Financial Crisis (GFC). Section 3 presents a battery of more
formal tests of (density) forecast accuracy telling the same story: For the one-year-ahead
horizon, and during recessions, the RNI provides significantly better predictions for the
GDP growth distribution. Moreover, in-sample estimates of the time-varying moments are
relatively precisely estimated, and suggest that the RNI significantly affects the evolution
of the shape parameter in particular.

These predictive results are important for at least two reasons. First, the recent
debate about the nonlinear nexus between financial indicators and the distribution of
future GDP growth questions the justification for macro-prudential policies based on
GaR predictions. In contrast, our results are well in line with a large theoretical literature
linking financial conditions to adverse growth outcomes and thereby also provide a more

positive view on such policies. Indeed, when performing an intrinsic evaluation of the
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Figure 1. The left graph reports the (standardized) estimates of quarterly U.S. GDP growth, and the
monthly NFCI, RNI, and FMDF. The FMDF is the first common factor (FMDF) extracted from the
FRED-MD dataset using a principal components decomposition. The observation dates are restricted by
the data availability for estimating the RNI. Shaded areas represent NBER recession dates. The right
graph reports the one-year-ahead out-of-sample density predictions obtained from fitting a Skew-t model

to the data using either the NFCI or the RNI as explanatory variables for the time-varying moments.

estimated embeddings we find positive evidence regarding their financial interpretation
and growth association.

Second, from a practical perspective informative one-year-ahead predictions are more
valuable than shorter horizon predictions because it gives policymakers time to respond
proactively on budding crises. As such, although we acknowledge that most studies in
this literature, including ours, are riddled by relatively few observations and events, the
suggested RNI is a potentially helpful alternative to commonly used indicators. Related to
this, while a large literature has highlighting the importance of “excessive” credit growth
as an indicator of more long-run risk (Jorda et al., 2011, 2013; Reinhart and Rogoff, 2009;
Schularick and Taylor, 2012), we also show that the RNI outperforms different credit cycle
aggregates for one-year-ahead predictions.?

Since it is implausible to assume that the RNI contains information about future
shocks, its relatively strong predictive performance must be driven by properties of the
underlying news data or by the technology used to construct it. However, we document
that also simpler NLP methods linking growth-at-risk to financial conditions yield fore-
casting gains relative to the NFCI, suggesting an important role for the news data.

To make further progress along this line of thinking we start from a view, motivated by
classic accounts of financial crises, emphasizing credit market sentiment (Minsky, 1977,
1986; Kindleberger, 1978), and proceed in two complementary directions. First, we use the
Structural Vector Autoregression (SVAR) framework proposed by Enders et al. (2021) to

estimate aggregate shocks to beliefs and fundamentals and analyze their correlation with

3In concurrent work Adidmmer et al. (2023) document that textual news data helps predict the left tail
of a larger set of macroeconomic variables. In contrast to our study, however, they do not explore the

nonlinear nexus between financial conditions and growth-at-risk.



the RNI. Second, we build on recent work by Lépez-Salido et al. (2017) and investigate
to what extent the RNI contains a predicable component related to lagged valuation
indicators and expected returns on credit assets, which Lépez-Salido et al. (2017) associate
with credit market sentiment.

Our more structural analysis shows that the RNI is significantly correlated with belief
shocks and not significantly correlated with shocks to fundamentals. Likewise, we find
a significant correlation between lagged valuation indicators and the RNI. Thus, both of
these results are supportive of the view that the RNI captures shocks to expectations
and credit market sentiment. However, we also show that the predictive power of credit
market sentiment derived from credit market valuation indicators is surpassed by the
RNI, which suggest that it either provides a better approximation of this concept, or that
media coverage about financial conditions and growth-at-risk has independent effects on
economic outcomes.

While it is difficult to empirically disentangle these two explanations, it is interesting
to note that the credit market sentiment view advocated in many newer studies, such as
Greenwood et al. (2016) and Bordalo et al. (2018), rests on assumptions about “diagnos-
tic expectations” and extrapolative beliefs of investors. In contrast, in general models of
endogenous information choice and independent media effects, a departure from the stan-
dard rational expectations paradigm is not needed (see, e.g., Nimark and Pitschner (2019)
and Chahrour et al. (2021)). To the best of our knowledge, however, nobody has derived
theoretical models incorporating this type of mechanism for describing growth-at-risk. In
light of our findings, this seems to be a promising avenue for future research.

The rest of this article is organized as follows: In Section 2 we describe the news
data and the word embedding methodology. Section 3 introduces the Skew-t model and
provides in- and out-of-sample evidence on the non-Gaussian news-GDP-growth relation-
ship. Section 4 links the derived index to theories on endogenous information choice and

credit-market sentiment, while Section 5 concludes.

2 News data and word embeddings

In the following we first present the DJ news corpus and the word embedding procedure.
Then we describe how the news-based word embeddings are used to construct a mea-
sure of financial conditions relevant for growth, and, in light of the discussion in HPRR,
investigate some of its statistical features relative to the NFCI and FMDF. Finally, we
provide more intuition for the word embedding methodology by conducting an intrinsic

evaluation of the estimated embeddings.



2.1 Data and estimation

The DJ corpus consists of roughly 25 million news articles written in English, covering
the period from 1985M1 to 2020M4. The database contains a large range of Dow Jones’
news services, including content from The Wall Street Journal. This is Dow Jones com-
pany’s flagship publication, and also one of the largest newspapers in the U.S. in terms
of circulation. This means that it has a large footprint in both the U.S. and global media
landscape and that important ongoing stories and discussions are well covered by this
type of news outlet.

The news corpus is cleaned prior to estimation. We remove all email and web addresses,
numbers, and special characters, erase punctuation, set all letters to lowercase, and remove
words containing fewer than two or more than 15 letters. These feature selection steps
reduce the vocabulary size to approximately 90000 unique terms. The dimension reduction
facilitates estimation and is common in the literature. Finally, the corpus is partitioned
into monthly blocks of text.

The monthly data blocks are used as input in a word embedding model. The famous
and widely used word2vec algorithm (Mikolov et al., 2013) is one of many algorithms
used to compute such vectors and is often denoted as a skip-gram model with negative
sampling. In essence, the method uses a binary classification problem, evaluating if the
center word w, is likely to show up near the target word w; to compute the classifier
weights that will be the actual word embeddings.*

More formally, let w; be a word from the vocabulary V', with size |V, define a context
window of size m, and assume a bigram model, where the probability of the sequence
depends on the pairwise probability of a word in the sequence and the word next to it,
a8 P(We_ymy Wemity - -+ s Werm—1, Weim) = H?ZQ#W P(we—m+jlwe). The intuition for the
skip-gram model is then to maximize this probability such that a word is likely to occur
near the target if its embedding is similar to the target embedding, where similarity is
approximated by the dot product of the word vectors. For one target/center word pair
(Weem+j, we), with vector representations w,_,+; and v, the likelihood is

1 - 1
L(8) = log —— + Zzogm, (1)

—
14 e Wemmes Ve L

4The word2vec model can be trained using either the skip-gram or the continous bag-of-words (CBOW)
algorithm. Skip-gram works well with small datasets, and can better represent less frequent words. We
therefore use this approach here. Other widely used word embedding models include GloVe (Pennington
et al., 2014) and fastText Joulin et al. (2016). Newer Transformer-based models, such as BERT (Devlin
et al., 2018), explicitly learn context specific embeddings, and might potentially deliver higher quality
embeddings. However, these models typically contain hundreds of millions parameters, making it un-
feasible to estimate on a monthly basis. Transfer learning and fine-tuning approaches are possible, but

would easily involve some type of forward-looking bias in our setting.



where 6 contains the latent word vectors, and the logistic (or sigmoid) function is used to
turn the similarity measure between the word vectors for v, and w._,; into probabilities.
The last term in (1) relates to the negative sampling part of the skip-gram model name.
As running text is used as input to the model, only positive examples are present and
negative examples must be generated and added to the data. These terms are commonly
called noise terms (@y). For each target word, it is common to add K noise words.
Maximizing (1) and estimating the latent word vectors is done using a two-layered
neural network. V' € R™*Vl is the parameter matrix in the first layer, with column v; the
input vector representation of word w; (word embedding). U € R™ ! is the parameter
matrix in the second layer, with row wu; the output vector representation of word wj
(context embedding). Learning proceeds as follows: For a one hot input vector & € RV
of a center word, the first layer selects v. = V& and the second layer uses the sigmoid
activation function on the score z = Uwv,.. The predicted values are compared to the one
hot vectors of the actual output, and the unknown parameters (V' and U) are updated
using Stochastic Gradient Descent. This method is fast, efficient to train, and available
in many software packages. We set the context window m = 5 and restrict the word
embedding length to n = 100. The network is trained for five epochs on every monthly

data partition.

2.2 Constructing the RNI

To construct a news-based measure relating growth-at-risk to financial conditions, we
use the linguistic regularities and patterns encoded in the estimated word embeddings
together with arithmetic operations. We first compute two aggregate embeddings aimed

at capturing “growth-at-risk” and “financial conditions” as

growth-at-risk, = recesstion; + risk;

financial conditions; = credit, + leverage; + funding;, @)
where the individual terms on the right hand side of each quality sign are the word
embedding associated with that particular word in a given month ¢.

The motivation for the financial conditions; aggregate is simply taken from the GaR
literature, where financial conditions is linked to exactly fluctuations in credit, leverage,
and funding. Indeed, the commonly used NFCI is a weighted average of financial indi-
cators reflecting these three categorizes (Brave et al., 2012). Therefore, by adding these
terms together in (2) we obtain an aggregate vector aimed at pointing in the relevant
financial dimension in the high-dimensional vector space.

The motivation for the growth-at-risk, aggregate is somewhat more subtle. Since

the term “growth” together with “risk” can be used in both a positive (upside risk) and



negative (downside risk) context, but the GaR concept is explicitly defined to be associated
with the left tail of the growth distribution (Adrian et al., 2022), it is misleading to simply
add growth, to risk; to capture growth-at-risk. Instead, we use the term “recession”,
which has a solely negative connotation.

Next, to capture the monthly association between these two aggregates, i.e., the RNI,

we solve
RNI, = f; = argmin S(8;) S(B;) = ||growth-at-risk, — financial cond.; x ||,

where an increase in RN, implies a stronger association between how the news media
writes about growth-at-risk and financial conditions. Although Bt is estimated using the
OLS estimator on each monthly data block, the subscript ¢ is used to highlight that this
relationship potentially changes through time.”

In Section 2.4 we provide further intuition for the word embedding approach. Here we
emphasize two additional aspects of the procedure. First, changes in RNI; across time
can be due to either high-frequency changes in how the media relates growth-at-risk to
financial conditions, more persistent changes in how this relationship is focused upon, or
noise and breaks in the news coverage and style. To isolate the two former components
we apply simple (backward-looking) moving average filters which first normalizes each
observation with the mean and standard deviation of the last five years of raw data and
then smooths the resulting series by the trailing six month average.® Second, to take
into account estimation uncertainty of the RNI we conduct subsampling. The approach
is described in Appendix A.1. However, as seen in Figure A.1, in Appendix A, the index

is very precisely estimated, and going forward we only use the mean estimate.

5The studies by Kapfhammer et al. (2020) and Kozlowski et al. (2019) entertain the same type of idea,
and successfully show how time-variation in these types of associations can be informative about climate

change transition risk and changes in cultural associations, respectively.
6Similar types of normalization procedures are commonly applied in the news-based finance and economics

literature (Tetlock et al., 2008; Baker et al., 2016; Caldara and Iacoviello, 2022). The length of the window
used to remove the slow-moving trend component is motivated by the cycle lengths typically assumed
in the literature studying debt and credit cycles, see, e.g., Hamilton and Leff (2020) and Drehmann
and Yetman (2021) for recent applications and discussions regarding filtering methodology. Admittedly,
the length of the smoothing window is somewhat arbitrary. One could treat these choices as tuning
parameters for minimizing loss on the downstream task of predicting the conditional GDP distribution.
We have not explored this alternative and leave that for future research. Figure A.2, in Appendix A,
shows that the out-of-sample forecasting results obtained in Section 3 are fairly robust to using either

the raw version of the RNI or a version without any smoothing.
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Figure 2. The upper left graph reports Granger-causality test statistics. A four variable quarterly
Vector Autoregression (VAR) model, including GDP growth, the NFCI, RNI, and FMDF, is fitted to
the sample 1988Q2 to 2020Q1 using four quarterly lags. The Granger-causality results are qualitatively
similar when estimating a monthly VAR using only the three monthly variables. The upper right graph
reports the factor loadings associated with the two first principal components of the residuals from the
VAR used to calculate the Granger causality statistics. Using the same VAR, the two lower graphs report
the historical shock decomposition of the RNI and NFCI under the assumption that the two variables
are only driven by their own unexpected innovations. Orthogonal innovations are obtained by assuming

a simple recursive identification scheme and ordering either the RNI or NFCI last in the system.

2.3 Statistical properties

The mean estimate of the RNI is plotted together with the NFCI, FMDF, and quarterly
GDP growth, in Figure 1 in Section 1. The RNI tend to reach high levels at least one year
prior to crisis episodes, but it is also somewhat volatile, at least compared to the NFCI.
Moreover, while the FMDF and NFCI are highly correlated, particularly around crisis
episodes, the RNI seems to be leading. In terms of explaining the conditional mean, this
is more formally confirmed by the Granger-causality statistics presented in the upper left
part of Figure 2. The FMDF Granger-causes the NFCI but the NFCI does not Granger-
cause the FMDEF. The RNI, however, Granger-causes the other indicators whereas neither
of the other series Granger-causes the RNI.

The results presented in the upper right part of Figure 2 speaks to the critical review by
HPRR, who convincingly show that the information contained in the NFCI is encompassed
by the information already contained in real indicators, such as the FMDF. In particular,
when calculating the two first principal components of the reduced form residuals from
the VAR used to calculate the Granger causality statistics, we find that the FMDF, NFCI,
and GDP, load strongly on the first component whereas the RNI loads strongly on the
second component. In other words, the NFCI and the FMDF seem to contain similar
contemporaneous information, as argued in HPRR, whereas the RNI is fairly exogenous
to contemporaneous innovations in both the FMDF and NFCI.

An alternative illustration of this finding can be obtained by assuming a simple re-



cursive identification structure to orthogonalize the VAR innovations, ordering either the
RNI or the NFCI last in the system, and then computing the historical shock decom-
positions. This is done in the lower graphs in Figure 2, and as seen there, most of the
variation in the RNI is explained by its own innovations. In contrast, and in line with the
argumentation in HPRR, the historical evolution of the NFCI is at times heavily affected

by innovations to the other variables in the system.

2.4 Understanding the RNI in vector space

Since word embeddings represent words as vectors, distance metrics, such as cosine sim-
ilarity, are commonly used to perform intrinsic evaluation of the estimated embeddings.
The word scatter plot in Figure 3, produced using the t-SNE algorithm (Van der Maaten
and Hinton, 2008), provides an example of this type of evaluation, where words colored red
and green report the most similar words to the two aggregated vectors from equation (2).
For ease of interpretability we focus on one particular year, 2007, and the average embed-
dings across months for this year. Figures 4 and A.7, in Appendix A, reports the 30 most
related words in a more readable format and across six different years. For comparison,
we also plot in Figure 3 the most similar words to three alternative aggregate embeddings
defined such that monetary policy, = monetary;+policy;, pandemic; = virus;+
pandemic;, and policy uncertainty, = economic,+policy,+uncertainty;. These
alternative concepts are distinct from the financial stress concept typically used in the
GaR literature, but might all be important for understanding recession periods in our
sample.”

While one should be cautious about drawing strong conclusions regarding potential
cluster sizes and distances in this type of plot, the analysis delivers at least three relevant
insights. First, words that are closely related to the words used to define the different
concepts tend to cluster together. For example, both the “Pandemic” and “Financial
conditions” terms form distinct clusters, signaling that these are very different concepts.
The “Monetary policy” and “Policy uncertainty” terms, on the other hand, overlap to
some extent because they are more related. Thus, although the concepts above share
many words, they form distinct clusters in Figure 3 because the aggregated embeddings
capture associative meaning and shared context.®

Second, as seen from Figures 4 and A.7, the most similar words to the aggregate

"We do not claim that these alternative constructions are the best possible approximations to the different

concepts. They are mainly used for illustrative purposes.
8The “purity” of the clusters visualized in Figure 3 are not a result of the t-SNE algorithm. Using K-means

clustering to estimate four clusters from the combined embedding matrix shows that the unique concept

terms in Figure 3 typically are allocated to distinct clusters (Table A.7 in Appendix A).

10
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Figure 3. The left graph reports a scatter plot of the words related to the five concepts listed in the
legend. See the text and Appendix A.3 for a description of how the graph is constructed. The right graph
reports the RNI together with the implied time-series for the three alternative concepts. The alternative
time-series are computed using the same methodology as described in Section 2.2, but now replacing the

financial conditions; vector by one of the alternatives defined in the text.

embeddings in (2) are fairly stable across time. Moreover, these wordclouds suggest that
the aggregated vectors indeed point in the intended directions in vector space. E.g.,
among the most similar embeddings to the growth-at-risk, vector in 2006 include words
such as “vulnerable”, “slowdown”, and “downturn”.

Third, the results reported in the Figure 3 might suggest that “Growth-at-risk” is more
related to “Monetary policy” and “Policy uncertainty” than “Financial conditions”. This
can be true. A number of studies have highlighted the role of (systematic) monetary policy
and (general) uncertainty for growth (see, e.g., Berger et al. (2020), Caldara et al. (2016),
Jurado et al. (2015), Brunnermeier et al. (2021)). However, the question we address is not
how to best predict the conditional distribution of GDP growth, but, in light of theories
linking financial conditions to growth vulnerabilities and the critical review by HPRR,
whether an alternative measure of financial conditions adds value relative commonly used
indicators, such as the NFCI.

That said, one cannot rule out that news coverage of, e.g., monetary policy or (general)
uncertainty, feeds into the RNI which in turn predicts GaR. If this was the case, however,
we would expect to see a strong correlation between movements in the RNI and time
series analogs of the alternative concepts. The right graph in Figure 3 suggests that this
is not the case. Although we observe co-movement in certain time periods, the overall
correlation is relatively low. For the “Pandemic” time series this finding is particularly
clear. It starts late because of missing data, spikes around the SARS and COVID-19
pandemics in 2003 and 2019, but has very little overall correlation with the RNI. Moreover,

11
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Figure 4. The figure reports a wordcloud of the 30 most similar words to the financial conditions;
vector at six different points in time. Similarity is measured using the cosine similarity metric. Vectors

are averaged across months of the year prior to computing their distance.

when doing the out-of-sample forecasting experiment, described in Section 3.2, using the
alternative “Monetary policy” and “Policy uncertainty” indicators, we find that they are
outperformed by the Skew-t(RNI) model (Tables A.2 and A.3 in Appendix A).

3 GDP and risky news

For characterizing and predicting the conditional GDP distribution we use a parametric
Skew-t distribution with time-varying location, scale, and shape parameters. This type of
model is often used in the recent GaR literature, where quarterly real GDP growth (Ay;)
can be written as

Ay, = g + vy, v ~ Skt(0, 04, ay, V), (3)

and the Skew-t specification follows Arellano-Valle et al. (2005). I.e., the location (p),
scale (0y), shape (oy), and degrees-of-freedom (v) parameters define the distribution’s
conditional mean, variance, asymmetry (skewness), and the tickness of the tails.

Here, following recent research by Delle Monache et al. (2021) and Labonne (2022),
the time-varying parameters are assumed to evolve according to score-driven processes

containing a persistent trend component and a transitory component.® Using link func-

9Score driven methods, introduced by Creal et al. (2013) and Harvey (2013), provide an efficient way
of modeling dynamic distributions by using the conditional score of the likelihood as the driving force
for the model’s time-varying parameters. The likelihood of score driven models are generally available
in closed form because they are observation-driven, making maximum likelihood an efficient estimation
approach (Blasques et al., 2022). Koopman et al. (2016) show that they provide comparable forecasting
performances to nonlinear non-Gaussian state space models. See Delle Monache and Petrella (2017),

Gorgi et al. (2019) and Delle-Monache et al. (2020) for recent forecasting applications.
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tions, such that v = log(o) and ¢ = arcthan(«), and letting u; € {p, V¢, 0¢ }, the sum of

the two components is u; = 7,4 + v, With

Tut = Tut—1 + SuSut  Uut = ¢uvu,t—1 + Buxt—l + RySu,t, (4)

where x is an exogenous predictor, e.g., the quarterly RNI or NFCI, and ¢, and &,
denote the gain parameters giving weight to the time-varying scores s,,; of the predictive
likelihood. Thus, parameter updates are defined by the steepest ascent direction for
improving the model’s local fit, and the trajectories of the time-varying parameters are
perfectly predictable given past information.

The model’s unknown parameters are estimated using maximum likelihood (ML)
where the log density at time ¢ takes the form

+ 1 L — ft)”

L e s B
with oy > 0, oy = [-1,1], n = 1/v with v > 1, and C(v) = (v + 1)/2)/(/v7T(v/2))

where I'(.) is the Gamma function. The distribution is skewed towards positive values if

logp(Ay,|Y;—1) = —logC(n) — logo} —

oy < 0 and towards negative values if a; > 0. When the tail parameters are constrained
to be very large and the shape parameter set to zero the distribution is equivalent to a
normal distribution.

As shown in Delle Monache et al. (2021), using the NFCI and the model specification
in (3) and (4) produce significantly better out-of-sample predictions for U.S. GDP growth
than those obtained in the original work by Adrian et al. (2019) and even the more
critical review by HPRR. Indeed, this specification nests the one used in HPRR, where the
evolution of the time-varying moments are driven only by the variation in the exogenous
variables. Accordingly, using (3) and (4) together with the NFCI is a natural and strong
benchmark for assessing the potential value added of the RNI.'°

In the following we present in- and out-of-sample results using the Skew-t model in
conjuncture with either the RNI or the NFCI. For completeness, we also present results
documenting how the RNI performs relative to different credit aggregates often used in
the growth vulnerability literature focusing on more long-run growth outcomes. We then
discuss how the word embedding approach adds value relative to related NLP approaches

in this context.

3.1 In-sample evidence

Figure 5 summarizes how the Skew-t(RNI) model characterizes GDP growth in-sample.

To be able to compare our estimates with findings in the existing literature, such as Adrian

10Tn the interest of preserving space we refer to Delle Monache et al. (2021) and Labonne (2022) for detailed
expositions of this model class and specification. We note here that we depart (slightly) from the modeling

choices used in Delle Monache et al. (2021) along two dimensions. These are described in Appendix A.2.
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Figure 5. The graphs report the estimated time-varying moments, together with 50% and 95% con-
fidence bands, obtained from the Skew-t(RNI) model. The table reports the parameter estimates from
both the Skew-t(RNI) and Skew-t(NFCI) models. Values in parenthesis are 95% confidence bands.

et al. (2019), HPRR, and Delle Monache et al. (2021), the model is estimated using data
from 1973:Q3 to 2020:QQ2. Since the RNI is only available from 1985:Q1, we construct
synthetic RNI observations using its correlation with the NFCI, which is available for the
whole sample. We do so by first regressing the RNI on eight leads and lags of the NFCI,
and then use the resulting parameter estimates together with the NFCI to construct the
values for the missing RNI history.'*

As seen in the figure, the time-varying moments are rather precisely estimated and
vary significantly over time. Economic expansions tend to be characterized by positive
skewness, which is equivalent to a negative shape parameter in the figure, and there is a
positive correlation between the mean and variance of the conditional GDP distribution

during such expansions. In contrast, during recessions, the correlation between the mean

HFigure A.3, in Appendix A, shows that our main conclusions regarding the forecasting performance of
the Skew-t(RNI) relative to the Skew-t(NFCI) model, reported in Section 3.2, remain robust to starting
estimation in 1985. We do, however, find that the in-sample characteristics of GDP growth using the
Skew-t models deteriorate when a shorter sample is used. Thus, the high variance and crisis episodes in
the 1970s and 1980s seem important when fitting the Skew-t model to the data.

14



and variance turns negative. While these results are not new, and very similar to those
from the Skew-t(NFCI) model in Delle Monache et al. (2021), they continue to hold when
using the RNI as the exogenous variable in the model.'?

The contribution of the RNI index to these time-varying patterns is illustrated in the
table to the right in Figure 5. An increase in the RNI does not significantly affect the
location of the GDP distribution, has a borderline significant effect on its variance, but
significantly increases the asymmetry of the distribution. Moreover, the persistence of
the transitory component is large and significant for the location, but insignificant for the
shape, while the gain estimates are not significant for the location processes, but generally
significant for both the scale and shape processes. One implication of this, as also seen in
Figure 5, is that the trend component of the location process is close to constant, whereas
the trend components of the shape and scale processes gradually declines and increases,
respectively, over the sample.

The second column of parameter estimates reported in Figure 5 are obtained when
re-estimating the model using the NFCI as an exogenous variable. In general, the pa-
rameter estimates are very similar to those obtained with the Skew-t(RNI) model, with
two important exceptions. The NFCI contributes more towards describing the location of
the GDP distribution and the persistence of the transitory component for this moment is
small and insignificant. From a likelihood perspective, the Skew-t(NFCI) model is actu-
ally preferred relative to the Skew-t(RNI) model. However, the differences are small, and
we fail to reject the null hypothesis of equal fit when conducting a likelihood ratio rest.

In relation to the study by HPRR, an important argument in their analysis is that the
time-varying moments of the conditional GDP distribution are very imprecisely estimated
and that the NFCI contributes mostly towards explaining the conditional mean of the
distribution. In line with the results reported in Delle Monache et al. (2021), neither of
these conclusion are supported by the Skew-t(RNI) model used here. In particular, Figure
5 illustrates well how the conditional mean varies significantly across time, and that most

of this variation stems from changes in the shape of the distribution and not the location.

3.2 Out-of-sample evidence

To evaluate the out-of-sample performance of the Skew-t(RNI) model we perform a quasi-
real-time forecasting experiment, and compare its performance with the Skew-t(NFCI)
model. The models are first estimated from 1973:Q2 to 1993:Q1, and predictions are

constructed for horizons one-quarter- to one-year-ahead. This process is then repeated

128ee, e.g., Smith and Vahey (2016), Salgado et al. (2019), Carriero et al. (2020), and Ferndndez-Villaverde
and Guerrén-Quintana (2020) for related findings about how the correlations between higher order mo-

ments vary with the business cycle.
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Table 1. The table reports the average forecast metrics of the Skew-t(RNI) model relative to the Skew-
t(NFCI) model. We use ratios for the RMSE and CRSP, and differences for the LS. Ratios smaller than
1, and negative values of the LS differences indicate that Skew-t(RNI) model performs better than the
Skew-t(NFCI) benchmark. The p-value for the Giacomini and White (2006) test are in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full -0.25 (0.46) 1.01 (0.53) 1.18 (0.30) -0.08 (0.49) 0.93 (0.53) 0.91 (0.50)
Rec. -1.07 (0.17) 1.12 (0.38) 1.42 (0.53) -0.69 (0.01) 0.90 (0.27) 0.96 (0.22)
GFC -1.64 (0.19) 1.12 (0.71) 1.48 (0.66) -1.32 (0.00) 0.66 (0.00) 0.53 (0.00)

for the remaining sample using an expanding estimation window.?

For each quarterly forecasting vintage we assume that both the RNI and NFCI are
available (at the last day of the quarter). Thus, one-quarter-ahead predictions are ob-
tained directly from the model and the implied parameter estimates. For longer horizons
forecasts we make the same assumption as in Delle Monache et al. (2021) and condition
the predictions on the last available predictor values, i.e., assume their future values are
approximated well by a random walk prediction. For multi-step ahead forecasting hori-
zons the time-varying parameters are subject to additional uncertainty coming from the
unobserved scores. To integrate this uncertainty into our forecasts we use the “bootcast-
ing” algorithm of Koopman et al. (2017) which consists of sampling unobserved (scaled)
scores from their in-sample realizations (see also Delle Monache et al., 2021).

To evaluate the predictions we use three different scoring metrics; the log-score (LS),
the Continuously Ranked Probability Score (CRPS), and Root Mean Forecasting Errors
(RMSE). To test for significant differences in predictive performance we use the condi-
tional Giacomini and White (2006) test. We also evaluate the calibration of the predictive
densities using the Probability Integral Transforms (PITs) and the test suggested by Rossi
and Sekhposyan (2019).

Figure 6 and Table 1 summarize our main results. The figure reports the PITs and
the cumulative differences in LS, CRPS, and squared forecast errors between the Skew-
t(RNI) and Skew-t(NFCI) models for one-quarter- and one-year-ahead predictions. All
relative scores are normalized such that an increase implies a relative improvement of
the Skew-t(NFCI) model. The Skew-t(NFCI) model is better on the one-quarter-ahead
horizon for CRPS and RMSE loss, while the Skew-t(RNI) model is better according to

13The RNI is not subject to historical revisions as new data vintages are made available, while both the
GDP statistics and the NFCI are. For this reason we conduct a quasi-real-time experiment using the
final vintages (of GDP and the NFCI). Amburgey and McCracken (2023) show that using the real-time
estimates of the NFCI rather than the final vintage actually performs better in terms of predicting GaR.
Table A.6, in Appendix A, shows that re-doing the experiment using real-time vintages of both GDP and

NFCI does not alter our main conclusions.
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Figure 6. The figure reports cumulative differences in LS, CRPS, and squared forecast errors between
the Skew-t(RNI) and Skew-t(NFCI) models for one-quarter- and one-year-ahead predictions. All relative
scores are normalized such that an increase implies a relative improvement of the Skew-t(NFCI) model.
The lower right quadrant reports the empirical cumulative distribution function of the PITs together

with the Kolmogorov—Smirnov class of test statistic proposed by Rossi and Sekhposyan (2019).

LS. However, none of these differences are significant when considering the whole out-of-
sample period, or when focusing on recession periods or the GFC in particular (Table 1).
In contrast, at the one-year-ahead horizon the Skew-t(RNI) model clearly outperforms
the Skew-t(NFCI) model. For the RMSE loss the performance gain is roughly 10% when
considering the full sample. Most of this gain is driven by recession periods and the GFC,
and when focusing only on such episodes the differences in predictive performance are
also generally significant at the 5% level.'*

The lower right quadrant of Figure 6 reports whether the conditional predictive den-
sities are correctly specified using the PITs and the Kolmogorov—Smirnov class of test
statistic proposed by Rossi and Sekhposyan (2019). Under the null hypothesis the pre-
dictive density is correctly specified. In this case the empirical cumulative distribution
function of the PITs should follow closely the 45 degree line. As seen in the figure, there
are signs that the Skew-t(RNI) model has too many realizations falling in the center of
the distribution at the one-year-ahead horizon (the slope in the center is steep relative to
the 45 degree line).However, for both models and forecasting horizons, we can not reject
the null hypothesis of correctly specified predictive densities.

The strong performance of the Skew-t(RNI) specification, particularly during reces-

MFor completeness, Table A.1, in Appendix A, shows that these results are qualitatively similar if we
instead compare the Skew-t(RNI) model to a Skew-t(FMDF) model.
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Figure 7. The figure reports the one-year-ahead GaR predictions from the Skew-t(RNI) and Skew-
t(NFCI) models. The figure to the left shows the predicted GaR for the whole out-of-sample evaluation
periods while the figure to the right focuses on the GFC period.

sions and the GFC episode, is not only statistically significant but also economically rele-
vant. As seen from the density plots in Figure 1 in Section 1, in every quarter of 2008 the
Skew-t(RNI) model predicted considerably larger down-side risks than the Skew-t(NFCI)
model. This stands in sharp contrast to similar plots in HPRR, where there are essen-
tially no differences between predictions based on either real or financial variables. An
alternative illustration of this is given in Figure 7, which reports the predicted GaR across
the whole out-of-sample evaluation period and the GFC in particular. For example, one
year prior to 2008:Q3, the Skew-t(RNI) model predicted that growth at the lower fifth
percentile of the growth distribution would be -2.5 whereas the Skew-t(NFCI) prediction
hardly had turned negative.

3.3 Credit aggregates and the RNI

It is well known in the macro-finance literature that different financial variables have
heterogeneous dynamics along the business cycle. The buildup of (growth) vulnerabilities
are typically associated with excessive leverage and credit growth (e.g., increasing credit
gaps) while the outbreak of financial distress is foremost associated with external financial
premiums (e.g., widening credit spreads) (Gertler et al., 2020). Now, the NFCI is typically
seen as a financial distress indicator, but a prominent set of work has documented how
vulnerability indicators have strong predictive power, especially for more long-run growth
outcomes (Jorda et al., 2011, 2013; Reinhart and Rogoff, 2009; Schularick and Taylor,
2012).

Figure 8 reports the RNI together with a widely used measure in this literature, namely
the credit-to-GDP gap (CGG) produced by the Bank for International Settlements (BIS).
Although the correlation between these two series is far from insignificant, and they share
important low-frequency characteristics, the results presented in the table in Figure 8
suggest that the RNI outperforms the CGG for the out-of-sample growth predictions
considered here. That is, re-doing the out-of-sample analysis with a Skew-t(CGG) model
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s One-quarter-ahead
Credit/GDP-gap

RNI

LS CRPS RMSE

Full  -0.22 (0.17) 0.93 (0.42) 0.96 (0.48)
Rec.  0.04 (0.20) 1.02 (0.23) 1.12 (0.54)
GFC  -0.18 (0.26)  0.95 (0.22)  1.05 (0.50)

One-year-ahead

Full  -0.17 (0.24)  0.92 (0.19)  0.92 (0.23)
Rec.  -0.78 (0.06)  0.90 (0.00)  0.95 (0.00)
GFC  -1.35 (0.00) 0.70 (0.00) 0.61 (0.00)

L I I I I i I
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Figure 8. The left graph reports the quarterly CGG and RNI. The table reports the forecasting
performance of the Skew-t(RNI) relative to the Skew-t(CGG) model. See Table 1 for further details.

we find that the Skew-t(RNI) model performs significantly better at the one-year-ahead
horizon.

Figure A.9, in Appendix A, reports the correlation between the RNI and five other
credit-to-GDP aggregates often used in the literature, and documents that it varies from
0.22 (for credit to households from all sectors) to 0.61 (for credit to the private non-
financial sector from banks). As we show below, however, irrespective of which measure

we use, the qualitative conclusions regarding the value added of the RNI remain robust.'®

3.4 Is it the method or the data?

The word embedding methodology we propose is supervised along two dimensions. First,
the RNI results from minimizing the errors from projecting a financial conditions vector
on a growth-at-risk vector. Second, the keywords used are subjectivity chosen (motivated
by economic theory linking growth-at-risk to financial conditions).

The second supervised feature makes the methodology related to two alternative ap-
proaches often used in economics, namely count- and Boolean-search-based methods.
Count-based methods derive indexes of the subject of interest by simply counting the
frequency of terms in the corpus related to a set of predefined keywords. Boolean-search-
based methods share this count feature, but focus on the co-occurence of terms and
register counts only when a set of logical conditions are met, e.g., if an article contains
the words “recession” and “risk”.

Count- and Boolean-search-based methods do, however, not share the first supervised

feature of the word embedding methodology. Therefore, it is far from guaranteed that a

5From a purely statistical point of view, one reason for the value added of the RNI in terms of capturing
business cycle fluctuations is that it contains more high frequency variation compared to the various
credit-to-GDP gaps. See Figure A.8 in Appendix A.
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high count actually reflects a real relationship between words or simply reflect the chosen
unit of observation, e.g., sentence, article, or day. IL.e., if conducting Boolean-search at the
article level with a given set of keywords, the end results might potentially be very few
counts simply because the likelihood of all words occurring in the same article is low. Word
embeddings, on the other hand, are trained to capture shared context between words,
implying that words never occurring in the same unit of observation (e.g., article) might
still stand close to each other in vector space because they share context.'® Moreover,
since word embedding algorithms represent words as vectors, standard regression analysis
can be used to measure the degree of association between different concepts, which is
exactly what we do.

It is of course an empirical question whether the extra complexity introduced by the
word embedding methodology adds value. For this reason we re-do the out-of-sample
experiment for both a Skew-t(Count) and Skew-t(Bol) model. The alternative “Count”
and “Bol” indicators are constructed using standard procedures and the same keywords
defined in Section 2.2. In the interest of preserving space, a detailed description of how this
is done is relegated to Appendix A.4. Figure A.4, in Appendix A, reports the alternative
indexes together with the RNI, and Tables A.4 and A.5 report the out-of-sample results.
In short, both the “Count” and “Bol” indicators tend to spike around recession periods
and is at times highly correlated with the RNI. In terms of out-of-sample performance
we find no significant differences at the one-quarter ahead horizon. However, as before,
the Skew-t(RNI) model tend to provide significantly better predictions than both the
Skew-t(Count) and Skew-t(Bol) models at the one-year-ahead horizon, especially when
considering recession periods and the GFC.

Still, although the Skew-t(RNI) model outperforms the two news-based alternatives,
Figures A.5 and A.6, in Appendix A, illustrate that using the alternative news-based
indicators deliver predictions that for some horizons and score metrics are competitive,
or even better, than those produced using the Skew-t(NFCI) model. This suggests that
the informational content of the news plays an important role. In the next section we put

further light on the mechanisms that might give rise to this finding.

16This property stems from the fact that the word embedding algorithm itself can be labeled semi-supervised
because running text is used as implicit supervised training when estimating the embeddings. This avoids
the need for any hand-labeled supervision signal and makes the methodology flexible and user-friendly

in many contexts.
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4 Why is the RNI so informative?

From a theoretical perspective there are at least two views linking financial conditions to
economic downturns. In the classical theories motivating much of the growth vulnerability
literature, borrowers and lenders are typically seen as fully rational but subject to various
forms of credit limits or collateral constraints (Gertler and Bernanke, 1989; Kiyotaki and
Moore, 1997; Bernanke et al., 1999). In turn, these financial market frictions play a central
role in propagating and amplifying shocks to the economy, making economic downturns
preceded by excessive credit growth and leverage especially severe. In essence, credit
booms go bust when unexpected (exogenous) shocks happen.

An alternative literature emphasizes the role of sentiment for the credit cycle. This
view draws on recent work in behavioral finance and on classic accounts of financial crises
by Minsky (1977, 1986) and Kindleberger (1978), and asserts that predictable time vari-
ation in the sentiment of credit-market investors, due to, e.g., “diagnostic expectations”
and extrapolative beliefs of investors, is an important determinant of the credit cycle
(Greenwood et al., 2016; Bordalo et al., 2018). The empirical work by Lépez-Salido et al.
(2017), henceforth denoted LSZ, connects this to the business cycle and associates credit
booms not with balance-sheet measures of credit growth but with proxies for the expected
returns on credit assets. They then show that the economy performs poorly following pe-
riods when these proxies are unusually low by historical standards, i.e., when buoyant
sentiment unwinds. In contrast to the balance-sheet-based view, no exogenous shock is
needed. Once asset prices are significantly elevated an economic correction is closer at
hand because overly optimistic investors will be disappointed going forward.

In principle, the RNI can speak to both of these views and capture changes in fun-
damental information as well as sentiment and beliefs. Therefore, to better understand
the informational content of the RNI and the underlying mechanism that gives rise to
it’s strong predictive performance, we proceed in two complementary directions. First,
we build on Enders et al. (2021), henceforth EKM, and estimate time series reflecting
unexpected fundamental information and changes in beliefs, and then correlate these
time series with the RNI. Second, we use credit market valuation indicators and the
methodology proposed in LSZ to construct credit market sentiment approximations for
the quarterly data and sample considered here, and then relate these to the business cycle

and the RNI.

4.1 SVAR evidence

EKM propose a simple, but powerful, SVAR methodology for identifying aggregate shocks

to expectations (belief shocks) from other fundamental shocks. Their basic premise is that
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SVAR imulse responses and variance decomposition (VDC)
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Figure 9. The upper left graphs report the impulse responses, medians with posterior uncertainty, to
a one standard deviation fundamental or belief shock. The y-axis denotes the response (in percent) and
the x-axis the response horizon. The corresponding variance decompositions are reported only for one
horizon. The upper right graph reports the RNI together with the posterior distribution of u?. For
visual clarity, the belief shocks are smoothed using a three quarter moving average filter. The lower left
graph reports the correlation coefficient between the RNI and (every draw) of either the (not smoothed)

b f

u; or uy. The broken vertical lines are 95 percent posterior intervals. The lower right panel shows

the coefficient estimates for RNI; from a standard quantile regression model using the draws of u? as

dependent variable.

any fluctuations in the (ex-post available) nowcast error that cannot be explained by new
fundamental information has to be attributed to changes in beliefs. And, in turn, such
belief shocks move output and the nowcast error in opposite directions. I.e., waves of
optimism (or pessimism) have causal effects on economic outcomes. Below we replicate
their analysis for the data and sample considered here.

More formally, let E(Ay,|l;) denote the (median) nowcast of real GDP growth obtained
from the Survey of Professional Forecasters (SPF) and define ne; = Ay, — E(Ay|l;) as

the nowcast error. Then, following EKM, the VAR we consider can be written as:
Yy — @wt +e& €~ Z/LdN(O, 25), (6)

? ylé—p)l a

vector containing a constant, a quadratic time trend, and p = 4 lags of y, @ is a matrix of

where y; = (neg, y:) is a vector of the endogenous variables, ¢, = (1,tr,y;_4, ...

coefficients, and &; a vector of reduced form errors. The relationship between the reduced

form errors and the structural shocks is given by €, = Au,. Because (Au,)(Au;) = X,
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identification is achieved by assuming that F(u,u;) = I and by restricting the elements

of A such that the following relationship holds:

€1t
ot

As in EKM, u,{ is interpreted as a fundamental shock moving the nowcast error and

+_
+ o+

uf
;] (7)

Uy

output in the same direction. In contrast, a positive belief shock u? leads to a negative
nowcast error. But, because expectations are positive, output rises although not as much
as expected.

For inference, we consider the sample 1975:Q1 to 2019:Q4, and estimate the model
assuming a normal prior distribution for @ and an inverse Wishart distribution for 3.. A
total of 100 thousand draws are obtained from the conditional posterior distributions via
Gibbs sampling, and thousand draws are retained for inference after thinning the chain.
The prior means and covariances are set according to the popular Minnesota scheme
(Litterman, 1986), and we use the algorithm proposed in Rubio-Ramirez et al. (2009) for
sign identification (of A).

Figure 9 reports the results. The upper left quadrant shows the impulse responses and
the variance decompositions (for one horizon) from the SVAR analysis. Both in qualitative
and quantitative terms these results are very similar to those reported in EKM: Following
a positive fundamental shock we observe delayed updating via the nowcast error response
and a fairly persistent, but gradually trend-reverting, output response. In contrast, a
positive belief shock which drives down the nowcast error leads to a more u-shaped output
response. l.e., the initial response is positive but considerably smaller than the peak
response occurring after roughly eight quarters.

The results reported in the upper right graph are new to this study, and illustrates the
RNI together with the estimated belief shock, i.e., the posterior estimates of @%. The lower
left graph reports a histogram of the correlation between these two series, when every draw
of @% is considered. As clearly seen in these graphs, the RNI has a significant and negative
correlation with a positive belief shock. In contrast, when computing the correlation
between all the draws of ﬁ,{ and the RNI, we obtain a much weaker and insignificant
correlation. Finally, in the lower right graph we use a simple quantile regression to
evaluate the relationship between the belief shock and the RNI, and find that the RNI is

in particular negatively correlated with the lower tail of the belief shock.

4.2 Valuation indicators evidence

LSZ provides an alternative framework for identifying credit-market sentiment more di-

rectly from market prices and proxies for expected returns. The econometric framework
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used is the following two-step regression specification

Aysy :Olztfpl + U1t (8a)
Agyr =P1A45 + 'YIiBt—pQ + vg . (8b)

In the first-step auxiliary regression (8a) the year-on-year change in Moody’s Baa-Treasury
credit spread (Ays;) is regressed on a vector z;_,, containing the lagged high-yield bond
issuance (HY'S;_,), expressed as a share of total bond issuance, and the level of the
credit spread (s;—p). As documented in Greenwood and Hanson (2013), these valuation
indicators are strongly associated with negative expected returns at horizons ranging from
one up to three-years-ahead. In the second step regression (8b) the fitted values from the
auxiliary regression (A48;) are used to predict business cycle fluctuations conditional on
x;_p,. Here, Ay, is computed as year-on-year changes in current quarter (log) GDP and
xi_p, contains lags of A4y, and the CGG.'"

The first row in the upper left panel in Figure 10 replicates the analysis in LSZ
using our sample and data frequency, and three different lag structures for the valuation
indicators and the CGG. As in LSZ, lagged growth is kept fixed at ¢ — 4 in the second
stage regression. Although somewhat imprecisely estimated, the qualitative conclusions
from their study hold: Following a period of aggressive credit market pricing, i.e., an
elevated level of the high-yield share and narrow (below average) spreads, the component
of credit-spread changes that is driven by a reversal of prior positive sentiment (A4$;) has
a negative impact on economic activity.

To analyze to what extent the RNI also contains this sentiment component, we follow
the intuition in LSZ and “clean” it for news about fundamentals by re-estimating the
model in (8) using the RNI as dependent variable in the first-step auxiliary regression.
The second row in the upper left panel of Figure 10 reports the results. Consistent with the
sentiment-based credit market view, the RNI contains a predictable component positively
related to lagged values of high-yield bond issuance and negatively related to lagged credit
spreads (at least for lag structures larger than two years), and this predicable component
has a negative impact on the business cycle. In terms of significance, we actually find
that the HY'S is a more accurate predictor of the RNI than of changes in the credit spread
while lagged levels of the credit spread tend to matter more for Ays;.

The sentiment estimates (A48;,-.) are reported in the upper right panel in Figure

10. To not clutter the graph we do not report the corresponding RNI ¢ p= estimates, but

17LSZ consider yearly data for the period 1926 to 2015. Our sample starts in 1985, for which working with
annual data yields less than 40 observations. We therefore replicate their main analysis using quarterly
observations. We use year-on-year changes to capture business cycle fluctuations and to resemble the
annual changes analyzed in LSZ. Similarly, (8) is estimated using nonlinear least squares (NLLS) to take

into account the generated-regressor nature of expected returns.
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Figure 10. The upper left panel reports t-statistics from estimating (8) using the NLLS estimator.
Predictor names are reported on the x-axis and the dependent variable on the y-axis. The different bars
for each predictor correspond to a specific lag structure. The upper right panel reports the A48 ,—.
estimates associated with the first-step auxiliary regression (8a). The lower left and middle panels report
the LASSO trace plot and post LASSO OLS t-statistics obtained from running three regularized regression
experiments for Asy;. In all regressions we include the A48, ,—. approximations and 8 to 12 quarterly
lags of the CGGy and Ayy, as predictors. The predictor set is then subsequently augmented with 8 to
12 quarterly lags of the RNI; and the interaction terms described in Section 4.3. All t-statistics are
based on standard errors computed according to Newey and West (1987). The lower right panel shows
the coefficient estimates for RNI;_g and A48, ,—gCGG_g, with bootstrapped confidence bands, from a

standard quantile regression model. See the text for details.

note that the correlations between A45,,-. and RNI tp= are 0.94 and 0.99 for p = 12
and p = 16, and -0.12 for p = 8. l.e., for the lag structure where the two sentiment
approximations have a significant negative effect on the business cycle, A48;,—12 and
RNI +p=12, they are close to perfectly correlated.

To analyze the incremental signal strengths of credit market sentiment, the credit-
to-GDP gap and the RNI at business cycle frequency in a more general manner, and

at the same time be relatively agnostic about the exact lag structures, we proceed by
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running simple LASSO regressions including as predictors the three different Ay3; ,—.
approximations and 8 to 12 quarterly lags of the RN I;, CGGy, and Ayy;.

The results from the regularized regression experiment are reported in the lower left
and middle panels of Figure 10. If we allow for a flexible lag structure, but do not in-
clude the RNI in the LASSO regression, none of the predictors are selected for the most
sparse model specification (LambdalSE). If the regularization parameter is set to a value
that minimized the cross-validated MSE (LambdaMinMSE), both the sentiment approx-
imations and the credit-to-GDP gap are selected. According to the post LASSO OLS
regressions, the parameter estimates are also significant for A48; ,—12 and CGG_12. How-
ever, if lags of the RNT are included in the LASSO even the most sparse model specification
includes it, and although A3, ,-. and CGG,_;2 are also chosen in the LambdaMinMSE
specification, these predictors are not significant. In contrast, the parameter estimate for
RN, g is highly significant, and including it in the regularized regression experiment
increases the R? from roughly 0.15 to 0.33.'8

The last row in the lower left and middle panels of Figure 10 extends the predictor
set further by allowing for an interactive regression specification, where credit market
sentiment (the trigger) is interacted with the CGG (the vulnerability). Consistent with
the findings reported in Kirti (2018), Krishnamurthy and Muir (2017) and Lépez-Salido
et al. (2017), the interaction term is a strong and statistically significant predictor, at
least for the two-year lag specification. Including the interaction term in the regression
also increases the R?, but it does not make the RNI redundant. In fact, the RNI is still
a highly significant predictor of the business cycle.

Figure A.9, in Appendix A, documents that these findings are not driven by the
particular credit aggregate we control for. The figure reports the result from the same
type of regularization experiment as above, but now increasing the predictor set with the
five additional credit-to-GDP aggregates. As seen in the graphs, the strong predictive
power of the RNI remains robust to also this variable augmentation exercise.

Finally, the lower right panel in Figure 10 connects these results to our earlier focus on
the non-Gaussian properties of the conditional distribution of GDP growth. The graph
reports the parameter estimates for the RNI and interaction term from a simple quantile
regression model including RNI;_g and A45;,-sCGGi_g and CGGy_12 as predictors for

Ay In line with our earlier results presented in Section 3, the RNI has a significant

18In neither of these regressions do we take into account the additional uncertainty related to the generated

regressor issue. The t-statistics should be interpreted with caution.
9 A residual bootstrap is used to construct confidence bands and take into account the additional uncer-

tainty generated from the first-stage regressions (to construct Ay8; ,—s). Because the R? in this first stage
regression is rather low, and thereby generates a lot of variability, we follow Lépez-Salido et al. (2017) and

include the term spread in the first-stage regression to sharpen the inference. Our qualitative conclusions
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negative effect on GDP at the business cycle frequency, and the effects seem to be es-
pecially negative at the lower left tail of the distribution. In contrast, the we find little

support for a nonlinear relationship between the interaction term and the business cycle.

4.3 An (media) integrated view?

In sum, the analysis in the preceding sections provides positive evidence for the role
of expectation shocks and the sentiment driven view of the credit cycle. More than
this, however, the strong performance of the RNI relative to the sentiment variable(s)
derived exclusively from valuation indicators, and the fact that the RNI is constructed
from media coverage data alone, also suggest a role for independent media effects. In
particular, although the identifying restrictions in (7) hold across a broad class of models
with different, but related, information structures (Angeletos and La’O, 2010; Barsky and
Sims, 2012; Blanchard et al., 2013; Angeletos and La’O, 2013), the significant correlations
between belief shocks and the RNI suggest a more specific mechanism, where media
coverage on financial conditions and growth-at-risk has adverse effects on expectations
about the current state of the economy.

In terms of independent media effects, similar findings were documented in Chahrour
et al. (2021) when analyzing how the relative representativeness of news coverage relates to
belief shocks. As also stated in their analysis, a reverse causation argument, where belief
shocks affect media coverage, is hard to square with the evidence put forward above. In
particular, given the RNI’s insignificant correlation with fundamental shocks, this would
require the existence of fluctuations in beliefs that are correlated across individuals, but
unrelated to either economic fundamentals or reports. And, it would require that news
media can distinguish between, e.g., recessions driven by fundamentals and those driven
by beliefs. We do not find these arguments very plausible.

Related to this, it is interesting to note that the credit market sentiment view advo-
cated in newer studies such as Greenwood et al. (2016) and Bordalo et al. (2018) rests
on assumptions about “diagnostic expectations” and extrapolative beliefs of investors.
In contrast, in general models of endogenous information choice and independent media
effects, a departure from the standard rational expectations paradigm is not needed. For
example, the mechanism proposed in Nimark and Pitschner (2019), and Chahrour et al.
(2021) in particular, only requires that agents in the economy rely on news media to
monitor the economy on their behalf and to report the most newsworthy developments.
Since even accurate reports provide only a partial picture of the economy, and agents

receive the same partial information via news media, aggregate fluctuations can emerge

are not affected by this, but the parameter estimate for A48 ,—sCGG;_g becomes insignificant at all

quantiles if not expanding the information set in the first-stage regression.
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because media functions as a coordination device for the economy (beliefs). To the best
of our knowledge, however, nobody has derived theoretical models incorporating this type
of mechanism for the growth-credit relationship. In light of our findings, this seems to be

a promising avenue for future research.?

5 Conclusion

A large theoretical literature emphasizes the importance of financial conditions for under-
standing adverse growth outcomes and business cycle fluctuations. However, the poten-
tially nonlinear nexus between financial condition indicators and the conditional distri-
bution of GDP growth has recently been challenged on the grounds that such indicators
contribute little to distributional forecasts of GDP growth beyond the information con-
tained in real indicators.

In this article we show how one can use textual economic news combined with a shallow
Neural Network to construct an alternative financial conditions indicator based on word
embeddings. By design the index, which we label the Risky News Index (RNI), associates
growth-at-risk to news about credit, leverage and funding. The index can be updated in
real-time, is not revised, and delivers a timely signal about financial conditions relevant
for growth-at-risk.

We document using quarterly U.S. GDP growth and a parametric Student-t model that
the in-sample estimates of the time-varying moments of the conditional GDP distribution
are relatively precisely estimated and that the RNI significantly affects the evolution of
the distribution’s shape in particular. In an extensive out-of-sample density forecast anal-
ysis we further show that using the RNI outperforms commonly used financial condition
indicators and factors summarizing the developments in real indicators. The performance
of the RNI is particularly strong at the one-year-ahead forecasting horizon and during
the Great Financial Crisis. For this horizon and episode, growth-at-risk predictions using
conventional predictors are relatively uninformative whereas predictions from the RNI
suggest a severe recession.

Finally, we link the derived index to structural shocks to fundamentals and beliefs, as
well as credit market valuation indicators, and document that it is significantly correlated
with shocks to expectations and expected returns. However, the predictive power of
the RNI surpasses that of sentiment derived from credit market valuation indicators,
providing positive evidence in favor of classical accounts of financial crisis in combination

with theories on endogenous information choice and independent media effects.

200f course, this does not rule out that also other types of (news-driven) mechanisms might be at play,
such as, e.g., the narratives in Shiller (2017), Andre et al. (2021) and Nyman et al. (2021).
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Appendices for online publication

Appendix A Additional results

Figure A.1.
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Figure A.2. The figure reports the average forecast metrics of the Skew-t(RNI), Skew-t(RNI(Raw)),
and Skew-t(RNI(nosmoothing)) models relative to the Skew-t(NFCI) model. We use ratios for the RMSE
and CRSP, and differences for the LS. Ratios smaller than 1, and negative values of the LS differences
indicate that Skew-t(RNI) model performs better than the Skew-t(NFCI) benchmark. The p-value for
the Giacomini and White (2006) test are printed vertically. The a-xis denote whether the evaluation is
conducted using the whole out-of-sample periods (Full), for recession periods (Rec.), or only the Great

Financial Crisis (GCF). See Section 3.2 for details about the out-of-sample forecasting experiment.
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Figure A.3. The Skew-t(RNI) and Skew-t(NFI) models are estimated on data starting in 1985. The
figure reports the PITs and the cumulative differences in LS, CRPS, and squared forecast errors between
the Skew-t(RNI) and Skew-t(NFCI) models for one-quarter- and one-year-ahead predictions. All relative

scores are normalized such that an increase implies a relative improvement of the Skew-t(NFCI) model.
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Figure A.4. The figures report the quarterly RNI together with alternative indexes created using either

count- or Boolean-based methods. See Appendix A.4 for details about their construction.
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Figure A.6. The Skew-t(Count) model is estimated on data starting in 1985. The figure reports the PITs
and the cumulative differences in LS, CRPS, and squared forecast errors between the Skew-t(NFCI) and

Skew-t(Count) models for one-quarter- and one-year-ahead predictions. All relative scores are normalized

such that an increase implies a relative improvement of the Skew-t(NFCI) model.
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Figure A.7. The figure reports a wordcloud of the 30 most similar words to the growth-at-risk, vector
at six different points in time. Similarity is measured using the cosine similarity metric. Vectors are

averaged across months of the year prior to computing their distance.
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Figure A.8. The figure reports the estimated half life based on the impulse response function from
univariate AR models. Lag specification is done using AIC. Filled areas correspond to 90% confidence
bands. The listed variables are; credit market sentiment ()A8; ,—=12); the FRED-MD macroeconomic
factor (FMDF), year-on-year growth in GDP (Ayy;); the NFCI; the RNT; credit to the Non-financial sector
from all sectors (NFA); credit to Households and NPISHs from all sectors (HA); credit to Non-financial
corporations from all sectors (NCA); credit to Private non-financial sector from all sectors (PNFA); credit
to Private non-financial sector from Banks (PNFB). The credit aggregates are all obtained from the BIS,
measured relative to GDP, and computed as five-year changes. The exception is the CGG which is

computed as a gap variable directly by the BIS.
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Figure A.9. The left panel reports the correlation between the RNI and five different balance-sheet
measures often used in the literature. The additional measures are all obtained from the BIS, measured
relative to GDP, computed as five-year changes, and include credit: to the Non-financial sector from all
sectors (NFA); to Households and NPISHs from all sectors (HA); to Non-financial corporations from all
sectors (NCA); to Private non-financial sector from all sectors (PNFA); to Private non-financial sector
from Banks (PNFB). The middle and right panels report the LASSO trace plot and post LASSO OLS
t-statistics obtained from two regularized regression experiments for A,y;. In all regressions we include
the A48 p—. approximations and 8 to 12 quarterly lags of the CGG, RNI;, A4y, and the five balance-
sheet measures described above as predictors. The predictor set is then subsequently augmented with
terms interacting the sentiment indicators with the balance-sheet measures. All t-statistics are based on

standard errors computed according to Newey and West (1987).

Table A.1. The table reports the average forecast metrics of the Skew-t(RNI) model relative to the
Skew-t(FMDF) model. We use ratios for the RMSE and CRSP, and differences for the LS. Ratios smaller
than 1, and negative values of the LS differences indicate that Skew-t(RNI) model performs better than
the Skew-t(FMDF) benchmark. The p-value for the Giacomini and White (2006) test are in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full 0.19 (0.16) 1.13 (0.07) 1.39 (0.05) -0.10 (0.75) 0.99 (0.81) 0.96 (0.66)
Rec. 0.53 (0.36) 1.32 (0.31) 1.65 (0.24) -1.27 (0.01) 0.93 (0.04) 0.98 (0.48)
GFC 0.27 (0.63) 1.11 (0.56) 1.30 (0.67) -1.96 (0.00) 0.70 (0.00) 0.59 (0.00)
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Table A.2. The table reports the average forecast metrics of the Skew-t(RNI) model relative to the
Skew-t(EPU) model. We use ratios for the RMSE and CRSP, and differences for the LS. Ratios smaller
than 1, and negative values of the LS differences indicate that Skew-t(RNI) model performs better than
the Skew-t(EPU) benchmark. The p-value for the Giacomini and White (2006) test are in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full 0.21 (0.54) 0.95 (0.66) 0.84 (0.33) -0.22 (0.53) 0.94 (0.05) 0.95 (0.05)
Rec. -0.28 (0.55) 0.73 (0.31) 0.63 (0.35) -1.22 (0.00) 0.92 (0.11) 0.97 (0.00)
GFC -0.24 (0.64) 0.80 (0.32) 0.71 (0.37) -2.41 (0.00) 0.75 (0.00) 0.73 (0.00)

Table A.3. The table reports the average forecast metrics of the Skew-t(RNI) model relative to the
Skew-t(MP) model. We use ratios for the RMSE and CRSP, and differences for the LS. Ratios smaller
than 1, and negative values of the LS differences indicate that Skew-t(RNI) model performs better than
the Skew-t(MP) benchmark. The p-value for the Giacomini and White (2006) test are in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full -0.86 (0.07) 0.86 (0.03) 0.75 (0.08) -0.00 (0.55) 0.94 (0.27) 0.95 (0.29)
Rec. -1.38 (0.54) 0.59 (0.11) 0.50 (0.09) -1.32 (0.00) 0.88 (0.06) 0.95 (0.01)
GFC -0.82 (0.64) 0.72 (0.14) 0.61 (0.16) -2.08 (0.00) 0.74 (0.00) 0.69 (0.00)

Table A.4. The table reports the average forecast metrics of the Skew-t(RNI) model relative to the
Skew-t(Bol) model. We use ratios for the RMSE and CRSP, and differences for the LS. Ratios smaller
than 1, and negative values of the LS differences indicate that Skew-t(RNI) model performs better than
the Skew-t(Bol) benchmark. The p-value for the Giacomini and White (2006) test are in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full 0.02 (0.31) 0.98 (0.91) 1.01 (0.98) -0.13 (0.31) 0.93 (0.46) 0.97 (0.41)
Rec. 0.48 (0.25) 1.19 (0.14) 1.28 (0.20) -0.56 (0.00) 0.91 (0.04) 0.98 (0.00)
GFC 0.34 (0.17) 1.03 (0.09) 1.04 (0.23) -1.39 (0.00) 0.61 (0.00) 0.46 (0.00)

Table A.5. The table reports the average forecast metrics of the Skew-t(RNI) model relative to the
Skew-t(Count) model. We use ratios for the RMSE and CRSP, and differences for the LS. Ratios smaller
than 1, and negative values of the LS differences indicate that Skew-t(RNI) model performs better than
the Skew-t(Count) benchmark. The p-value for the Giacomini and White (2006) test are in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full -0.23 (0.22) 0.97 (0.79) 0.99 (0.81) -0.34 (0.19) 0.90 (0.21) 0.92 (0.35)
Rec. -0.94 (0.25) 1.04 (0.33) 1.17 (0.34) -2.15 (0.00) 0.85 (0.01) 0.93 (0.12)
GFC -1.58 (0.17) 0.95 (0.38) 1.03 (0.30) -3.00 (0.00) 0.59 (0.00) 0.48 (0.00)
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Table A.6. The table reports the average forecast metrics of the Skew-t(RNI) model relative to the
Skew-t(NFClIreal) model. We use ratios for the RMSE and CRSP, and differences for the LS. Ratios
smaller than 1, and negative values of the LS differences indicate that Skew-t(RNI) model performs
better than the Skew-t(NFClIreal) benchmark. The p-value for the Giacomini and White (2006) test are

in parentheses.

One-quarter-ahead One-year-ahead
LS CRPS RMSE LS CRPS RMSE
Full -0.06 (0.89) 1.06 (0.45) 1.23 (0.23) -0.13 (0.20) 0.92 (0.38) 0.91 (0.31)
Rec. -1.28 (0.22) 1.20 (0.28) 1.40 (0.43) -0.90 (0.08) 0.94 (0.17) 0.97 (0.00)
GFC 0.50 (0.34) 1.28 (0.45) 1.54 (0.48) -0.77 (0.00) 0.82 (0.00) 0.72 (0.37)

Table A.7. K-means clustering. The K-means algorithm is used to estimate five clusters based on the
combined embedding matrix visualized in Figure 3. The table reports how the fraction of unique terms

for the five concepts listed in the first row are allocated across the five estimated clusters.

Cluster “Growth-at-risk” “Financial stress” ”Policy uncertainty” ”Monetary policy” ”Pandemic”
1 0.01 0.00 0.00 0.00 0.92
2 0.00 0.00 0.06 0.75 0.00
3 0.15 0.26 0.61 0.13 0.08
4 0.00 0.72 0.00 0.02 0.00
5 0.82 0.02 0.31 0.10 0.00

A.1 Subsampling

To construct confidence intervals for the RN I; estimates, we follow Kozlowski et al. (2019)
and conduct subsampling (Politis and Romano, 1994). For the 90% confidence interval,
the corpus is randomly partitioned into 20 subcorpora, and the word2vec algorithm is
run to produce the word embedding matrix for each data partition. The error of the
projection statistic RNI; for each subsample s is e* = \/7,(RNIS — RNI;), where 7, and
RNI} are the number of texts and the solution to (2.2), respectively, in subsample s.
Then, the 90% confidence interval spans the 5th and 95th percentile variances, defined
by RNI, + €2 and RNI, — €2 where ¢*® and 51 denote the 2nd and 19th order

VT ok
statistic associated with the lower and upper bounds of the confidence interval.

A.2 Skew-t specification

The model specification described in Section 3 builds on work by Delle Monache et al.
(2021). We depart (slightly) from their modeling choices along two dimensions. First, they
assume ARX(2) processes for v, ;. However, the second lag coefficient is never significant,

and is thus dropped here to favor a more parsimonious model structure. Second, they
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estimate their model using Bayesian methods and an adaptive Random-Walk Metropolis-
Hastings algorithm. Relative to a ML approach, this has the advantage that informative
priors can be used to discipline the model. A disadvantage is that it becomes substan-
tially more time consuming to estimate the model. With our ML implementation, one

estimation run takes less than five minutes on a standard laptop.

A.3 Constructing the text scatter plot

The text scatter plot in Figure 3 is constructed as follows: For each month in the year
2007 the 3000 most similar words to different concepts are extracted (based on cosine
similarity scores). Then, we focus on the intersection of this set and compute the average
word embedding for each word (across months) in the retained set. Since independent
applications of the word2vec algorithm might result in arbitrary orthogonal transforma-
tions, we follow, e.g., Hamilton et al. (2016), and use orthogonal Procrustes to align the
word embeddings before averaging.

The two-dimensional visualization of the high-dimensional embeddings relies on the
t-SNE algorithm (Van der Maaten and Hinton, 2008) applied on the embedding matrix
containing the unique terms associated with each concept as well as the common terms
shared by two or more of them. The colors reflect terms unique to one concept. Common
terms are gray. The t-SNE algorithm is implemented by setting the perplexity to 10,
reduce the original dimension of the embedding space to 50 using PCA prior to estima-
tion, and allow for up to 5000 optimization iterations. These choices are common in the

literature.

A.4 Constructing alternative count- and Boolean-based indexes

To construct the two alternative count- and Boolean-based indexes we follow conventional
practices in the literature, but adapted to the current setting by searching for the words
used to define the RNL.

Thus, for the count measure we first simply count the number of occurrences of the
words “recession”, “risk”; “credit”, “leverage”, and “funding” in any given month, and
then sum these counts normalized by the total number of words that month. For the
Boolean approach we operate at the article level. Since all the five individual terms
are unlikely to feature in the same article, we restrict our search and count procedure
to three subcategories counting articles containing the words recession&risk&credit,
recession&risk&leverage, and recession&risk& funding. These counts are then nor-
malized by the number of articles, summed to monthly frequency, and averaged to get

one index.
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Changes in the count- and Boolean-based indexes can be due to high-frequency changes
in how the media focuses upon growth-at-risk and financial conditions, more persistent
changes in how this relationship is focused upon, or noise and breaks in the news coverage
and style. To isolate the former component we apply the same filtering methodology as
we do for the RNI. A simple (backward-looking) moving average filter normalizes each
observation with the mean and standard deviation of the last five years of raw data, and

then we smooth the resulting series by the trailing six month average.
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