
Handelsh0ysllolen Bl

GRA 19703 Master Thesis

Thesis Master of Science 100% - W

Predefinert informasjon

Startdato:

Sluttdato:

Ellsamensform:

Flowkode:

Intern sensor:

Delta�er

Navn:

09-01-2023 09:00 CET

03-07-2023 12:00 CEST

T

202310l l11184I I INOOI IWI IT

(Anonymisert)

Zhizhen Li og Xiaoxiao Tao

lnformasjon fra delta�er

Termin:

Vurderingsform:

202310

Norsk 6-trinns sllala (A-F)

Tittel •: Employee Tumouer Prediction with Superuised Machine Leaming

Naun pli ueileder •: Jan Kudliclla

lnneholder besuarelsen Nei

konfidensielt

materiale7:

Gruppe

ljruppenaun:

ljruppenummer:

Andre medlemmer i

gruppen:

(Anonymisert)

137

Kan besuarelsen

offentliggj•res?:

Ja

WISEflow
Europe/Oslo(CEST)

28Jun 2023 �

- Master Thesis -

Employee Turnover Prediction with

Supervised Machine Learning

Students:

 Xiaoxiao Tao, Zhizhen Li

Supervisor:

 Jan Kudlicka

Hand-in Date:

 27.06.2023

Program:

Master of Science in Business Analytics

Page i

Table of Contents

Acknowledgments .. iv

List of Abbreviation .. v

1. Introduction ... 1

1.1 Problem Formulation ... 1

1.2 Contributions ... 1

1.3 Structure of the Thesis ... 2

2. Background.. 5

2.1 Introduction to Employee Turnover .. 5

2.2 Impact of Employee Voluntary Turnover.. 6

2.3 Benefits of Predicting Employee Turnover ... 7

2.4 Machine Learning .. 8

2.5 Supervised Learning Models for Employee Turnover 9

2.6 Limitation of Previous Research ... 10

3. Methodology .. 13

3.1 Analysis of Variance (ANOVA) ... 13

3.1.1 F-statistic Calculation .. 14

3.2 Chi-square Test .. 15

3.2.1 Chi-square Test Statistic Calculation ... 15

3.3 Correlation Analysis .. 16

3.3.1 Pearson’s Correlation Coefficient Calculation .. 17

3.4 Decision Tree (DT) .. 17

3.4.1 Gini Impurity .. 18

3.5 Random Forest (RF) .. 19

3.5.1 Bootstrap Sampling .. 20

3.6 Gradient Boosting Decision Tree (GBDT) .. 21

3.6.1 Loss Function ... 22

3.7 Extreme Gradient Boosting (XGBoost)... 23

3.7.1 Objective Function ... 23

3.7.2 Taylor Expansion.. 24

3.8 K-fold Cross Validation (KCV) .. 25

3.9 Confusion Matrix ... 25

Page ii

3.10 Relevant Metrics .. 26

3.10.1 Accuracy ... 26

3.10.2 Precision ... 27

3.10.3 Recall .. 27

3.10.4 F1 Score ... 27

3.10.5 Area Under the Receiver Operating Characteristic Curve (ROC-AUC).................... 28

4. Data... 30

4.1 Data Source and Structure ... 30

4.2 Data Cleaning .. 32

4.3 Descriptive Analysis .. 34

4.4 Data Preprocessing .. 37

4.4.1 Categorical Feature Encoding ... 37

4.4.2 Data Splitting ... 37

4.5 Feature Selection ... 38

4.5.1 ANOVA for Numerical Feature Selection ... 38

4.5.2 Chi-square Test for Categorical Feature Selection .. 39

4.5.3 Correlation Analysis for Numerical Feature Selection .. 40

4.5.4 Summary ... 40

5. Analysis .. 42

5.1 Decision Tree (DT) .. 42

5.1.1 Model Performance Without Hyperparameter Tuning ... 42

5.1.2 Hyperparameter Tuning Process (with example) ... 43

5.1.3 Model Performance After Hyperparameter Tuning ... 45

5.2 Random Forest (RF) .. 46

5.2.1 Model Performance Without Hyperparameter Tuning ... 47

5.2.2 Hyperparameter Tuning Process .. 47

5.2.3 Model Performance After Hyperparameter Tuning ... 48

5.3 Gradient Boosting Decision Tree (GBDT) .. 49

5.3.1 Model Performance Without Hyperparameter Tuning ... 49

5.3.2 Hyperparameter Tuning Process .. 50

5.3.3 Model Performance After Hyperparameter Tuning ... 51

5.4 Extreme Gradient Boosting (XGBoost)... 52

5.4.1 Model Performance Without Hyperparameter Tuning ... 52

5.4.2 Hyperparameter Tuning Process .. 53

5.4.3 Model Performance After Hyperparameter Tuning ... 54

6 Result and Conclusion ... 56

6.1 Model Result .. 56

Page iii

6.2 Business Value... 57

6.2.1 Feature Importance .. 58

6.2.2 Profit Matrix ... 58

6.3 Future Extension and Improvement... 61

7 Appendix ... 63

7.1 Code for Categorical Feature Encoding .. 63

7.2 Code for Data Splitting .. 63

7.3 Process for Feature Selection .. 63

7.3.1 ANOVA for Numerical Feature Selection Process ... 63

7.3.2 Chi-square test for Categorical Feature Selection Process ... 64

7.3.3 Correlation Analysis for Numerical Feature Selection Process 65

7.4 Hyperparameter Tuning Process for the DT Model 65

7.5 KCV for the DT Model.. 69

7.6 Hyperparameter Tuning Process for the RF Model 70

7.7 KCV for the RF Model .. 75

7.8 Hyperparameter Tuning Process for the GBDT Model 75

7.9 KCV for the GBDT Model .. 78

7.10 Hyperparameter Tuning Process for the XGBoost Model 79

7.11 KCV for the XGBoost Model .. 82

8. References .. 83

Page iv

Acknowledgments

We would like to express our sincere gratitude to all those who have supported and

contributed to the completion of this thesis.

First and foremost, we would like to thank our supervisor Jan Kudlicka, for his

guidance, expertise, and continuous support throughout the entire period. His

valuable insights and feedback have been instrumental in shaping this thesis.

We would also like to acknowledge the support and resources provided by the BI

Norwegian Business School and we are grateful for the knowledge and skills we

have gained during our time at this esteemed institution.

We would like to extend our appreciation to our family and friends who have

provided encouragement, assistance, and valuable discussions throughout this

journey. Their support and camaraderie have been invaluable in making this thesis

a reality.

Although it is not possible to mention everyone individually, we would like to

express our heartfelt appreciation to all those who have contributed in their own

way to the completion of this thesis.

Thank you all for your invaluable support and encouragement.

Page v

List of Abbreviation

ANOVA Analysis of Variance

DT Decision Tree

dfB Degree of Freedom Between Groups

dfW Degree of Freedom Within Groups

FN False Negative

FP False Positive

FPR False Positive Rate

GBDT Gradient Boosting Decision Tree

HR Human Resources

IT Information Technology

KCV K-fold Cross Validation

KNN K-Nearest Neighbor

LDA Linear Discriminant Analysis

LR Logistic Regression

MCC Matthews Correlation Coefficient

MLP Multi-Layer Perception

MSB Mean Square Between

MSW Mean Square Within

NB Naïve Bayes

NN Neural Networks

PNN Probabilistic Neural Network

Page vi

RF Random Forest

ROC-AUC Area Under the Receiver Operating Characteristic Curve

SSB Between-group Sum of Squares

SSW Within-group Sum of Squares

SVM Support Vector Machine

TN True Negative

TP True Positive

TPR True Positive Rate

XGBoost Extreme Gradient Boosting

Page 1

1. Introduction

1.1 Problem Formulation

Employee turnover is a pervasive issue faced by organizations across various

industries (Korff et al., 2015). When employees decide to leave a company, it not

only disrupts daily operations but also imposes costs associated with recruiting and

training new talent (Cascio & Boudreau, 2011; Matthew & Kung, 2007). As a

result, accurately predicting and understanding employee turnover has become a

critical objective for many businesses. The advent of machine learning has opened

up new possibilities for predicting and analyzing employee turnover. By leveraging

vast amounts of data, organizations can develop sophisticated models that

effectively forecast the likelihood of an employee leaving the company. These

predictive models enable organizations to proactively address turnover risks, devise

targeted retention and succession strategies, and create a more stable and successful

work environment (Chanodkar et al., 2019; Perryer et al., 2010). This thesis

primarily focuses on tackling the challenge of employee turnover prediction using

supervised machine learning models. By utilizing four widely recognized

supervised learning models, namely Decision Tree (DT), Random Forest (RF),

Gradient Boosting Decision Tree (GBDT), and Extreme Gradient Boosting

(XGBoost), we conduct a comparative analysis to determine the model that

demonstrates the highest predictive power for employee turnover. Through our

analysis, we aim to contribute to the field of employee turnover prediction by

advancing the understanding of the factors that drive turnover and developing

effective prediction models.

1.2 Contributions

This section highlights the significant contributions of our thesis in the field of

predicting employee turnover using supervised machine learning models. Our

thesis makes the following key contributions:

Comprehensive Analysis: Our thesis undertakes a thorough examination of the

factors influencing employee turnover and employs four widely recognized

supervised machine learning models to achieve accurate turnover predictions.

Through a meticulous analysis of demographic features and the application of

Page 2

robust methodologies, our study offers a comprehensive understanding of the

predictive models involved in employee turnover.

Dataset with Broad Coverage: Our study utilizes a dataset with extensive coverage,

encompassing diverse industries and countries. This dataset enables us to capture a

more comprehensive understanding of employee turnover dynamics and facilitates

the generalization of our findings to different contexts.

Comparative Evaluation of Supervised Learning Models: We compare the

performance of four popular supervised learning models, including DT, RF, GBDT,

and XGBoost. By evaluating their predictive abilities and identifying the model

with the highest performance, we offer valuable insights into the most effective

model for predicting employee turnover.

Addressing Previous Limitations: We overcome limitations identified in previous

research, such as limited generalization, feature selection, and metrics selection. By

employing advanced techniques and methodologies, we aim to enhance the

accuracy and reliability of employee turnover prediction models.

Practical Implications: Our thesis provides practical implications for organizations

in developing effective retention or succession strategies. By identifying the factors

contributing to employee turnover and accurately predicting turnover,

organizations can take proactive measures to mitigate turnover risks and enhance

their workforce management practices.

Overall, our study contributes to the existing body of knowledge by offering a

comprehensive analysis of employee turnover prediction, addressing previous

limitations, and providing practical insights for organizations to make informed

decisions regarding their workforce management strategies.

1.3 Structure of the Thesis

This thesis is organized into eight chapters, each focusing on a specific aspect of

predicting employee turnover using supervised machine learning models. The

following provides an overview of the structure and content of the thesis:

Page 3

Chapter 1 presents the problem formulation, emphasizing the importance of

accurately predicting employee turnover. We delve into the significance of this

topic and elaborate on the contributions our work brings to the field.

Chapter 2 delves into the background information related to employee turnover. We

examine the impact of employee voluntary turnover on organizations and

emphasize the benefits of predicting employee turnover. Additionally, we examine

the role of machine learning in addressing this issue and provide a summary of

previous studies conducted in this domain. We also discuss the limitations of prior

research and outline our efforts to overcome them in this study.

Chapter 3 focuses on the methodology employed in our study. We describe the

statistical techniques used for feature selection, including Analysis of Variance

(ANOVA), Chi-square Test, and Correlation Analysis. We also delve into the four

supervised learning models utilized in our study: Decision Tree (DT), Random

Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme Gradient

Boosting (XGBoost). Furthermore, we discuss the evaluation metrics used to assess

the performance of these models.

Chapter 4 provides detailed information about the data used in our study. We

discuss the data source, data structure, and the process of data cleaning.

Additionally, we present a descriptive analysis of the data and explain the steps

taken for data preprocessing, including categorical data encoding and data splitting.

We also elaborate on the feature selection methods applied, namely ANOVA, Chi-

square Test, and Correlation Analysis.

Chapter 5 presents the training procedures for each of the machine learning models

utilized in our study, including the hyperparameter tuning process. We thoroughly

evaluate each model, examining their performance both with and without

hyperparameter tuning.

Chapter 6 presents the overall results of our study. We discuss the performance of

each model and highlight the business value derived from predicting employee

turnover. In addition, we identify potential avenues for future research and discuss

possible extensions and improvements to the methods and models employed in this

study.

Page 4

Chapter 7 includes additional supplementary material, such as a step-by-step

process for conducting feature selection, hyperparameter tuning, and the K-fold

Cross Validation (KCV) results for each of the models utilized.

Chapter 8 contains a comprehensive list of the references cited throughout the

thesis, ensuring proper attribution of the sources consulted.

By following this structured approach, we aim to provide a comprehensive analysis

of predicting employee turnover using supervised machine learning models.

Page 5

2. Background

In this chapter, we delve into the background of employee turnover prediction and

its various aspects. We begin by introducing the concept of employee turnover (2.1)

and exploring its implications within organizations. Subsequently, we examine the

impact of voluntary employee turnover (2.2), highlighting the significant effects it

can have on businesses. Recognizing the importance of predicting and mitigating

turnover, we then discuss the benefits of such predictions (2.3), emphasizing the

potential advantages for organizations. To facilitate these predictions, we turn our

attention to machine learning (2.4) and its potential in this context. Specifically, we

explore supervised learning models (2.5) as a powerful tool for predicting employee

turnover. Lastly, we address the limitations of previous research (2.6), recognizing

the need for further advancements in this area.

2.1 Introduction to Employee Turnover

Employee turnover refers to the number or the percentage of the total number of

employees who leave the company and are replaced by hiring and appointing new

employees to fill the vacant positions within a certain period of time (Chanodkar et

al., 2019). Employees are often regarded as important assets of a company,

especially those who are considered valuable by the company. Stovel and Bontis

(2002) viewed employee turnover to be the loss of an organization’s intellectual

capital. According to Korff et al. (2015), employee turnover has been a long-

standing problem in companies. Relevant organizational studies have confirmed

that a variety of factors can influence a person’s decision to quit a position,

including job satisfaction, job performance, job security, work environment, wages,

and the existence of clearly defined organizational goals (Allen & Griffeth, 1999;

Al-Suraihi et al., 2021; Parker, 2014). Storey (2016) stated that employee retention

and job satisfaction are interdependent and fundamental to a company’s

performance. Similar conclusions regarding the impact of organizational direction

and support on employee job satisfaction and general commitment were made in

Kim et al. (2005) ’s study on corporate orientation. Additionally, a number of

researchers have discussed the impact of employee demographics on their turnover

decisions. Demographics such as age, gender, tenure, ethnicity, education, and

marital status have been proven to be strong predictors of employee resignation

Page 6

(Cotton & Tuttle, 1986; Holtom et al., 2008; Sacco & Schmitt, 2005; von Hippel et

al., 2013).

Most studies categorize employee turnover into voluntary and involuntary turnover.

Voluntary turnover occurs when the decision to leave the company is made

primarily by the employee, including all resignation forms; involuntary turnover,

which includes termination, dismissing, and other forms, refers to when the

decision to leave the company is made mostly by the employer (Shaw et al., 1998).

In contrast to involuntary turnover, which is predictable and manageable, voluntary

turnover is often unpredictable and can have a greater impact on companies

(Chanodkar et al., 2019). The analysis in this paper focuses on voluntary turnover.

Additionally, according to the characteristics of the departing employee, employee

turnover can also be classified into internal and external turnover, as well as skilled

and unskilled turnover. Internal turnover is when employees move from one

position to another within the same organization, while external turnover occurs

when employees leave to work for another organization. Skilled turnover refers to

the departure of highly skilled and educated employees, while unskilled turnover

involves the departure of employees in positions that require untrained, unskilled,

or uneducated workers (Akinyomi, 2016). These categories provide a deeper

understanding of the factors and consequences of employee turnover in

organizations.

2.2 Impact of Employee Voluntary Turnover

Voluntary employee turnover can negatively affect several aspects of an

organization. A high turnover rate might harm the company financially because of

high indirect costs, such as the cost of hiring, training, and developing new

employees (Cascio & Boudreau, 2011; Matthew & Kung, 2007). In terms of

company resources, training new employees requires additional time, manpower,

and material resources (Bapna et al., 2012). At the same time, the productivity of

the company will be impacted since new employees often need some time to

familiarize themselves with the business operation (Matthew & Kung, 2007). In

addition, both customer satisfaction (Kamalanabhan et al., 2009) and company

reputation (Beheshtifar & Allahyary, 2012) can be influenced in a similar manner.

A high rate of employee turnover is also bad for a company’s reputation

(Beheshtifar & Allahyary, 2012). Internally, the departure of experienced

Page 7

employees can lead to low morale and disrupt ongoing work (Matthew & Kung,

2007; Punnoose & Ajit, 2016). Zhang (2016) decomposed the cost of employee

turnover into two categories: explicit costs (such as hiring, training, and

productivity loss), and hidden costs (morale, corporate reputation, damage to

position chain, loss of opportunity, etc.). Moreover, the consequences of employee

turnover can vary across industries. For example, research focused on the

Information Technology (IT) sector by Shanmugam and Giri Babu (2016)

highlights that high turnover leads to decreased productivity in this field. Sexton et

al. (2005) conducted a thorough examination of the customer service industry,

revealing that unexpected employee departures harm customer loyalty and diminish

service quality. Additionally, in high-tech industries, the replacement of employees

possessing specialized skill sets or domain expertise presents a significant challenge

(Esmaieeli Sikaroudi et al., 2015). While there are drawbacks, employee turnover

can also bring benefits such as replacing underperforming employees and fostering

organizational creativity, flexibility, and adaptability (Purohit, 2016; Zhang, 2016).

Overall, organizations need to carefully manage employee turnover to mitigate

negative consequences and capitalize on potential advantages.

2.3 Benefits of Predicting Employee Turnover

Given the internal and external impact of employee turnover discussed in the

previous section, there is no doubt that it is beneficial for companies to anticipate

employee turnover. Vasantham and Swarnalatha (2015) concluded that the

retention of competent employees is critical to a company’s long-term health and

success. By predicting employee turnover, companies can take appropriate

proactive actions, such as planning for retention and succession (Chanodkar et al.,

2019). If a drastic increase in employee resignation is predicted, both management

and Human Resources (HR) teams can take necessary precautions in advance. As a

result, companies are able to reduce or maintain employee turnover as needed,

thereby increasing overall productivity and profitability. Accurate forecasts also

provide companies with insights to estimate the budget for human resource

management-related activities, such as cost per hire (Chanodkar et al., 2019). In

addition, Punnoose and Ajit (2016) pointed out that any organization that wants to

take the appropriate action to maintain its market position and accomplishment

must first determine the main causes of employee attrition. Through the

development of a predictive model, companies can gain valuable insights into the

Page 8

key reasons behind employee turnover, provide the right incentives for employees,

or find suitable personnel for future vacancies. Furthermore, employee turnover

predictions can be used to formulate strategies related to productivity or expansion

for the continued growth and development of the company (Perryer et al., 2010).

2.4 Machine Learning

Machine learning is a field of study in computer science that focuses on the use of

data and algorithms to imitate the learning process of humans, with the aim of

continuously improving its accuracy over time (Woolf, 2009). It can be categorized

into several types based on different learning processes and methods. According to

recent studies, these types include supervised learning, unsupervised learning,

semi-supervised learning, reinforcement learning, and deep learning (Alpaydin,

2020; Géron, 2022; LeCun et al., 2015; Sutton & Barto, 2018). Supervised learning

involves training models using labeled data, where the desired output is already

known. Conversely, unsupervised learning involves training models on unlabeled

data, where the desired output is unknown. Semi-supervised learning combines

elements of both supervised and unsupervised learning, utilizing datasets that

contain both labeled and unlabeled data. Reinforcement learning involves training

algorithms to make decisions by leveraging feedback received from the

environment. Finally, deep learning employs artificial neural networks to emulate

the structure and function of the human brain, enabling the resolution of complex

problems. Given that the nature of our work is to predict whether an employee will

resign, and the classes in the dataset are known: all employees will be labeled as

resigned (positive) or not resigned (not resigned). Therefore, the machine learning

models used in our analysis are all supervised learning.

The development of machine learning models has resulted in the emergence of

robust quantitative techniques that are being applied across a range of industries,

including biology and medical sciences (Bakry et al., 2017; Seddik & Shawky,

2015), transportation (Mathias & Ragusa, 2017; Ye et al., 2009), and political

science (Durant & Smith, 2007). In the field of human resource management,

different machine learning models have been studied by researchers to improve

productivity in areas such as employee performance prediction (Al-Radaide & Al

Nagi, 2012), personnel selection (Chien & Chen, 2008), and recruitment system

construction (Li et al., 2010). Machine learning also serves as a valuable tool for

Page 9

predicting employee turnover, as demonstrated by recent studies summarized in the

next chapter.

2.5 Supervised Learning Models for Employee Turnover

The use of supervised machine learning algorithms has been explored by several

studies to predict employee turnover. Alao and Adeyemo (2013) investigated the

use of Decision Tree (DT) algorithms in predicting employee attrition and identified

some of the important factors in predicting employee attrition, including salary and

tenure. Esmaieeli Sikaroudi et al. (2015) proposed using several machine learning

algorithms to predict employee turnover, including DT, K-Nearest Neighbor

(KNN), Multi-Layer Perception (MLP), Naïve Bayes (NB), Probabilistic Neural

Network (PNN), Random Forests (RF), and Support Vector Machine (SVM). They

found that the RF model achieved the best performance in predicting employee

turnover, with an accuracy rate of 90%, and identified work experience as the most

important factor in predicting employee turnover. Punnoose and Ajit (2016)

compared seven machine learning algorithms in predicting employee turnover.

These algorithms are Linear Discriminant Analysis (LDA), Logistic Regression

(LR), KNN, NB, RF, SVM, and Extreme Gradient Boosting (XGBoost). The

researchers found that XGBoost outperformed the other models in terms of Area

Under the Receiver Operating Characteristic Curve (ROC-AUC). Zhao et al. (2018)

explored machine learning algorithms including DT, Gradient Boosting Decision

Tree (GBDT), KNN, LDA, LR, NB, Neural Networks (NN), RF, SVM, XGBoost,

and found that GBDT achieved the best performance in predicting employee

turnover using ROC-AUC. Overall, these studies highlight the potential of machine

learning algorithms in predicting employee turnover and identifying factors that

contribute to it.

In Table 2-1, we present a summary of recent publications (after 2010) in the field

of predicting employee turnover. Researchers in these studies focused on one or

more machine learning models to predict employee turnover and compared their

performance using pre-selected metrics to identify the model with the best

predictive ability. Building upon the insights gained from this literature review, our

thesis incorporates four wildly recognized supervised learning models, namely DT,

RF, GBDT, and XGBoost, to develop predictive models for employee turnover.

Page 10

2.6 Limitation of Previous Research

Despite the fact that a number of studies have focused on utilizing machine learning

to develop predictive models for employee turnover, the models developed from

T
a

b
le

 2
-1

.
S

u
m

m
a

ry
 o

f
R

e
c
e
n

t
R

e
se

a
rc

h
 o

n
 S

u
p

e
rv

is
e
d

 M
a

c
h

in
e
 L

e
a

rn
in

g
 f

o
r

P
re

d
ic

ti
n

g
 E

m
p

lo
y
e
e
 T

u
rn

o
v
e
r

S
tu

d
y

D
a

ta
se

t

S
iz

e
P

o
si

ti
v

e
 %

N
u
m

b
e
r

o
f

F
e
a

tu
re

s

S
e
n
ti

m
e
n
ta

l

F
e
a

tu
re

s
In

d
u
st

ry
C

o
u
n
tr

y
S

u
p
e
rv

is
e
d
 M

a
c
h
in

e

L
e
a

rn
in

g
 M

o
d
e
l

M
e
tr

ic
s

Id
e
n
ti

fi
e
d
 K

e
y

 F
e
a

tu
re

s

S
ar

ad
hi

 &
 P

al
sh

ik
ar

,

2
0
1
1

1
,5

7
5

1
1
.8

1
1
2

N
o

-
-

N
B

,
R

F
,
S

V
M

A
cc

ur
ac

y,
 T

N
,

T
P

-

A
la

o
 &

 A
d

ey
em

o
,

2
0
1
3

4
3
2
6

7
.1

4
6

N
o

E
d

uc
at

io
n

N
ig

er
ia

D
T

A
c
c
u
ra

c
y

,
F

-M
ea

su
re

,
F

P
,

P
re

cc
is

io
n,

 R
ec

al
l,

 R
O

C
-

A
U

C
,

T
P

S
al

ar
y,

 T
en

ur
e

E
sm

ai
ee

li
 S

ik
ar

o
ud

i
et

al
.,

 2
0
1

5
-

2
0

1
4

Y
es

M
an

uf
ac

tu
re

Ir
an

D
T

,
K

N
N

,
M

L
P

,
N

B
,

P
N

N
,

R
F

,
S

V
M

A
c
c
u
ra

c
y

N
um

b
er

 o
f

jo
b

 c
ha

ng
in

g,

K
no

w
le

d
ge

 a
b

o
ut

 t
he

 w
o

rk
in

g

co
nd

it
io

ns
 a

nd
 l

aw
s,

P
er

se
v

er
an

ce
 a

nd
 i

nt
er

es
t
to

w
o

rk

P
un

no
o

se
 &

 A
ji

t,
 2

0
1

6
7
3
,1

1
5

-
3
3

Y
es

R
et

ai
le

r
U

ni
te

d
 S

ta
te

s
L

D
A

,
L

R
,

K
N

N
,

N
B

,
R

F
,

S
V

M
,

X
G

B
o

o
st

M
em

o
ry

 u
ti

li
za

it
o

n,
 M

o
d

el
 r

un

ti
m

e,
 R

O
C

-A
U

C
-

K
he

ra
 &

 D
iv

ya
,

2
0
1

8
1
,6

5
0

1
6
.1

3
2
2

Y
es

IT
In

d
ia

S
V

M
A

c
c
u
ra

c
y

-

Z
ha

o
 e

t
al

.,
 2

0
1

8
 (

1
)

9
,0

8
9

2
8
.3

4
1
9

Y
es

B
an

k
U

ni
te

d
 S

ta
te

s
D

T
,
G

B
D

T
,

K
N

N
,

L
D

A
,

L
R

,

N
B

,
N

N
,

R
F

,
S

V
M

,
X

G
B

o
o

st

A
cc

ur
ac

y,
 F

1
 s

co
re

,

P
re

cc
is

io
n,

 R
ec

al
l,

 R
O

C
-

A
U

C

-

Z
ha

o
 e

t
al

.,
 2

0
1

8
 (

2
)

1
,4

7
0

1
6
.1

2
3
1

-
-

-
D

T
,
G

B
D

T
,

K
N

N
,

L
D

A
,

L
R

,

N
B

,
N

N
,

R
F

,
S

V
M

,
X

G
B

o
o

st

A
cc

ur
ac

y,
 F

1
 s

co
re

,

P
re

cc
is

io
n,

 R
ec

al
l,

 R
O

C
-

A
U

C

-

C
ha

no
d

ka
r

et
 a

l.
,

2
0
1

9
1
,4

7
0

1
9
.2

2
-

-
-

-
A

d
aB

o
o

st
,

L
R

,
N

B
,

R
F

,
S

V
M

A
c
c
u
ra

c
y

,
F

-M
ea

su
re

,
F

P
,

M
C

C
,

P
re

ci
si

o
n,

 R
ec

al
l,

 R
O

C
-

A
U

C
,

T
P

F
re

q
ue

nt
 b

us
in

es
s

tr
av

el
,

D
is

ta
nc

e
fr

o
m

 h
o

m
e,

 A
ge

,

O
v

er
ti

m
e,

 G
ap

 i
n

p
ro

m
o

ti
o

n

A
nw

ar
 H

o
ss

en
 e

t
al

.,

2
0
2
1

1
5
,0

0
0

2
3
.8

1
9

Y
es

-
-

D
T

,
K

N
N

,
M

L
P

,
N

B
,

R
F

,

S
V

M
A

c
c
u
ra

c
y

,
R

O
C

-A
U

C

S
at

is
fa

ct
io

n
le

v
el

,
L

as
t

ev
al

ua
ti

o
n,

 N
um

b
er

 o
f

p
ro

je
ct

s

S
tu

d
y:

 A
rt

ic
le

s
ar

e
so

rt
ed

 b
y

p
ub

li
ca

ti
o

n
d

at
e.

 Z
ha

o
 e

t
al

.
(2

0
1
8

)
us

ed
 t
w

o
 d

at
as

et
s

in
 t
he

ir
 s

tu
d

y
an

d
 t
he

re
fo

re
 a

p
p

ea
rs

 t
w

ic
e

in
 t
hi

s
ta

b
le

.

P
o

si
ti

v
e

%
:

P
er

ce
nt

ag
e

o
f

d
at

a
la

b
el

le
d

 a
s

re
si

gn
ed

 (
th

e
p

o
si

ti
v

e
cl

as
s)

.

S
en

ti
m

en
ta

l
F

ea
tu

re
s:

 W
he

th
er

 f
ea

tu
re

s
re

p
re

se
nt

in
g

em
p

lo
ye

e
em

o
ti

o
ns

,
su

ch
 a

s
sa

ti
sf

ac
ti

o
n

le
v

el
 e

xp
re

ss
ed

 b
y

em
p

lo
ye

es
,

ar
e

in
cl

ud
ed

 i
n

th
e

d
at

as
et

.

S
up

er
v

is
ed

 M
ac

hi
ne

 L
ea

rn
in

g
M

o
d

el
:

T
he

 s
up

er
v

is
ed

 l
ea

rn
in

g
m

o
d

el
s

an
al

ys
ed

 i
n

th
e

st
ud

y,
 w

it
h

th
e

b
es

t
m

o
d

el
 c

o
nc

lu
d

ed
 i

n
th

e
ar

ti
cl

e
m

ar
ke

d
 i

n
b

o
ld

.

M
et

ri
cs

:
T

he
 m

et
ri

cs
 u

se
d

 t
o

 e
v

al
ua

te
 m

o
d

el
 p

er
fo

rm
an

ce
 i

n
th

e
st

ud
y.

 T
he

 m
et

ri
cs

 u
se

 t
o

 d
et

er
m

in
ed

 t
he

 b
es

t
m

o
d

el
 i

n
th

e
ar

ti
cl

e
ar

e
m

ar
ke

d
 i

n
b

o
ld

.

Id
en

ti
fi

ed
 K

ey
 F

ea
tu

re
s:

 F
ea

tu
re

s
id

en
ti

fi
ed

 i
n

th
e

st
ud

y
as

 h
av

in
g

hi
gh

 p
re

d
ic

ti
v

e
p

o
w

er
 f

o
r

em
p

lo
ye

e
tu

rn
o

v
er

.

 "
-"

 :
 W

he
n

th
e

ar
ti

cl
e

d
id

 n
o

t
p

ro
v

id
e

th
e

re
q

ui
re

d
 i

nf
o

rm
at

io
n.

D
at

as
et

 s
iz

e:
 I

n
so

m
e

ar
ti

cl
es

 i
t
re

fe
rs

 t
o

 t
he

 n
um

b
er

 o
f

d
at

a
p

o
in

ts
 (

i.
e.

 n
um

b
er

 o
f

ro
w

s)
,

su
ch

 a
s

P
un

no
o

se
 a

nd
 A

ji
t
(2

0
1
6

).
 I

n
th

is
 c

as
e,

 i
f

th
e

co
m

p
an

y
co

ll
ec

ts
 d

at
a

o
n

a
m

o
nt

hl
y

b
as

is
,

an
 e

m
p

lo
ye

e
m

ay

ap
p

ea
r

m
ul

ti
p

le
 t
im

es
 i

n
th

e
sa

m
e

d
at

as
et

.
In

 s
o

m
e

o
th

er
 a

rt
ic

le
s

it
 r

ef
er

s
to

 t
he

 a
ct

ua
l

nu
m

b
er

 o
f

em
p

lo
ye

es
.

M
o

st
 a

rt
ic

le
s

d
id

 n
o

t
m

ak
e

a
d

et
ai

le
d

 d
is

ti
nc

ti
o

n.

Page 11

these studies tend to be specific to the industry or country in which they were

developed, making it challenging to apply them in other contexts. One possible

reason for this is the limited availability of data. Developing predictive models for

employee turnover requires access to HR data that includes sensitive and

confidential personal information, such as employee performance, salary, tenure,

and reasons for leaving. However, companies generally prefer to keep such

information private (Seth & Sethi, 2011), which makes it challenging to collect data

on a large scale within one study, especially when it involves multiple countries and

industries. Most of the studies summarized in Table 2-1 conducted analyses using

datasets belonging to a single industry and from a single country, while others did

not mention the source of their datasets. The resulting models, therefore, have a

restricted capacity to be generalized. The dataset used in our thesis is provided by

a global company with operations covering multiple industries. The dataset

comprises ten countries where the company has the highest number of employees

across the globe. The countries are China, Germany, India, Italy, the Netherlands,

Norway, Poland, Spain, the United Kingdom, and the United States. Additionally,

it includes nine industries, namely consultancy, cyber security, data management,

energy, HR, IT, insurance, maritime and supply chain. A thorough description and

descriptive analysis of the dataset are provided in Chapter 4.

Another reason for the limited generalization of previous studies can be the

inclusion of sentimental features. These features, such as employee satisfaction

level, job security perceptions, and peer relationships, are often incorporated into

the dataset to predict employee turnover. Although, as mentioned in Chapter 2.1,

studies in organizational research have demonstrated the importance of sentimental

features in reflecting employees’ decisions to leave their jobs, it is difficult to ensure

the consistency and accuracy of such data. Companies generally send employees

surveys or questionnaires to find out how they feel about the company, their job, or

their colleagues (Moyes et al., 2008; Okechukwu, 2017; Saleem et al., 2010).

However, the design of each company’s survey is likely to be different. For

instance, some companies may ask about job satisfaction, while others may ask

about workload satisfaction. This means that the sentimental features included in

datasets from different companies are likely to be incomparable. In addition,

individuals perceive satisfaction differently, especially across different cultures

(Kristensen & Johansson, 2008). As a result, analyses designed using sentimental

Page 12

features are difficult to verify in other companies, let alone in a different industry

or country. To mitigate this issue, the analysis in our thesis only focuses on

employee demographic features such as age, gender, and tenure. These features are

available to most companies and have been consistently identified as significant

factors in predicting employee turnover in prior research (Cotton & Tuttle, 1986;

Holtom et al., 2008; Sacco & Schmitt, 2005; von Hippel et al., 2013)

In previous studies, the evaluation of supervised learning models in predicting

employee turnover often relied heavily on accuracy as the primary metric.

However, this approach may have limitations when working with imbalanced

datasets (Boughorbel et al., 2017; Jeni et al., 2013). Imbalanced datasets are

common in employee turnover prediction studies because the number of employees

who actually leave a company is typically a small fraction compared to the total

number of employees. Our thesis deals with a highly imbalanced dataset, with only

2.66% of the data labeled as “resigned” (positive). In cases like these, accuracy is

not a practical metric for evaluating model performance. For instance, a model can

achieve 97.33% accuracy simply by predicting all instances as negative. Therefore,

we use F1score and ROC-AUC as our preferred metrics in the analysis. These

metrics are more suitable for handling imbalanced datasets (Cahyana et al., 2019;

Zhao et al., 2018). Detailed information on the calculation of each metric can be

found in Chapter 3.10.

In conclusion, previous research on employee turnover prediction using machine

learning has faced challenges regarding generalizability and practical application.

The specificity of the models developed for particular industries or countries has

hindered their transferability to diverse organizational contexts. Our thesis

addresses this limitation by utilizing a dataset encompassing multiple countries and

industries. In addition, instead of relying on subjective sentimental features, we

incorporate a diverse range of demographic features to enhance the robustness and

reliability of our models. Previous studies also heavily relied on accuracy as the

primary evaluation metric, which may not be suitable for imbalanced datasets

commonly used in employee turnover prediction. To address this issue, we adopt

F1score and ROC-AUC as our preferred evaluation metrics, as they provide more

robust performance measures for imbalanced data. By addressing these limitations

and adopting a comprehensive approach, our thesis strives to make valuable

contributions to the field of employee turnover prediction using machine learning.

Page 13

3. Methodology

In this chapter, we present the methodology employed to develop and evaluate our

predictive models for employee turnover. We begin by discussing the feature

selection techniques used, namely Analysis of Variance (ANOVA), Chi-square

Test, and Correlation Analysis (3.1-3.3). These methods enable us to identify the

most relevant features for predicting employee turnover. Next, we delve into the

machine learning models employed in our analysis, including Decision Tree (DT),

Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme

Gradient Boosting (XGBoost) (3.4-3.7). These models were carefully chosen based

on their proven performance in predicting employee turnover and their wide

adoption in the field of machine learning. In order to ensure the robustness of our

models, we employ K-fold Cross Validation (KCV) (3.8) to assess their stability

and generalizability. For evaluating model performance, we utilize various metrics

(3.9-3.10). These include the Confusion Matrix, which provides a comprehensive

overview of model predictions, and relevant metrics such as accuracy, precision,

recall, and F1 score (3.10.1-3.10.4). Additionally, we employ the Area Under the

Receiver Operating Characteristic Curve (ROC-AUC) to evaluate the models’

discrimination power and ability to handle imbalanced datasets (3.10.5).

3.1 Analysis of Variance (ANOVA)

In our analysis, we employ Analysis of Variance (ANOVA) as a feature selection

technique to identify relevant numerical features for our machine learning model.

ANOVA is a statistical method that assesses the statistical significance of

differences between groups (Kishore et al., 2017), in this case, the relationship

between each numerical feature and the target variable, “Resigned”. The steps for

using ANOVA for feature selection in our analysis can be outlined as follows:

1. Data Preparation: We start by preparing our dataset, ensuring that it is

properly formatted and contains the target variable and the numerical

features of interest, such as Age, Tenure, and so on.

2. Grouping: We divide our dataset into two groups corresponding to the two

classes: “Resigned” and “Not Resigned”.

3. F-statistic Calculation: Using the grouped data, we calculate the F-statistic

for each selected feature. This statistic measures the variability between the

Page 14

groups compared to the variability within each group. It quantifies the extent

to which the feature explains the variation in the target variable.

4. Significance Testing: We assess the statistical significance of the F-statistic

by calculating the p-value. The p-value represents the probability of

observing a result as extreme as, or more extreme than, the one obtained

under the null hypothesis. A low p-value indicates a significant difference

between the groups and suggests that the feature is informative for

predicting the target variable.

5. Feature Selection: Based on the calculated p-values, we rank the features in

descending order of their significance. We set the significance threshold to

0.05 and select the features with p-values below this threshold. These

features are considered relevant to our model.

3.1.1 F-statistic Calculation

In Step 3 of using ANOVA for feature selection, we calculate the F-statistic for

each feature. Mathematically, the F-statistic can be calculated using the following

formula:

𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝑊
 , (3-1)

where 𝑀𝑆𝐵 denotes the mean square between groups and 𝑀𝑆𝑊 denotes the mean

square within groups.

To calculate 𝑀𝑆𝐵 , we compute the sum of squares between groups (𝑆𝑆𝐵) by

summing the squared differences between the group means and the overall mean,

and then divide it by the degrees of freedom between groups (𝑑𝑓𝐵). The formula

for 𝑀𝑆𝐵 is:

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝐵
 (3-2)

To calculate 𝑀𝑆𝑊 , we compute the sum of squares within groups (𝑆𝑆𝑊) by

summing the squared differences between each observation and its respective group

mean, and then divide it by the degrees of freedom within groups (𝑑𝑓𝑊). The

formula for 𝑀𝑆𝑊 is:

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑊
 (3-3)

Page 15

The 𝑑𝑓𝐵 is equal to the number of groups minus one, while the 𝑑𝑓𝑊 is equal to

the total number of observations minus the number of groups.

In summary, ANOVA-based feature selection provides a statistical framework to

identify the numerical features that contribute to the target variable. This helps to

focus the model’s learning on the informative features, potentially improving

efficiency and reducing the risk of overfitting.

3.2 Chi-square Test

The Chi-square test is a statistical test used to determine if there is a significant

association between two categorical variables by evaluating their independence

(Thaseen et al., 2019). In our analysis, we utilize the Chi-square test for feature

selection, specifically focusing on categorical features. This test allows us to

identify relevant categorical features by measuring their dependence on the target

variable.

The process of using the Chi-square test for feature selection is similar to that of

using ANOVA, with the difference being the type of features analyzed (categorical

instead of numerical) and the statistic used (Chi-square test statistic instead of F-

statistic).

3.2.1 Chi-square Test Statistic Calculation

The Chi-square test statistic is calculated based on the observed and expected

frequencies. Mathematically, it is calculated as follows:

𝐶ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒 = ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 (3-4)

In this equation, the summation symbol (Σ) represents the summation operation

conducted over all cells in a contingency table that captures the frequencies of the

categorical feature and the target variable. For each cell, we calculate the difference

between the observed frequency (the actual count in the cell) and the expected

frequency (the count expected assuming independence between the feature and the

target variable). We then square this difference, divide it by the expected frequency,

and sum up these terms for all cells in the table.

Page 16

By calculating the Chi-square test statistic, we obtain a single numerical value that

measures the overall discrepancy between the observed and expected frequencies.

A larger Chi-square value indicates a stronger association between the feature and

the target variable, while a smaller value suggests a weaker or no association. This

statistic is subsequently used to determine the degrees of freedom and calculate the

p-value, enabling us to assess the significance of the association.

In summary, by applying the Chi-square test and analyzing the resulting p-values,

we can identify informative categorical features for the target variable. This process

helps reduce the dimensionality of the dataset and potentially enhances the

efficiency and interpretability of the model.

3.3 Correlation Analysis

Correlation analysis is a statistical technique used to assess the strength and

direction of the linear relationship between two numerical variables (Hauke &

Kossowski, 2011). In our analysis, we use correlation analysis as an additional

feature selection technique to identify the numerical features that are relevant to our

target variable. Furthermore, we examine the correlations among the features

themselves to gain insights into the relationships between the features and identify

potential issues such as multicollinearity. The steps involved in using correlation

analysis for feature selection are as follows:

1. Calculation of Correlation Coefficients: We compute the correlation

coefficients between each numerical feature and the target variable using

Pearson’s correlation coefficient, which quantifies the linear relationship

between two variables. This coefficient measures the linear relationship

between two variables, ranging from -1 to 1. A value close to 1 indicates a

strong positive correlation, a value close to -1 indicates a strong negative

correlation and a value close to 0 suggests no or weak correlation.

2. Evaluation of Correlation Strength: We assess the strength of the correlation

coefficients to identify the numerical features that exhibit a significant

relationship with the target variable. Features with high absolute correlation

coefficients are considered to have a stronger association with the target

variable and are more likely to provide meaningful information for

prediction.

Page 17

3.3.1 Pearson’s Correlation Coefficient Calculation

Pearson’s correlation coefficient is used to quantify the linear relationship between

features and the target variable. It is calculated using the formula:

𝑟 =
∑((𝑋𝑖−�̅�)(𝑌𝑖−�̅�))

𝑛∗𝜎𝑋∗𝜎𝑌
 , (3-5)

where 𝑟 represents Pearson’s correlation coefficient, X and Y represent the features

and the target variable, �̅� and �̅� are the mean of 𝑋 and 𝑌, 𝑛 represents the number

of data points in the dataset, and 𝜎𝑋 and 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌.

In summary, by utilizing correlation analysis, we can identify the numerical features

that have a strong relationship with the target variable, allowing us to focus on the

informative features for our predictive model. This feature selection process helps

reduce dimensionality, enhance model interpretability, and potentially improve the

model’s performance.

3.4 Decision Tree (DT)

Decision Tree (DT) is a supervised learning algorithm that can be used for

classification and regression tasks (Breiman et al., 2017). It builds a tree-like model

consisting of nodes and branches, which represent decisions and their possible

outcomes. Root nodes and internal nodes correspond to features, such as an

employee’s age, while branches represent the possible values or ranges for those

features. Leaf nodes indicate class labels, which in our context would indicate

whether an employee has resigned or not.

To illustrate the functionality of a DT model, we use an example of fruit

classification. We start with a dataset that contains information about fruits,

including their color and shape, along with labels indicating whether they are

“Apple” or “Orange”. The objective is to build a DT model using this dataset to

classify new fruits based on their color and shape. Figure 3-1 showcases one

potential structure for the DT model. To make predictions using this model, we start

at the root node labeled “Color” and follow the branches based on the feature values

of the new fruits. Eventually, we reach a leaf node representing either “Apple” or

“Orange”.

Page 18

Figure 3-1 Decision Tree Structure for Fruit Classification

3.4.1 Gini Impurity

The detailed features of the DT model and its algorithm can be referred to Breiman

et al. (2017) and Priyam et al. (2013). This section is dedicated to examining the

splitting criterion of our final DT model. The splitting criterion determines the

optimal feature and value for dividing the data at each node of the tree. The two

most commonly used splitting criteria are Information Gain and Gini Impurity. In

our thesis, the final DT model utilized Gini Impurity as the splitting criterion. It is

calculated using the following formula:

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑(𝑝(𝑖)2) , (3-6)

where 𝑝(𝑖) represents the probability of class 𝑖 appearing in the dataset 𝑆.

The resulting Gini Impurity reflects the degree of impurity or disorder within the

dataset or subset. A Gini Impurity of 0 indicates a perfectly pure dataset, where all

instances belong to the same class. Higher values indicate higher impurity, with 0.5

being the maximum impurity when classes are evenly distributed.

When considering a split on a specific feature, the Gini Impurity is calculated for

each possible split point. The optimal split is chosen based on the split that

minimizes the weighted average of the Gini Impurity for the resulting subsets. By

using the Gini Impurity as the splitting criterion, the DT algorithm aims to create

Page 19

splits that generate subsets with the least impurity, which leads to a more accurate

and informative tree.

In summary, DT is a supervised learning algorithm that involves recursively

partitioning the data based on the most informative features, ultimately creating a

tree structure that can classify new instances. The selection of an appropriate

splitting criterion is crucial in determining the optimal splits and overall accuracy

and interpretability of the DT model.

3.5 Random Forest (RF)

Ensemble learning refers to algorithms that aggregate predictions from multiple

models. Random Forest (RF) is an ensemble learning algorithm that combines

multiple DTs to make predictions. RF can be applied to both classification and

regression tasks, offering improved accuracy, reduced overfitting, and the ability to

handle high-dimensional datasets with a large number of features (Breiman, 2001).

Similar to DT, RF builds a collection of tree-like models. However, unlike a single

DT, RF builds each individual tree by selecting a random subset of the dataset with

replacement (known as bootstrap sampling) and using a random subset of features

for nodes.

Building upon our fruit classification example, Figure 3-2 presents a potential

structure for using a RF model to classify fruits. In this structure, when classifying

a new fruit, each tree in the RF independently provides its prediction (e.g., “Apple”

or “Orange”). The final prediction is then determined through majority voting,

where the class that receives the most votes across all trees is chosen, resulting in a

more reliable and accurate classification.

Figure 3-2 Random Forest Structure for Fruit Classification

Page 20

3.5.1 Bootstrap Sampling

For the detailed features of the RF model and its algorithm, please refer to Breiman

(2001) and Rodriguez-Galiano et al. (2012). This section delves into the

examination of bootstrap sampling, which holds significant importance in the RF

algorithm due to its crucial role in constructing individual DTs. It involves creating

multiple resamples (bootstrap samples) from an original dataset by randomly

selecting observations with replacement. The term “with replacement” indicates

that each selected observation is returned to the dataset before the next selection,

allowing the possibility of selecting the same observation more than once within a

resample. The fundamental steps involved in bootstrap sampling are as follows:

1. Begin with an original dataset 𝐷, containing 𝑁 observations.

2. Randomly select an observation from the original dataset and add it to a

bootstrap sample.

3. Repeat Step 2 𝑁 times, with replacement, to create a bootstrap resample of

the same size as the original dataset.

4. Repeat Steps 2 and 3 a total of 𝐵 times to generate 𝐵 bootstrap samples,

denoted as 𝐷1 , 𝐷2 , …, 𝐷𝐵.

5. For each bootstrap sample, construct a decision tree using the DT algorithm.

By following these steps, we can generate multiple bootstrap samples from the

original dataset and build each individual DT using each bootstrap sample, resulting

in an ensemble of DTs. Additionally, for every bootstrap sample, a random subset

of features is chosen from the available feature set. Typically, the subset size is

smaller than the total number of features. These procedures introduce diversity

among the DTs as each tree learns from a slightly different combination of data and

features. Ultimately, this diversity aids in mitigating overfitting and improving the

generalization capability of the RF model.

In summary, RF is an ensemble learning algorithm that combines multiple DTs to

enhance prediction accuracy. By employing bootstrap sampling and random feature

selection, RF ensures diversity among the individual trees, resulting in improved

performance and robustness.

Page 21

3.6 Gradient Boosting Decision Tree (GBDT)

Gradient Boosting Decision Tree (GBDT) is an ensemble learning algorithm that

can be used for both classification and regression tasks (Friedman, 2000). GBDT

aims to create a robust predictive model by iteratively combining weak learners, in

this case, DTs, in a systematic manner. In comparison to RF, where trees are built

independently, GBDT constructs trees in a sequential manner, with each subsequent

tree designed to rectify the mistakes made by the previous trees. This iterative

process enhances the model’s predictive capability and reduces errors.

Additionally, while both RF and GBDT utilize ensembles of DTs to make final

predictions, RF relies on majority voting, whereas GBDT combines the predictions

from all the trees.

The construction process of DTs in GBDT can be summarized in the following

steps:

1. Begin with a single DT as the initial model.

2. Calculate the residuals or errors between the predictions of the current

model and the true values of the target variable.

3. Construct a new DT specifically to predict the residuals, aiming to minimize

the residuals and improve the overall model performance.

4. Update the model by adding the newly constructed DT to the ensemble,

adjusting the predictions by a certain learning rate.

5. Repeat steps 2-4 until the desired number of trees is reached or the

performance metric converges.

To provide a clearer understanding, Figure 3-3 presents a simplified example of

using GBDT to predict a person’s age. We begin with an initial DT that predicts an

age of 20. Upon comparing this prediction with the true age, we calculate a residual

of 10. To address this residual, a second DT is constructed specifically for

predicting it, estimating a value of 6 and resulting in a residual of 4. This iterative

process continues with the third tree predicting the new residual, and it persists until

the fourth tree is built to handle the remaining residuals. To obtain the ultimate

prediction, we sum up the predictions made by these four trees, resulting in a sum

of 30, representing the final age prediction. This sequential approach of iteratively

Page 22

correcting errors made by previous models allows GBDT to progressively improve

its predictive power and achieve more accurate predictions.

Figure 3-3 A Simplified GBDT Structure for Age Prediction

3.6.1 Loss Function

The detailed features of the GBDT model and its algorithm can be referred to

Friedman (2000) and Ke et al. (2017). This section presents the loss function used

in our final GBDT model. The Loss function is used to quantify and capture the

discrepancy between the predicted values made by the GBDT model and the true

values. It plays a crucial role in guiding the construction of subsequent DTs and

optimizing the overall model performance. The choice of the loss function depends

on the specific problem at hand, such as binary classification, multiclass

classification, or regression. In our thesis, the final GBDT model incorporates

deviance as the chosen loss function. It is calculated using the formula:

𝐿(𝑦, 𝐹(𝑥)) = log(1 + exp (−2𝑦𝐹(𝑥))) , (3-7)

where 𝐿 is the loss function, 𝑦 is the true output and 𝐹(𝑥) is the predicted output.

GBDT employs gradient descent to optimize the model. It utilizes the gradients of

the loss function with respect to the predictions of the current model to guide the

construction of subsequent trees. This approach ensures that each new tree is built

in a direction that minimizes the loss function, leading to a more accurate and

effective ensemble.

In conclusion, GBDT is a powerful ensemble learning algorithm that sequentially

combines DTs to enhance prediction accuracy. Through iterative error correction,

GBDT creates a strong ensemble capable of handling complex tasks.

Page 23

3.7 Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is an ensemble learning algorithm

introduced by Chen and Guestrin (2016). It builds upon the principles of GBDT

while incorporating several key enhancements to optimize computation efficiency

and model performance. One important improvement is the normalization of the

loss function, which reduces model variance and mitigates the risk of overfitting,

resulting in improved stability and robustness. XGBoost also employs a sparsity-

aware algorithm that efficiently handles attributes with a high occurrence of zero or

missing value entries by excluding them from potential splits, enhancing overall

algorithm efficiency. Additionally, XGBoost utilizes parallelizable learning to

accelerate the computation of the best split, significantly reducing computational

complexity and enabling faster model building without sacrificing ensemble

accuracy.

3.7.1 Objective Function

For an in-depth understanding of the XGBoost model, Chen and Guestrin (2016)

offer detailed insights into its algorithm. This section focuses on presenting the

definition of the objective function in XGBoost, which distinguishes it from GBDT.

The objective function in XGBoost, which can be derived from the loss function

described in Equation 3-7, can be expressed as follows:

𝐿(𝑦, 𝐹(𝑥)) + 𝛺(𝐹(𝑥)) , (3-8)

where 𝛺(𝐹(𝑥)) represents the regularization term.

In comparison to GBDT, XGBoost incorporates the regularization term to control

the complexity of the model. In the objective function, the loss function aims to

ensure that the model fits the training data as closely as possible, the same as in

GBDT. On the other hand, the regularization term promotes simpler models by

penalizing complexity, reducing the impact of randomness when fitting the model

with limited data. As a result, it mitigates the risk of overfitting and leads to more

stable predictions from the model.

Page 24

3.7.2 Taylor Expansion

Another key difference between XGBoost and GBDT is the use of a second-order

Taylor expansion on the loss function. During each boosting iteration in XGBoost,

Taylor expansion is used to approximate the loss function by using a polynomial

expansion around a given point and making the optimization process more efficient.

This allows for more efficient computation of the gradients and Hessians, which are

used to update the model parameters during training.

Based on the loss function in Equation 3-8, the Taylor expansion of the loss function

around a point 𝐹(𝑥0) can be expressed mathematically as follows:

𝐿(𝑦, 𝐹(𝑥)) ≈ 𝐿(𝑦, 𝐹(𝑥0)) + (𝐹(𝑥) − 𝐹(𝑥0)) ∗
𝜕𝐿(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)
+ (𝐹(𝑥) − 𝐹(𝑥0))

2
∗

𝜕2𝐿(𝑦,𝐹𝑥))

𝜕𝐹(𝑥)2

2!
+ ⋯ ,

 (3-9)

where 𝐿(𝑦, 𝐹(𝑥)) represents the loss function. The first term

𝐿(𝑦, 𝐹(𝑥0)) represents the loss at the point 𝑥0. The second term (𝐹(𝑥) − 𝐹(𝑥0)) ×

𝜕𝐿(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)
 represents the first-order derivative of the loss function with respect to

𝐹(𝑥) evaluated at 𝑥0, multiplied by the difference between 𝐹(𝑥) and 𝐹(𝑥0). The

third term (𝐹(𝑥) − 𝐹(𝑥0))
2

×

𝜕2𝐿(𝑦,𝐹𝑥))

𝜕𝐹(𝑥)2

2!
 represents the second-order derivative of

the loss function with respect to 𝐹(𝑥) evaluated at 𝑥0, multiplied by the squared

difference between 𝐹(𝑥) and 𝐹(𝑥0), divided by 2! (which is 2 factorial).

By utilizing the Taylor expansion, XGBoost reduces the complexity of computing

the loss function and its derivatives, which leads to faster training and improved

efficiency. It is worth noting that the specific implementation details may vary

between different versions of XGBoost, but the general idea of using Taylor

expansion to approximate the loss function remains consistent.

In summary, XGBoost is a powerful ensemble learning algorithm that combines

efficiency, scalability, regularization techniques, and an enhanced objective

function to deliver superior classification accuracy.

Page 25

3.8 K-fold Cross Validation (KCV)

K-fold cross validation (KCV) is a widely used technique for evaluating the

performance of machine learning models (Anguita et al., 2012). In our analysis, we

utilize KCV to select the best hyperparameters and assess the performance of the

trained model. The process involves partitioning the dataset into 𝑘 equal-sized

folds, where 𝑘 represents the desired number of folds, in our case, 𝑘 is set to 10.

The steps of KCV can be summarized as follows:

1. Partitioning: The dataset is divided into 𝑘 equal-sized folds, ensuring that

each fold contains a representative subset of the data.

2. Training and Testing: The model is trained on 𝑘 − 1 folds and evaluated on

the remaining fold. This process is repeated 𝑘 times, with each fold serving

as the testing set exactly once.

3. Performance Metric: A performance metric, such as accuracy, precision,

recall, or F1 score, is calculated for each iteration of the training and testing

process.

4. Aggregation: The performance metrics obtained from each fold are

averaged to provide an overall performance estimate of the model.

KCV is beneficial for model evaluation as it mitigates the risk of overfitting and

provides a robust estimate of the model’s performance on unseen data. It allows us

to assess the model’s ability to generalize across different subsets of the dataset and

select the best hyperparameters based on the aggregated performance metrics. In

our analysis, KCV serves as a valuable tool for model assessment and

hyperparameter tuning, contributing to the overall reliability and validity of our

results.

3.9 Confusion Matrix

A confusion matrix is a tabular representation that summarizes the performance of

a classification model by showing the counts of true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) predictions (Deng et al., 2016). It

provides valuable insights into the accuracy and error types of the model’s

predictions.

Page 26

The structure of a confusion matrix is as follows:

The sum of TP, TN, FP, and FN represents the total number of instances in the

dataset.

3.10 Relevant Metrics

The confusion matrix provides several performance metrics that can be derived to

evaluate the model’s performance, including accuracy, precision, recall, and F1

score. These metrics help assess the model’s ability to correctly classify instances

and identify potential imbalances or biases in the predictions.

3.10.1 Accuracy

Accuracy evaluates the overall correctness of a classification model. It represents

the proportion of correct predictions out of the total number of predictions made by

the model. The formula to calculate accuracy from a confusion matrix is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (3-10)

Accuracy ranges from 0 to 1, where 1 indicates a perfect classification with no

errors, and 0 indicates complete misclassification. Accuracy provides an overall

measure of how well the model is able to classify instances correctly. However, it

may not be suitable for imbalanced datasets, where the number of instances in

different classes is significantly different. In such cases, accuracy alone may be

misleading (Boughorbel et al., 2017; Jeni et al., 2013).

Table 3-1. Confusion Matrix

 Predicted

Actual
Negative Positive

Negative True Negative (TN) False Positive (FP)

Positive False Negative (FN) True Positive (TP)

*TP: Instances where the model correctly predicted the positive class.

*FN: Instances where the model incorrectly predicted the negative class, but they were actually of the positive class.

*FP: Instances where the model incorrectly predicted the positive class, but they were actually of the negative class.

*TN: Instances where the model correctly predicted the negative class.

Page 27

3.10.2 Precision

Precision focuses on the accuracy of positive predictions made by a classification

model. It quantifies the ratio of TP predictions to the total number of positive

predictions generated by the model. The formula to calculate precision is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

 𝑇𝑃+𝐹𝑃
 (3-11)

Precision ranges from 0 to 1, where 1 indicates perfect precision with no FP

predictions and 0 indicates complete misclassification of positive instances.

Precision is particularly useful in scenarios where the cost of FP is high. It indicates

how well the model is able to identify the TP instances while minimizing FP. A

high precision value indicates a low rate of FP and a high level of confidence in the

positive predictions made by the model.

3.10.3 Recall

Recall measures the proportion of TP predictions out of all actual positive instances

in a classification problem. It quantifies the ability of a model to correctly identify

positive instances. The formula to calculate recall from a confusion matrix is:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3-12)

Recall ranges from 0 to 1, where 1 indicates a perfect recall with no FN predictions

and 0 indicates complete misclassification of positive instances. Recall is

particularly important in scenarios where the cost of FN is high. It indicates how

well the model captures all positive instances and minimizes FN. A high recall

indicates a low rate of FN and a high level of sensitivity in detecting positive

instances.

3.10.4 F1 Score

F1 score combines both precision and recall into a balanced measure of a model’s

performance. It provides a harmonic mean of precision and recall, giving equal

importance to both metrics. The formula to calculate F1 score from precision and

recall is:

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3-13)

Page 28

F1 score ranges from 0 to 1, where 1 indicates the best possible performance and 0

indicates the worst. When F1 score is high, it indicates that the model has achieved

a good trade-off between precision and recall. F1 score is particularly useful in

scenarios where there is an imbalance between positive and negative instances in

the dataset (Cahyana et al., 2019). It provides a way to assess a model’s ability to

achieve both high precision (minimizing FP) and high recall (minimizing FN).

3.10.5 Area Under the Receiver Operating Characteristic Curve (ROC-AUC)

Area Under the Receiver Operating Characteristic Curve (ROC-AUC) is a

performance metric used to evaluate the predictive power of a binary classification

model.

The ROC curve is a graphical representation of the model’s performance by plotting

the true positive rate (TPR) on the y-axis against the false positive rate (FPR) on

the x-axis at various classification thresholds. The curve illustrates how well the

model can distinguish between the positive and negative classes across different

threshold settings.

The AUC refers to the area under the ROC curve. It assesses the overall

performance of the model by quantifying the probability that the model will assign

a higher rank to a randomly selected positive instance compared to a randomly

selected negative instance.

The AUC value ranges from 0 to 1, where a value of 1 indicates a perfect classifier

and a value of 0.5 suggests a random classifier (no better than random).

TPR, also known as recall, is calculated with reference to Equation 3-12. FPR is

calculated as:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3-14)

A higher ROC-AUC score indicates that the model has a stronger ability to

accurately differentiate between classes. It is particularly useful when dealing with

imbalanced datasets, where the distribution of positive and negative instances is

unequal (Miao & Zhu, 2020). Figure 3-4 shows an example of the ROC-AUC plot

derived from the final XGBoost model of our analysis.

Page 29

Figure 3-4 ROC-AUC Plot of the Final XGBoost Model

Page 30

4. Data

In this chapter, we focus on the data used in our analysis and the various steps

involved in preparing it for analysis. We begin by discussing the data source and

structure (4.1). Next, we address the crucial process of data cleaning (4.2). This step

involves identifying and handling missing values and inconsistencies in the dataset

to ensure its quality and reliability. To gain a better understanding of the dataset,

we conduct descriptive analysis (4.3), which involves summarizing and visualizing

key characteristics and patterns present in the data. Subsequently, we move on to

data preprocessing (4.4). This stage includes several steps such as categorical data

encoding (4.4.1) to transform categorical features into numerical representations

suitable for different machine learning algorithms. We also discuss data splitting

(4.4.2), which involves dividing the dataset into training, validation, and testing sets

to evaluate model performance accurately. Feature selection plays a crucial role in

building effective predictive models. We explore different techniques for feature

selection (4.5), including Analysis of Variance (ANOVA) (4.5.1), Chi-square test

(4.5.2), and correlation analysis (4.5.3). These methods help identify the most

relevant features that contribute to predicting employee turnover. We summarize

the findings of the feature selection process (4.5.4), highlighting the selected

features for further analysis. By thoroughly examining the data source, cleaning and

preprocessing the dataset, and performing feature selection, we ensure the data’s

quality and suitability for developing accurate and reliable models for predicting

employee turnover. These steps lay the foundation for the subsequent analysis and

modeling stages of our work.

4.1 Data Source and Structure

The dataset used in the analysis is provided by a multinational corporation

headquartered in Oslo, Norway. The company has over 10,000 employees in more

than 100 countries worldwide. The dataset consists of two files: one file contains

monthly employee demographic information spanning from January 2021 to June

2022, while the second file contains a list of employees who left the company

between January 2021 and September 2022, including their departure dates and

reasons for leaving. It is important to note that the data specifically focuses on

permanent employees of the company, excluding temporary employees who have

predetermined end dates for their employment. Additionally, to ensure a more

Page 31

focused analysis, the dataset only includes employee data from the top 10 countries

with the highest number of employees in the company. By narrowing the scope to

these countries, which include China, Germany, India, Italy, Netherlands, Norway,

Poland, Spain, United Kingdom, and the United States, the analysis concentrates

on regions with substantial employee representation. For a comprehensive

overview of the dataset's structure and content, Table 4-1 presents a detailed list of

all columns included in both data files, accompanied by their respective

descriptions. Furthermore, to provide a glimpse of the dataset's contents, examples

of rows from the employee demographics file and the termination file can be found

in Table 4-2 and Table 4-3, respectively.

 T
a

b
le

 4
-1

.
D

e
sc

ri
p

ti
o

n
 o

f
th

e
 D

a
ta

se
t

U
se

d

F
il
e
 N

a
m

e
F

e
a

tu
re

F
e
a

tu
re

 D
e
sc

ri
p
ti

o
n

E
m

p
lo

ye
e

ID
T

he
 p

er
so

na
l

id
en

ti
fi

ca
ti

o
n

nu
m

b
er

 f
o

r
ea

ch
 e

m
p

lo
ye

e.

A
ge

T
he

 a
ge

 o
f

th
e

em
p

lo
ye

e.

C
o

un
tr

y
T

he
 c

o
un

tr
y

w
he

re
 t
he

 e
m

p
lo

ye
e

w
o

rk
s.

 T
he

 c
o

un
tr

ie
s

ar
e

C
hi

na
,

G
er

m
an

y,
 I

nd
ia

,
It

al
y,

 t
he

N
et

he
rl

an
d

s,
 N

o
rw

ay
,

P
o

la
nd

,
S

p
ai

n,
 t
he

 U
ni

te
d

 K
in

gd
o

m
 a

nd
 t
he

 U
ni

te
d

 S
ta

te
s.

E
xt

ra
ct

io
n

d
at

e
T

he
 d

at
a

ex
tr

ac
ti

o
n

d
at

e.
 T

he
 d

at
a

ex
tr

ac
ti

o
n

is
 p

er
fo

rm
ed

 o
n

a
m

o
nt

hl
y

b
as

is
 f

ro
m

 J
an

ua
ry

 2
0

2
1

 t
o

Ju
ne

 2
0

2
2

.

E
d

uc
at

io
n

T
he

 e
d

uc
at

io
na

l
b

ac
kg

ro
un

d
 o

f
th

e
em

p
lo

ye
es

.
T

he
 e

d
uc

at
io

ns
 a

re
 2

 y
ea

r
C

o
ll

eg
e

L
ev

el
,

B
ac

he
lo

r

L
ev

el
,

B
as

ic
 E

d
uc

at
io

n
L

ev
el

,
D

o
ct

o
ra

te
 L

ev
el

,
M

as
te

r
L

ev
el

,
N

o
t
A

p
p

li
ca

b
le

,
P

ro
fe

ss
io

na
l

/

T
ec

hn
ic

al
 0

-3
 y

ea
rs

 a
nd

 U
nk

no
w

n.

G
en

d
er

T
he

 g
en

d
er

 o
f

th
e

em
p

lo
ye

e.
 T

he
 g

en
d

er
s

ar
e

F
em

al
e,

 M
al

e
an

d
 U

nk
no

w
n.

H
ir

e
d

at
e

T
he

 d
at

e
th

e
em

p
lo

ye
e

w
as

 h
ir

ed
.

In
d

us
tr

y

T
he

 i
nd

us
tr

y
th

e
em

p
lo

ye
e

w
o

rk
s

in
.

T
he

 i
nd

us
tr

ie
s

ar
e

C
o

ns
ul

ta
nc

y,
 C

yb
er

 S
ec

ur
it

y,
 D

at
a

M
an

ag
em

en
t,
 E

ne
rg

y,
 E

xt
er

na
l,

 H
um

an
 R

es
o

ur
ce

,
In

fo
rm

at
io

n
T

ec
hn

o
lo

gy
,

In
su

ra
nc

e,
 M

ar
it

im
e

an
d

S
up

p
ly

 C
ha

in
.

L
as

t
d

at
e

o
f

p
ro

m
o

ti
o

n
T

he
 d

at
e

th
e

em
p

lo
ye

e
w

as
 l

as
t
p

ro
m

o
te

d
 o

n
th

e
L

ev
el

.

L
ev

el
T

he
 j

o
b

 l
ev

el
 o

f
th

e
em

p
lo

ye
e.

 T
he

 l
ev

el
 r

an
ge

s
fr

o
m

 1
 t
o

 1
5
,

w
it

h
th

e
ad

d
it

io
na

l
ca

te
go

ry
 o

f

U
nk

no
w

n.

T
en

ur
e

T
he

 l
en

gt
h

o
f

ti
m

e
th

e
em

p
lo

ye
e

ha
s

w
o

rk
ed

 f
o

r
th

e
co

m
p

an
y,

 m
ea

su
re

d
 i

n
ye

ar
s.

T
it

le
T

he
 j

o
b

 t
it

le
 o

f
th

e
em

p
lo

ye
e.

 T
he

 t
it

le
s

ar
e

A
ud

it
o

r,
 C

o
ns

ul
ta

nt
,

E
ng

in
ee

r,
 M

an
ag

er
,

N
o

 T
it

le
,

S
p

ec
ia

li
st

,
S

up
p

o
rt

,
S

ur
v

ey
o

r,
 T

ec
hn

ic
al

 A
ss

is
ta

nt
,

V
ic

e
P

re
si

d
en

t
an

d
 U

nk
no

w
n.

E
m

p
lo

ye
e

ID
T

he
 p

er
so

na
l

id
en

ti
fi

ca
ti

o
n

nu
m

b
er

 f
o

r
ea

ch
 e

m
p

lo
ye

e.

T
er

m
in

at
io

n
d

at
e

T
he

 d
at

e
w

he
n

th
e

em
p

lo
ye

e'
s

re
si

gn
at

io
n

is
 r

eg
is

te
re

d
.

F
ro

m
 J

an
ua

ry
 2

0
2
1

 t
o

 S
ep

te
m

b
er

 2
0

2
2

.

T
er

m
in

at
io

n
ty

p
e

T
he

 t
yp

e
o

f
th

e
em

p
lo

ye
e'

s
re

si
gn

at
io

n.
 T

he
 t
yp

es
 a

re
 V

o
lu

nt
ar

y,
 I

nv
o

lu
nt

ar
y

an
d

 U
nk

no
w

n.

T
er

m
in

at
io

n
re

as
o

n
T

he
 r

ea
so

n
fo

r
th

e
em

p
lo

ye
e'

s
re

si
gn

at
io

n.
 T

he
 r

ea
so

ns
 a

re
 D

ea
th

,
D

is
m

is
s,

 I
ll

ne
ss

,
In

v
o

lu
nt

ar
y,

T
ra

ns
fe

r,
 V

o
lu

nt
ar

y
an

d
 U

nk
no

w
n.

E
m

p
lo

ye
e

D
em

o
gr

ap
hi

cs
 F

il
e

E
m

p
lo

ye
e

T
er

m
in

at
io

n
F

il
e

T
a

b
le

 4
-2

.
S

a
m

p
le

 R
o

w
s

fr
o

m
 t

h
e
 E

m
p

lo
y
e
e
 D

e
m

o
g

ra
p

h
ic

s
F

ile

Ex
tr

ac
ti

o
n

 d
at

e
Em

p
lo

ye
e

ID
In

d
u

st
ry

G
en

d
er

A
ge

Te
n

u
re

Ed
u

ca
ti

o
n

Ti
tl

e
Le

ve
l

La
st

 d
at

e
 o

f
p

ro
m

o
ti

o
n

C
o

u
n

tr
y

H
ir

e
d

at
e

20
21

-0
1-

01
 0

0:
00

:0
0

xx
x

C
o

n
su

lt
an

cy
M

al
e

49
8

M
as

te
r

Le
ve

l
En

gi
n

ee
r

10
20

19
-0

4-
01

 0
0:

00
:0

0
Po

la
n

d
20

12
-1

0-
01

 0
0:

00
:0

0

20
21

-0
1-

01
 0

0:
00

:0
0

xx
x

En
er

gy
M

al
e

44
0

M
as

te
r

Le
ve

l
En

gi
n

ee
r

8
20

20
-0

9-
01

 0
0:

00
:0

0
Po

la
n

d
20

20
-0

9-
01

 0
0:

00
:0

0

20
21

-0
1-

01
 0

0:
00

:0
0

xx
x

En
er

gy
M

al
e

31
0

M
as

te
r

Le
ve

l
En

gi
n

ee
r

8
20

20
-1

1-
01

 0
0:

00
:0

0
Po

la
n

d
20

20
-1

1-
02

 0
0:

00
:0

0

20
21

-0
2-

01
 0

0:
00

:0
0

xx
x

In
su

ra
n

ce
Fe

m
al

e
49

26
B

as
ic

 E
d

u
ca

ti
o

n
 L

ev
el

M
an

ag
er

6
20

11
-0

1-
01

 0
0:

00
:0

0
It

al
y

19
94

-1
0-

01
 0

0:
00

:0
0

20
21

-0
2-

01
 0

0:
00

:0
0

xx
x

In
su

ra
n

ce
M

al
e

55
21

M
as

te
r

Le
ve

l
A

u
d

it
o

r
8

20
12

-0
1-

01
 0

0:
00

:0
0

It
al

y
19

99
-0

5-
14

 0
0:

00
:0

0

20
21

-0
2-

01
 0

0:
00

:0
0

xx
x

In
su

ra
n

ce
Fe

m
al

e
56

24
B

ac
h

el
o

r
Le

ve
l

Su
p

p
o

rt
5

20
18

-0
4-

01
 0

0:
00

:0
0

It
al

y
19

97
-0

6-
01

 0
0:

00
:0

0

Page 32

4.2 Data Cleaning

In order to prepare the dataset for model training, we conducted several rounds of

data cleaning.

Firstly, we merged the two files based on the common column, Employee ID. After

merging, employees with recorded dates of resignation were identified as having

left the company. The prediction period of our model was set at three months.

Therefore, employees who had resigned within three months of the data extraction

date were labeled as “resigned” (positive), while others were labeled as “not

resigned” (negative). We determined the three-month prediction period in

consultation with the company that provided the data. They highlighted that if the

prediction period was too short, such as one month, the company would not have

sufficient time to take action even if they knew they were going to lose employees.

On the other hand, we discovered that if the prediction period was too long, it would

adversely affect the model’s performance. Overall, the three-month prediction

period provides companies with an early warning of employee turnover and allows

them enough time to take preventative action.

Secondly, we cleaned the merged file by column:

Employee ID: Given that the employee identifier is unique and does not contribute

meaningful information to the prediction task, we have made the decision to

exclude this column. This simplification allows us to focus on relevant features that

have a more direct impact on the prediction outcome.

Exaction date: Considering that this feature merely indicates the date when the

data was collected from the HR system. It is unrelated to actual resignation

outcomes and does not provide direct insights into an employee’s decision-making

process. We have made the decision to exclude this column.

Table 4-3. Sample Rows from the Employee Termination File

Employee ID Termination date Termination type Termination reason

xxx 2022-07-31 00:00:00 Voluntary Voluntary

xxx 2022-01-31 00:00:00 Voluntary Voluntary

xxx 2021-02-28 00:00:00 Involuntary Transfer

xxx 2021-01-31 00:00:00 Voluntary Voluntary

xxx 2022-03-31 00:00:00 Voluntary Voluntary

xxx 2021-09-30 00:00:00 Involuntary Transfer

Page 33

Age: The initial range of values in this column extended from -1 to 86, suggesting

potential errors in data entry. Taking into account variations in retirement age across

different countries, we have chosen to narrow down the range and only include

employee ages between 20 and 70. This adjustment, which removed 0.25% of the

data, ensures a more realistic representation of the dataset while accounting for the

typical age demographics of employees.

Education: Around 8.00% of employees in our dataset have been labeled as “Not

Applicable” or “Unknown” in this column, amounting to a total of 12,693 rows.

Removing these rows would result in a reduction in the overall size of our dataset,

which is not ideal for maintaining an adequate sample size for analysis and

modeling purposes. As a result, we have concluded that excluding the “Education”

column is a more favorable approach in order to ensure the integrity and reliability

of our dataset.

Gender: This column contained entries labeled as “Unknown”, which constituted

approximately 0.04% of the data. To maintain the dataset’s accuracy and reliability,

we have made the decision to exclude the “Unknown” entries from our analysis.

Hire date & Tenure: After careful consideration, we have opted to remove the

“Hire date” column from our dataset. This decision is made based on the fact that

the information conveyed by the “Hire date” column is essentially redundant with

the “Tenure” column. By removing the “Hire date” column, we can streamline our

analysis and maintain data consistency by focusing on a single column to capture

employee tenure information.

Industry: Although the dataset primarily focuses on registered employees within

the company, it contains data on external individuals working for the company,

referred to as “External”. These external employees comprise 0.04% of the dataset.

We have excluded the external employees’ data from our analysis.

Last date of promotion: During the analysis of this column, we discovered that

approximately 2.37% of the entries were missing. Upon further examination, it was

determined that these blank entries were likely erroneous. Even employees who

have never been promoted have their hire date recorded as the last promotion date.

In order to maintain the completeness and consistency of our dataset, we have made

the decision to remove these blank entries.

Page 34

Level: The entry labeled as “Unknown” was identified as an error in this column.

It is evident that these errors were introduced during the data input process.

Consequently, we have removed these entries which accounted for 0.11% of the

employees in the dataset.

Title: In this column, we have excluded the entries labeled as “No Title” and

“Unknown”. These values accounted for only 0.06% of the dataset.

Termination date, Termination type & Termination reason: In alignment with

our analysis focus on voluntary turnover prediction, we have exclusively included

voluntary resignations in the dataset. Consequently, termination types such as

dismissals, transfers, illnesses, and deaths, which fall under the category of

involuntary reasons for leaving, have been deliberately excluded. Additionally, to

avoid target leakage in our analysis, we have made the decision not to include the

“Termination date”, “Termination type” and “Termination reason” columns in our

dataset. Given that our objective is to predict an employee’s decision to leave the

company, including these columns would introduce information that becomes

available only after an employee has already left.

After completing the data cleaning process, the dataset contains a total of 146,885

data points. Among these, 3,912 instances are labeled as positive, representing

approximately 2.66% of the dataset. These positive instances indicate individuals

who have resigned within a three-month time frame. The dataset includes eight

features: Age, Country, Gender, Industry, Last date of promotion, Level, Tenure,

and Title. These features provide valuable information about the individuals in the

dataset and can be used for further analysis and modeling. Additionally, there is one

target column, “Resigned”, which serves as an indicator variable, indicating

whether an employee has resigned or not within the specified time period.

4.3 Descriptive Analysis

The dataset used in our analysis is thoroughly examined through the following

graphs, offering a comprehensive descriptive analysis. Figure 4-1 illustrates the

complete dataset encompassing all employees, providing insights into various

aspects. On the other hand, Figure 4-2 focuses specifically on the data of employees

who have resigned, allowing for a more targeted examination of this subgroup.

Page 35

Figure 4-1 Descriptive Analysis of All Employees

Page 36

Figure 4-2 Descriptive Analysis of Resigned Employees

Page 37

4.4 Data Preprocessing

4.4.1 Categorical Feature Encoding

In order to ensure that the same dataset can be used for training different machine

learning models, we performed categorical feature encoding during the data

preprocessing stage. We encoded the categorical features using the “LabelEncoder”

function from the “sklearn.preprocessing” module in Python. The code used for

feature encoding can be found in Appendix 7.1. This process allows us to convert

categorical data into a numeric format, as the DT and RF algorithms in the scikit-

learn library for Python do not support categorical variables (Pedregosa et al.,

2011). By applying the LabelEncoder function, we transformed each unique

category within categorical features, including Industry, Gender, Title, and

Country, into a corresponding unique integer. This encoding procedure guarantees

that the data is in a suitable format that can be effectively utilized by various

machine learning models for both training and analysis purposes.

4.4.2 Data Splitting

To ensure a robust evaluation process for model performance, we conducted data

splitting during the data preprocessing stage using the “train_test_split” function

from the “sklearn.model_selection” module. The code used for data splitting can be

found in Appendix 7.2. The dataset is randomly divided into three subsets: the

training set, the validation set, and the testing set. The training set is allocated 60%

of the total data, while both the validation and testing sets accounted for 20% each.

Additionally, the proportion of positive instances in all three subsets remains

consistent at 2.66%, which is the same as the proportion in the original dataset. This

stratified splitting ensures a balanced representation of the target variable across the

subsets. By splitting the data into distinct sets, we can avoid using the validation

and testing sets for feature selection and model training. This ensures that the model

is evaluated on previously unseen instances, minimizing the risk of biased

evaluation and information leakage. Moreover, having a separate validation set

allows us to fine-tune the model’s hyperparameters without compromising the

integrity of the results. Data splitting plays a crucial role in providing a more

realistic estimation of the model’s generalization capabilities and enhances the

Page 38

overall reliability of our analysis. Table 4-4 presents the distribution of positive and

negative instances across different subsets after data splitting.

4.5 Feature Selection

In order to train our machine learning model with the most significant and

influential features from the dataset, we applied three widely recognized

(Chandrashekar & Sahin, 2014; J. Li et al., 2017; Khalid et al., 2014) feature

selection techniques: Analysis of Variance (ANOVA), Chi-square test and

correlation analysis. Each technique was selected based on its specific strengths and

suitability for our classification task. In this chapter, we examine the outcomes of

each feature selection test and discuss their implications for our analysis. The

detailed step-by-step process for each feature selection test can be found in

Appendix 7.3.

4.5.1 ANOVA for Numerical Feature Selection

Table 4-5 presents the result of the ANOVA, which examined the statistical

significance of each numerical feature at a 5% significance level using p-values.

The analysis revealed that all the analyzed features, namely Age, Tenure, Last date

of promotion, and Level, demonstrated statistical significance. This indicates that

these features have a substantial impact on the target variable and possess valuable

predictive power for employee turnover. These findings align with the descriptive

analysis presented in Figure 4-2. For instance, the Age feature suggests that younger

employees are more likely to resign, while the Tenure feature indicates that

employees with shorter tenures have a higher probability of leaving their jobs. In

Table 4-4. Resigned vs. Unresigned Individuals in Different Subsets

Resigned 2,347

Unresigned 85,784

Resigned 782

Unresigned 28,595

Resigned 782

Unresigned 28,595

Training Set

Validation Set

Testing Set

Table 4-5. ANOVA Test Results: Feature Significance at 5% Level

Feature Statistically Significant at 5% Level?

Tenure TRUE

Age TRUE

Level TRUE

Last date of promotion TRUE

* Features are sorted in ascending order according to their p-value.

Page 39

summary, the ANOVA reveals a strong relationship between employee turnover

and all the numerical features in the dataset, including Age, Tenure, Last date of

promotion, and Level.

4.5.2 Chi-square Test for Categorical Feature Selection

Table 4-6 presents the results of the Chi-square test conducted for each categorical

feature at a 5% significance level. The results indicate that Country, Industry, and

Title show a strong association with the target variable, suggesting that these

features have a significant impact on employee turnover. On the other hand, the

Chi-square test reveals that the Gender feature has a limited impact on the target

variable, suggesting that it may not be a strong predictor of employee turnover. The

lack of significance for gender could be attributed to several possible reasons. One

reason could be the dataset itself may not capture all the relevant aspects related to

gender and employee turnover. Factors such as gender bias or gender-related

disparities in the workplace may not be adequately represented in the available data,

leading to a limited impact of gender on the prediction of employee turnover.

Additionally, it is important to consider the nature of the specific industry or

organizational context. Certain industries or workplaces may have a more gender-

neutral or inclusive culture, where gender may have a limited influence on

employee turnover compared to other factors. In conclusion, the Chi-square test

results indicate that Country, Industry, and Title have a significant association with

the target variable, suggesting that they play a crucial role in predicting employee

turnover. However, the Gender feature shows a limited impact on the target

variable, indicating that it may not be a strong predictor. It is important to recognize

the contextual factors and potential variations in different datasets or organizational

settings. The significance of gender as a predictor of employee turnover can vary

depending on the industry, workplace culture, and specific characteristics of the

dataset.

Table 4-6. Chi-square Test Results: Feature Significance at 5% Level

Feature Statistically Significant at 5% Level?

Country TRUE

Industry TRUE

Title TRUE

Gender FALSE

* Features are sorted in ascending order according to their p-value.

Page 40

4.5.3 Correlation Analysis for Numerical Feature Selection

Figure 4-3 Correlation Heatmap of Numerical Features and the Target Variable

Figure 4-3 shows the correlation heatmap among all the numerical features and the

target variable (Resigned). The overall low correlation between the target variable

and the numerical features indicates the challenge of accurately predicting

employee turnover based solely on a single variable. In addition, Age and Tenure

have the highest correlation among the features themselves, with a correlation

coefficient of 0.65. This is reasonable, considering that employees with longer

tenures within a company are typically older on average. It is worth noting that the

features generally demonstrate a low degree of correlation with each other,

suggesting that each feature carries unique information and contributes

independently to the prediction of employee turnover.

4.5.4 Summary

In summary, the application of ANOVA, Chi-square test, and correlation analysis

revealed that Age, Tenure, Last date of promotion, Country, Level, Industry, and

Title are identified as key features exhibiting a strong relationship with the target

variable, Resigned. However, Gender did not demonstrate statistical significance in

the Chi-square test. As a result, we made the decision to remove Gender from the

dataset. However, it is important to acknowledge that the significance of Gender

may vary across different contexts or datasets, and the decision to exclude it should

be evaluated in consideration of the specific industry, workplace culture, and

Page 41

available data. Additionally, it is important to recognize the potential biases in the

dataset such as the imbalanced class distribution, where the number of employees

who resigned is significantly smaller than those who did not. This class imbalance

can impact the performance of the feature selection tests and should be taken into

account. Overall, while the feature selection techniques provided valuable insights,

it is crucial to interpret the results with caution and account for the limitations and

biases inherent in the dataset.

Page 42

5. Analysis

In this chapter, our focus is on the training process of the machine learning models

employed in this study, namely Decision Tree (DT) (5.1), Random Forest (RF)

(5.2), Gradient Boosting Decision Tree (GBDT) (5.3), and Extreme Gradient

Boosting (XGBoost) (5.4). For each model, we begin by examining its performance

without any hyperparameter tuning, establishing a baseline for comparison.

Subsequently, we delve into the hyperparameter tuning process, providing a

practical example to illustrate the methodology (5.1.2). Finally, we evaluate the

model’s performance after the hyperparameter tuning phase, allowing us to assess

the effectiveness of the optimized configurations.

5.1 Decision Tree (DT)

In this section, we focus on the training of the Decision Tree (DT) model, which

serves as the foundation for the other three models.

5.1.1 Model Performance Without Hyperparameter Tuning

We begin by evaluating the performance of the DT model without any

hyperparameter tuning using the training set. This initial step allows us to explore

the model’s compatibility with the dataset and gain insights into its predictive

capabilities. As shown in Table 5-1, the DT model demonstrates excellent

performance on the training set, achieving an F1 score of 0.98. This high F1 score

indicates a strong ability of the model to correctly classify the target variable based

on the training data. Furthermore, the model maintains a commendable

performance on the validation set, with an F1 score of 0.90. This suggests that the

model generalizes well to unseen data, reinforcing its effectiveness in predicting

employee turnover. It is important to note that the extremely high accuracy values

obtained for both the training and validation sets can be misleading. The dataset is

highly imbalanced, so accuracy alone is not the most appropriate metric for

evaluating model performance in this case. Overall, the DT model without any

hyperparameter tuning demonstrates a reasonable ability to classify employees into

their respective turnover categories. Given these initial results, it is evident that the

DT model has the potential to be a valuable tool for identifying employees at risk

of turnover. However, further improvements can be made through hyperparameter

tuning, which is discussed in the following sections.

Page 43

5.1.2 Hyperparameter Tuning Process (with example)

Hyperparameter tuning involves adjusting the model’s parameters to find the

optimal configuration that improves its performance and generalization ability. By

fine-tuning the hyperparameters, we aim to strike a balance between model

complexity and generalization ability. The classification DT model has a total of 12

parameters that can be adjusted (sklearn.tree.DecisionTreeClassifier, n.d.). After a

thorough examination, we categorize these parameters into three categories based

on their significance and impact on the model’s performance. The three categories

are as follows:

1. Hyperparameters for model tuning:

• criterion: This parameter allows us to choose between “entropy” or

“gini” as the measure of the importance of features in splitting the

nodes of the tree.

• max_depth: It limits the maximum depth of the DT. Considering the

large sample size in our analysis, we choose to limit the maximum

depth to prevent overfitting.

• max_features: It controls the number of features that are considered

when looking for the best split at each node of the tree. By tuning it,

we can influence the randomness and diversity of the feature

selection process.

• min_samples_split: This parameter sets the minimum number of

samples required in a node for it to be considered for further

splitting. The default value is 2, meaning that a node will only

continue to split if it contains more than 2 samples.

• min_samples_leaf: When the number of samples assigned to a leaf

node is less than the set number, the leaf node will be pruned. This

can help remove some obvious noise data.

2. Hyperparameters for handling an unbalanced dataset:

Table 5-1. DT Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 1 0.99

Precision 0.99 0.92

Recall 0.97 0.89

F1 score 0.98 0.90

Page 44

• class_weight: This parameter is used to assign different weights to

positive and negative samples when the dataset is highly

imbalanced. In our case, where the dataset is highly imbalanced, we

have adjusted this parameter to account for the unequal distribution

of classes.

3. Other hyperparameters.

For our analysis, the remaining parameters do not require manual

adjustment, as they typically do not significantly impact the model’s

performance.

To fine-tune these hyperparameters, we employ the K-fold Cross Validation (KCV)

and grid search to explore different combinations of hyperparameter values and

identify the best-performing configuration. In Appendix 7.4, we provide a detailed

description of the hyperparameter tuning process for the DT model, including the

range of values considered for each hyperparameter and the evaluation metrics used

to assess the performance of different parameter configurations. Here, we will

demonstrate the process of tuning the “max_depth” parameter as an example. The

“max_depth” parameter determines the maximum depth of the DT, which controls

the complexity of the model.

First to narrow down the range of values for “max_depth”, we use KCV with 5

folds and the F1 score as the scoring function. We examine the range starting from

10 to 100, with increments of 10. Figure 5-1 shows the F1 score as a function of

different depths. The result shows that the F1 score reaches its peak when the depth

is around 40. Based on this finding, we further narrow our search range to focus on

values between 30 and 50. Figure 5-2 shows the F1 score as a function of different

“max_depth” values within this range. It appears that the F1 score initially increases

with the increase in the depth and reaches its highest value at a “max_depth” of 35,

with a score of 0.78 on the training set. This indicates that setting the tree depth to

35 achieves the optimal balance between capturing relevant information from the

data and preventing overfitting. Using the value of 35 for the “max_depth”

parameter, we can move on to adjust the other parameters to further optimize the

model’s performance.

Page 45

Figure 5-1 Cross-Validation Search of «max_depth» (Range 10 to 100)

Figure 5-2 Cross-Validation Search of «max_depth» (Range 30 to 50)

After conducting hyperparameter tuning for the DT model, we obtain the final

hyperparameter configuration, which is listed in Table 5-2.

5.1.3 Model Performance After Hyperparameter Tuning

To evaluate the performance of the final DT model, we first conduct KCV on the

training set to assess its stability. The detailed KCV process can be found in

Appendix 7.5. The average F1 score on the training set is 0.79, indicating a

reasonably good performance in classifying the training data. Additionally, the

average ROC-AUC score is 0.86, suggesting a relatively robust performance. To

further evaluate the model, we compare its performance on the testing set before

and after hyperparameter tuning. Table 5-3 presents the model score before and

after tuning. The precision of the model increases from 0.92 to 0.95, indicating a

Table 5-2. Hyperparameter Configuration for the DT Model

Hyperparameter Value

class_weight None

ccp_alpha 0.0

criterion gini

max_depth 35

max_features 2

max_leaf_nodes None

min_impurity_decrease 0.0

min_samples_leaf 1

min_samples_split 2

min_weight_fraction_leaf 0.0

random_state 42

spliter best

Page 46

higher accuracy in predicting positive instances. The recall remains the same at

0.89, and the F1 score increases by 0.02. To gain more insight, we examine the

confusion matrix, which provides a detailed breakdown of the model’s predictions.

As shown in Table 5-4, the model correctly predicts 14 additional instances

(TN+TF) compared to the model without hyperparameter tuning. Additionally, the

number of FP predictions decreases by 16 and the number of FN decreases by 7,

indicating a reduction in misclassifications. Although the overall improvement in

the performance metrics may appear subtle, a closer examination of the confusion

matrix reveals that the model’s predictions have become more accurate and aligned

with the true labels.

In summary, the DT model proves to be highly suitable for predicting employee

turnover using the available dataset. Through the process of hyperparameter tuning,

the model demonstrates slightly improved performance, including higher accuracy

in predicting positive instances and a reduction in misclassifications. These

enhancements further enhance the model’s effectiveness in identifying employees

at risk of turnover.

5.2 Random Forest (RF)

In this section, we delve into the training of the Random Forest (RF) model, which

builds upon the foundation of the DT model. By leveraging the power of ensemble

learning, RF enhances the predictive performance and generalization ability

compared to a single DT.

Table 5-3. DT Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.99 0.99

Precision 0.92 0.95

Recall 0.89 0.89

F1 score 0.90 0.92

Table 5-4. Confusion Matrix on Testing Set of the DT Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,519 76

1 (Resigned) 176 606

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,526 60

1 (Resigned) 169 613

Tunned Hyperarameter
Predicted Label

True Label

Predicted Label

True Label

Default Hyperparameter

Page 47

5.2.1 Model Performance Without Hyperparameter Tuning

To assess the compatibility of the RF model with the dataset, we initially evaluate

the model performance using the default parameters. As shown in Table 5-5, the

results are highly promising. The model achieves an F1 score of 0.98 on the training

set and 0.92 on the validation set. These scores surpass the performance of the DT

model, which is reasonable considering that RF is built upon DT. To explore the

potential for further improvement, we proceed with hyperparameter tuning to

optimize the RF model's performance.

5.2.2 Hyperparameter Tuning Process

Compared to the DT model, the RF model introduces 6 additional hyperparameters

(sklearn.ensemble.RandomForestClassifier, n.d.). In the process of hyperparameter

tuning, we have chosen to focus on tuning several specific hyperparameters that we

found to be crucial for enhancing the model’s performance. These hyperparameters

include class_weight, criterion, max_depth, max_features, min_samples_split, and

min_samples_leaf, which are introduced in the DT model. In addition, we also

considered the following new hyperparameters introduced by the RF model:

n_estimators: This hyperparameter controls the number of trees in the forest.

Increasing the number of trees typically leads to an improvement in the performance

of the model. However, there comes a point where adding more trees no longer

significantly increases accuracy, and the computational cost of training the model

increases.

bootstrap: It determines whether to use bootstrap samples when building each tree

in the random forest. Bootstrap sampling involves randomly sampling the training

dataset with replacement, which can introduce diversity and improve the model’s

generalization ability.

oob_score: When bootstrap is set to True, this hyperparameter allows us to use out-

of-bag data to evaluate the model’s performance. Out-of-bag samples are data

Table 5-5. RF Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 1 0.99

Precision 0.99 0.98

Recall 0.98 0.87

F1 score 0.98 0.92

Page 48

points that are not included in the bootstrap sample used for training a particular

tree.

The hyperparameter tuning process, including the range of values explored for each

parameter and the evaluation metrics used to assess the performance of various

parameter configurations, is provided in detail in Appendix 7.6. The final

hyperparameter configuration of the RF model is listed in Table 5-6.

5.2.3 Model Performance After Hyperparameter Tuning

After conducting hyperparameter tuning, we first perform KCV to assess the

stability of the final RF model. The detailed procedures of the KCV can be found

in Appendix 7.7. The average F1 score and ROC-AUC on the training set are 0.81

and 0.98, respectively, indicating the model’s stability and its ability to generalize

well across different folds of the data. Subsequently, we evaluate the performance

of the RF model on the testing set before and after hyperparameter tuning, as shown

in Table 5-7. Comparing the results with the DT model, the RF model after

hyperparameter tuning does not show a significant improvement. One possible

explanation for this observation is that the RF model with default hyperparameters

already demonstrates satisfactory performance, leaving limited room for further

enhancement. The F1 score is 0.92, indicating a strong overall performance in

classifying positive and negative instances. The model has a high precision of 0.98,

Table 5-6. Hyperparameter Configuration for the RF Model

Hyperparameter Value

bootstrap True

ccp_alpha 0.0

class_weight None

criterion gini

max_depth 31

max_features auto

max_leaf_nodes None

max_samples None

min_impurity_decrease 0.0

min_samples_leaf 1

min_samples_split 2

min_weight_fraction_leaf 0.0

n_estimators 169.0

n_jobs None

oob_score False

random_state 42

verbose 0.0

warm_start False

Page 49

indicating a low rate of FP predictions, and a relatively low recall of 0.87,

suggesting a slightly higher rate of FN predictions. This finding is consistent with

the confusion matrix shown in Table 5-8, where the number of FP predictions is

only 13, while the number of FN is 221.

In summary, the RF model proves to be highly effective for predicting employee

turnover. Even without hyperparameter tuning, the model exhibits strong

performance using the dataset at hand.

5.3 Gradient Boosting Decision Tree (GBDT)

In this section, we focus on the training of the Gradient Boosting Decision Tree

(GBDT) model, which is a powerful ensemble learning model that improves upon

the performance of a single DT.

5.3.1 Model Performance Without Hyperparameter Tuning

To assess the compatibility between the GBDT model and the dataset, we begin by

evaluating the model’s performance using the default hyperparameters. However,

the obtained results, presented in Table 5-9, indicate subpar performance compared

to the DT and RF models. Both the training set and validation set show an F1 score

of 0.50, suggesting that the GBDT model faces challenges in accurately identifying

positive instances. These findings highlight the need for further optimization and

hyperparameter tuning to better adapt the model to the distinct characteristics of the

dataset.

Table 5-7. RF Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.99 0.99

Precision 0.98 0.98

Recall 0.87 0.87

F1 score 0.92 0.92

Table 5-8. Confusion Matrix on Testing Set of the RF Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,582 13

1 (Resigned) 776 6

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,582 13

1 (Resigned) 221 561

Tunned Hyperarameter
Predicted Label

True Label

Default Hyperparameter
Predicted Label

True Label

Page 50

5.3.2 Hyperparameter Tuning Process

The classification GBDT model has a total of 20 hyperparameters that can be

adjusted (sklearn.tree.GradientBoostingClassifier, n.d.). After a thorough

evaluation, we identified several critical hyperparameters that significantly impact

model performance. The hyparameters we focus on include learning_rate,

n_estimators, loss, subsample, min_samples_split, min_samples_leaf and

max_depth. By fine-tuning these parameters, we aim to optimize the performance

and predictive capabilities of the model. In addition to the previously mentioned

hyperparameters, there are several new hyperparameters that require interpretation.

These hyperparameters include:

n_estimators: This hyperparameter refers to the number of boosting stages or

iterations that GBDT will perform during the training process. In other words, it

represents the number of DTs that will be sequentially added to the ensemble.

Increasing the number of trees allows the model to learn more complex

relationships within the data. However, it also increases the computational cost and

the risk of overfitting.

learning_rate: When a new tree is added to the model, its purpose is to correct the

mistakes made by the sum of the previous trees. This hyperparameter determines

the contribution of each individual tree to the final outcome. By adjusting the

learning_rate, we control the weight or influence of each tree in the ensemble. A

smaller learning_rate means each tree has a smaller impact on the final prediction,

while a larger learning_rate allows each tree to have a stronger influence.

loss: For classification models, there are two options for the loss function: the log-

likelihood loss function “deviance” and the exponential loss function

“exponential”.

subsample: This parameter represents the fraction of samples that will be used for

fitting each individual base learner. It is important to note that the subsampling

Table 5-9. GBDT Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 0.97 0.97

Precision 0.97 0.88

Recall 0.51 0.50

F1 score 0.50 0.50

Page 51

technique used here is different from that of RF. While RF employs replacement

sampling, where samples are randomly selected with replacement, the subsampling

in GBDT does not involve putting back the samples.

In Appendix 7.8, we provide a detailed description of the hyperparameter tuning

process for the GBDT model, including the range of values considered for each

hyperparameter and the evaluation metrics used to assess the performance of

different parameter configurations. The finalized hyperparameter configuration of

the GBDT model is presented in Table 5-10.

5.3.3 Model Performance After Hyperparameter Tuning

To evaluate the performance of the final GBDT model, we first conduct KCV on

the training set. The results show an average F1 score of 0.82 and an average ROC-

AUC of 0.94. These scores provide strong evidence of the GBDT model’s

effectiveness in distinguishing between positive and negative instances. For a

detailed account of the KCV process, please refer to Appendix 7.9. We also

compare the model’s performance on the testing set before and after

hyperparameter tuning. As shown in Table 5-11, the F1 score experiences a

significant boost from 0.50 to 0.93, indicating an improved balance between

precision and recall. Consistently, the recall score exhibits a substantial increase

Table 5-10. Hyperparameter Configuration for the GBDT Model

Hyperparameter Value

ccp_alpha 0.0

criterion friedman_mse

init None

learning_rate 0.22

loss deviance

max_depth 20.0

max_features None

max_leaf_nodes None

min_impurity_decrease 0.0

min_samples_leaf 1.0

min_samples_split 2.0

min_weight_fraction_leaf 0.0

n_estimators 8000

n_iter_no_change None

random_state 42

subsample 1.0

tol 0.0001

validation_fraction 0.1

verbose 0.0

warm_start False

Page 52

from 0.50 to 0.89. To gain a better insight, we analyze the confusion matrix. Table

5-12 reveals a significant enhancement in the predictive performance of the final

GBDT model. It accurately identifies an additional 586 instances (TN+TF)

compared to the original model. In addition, there is a notable reduction of 605

instances in FN predictions. However, it should be noted that there is a slight

increase of 19 instances in FP predictions.

In summary, the process of hyperparameter tuning had a transformative impact on

the GBDT model, resulting in significant enhancements in its performance.

Through the fine-tuning of hyperparameters, the model shows greater proficiency

in correctly identifying positive instances and reducing FN predictions. These

improvements make the tuned GBDT model a more reliable and effective tool for

predicting employee turnover.

5.4 Extreme Gradient Boosting (XGBoost)

In this section, we explore the training of the Extreme Gradient Boosting

(XGBoost) model, which builds upon the foundation of the GBDT model and is

known for its efficiency, scalability, and high performance.

5.4.1 Model Performance Without Hyperparameter Tuning

We begin by evaluating the performance of the XGBoost model on the training set

using its default hyperparameters. The results, as displayed in Table 5-13, show

Table 5-11. GBDT Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.97 0.99

Precision 0.92 0.98

Recall 0.50 0.89

F1 score 0.50 0.93

Table 5-12. Confusion Matrix on Testing Set of the GBDT Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,594 1

1 (Resigned) 776 6

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,575 20

1 (Resigned) 171 611

True Label

Tunned Hyperarameter
Predicted Label

True Label

Default Hyperparameter
Predicted Label

Page 53

relatively low F1 scores of 0.66 on the training set and 0.59 on the validation set.

Although these scores are slightly better than the GBDT model with default

hyperparameters, it is evident that the XGBoost model without hyperparameter

tuning struggles to accurately identify a considerable number of positive cases. To

enhance the model’s performance, we proceed with hyperparameter tuning.

5.4.2 Hyperparameter Tuning Process

The classification XGBoost model has a total of 29 hyperparameters that can be

adjusted to optimize its performance (XGBoost Parameters, n.d.). In our analysis,

we focus on testing hyperparameters related to tree construction, boosting process,

and regularization. To identify the optimal hyperparameter configuration, we

systematically explore various combinations. Through this process, we discover

that the most influential parameters affecting the model’s performance are

learning_rate, n_estimators, subsample, and max_depth, which are introduced in

the GBDT model. In addition, we also consider the following new hyperparameters

introduced by the XGBoost model:

booster: This parameter provides two choices: gbtree and gblinear. When selecting

gbtree, the model employs a tree structure to process the data, allowing for non-

linear relationships and interactions to be captured. On the other hand, selecting

gblinear utilizes a linear model, which assumes a linear relationship between the

input features and the target variable.

min_child_weight: This parameter specifies the minimum sum of sample weights

required for a leaf node to be created during the tree-building process. This

parameter is used to control the complexity of the tree and prevent the model from

creating leaf nodes with very few samples.

gamma: When a node is considered for splitting, the loss function is calculated

before and after the split. The node will only be split if the loss function decreases

by an amount greater than or equal to the specified gamma value.

Table 5-13. XGBoost Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 0.98 0.98

Precision 0.99 0.97

Recall 0.60 0.56

F1 score 0.66 0.59

Page 54

The hyperparameter tuning process, including the range of values explored for each

parameter and the evaluation metrics used to assess the performance of various

parameter configurations, is provided in detail in Appendix 7.10. Table 5-14 shows

the hyperparameter configuration for the final XGBoost model.

5.4.3 Model Performance After Hyperparameter Tuning

To evaluate the performance of the final XGBoost model, we first conduct KCV to

assess its stability. A detailed description of the KCV process can be found in

Appendix 7.11. The average F1 score on the training set is 0.83, indicating a strong

performance in classifying the training data. Moreover, the average ROC-AUC

score of 0.94 suggests a robust performance. To further evaluate the model, we

compare its performance on the testing set before and after hyperparameter tuning.

Table 5-15 provides the model scores before and after tuning. The precision of the

model remains consistent at 0.97, while the recall increases from 0.56 to 0.89. This

increase signifies an improved ability to correctly identify positive instances. The

Table 5-14. Hyperparameter Configuration for the XGBoost Model

Hyperparameter Value

objective binary:logistic

use_label_encoder True

base_score 0.5

booster gbtree

colsample_bylevel 1

colsample_bynode 1

colsample_bytree 1

enable_categorical False

gamma 0

gpu_id -1

importance_type None

learning_rate 0.22

max_delta_step 0

max_depth 12

min_child_weight 1.0

missing nan

n_estimators 2800

n_jobs 16

num_parallel_tree 1

predictor auto

random_state 42

reg_alpha 0

reg_lambda 1

scale_pos_weight 1

subsample 1

tree_method extract

validate_parameters 1

verbosity None

Page 55

better balance between high precision and high recall is further demonstrated by the

F1 score, which rises from 0.59 to 0.93. To gain a better insight, we examine the

confusion matrix, which provides a detailed breakdown of the model’s predictions.

As shown in Table 5-16, we observe that compared to the model without

hyperparameter tuning, the tuned model correctly predicts an additional 518

instances (TN+TF), while the number of FN predictions decreases by 528. These

improvements indicate a significant enhancement in the model’s performance.

In summary, the hyperparameter tuning process had a significant impact on the

XGBoost model. The tuned XGBoost model exhibits enhanced abilities to

accurately identify positive instances and reduce FN predictions. The notable

increase in the F1 score highlights the model’s improved balance between high

precision and high recall, leading to more accurate and dependable predictions.

Consequently, the tuned XGBoost model proves to be a highly reliable and effective

tool for predicting employee turnover.

Table 5-15. XGBoost Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.98 0.99

Precision 0.97 0.97

Recall 0.56 0.89

F1 score 0.59 0.93

Table 5-16. Confusion Matrix on Testing Set of the XGBoost Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,593 2

1 (Resigned) 703 70

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,574 21

1 (Resigned) 175 607

True Label

Tunned Hyperarameter
Predicted Label

True Label

Default Hyperparameter
Predicted Label

Page 56

6 Result and Conclusion

In this chapter, we present the results and conclusions derived from our study on

predicting employee turnover using machine learning models. Specifically, we

focus on three key aspects: the model results (6.1), the business value derived from

our findings (6.2), and suggestions for future extensions and improvements (6.3).

By examining these aspects, we aim to provide a comprehensive overview of the

significance and implications of our thesis in the field of employee turnover

prediction.

6.1 Model Result

Despite the Decision Tree (DT) and Random Forest (RF) models demonstrating

reasonable performance even without hyperparameter tuning, they do not measure

up to the performance of the final Gradient Boosting Decision Tree (GBDT) and

Extreme Gradient Boosting (XGBoost) models with the available dataset. While

both GBDT and XGBoost initially exhibit relatively poor performance with the

default settings, the process of hyperparameter tuning significantly enhances their

performance. On the other hand, the process of hyperparameter tuning does not lead

to a significant change in the performance of the DT and RF models. One possible

explanation for this difference in performance improvement is that the DT and RF

models already operate near their optimal performance with the default settings,

leaving limited room for further enhancement. This difference could also be

attributed to the inherent characteristics of the models. GBDT and XGBoost are

ensemble methods that sequentially add DTs to correct the errors made by previous

models. This iterative process allows them to effectively learn complex patterns and

relationships in the data. In contrast, DT and RF models do not have this boosting

capability. Overall, the difference in performance before and after hyperparameter

tuning highlights the importance of optimizing the hyperparameters for boosting-

based models like GBDT and XGBoost. It also emphasizes the potential limitations

of DT and RF models in capturing complex patterns in the data.

When comparing the performance of the final GBDT and XGBoost models, both

models achieve a high F1 score of 0.93. The only minor difference in performance

is that the GBDT model exhibits slightly higher precision (0.01), which indicates

its proficiency in accurately identifying positive instances. However, there is a

Page 57

significant difference in training time between the two models. The XGBoost model

takes approximately 2.7 minutes to train on our training dataset, while the GBDT

model requires around 100.7 minutes. This substantial difference in training time

can be attributed to the underlying algorithms and implementation details of the two

models. XGBoost is specifically designed to optimize the performance of GBDT

through various algorithmic enhancements, including parallelization techniques.

These optimizations allow XGBoost to efficiently process large datasets and

expedite the training process.

In conclusion, our analysis of the different supervised learning models for employee

turnover prediction reveals that the GBDT and XGBoost models outperform the DT

and RF models. This highlights the importance of hyperparameter tuning for

boosting-based models and exposes the potential limitations of DT and RF models

in capturing complex patterns in the data. When comparing GBDT and XGBoost,

both models achieve a high F1 score of 0.93, with GBDT exhibiting slightly higher

precision. However, there is a significant discrepancy in training time, with

XGBoost being considerably faster due to its algorithmic optimizations. The choice

between GBDT and XGBoost should consider the trade-off between slightly higher

precision and faster training time.

6.2 Business Value

The application of machine learning models to predict employee turnover offers

important business value to organizations. In this section, we will focus on the final

GBDT model as an example to showcase the potential business benefits of

implementing a predictive model. By analyzing the confusion matrix of the GBDT

model on the testing set, we can observe its slightly better predictive performance

compared to the final XGBoost model, with 5 additional correct predictions.

Page 58

6.2.1 Feature Importance

Figure 6-1 Feature Importance for the Final GBDT Model

The feature importance plot in Figure 6-1 represents the relative importance of each

feature in the final GBDT model. It reveals that “Age” as the most influential

feature contributes approximately 26.8% to the overall importance. This indicates

that age significantly affects the output of the classifier. By integrating this finding

with the descriptive analysis depicted in Figure 4-2, we can conclude that age plays

a critical role in predicting employee turnover, with younger individuals exhibiting

a higher tendency to leave. This understanding of age’s impact can enable

organizations to develop targeted strategies catering to the specific needs and

concerns of different age groups. For instance, implementing mentorship programs

or offering tailored career development opportunities for younger employees may

help improve their job satisfaction and increase retention rates. Organizations can

also create age-specific initiatives to foster a supportive work environment and

address any age-related challenges that may contribute to turnover (Naim & Lenka,

2018). By leveraging the insights gained from the feature importance analysis,

organizations can make informed decisions on resource allocation and implement

targeted interventions to effectively address the impact of important features on

employee turnover.

6.2.2 Profit Matrix

Employee turnover is associated with indirect costs, such as recruitment,

onboarding, and training expenses, as discussed in Chapter 2.2. Employee turnover

prediction models offer valuable insights to organizations by identifying potential

Page 59

risks and facilitating proactive measures. To gain a better understanding of the

financial impact of such models, a profit matrix can be constructed, which defines

the costs and benefits associated with different prediction outcomes. Table 6-1

presents an example of the profit matrix, illustrating the potential costs and benefits

for each prediction type. It should be noted that these estimates are derived from an

interview with the HR department of the company that provided the dataset for our

analysis and serve as simplified examples. The actual costs and benefits will vary

depending on the specific circumstances of each organization, including factors

such as industry, country, and company policies.

The numbers in Table 6-1 for each prediction type align with the following

interpretations:

True Negative (TN): The model predicts an employee will stay and they do. There

is no associated cost or benefit as the business continues as usual. The net profit

would be $0.

True Positive (TP): The model predicts an employee will leave and they do. The

cost could be seen as the expenses associated with hiring and training a replacement.

The benefit could be the cost savings from potentially avoiding a period of low

productivity or the costs associated with a sudden departure. If we assume the cost

to replace an employee is $10,000, and we successfully manage to avoid a

productivity loss worth $15,000, the net profit would be +$5,000.

False Positive (FP): The model predicts an employee will leave, but they stay. The

cost might be the unnecessary expenditure on hiring or training a replacement.

Using the same numbers, if we spend $10,000 preparing for a departure that does

not happen and there is no productivity gain, our net profit would be -$10,000.

False Negative (FN): The model predicts an employee will stay, but they leave.

This could incur costs due to productivity loss, cost to hire and train a replacement,

and potential overtime for other employees. Assuming these costs amount to

$25,000 in total, the net profit would be -$25,000.

Table 6-1. Profit Matrix

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) $0 -$10,000

1 (Resigned) -$25,000 +$5,000

Predicted Label

True Label

Page 60

Based on the estimated profit matrix, we can quantify the profit resulting from the

implementation of a predictive model. For instance, if we use the data from June

2022 in our dataset as an illustrative example. In this particular month, there are

231 employees who are projected to resign within the next three months out of a

total of 8,738 employees in the company. By comparing the costs associated with

the baseline model (representing the absence of a predictive model) to those of the

final GBDT model, we can assess the financial impact and potential profit achieved

through the implementation of the final GBDT model.

For the baseline model:

True Negatives (TN):

8,507 ∗ $0 = $0 (6-1)

False Negatives (FN):

231 ∗ (−$25,000) = −$5,775,000 (6-2)

False Positives (FP):

0 ∗ (−$10,000) = $0 (6-3)

True Positives (TP):

0 ∗ $5,000 = $0 (6-4)

Summing up these values, we get:

$0 + (−$5,775,000) + $0 + $0 = −$5,775,000 (6-5)

Therefore, the estimated cost based on the absence of a predictive model is

$5,775,000.

The predictions from the final GBDT model on this dataset are TN are 8507, TP

are 223, FP are 0, and FN are 8. We can calculate the associated costs:

Based on the predictions generated by the final GBDT model on this dataset, we

have 8,507 TN, 223 TP, 8 FN, and 0 FP. With this information, we can proceed to

calculate the associated costs:

Page 61

True Negatives (TN):

8,507 ∗ $0 = $0 (6-6)

False Negatives (FN):

8 ∗ (−$25,000) = −$200,000 (6-7)

False Positives (FP):

0 ∗ (−$10,000) = $0 (6-8)

True Positives (TP):

223 ∗ $5,000 = $1,115,000 (6-9)

Summing up these values, we get:

$0 + (−$200,000) + $0 + $1,115,000 = $915,000 (6-10)

The estimated profit based on the final GBDT model is $915,000.

In this case, the implementation of the final GBDT model in this company results

in a profit gain of $915,000 for the three months following June 2022 instead of

incurring a cost of $5,775,000. This outcome demonstrates the substantial financial

benefits that can be achieved by implementing an effective predictive model to

identify and manage turnover risks. By leveraging the insights gained from a

predictive model, organizations can optimize their workforce management

strategies, mitigate turnover risks, and effectively reduce recruitment and training

costs. This ultimately leads to substantial cost reductions, providing tangible

business value and improved financial performance for organizations.

6.3 Future Extension and Improvement

While this study provides valuable insights into predicting employee turnover using

supervised machine learning models, there are several avenues for future research

and potential improvements to enhance the effectiveness of these models. Here, we

outline some potential areas of focus for future extensions and improvements:

Integration of additional data sources: Expanding the dataset to include more

diverse and comprehensive sources of data, such as external factors like industry

Page 62

trends and economic indicators, can enrich the predictive models. Incorporating

these additional variables can provide a more holistic understanding of employee

turnover and improve the accuracy of predictions.

Feature engineering: Exploring advanced feature engineering techniques can help

in identifying and creating more informative features that capture the complex

relationships and interactions among variables. Techniques like feature interaction,

feature scaling, and dimensionality reduction can enhance the predictive power of

the models and uncover hidden patterns within the data.

Incorporating temporal analysis: Employee turnover patterns can exhibit temporal

dependencies, such as seasonality or trends over time. By incorporating temporal

analysis techniques, such as time series modeling or recurrent neural networks, into

the prediction models, organizations can better capture the dynamic nature of

employee turnover and improve the accuracy of long-term forecasts.

Continuous model monitoring and updating: Employee turnover dynamics can

change over time due to various internal and external factors. Therefore,

establishing a system for continuous model monitoring and updating is crucial.

Regularly evaluating the model’s performance, incorporating new data, and

retraining the models can ensure their reliability and effectiveness in real-world

scenarios.

By addressing these future extensions and improvements, organizations can

enhance their employee turnover prediction capabilities, enabling them to make

more informed decisions regarding retention strategies, succession planning, and

overall human resource management.

Page 63

7 Appendix

7.1 Code for Categorical Feature Encoding

The following code snippet demonstrates the process of encoding categorical

features into numerical representations:

from sklearn import preprocessing

industry_le =

preprocessing.LabelEncoder().fit(df["Industry"].unique())

df["Industry"] = industry_le.transform(df["Industry"])

title_le = preprocessing.LabelEncoder().fit(df["Title"].unique())

df["Title"] = title_le.transform(df["Title"])

country_le =

preprocessing.LabelEncoder().fit(df["Country"].unique())

df["Country"] = country_le.transform(df["Country"])

df[["Industry", "Title", "Country"]] = df[["Industry", "Title",

"Country"]].astype("int64")

7.2 Code for Data Splitting

The following code is used to splitting the dataset into training, validation and

testing set:

from sklearn.model_selection import train_test_split

from collections import Counter

y = df["Resigned"]

X = df.drop("Resigned", axis=1)

split training and test data.

X_train, X_test, y_train, y_test = train_test_split(X, y,

random_state=42, test_size = .40, stratify = y)

print('train shape %s' % Counter(y_train))

split test data into a valuation set and a holdout set

X_value, X_test, y_value, y_test = train_test_split(X_test, y_test,

random_state=42, test_size = .5, stratify = y_test)

7.3 Process for Feature Selection

7.3.1 ANOVA for Numerical Feature Selection Process

The following code snippet demonstrates the process of encoding the “Last date of

promotion” column and selecting numerical features for data splitting in

preparation for ANOVA:

Page 64

df["Last date of promotion"] = pd.to_datetime(df["Last date of

promotion"]).view("int64")

X_num = df[["Age", "Tenure","Last date of promotion","Level"]]

y = df["Resigned"]

split training and test data.

X_train, X_test, y_train, y_test = train_test_split(X_num, y,

random_state=42, test_size = .40, stratify = y)

print('train shape %s' % Counter(y_train))

split test data into a valuation set and a holdout set

X_value, X_test, y_value, y_test = train_test_split(X_test, y_test,

random_state=42, test_size = .5, stratify = y_test)

print("value/test shape %s" % Counter(y_test))

The following code snippet demonstrates the implementation of ANOVA:

from sklearn.feature_selection import SelectKBest, f_classif

selector = SelectKBest(f_classif, k=4)

selector.fit(X_train, y_train)

p_values = pd.Series(selector.pvalues_, index= X_train.columns)

p_values.sort_values(ascending = True , inplace = True)

print(p_values<=0.05)

The output of the ANOVA is as follows:

Tenure True

Age True

Level True

Last date of promotion True

dtype: bool

7.3.2 Chi-square test for Categorical Feature Selection Process

To prepare the data for the Chi-square test, the following code was used:

X_num = df[["Age", "Tenure","Last date of promotion","Level"]]

y = df["Resigned"]

split training and test data.

X_train, X_test, y_train, y_test = train_test_split(X_cat, y,

random_state=42, test_size = .40, stratify = y)

print('train shape %s' % Counter(y_train))

split test data into a valuation set and a holdout set

X_value, X_test, y_value, y_test = train_test_split(X_test, y_test,

random_state=42, test_size = .5, stratify = y_test)

print("value/test shape %s" % Counter(y_test))

Page 65

The following code snippet demonstrates the implementation of Chi-square test:

from sklearn.feature_selection import chi2

Create and fit selector

selector= SelectKBest(chi2, k=4)

selector.fit(X_train, y_train)

p_values = pd.Series(selector.pvalues_, index= X_train.columns)

p_values.sort_values(ascending = True , inplace = True)

print(p_values<=0.05)

The output of the Chi-square test is as follows:

Country True

Industry True

Title True

Gender False

dtype: bool

7.3.3 Correlation Analysis for Numerical Feature Selection Process

The code snippet below demonstrates the implementation of correlation analysis,

which follows the same data preparation process as ANOVA:

import seaborn as sns

%matplotlib inline

sns.set(rc = {'figure.figsize':(15,10)})

train = pd.concat([X_train, y_train], axis = 1)

corr = train.corr()

sns.heatmap(corr, annot=True,

 xticklabels=corr.columns.values,

 yticklabels=corr.columns.values)

7.4 Hyperparameter Tuning Process for the DT Model

• criterion

For criterion, we have two options to choose from. We used grid search to determine

which criterion yielded the highest F1 score. The code used for this purpose is as

follows:

criterion = ["gini", "entropy"]

parameter = dict(criterion = criterion)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

Page 66

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output of our analysis indicates that the “gini” criterion performed the best, as

it resulted in the highest F1 score:

{'criterion': 'gini'}

best score = 0.78

• class_weight

In a similar manner to the criterion search, we employed grid search to determine

the optimal setting for the class weight. The code used is:

class_weight = [None, "balanced"]

parameter = dict(class_weight = class_weight)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output shows:

{'class_weight': None}

best score = 0.78

• max_depth

To search for the best max_depth, we implemented a for loop combined with cross-

validation methodology, and plot the scores as a function of this parameter. The

code used is:

ScoreAll = []

for i in range():

 DT = DecisionTreeClassifier(max_depth = i, random_state = 42)

 score = cross_val_score(DT, X_train, y_train, cv=5, scoring =

"f1").mean()

 ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

plt.figure(figsize=[20.7,5.27])

plt.plot(ScoreAll[:,0],ScoreAll[:,1])

plt.show()

We first search within range(10,100,10), and the output shows:

Page 67

best parameter & score: [40. 0.7754104]

After refining our search to range(30,50), the output displayed the following

results:

best parameter & score: [35. 0.7754104]

• max_features

Given that we have 7 features in the dataset, we used grid search to explore the

optimal max_features from 1 to 7, and visualized the changes in F1 score with

different max_features values using a heatmap:

max_features = [None, 1, 2, 3, 4, 5, 6, 7]

parameter = dict(max_features = max_features)

model = DecisionTreeClassifier(max_depth=35, random_state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

dt = pd.DataFrame(grid_search.cv_results_)

dt.param_ max_features = dt.param_ max_features.astype(str)

table = pd.pivot_table(dt, values='mean_test_score', index='param_

max_features)

sns.heatmap(table)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output shows:

Page 68

{'max_features': 2}

best score = 0.78

• min_samples_leaf & min_samples_split

Considering the interactivity between min_samples_leaf and min_samples_split,

we decided to tune them together. Utilizing grid search, we explored various

combinations of these parameters and obtained the corresponding F1 score.

Subsequently, we generated a heatmap to visualize the relationship between the

different parameter combinations and the F1 score. The code used is as follows:

min_samples_split = [2, 3, 4, 5, 6]

min_samples_leaf = [1, 2, 3, 4, 5]

parameter = dict(min_samples_split = min_samples_split,

min_samples_leaf = min_samples_leaf)

model = DecisionTreeClassifier(max_depth=35, max_features=2,

random_state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

dt = pd.DataFrame(grid_search.cv_results_)

dt.param_min_samples_split = dt.param_min_samples_split.astype(str)

dt.param_min_samples_leaf = dt.param_min_samples_leaf.astype(str)

table = pd.pivot_table(dt, values='mean_test_score',

index='param_min_samples_split', columns='param_min_samples_leaf')

sns.heatmap(table)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output shows:

Page 69

{'min_samples_leaf': 1, 'min_samples_split': 2}

best score = 0.78

7.5 KCV for the DT Model

To assess the model’s performance, we utilized K-fold Cross Validation (KCV)

with 10 folds on the training set. Firstly, we obtained 10 F1 score through this

process and calculated their average value. Subsequently, we repeated the same

procedure to obtain and average the ROC-AUC scores. This approach allowed us

to gain a comprehensive understanding of the model’s performance across different

folds. The code used is as follows:

f1_scores = cross_val_score(model_1, X_train, y_train, cv=10,

scoring='f1')

f1_scores

mean(f1_scores)

roc_auc = cross_val_score(model_1, X_train, y_train, cv=10,

scoring='roc_auc')

roc_auc

mean(roc_auc)

The output for F1 score is:

array([0.84140969, 0.80742459, 0.77674419, 0.76738609, 0.80652681,

0.78983834, 0.8 , 0.75238095, 0.78983834, 0.81132075])

mean: 0.7942869750760719

The output for ROC-AUC is:

Page 70

array([0.91950086, 0.89136138, 0.88028983, 0.86765636, 0.88739452,

 0.88314714, 0.88937014, 0.86391362, 0.88504884, 0.89009639])

mean: 0.885777907843261

7.6 Hyperparameter Tuning Process for the RF Model

• criterion

The code snippet below demonstrates the use of grid search to determine the

criterion that yields the highest F1 score:

criterion = ["gini", "entropy"]

parameter = dict(criterion = criterion)

model = RandomForestClassifier(random_state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output of our analysis indicates that the “gini” criterion performed the best,

resulting in the highest F1 score.

{'criterion': 'gini'}

best score = 0.78

• bootstrap

In a similar manner to the criterion search, we employed grid search to determine

the optimal setting for the bootstrap parameter. The range for bootstrap is as

follows:

bootstrap = ["True", "False"]

The output shows:

{'bootstrap': 'True'}

best score = 0.78

• oob_score

In a similar manner to the criterion search, we employed grid search to determine

the optimal setting for the oob_score parameter. The range for oob_score is as

follows:

Page 71

bootstrap = ["True", "False"]

The output shows:

{'oob_score': 'True'}

best score = 0.78

• class_weight

In a similar manner to the criterion search, we employed grid search to determine

the optimal setting for the class_weight parameter. The range for class_weight is as

follows:

class_weight = [None, "balanced"]

The output shows:

{'class_weight': None}

best score = 0.78

• n_estimators

The code used to search for the best n_estimators using a for loop combined with

cross-validation methodology and plot the scores as a function of this parameter is

as follows:

ScoreAll = []

for i in range(10,200,10):

 RF = RandomForestClassifier(n_estimators = i, oob_score=True,

random_state = 42)

 score = cross_val_score(RF, X_train, y_train, cv=5, scoring =

"f1").mean()

 ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

print(ScoreAll[,0])

plt.figure(figsize=[20.7,5.27])

plt.plot(ScoreAll[:,0],ScoreAll[:,1])

plt.show()

Based on the implemented code, the output for the range (10, 200, 10) shows

the scores as a function of the n_estimators parameter is:

Page 72

best parameter & score: [170. 0.77780047]

After refining the search to range (160, 180), the output displayed the following

results for the scores as a function of the n_estimators parameter:

best parameter & score: [169. 0.77905861]

• max_depth

To search for the best max_depth, we implemented a for loop combined with cross-

validation methodology, and plot the scores as a function of this parameter. The

code used is:

ScoreAll = []

for i in range(10, 50, 5):

 RF = RandomForestClassifier(n_estimators = 169, oob_score=True,

max_depth = i, random_state = 42)

 score = cross_val_score(RF, X_train, y_train, cv=5, scoring =

"f1").mean()

 ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

plt.figure(figsize=[20.7,5.27])

plt.plot(ScoreAll[:,0],ScoreAll[:,1])

plt.show()

We first search within range(10,50,10), and the output shows:

Page 73

best parameter & score: [40. 0.7754104]

After refining our search to range(30,50), the output displayed the following

results:

best parameter & score: [31. 0.77984613]

• min_samples_leaf & min_samples_split

Considering the interactivity between min_samples_leaf and min_samples_split,

we decided to tune them together. Using grid search, we explored various

combinations of these parameters and obtained the corresponding F1 score.

Subsequently, we generated a heatmap to visualize the relationship between the

different parameter combinations and the F1 score. The code used for this purpose

is as follows:

min_samples_split = [2, 3, 4, 5, 6]

min_samples_leaf = [1, 2, 3, 4, 5]

parameter = dict(min_samples_split = min_samples_split,

min_samples_leaf = min_samples_leaf)

model = RandomForestClassifier(n_estimators=169, max_depth=31,

oob_score=True, random_state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

rf = pd.DataFrame(grid_search.cv_results_)

rf.param_min_samples_split = rf.param_min_samples_split.astype(str)

rf.param_min_samples_leaf = rf.param_min_samples_leaf.astype(str)

table = pd.pivot_table(rf, values='mean_test_score',

index='param_min_samples_split', columns='param_min_samples_leaf')

sns.heatmap(table)

Page 74

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output shows:

{'min_samples_leaf': 1, 'min_samples_split': 2}

best score = 0.78

• max_features

Given that we have 7 features in the dataset, we used grid search to explore the

optimal max_features from 1 to 7. We then visualized the changes in F1 score with

different max_features values using a heatmap. The code used for this process is as

follows:

max_features = [None, 1, 2, 3, 4, 5, 6, 7]

parameter = dict(max_features = max_features)

model = RandomForestClassifier(n_estimators=169, max_depth=31,

oob_score=True, random_state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

rf = pd.DataFrame(grid_search.cv_results_)

rf.param_ max_features = rf.param_ max_features.astype(str)

table = pd.pivot_table(rf, values='mean_test_score', index='param_

max_features)

sns.heatmap(table)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output shows:

Page 75

7.7 KCV for the RF Model

The following code snippet demonstrates the implementation of KCV for the final

RF model:

f1_scores = cross_val_score(model_1, X_train, y_train, cv = 10,

scoring= "f1")

f1_scores

f1_scores.mean()

roc_auc = cross_val_score(model_1, X_train, y_train, cv = 10,

scoring= "roc_auc")

roc_auc

roc_auc.mean()

The output for F1 score is:

array([0.85377358, 0.82926829, 0.82089552, 0.79207921, 0.80604534,

 0.79301746, 0.80589681, 0.76214834, 0.7970297 , 0.81572482])

f1_scores.mean() 0.8075879066494746

The output for ROC-AUC is:

array([0.9813508 , 0.99114639, 0.98858298, 0.97771616, 0.98578724,

 0.97750728, 0.97800038, 0.97489446, 0.98029819, 0.98444338])

roc_auc.mean() 0.9819727262753244

7.8 Hyperparameter Tuning Process for the GBDT Model

• n_estimator & learning rate

Page 76

To identify the optimal values for two key parameters, namely n_estimators and

learning_rate, we employed grid search methodology. Through multiple runs with

different parameter ranges, we determined that the final range for n_estimators is

set between 5000 and 10000, while the range for learning_rate is defined as 0.20 to

0.25. The following code snippet showcases the implementation of the grid search

process:

n_estimators = [5000, 6000, 7000, 8000, 9000, 10000]

learning_rate = [0.25, 0.24, 0.23, 0.22, 0.21, 0.20]

parameter1 = dict(n_estimators = n_estimators, learning_rate =

learning_rate)

Model = GradientBoostingClassifier(random_state = 42)

grid_search1 = GridSearchCV(Model, parameter1, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search1.fit(X_train, y_train)

print(grid_search1.best_params_)

print('''best score = {:.2f}'''.format(grid_search1.best_score_))

The output shows:

{'learning_rate': 0.22, 'n_estimators': 8000}

best score = 0.67

• loss

The code snippet below demonstrates the use of grid search to determine the loss

parameter that yields the highest F1 score:

loss = ['deviance', 'exponential']

parameter = dict(loss = loss)

model = GradientBoostingClassifier(n_estimators = 8000,

learning_rate = 0.22, random_state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output of our analysis indicates that the “deviance” criterion performed the

best, resulting in the highest F1 score.

{'loss': 'deviance'}

best score = 0.67

• subsample

Page 77

To find the best value for the subsample parameter, we utilized a for loop in

conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

ScoreAll = []

for i in np.arange(0.1,1,0.1):

 GB = GradientBoostingClassifier(n_estimators = 8000,

learning_rate = 0.22, max_depth = i, random_state = 42)

 score = cross_val_score(GB, X_train, y_train, cv=5, scoring =

"f1").mean()

 ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

The output shows:

best parameter & score: [1. 0.6718683]

• min_samples_leaf & min_samples_split

Using grid search, we conducted an exploration of various combinations of the

min_samples_leaf and min_samples_split hyperparameters. By systematically

evaluating different values for these hyperparameters, we were able to identify the

best combination that has the highest F1 score. The following code snippet outlines

the implementation:

min_samples_split = [2, 3, 4, 5, 6]

min_samples_leaf = [1, 2, 3, 4, 5]

parameter = dict(min_samples_split = min_samples_split,

min_samples_leaf = min_samples_leaf)

model = GradientBoostingClassifier(n_estimators = 8000,

learning_rate = 0.22, random_state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output shows:

{'min_samples_leaf': 1, 'min_samples_split': 2}

best score = 0.68

• max_depth

Page 78

To find the best value for the max_depth parameter, we utilized a for loop in

conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

ScoreAll = []

for i in range(1,50):

 GBT = GradientBoostingClassifier(n_estimators = 8000,

learning_rate = 0.22, max_depth = i, random_state = 42)

 score = cross_val_score(GBT, X_train, y_train, cv=10, scoring =

"f1").mean()

ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

The output shows:

best parameter & score: [20. 0.8133697]

7.9 KCV for the GBDT Model

The following code snippet demonstrates the implementation of KCV for the final

GBDT model:

f1_scores = cross_val_score(Model_f1, X_train, y_train, cv = 10,

scoring= "f1")

f1_scores

f1_scores.mean()

roc_auc = cross_val_score(Model_f1, X_train, y_train, cv = 10,

scoring= "roc_auc")

roc_auc

roc_auc.mean()

The output for F1 score is:

array([0.87414188, 0.84309133, 0.82857143, 0.79805353, 0.82014388,

0.81730769, 0.8156682 , 0.78640777, 0.81235154, 0.82352941])

f1_scores.mean() 0.8219266670539529

The output for ROC-AUC is:

array([0.95525913, 0.96359676, 0.94545392, 0.92682041, 0.93703487,

0.93633789, 0.94069143, 0.93040361, 0.93488712, 0.95091327])

roc_auc.mean() 0.9421398392936672

Page 79

7.10 Hyperparameter Tuning Process for the XGBoost Model

• booster

For booster, we have two options to choose from. We used grid search to determine

which criterion yielded the highest F1 score. The code used for this purpose is as

follows:

criterion = ["gbtree", "gblinear"]

parameter = dict(criterion = criterion)

model= XGBClassifier(random_state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output of our analysis indicates that the “gbtree” criterion performed the best,

as it resulted in the highest F1 score:

 {'criterion': 'gbtree'}

best score = 0.60

• n_estimator & learning_rate

To identify the optimal values for two key parameters, namely n_estimators and

learning_rate, we employed grid search methodology. Through multiple runs with

different parameter ranges, we determined that the final range for n_estimators is

set between 2500 and 3000, while the range for learning_rate is defined as 0.20 to

0.25. The following code snippet showcases the implementation of the grid search

process:

n_estimators = [2500, 2600, 2700, 2800, 2900, 3000]

learning_rate = [0.25, 0.24, 0.23, 0.22, 0.21, 0.20]

parameter1 = dict(n_estimators = n_estimators, learning_rate =

learning_rate)

model= XGBClassifier(random_state = 42)

grid_search1 = GridSearchCV(model, parameter1, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search1.fit(X_train, y_train)

print(grid_search1.best_params_)

print('''best score = {:.2f}'''.format(grid_search1.best_score_))

The output shows:

Page 80

{'learning_rate': 0.22, 'n_estimators': 2800}

best score = 0.80

• subsample

To find the best value for the subsample parameter, we utilized a for loop in

conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

ScoreAll = []

for i in np.arange(0.1,1,0.1):

 XGB = XGBClassifier(n_estimators = 2800, learning_rate = 0.22,

random_state = 42)

 score = cross_val_score(XGB, X_train, y_train, cv=5, scoring =

"f1").mean()

 ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

The output shows:

best parameter & score: [1. 0.7978683]

• min_child_weight

To find the best value for the min_child_weight parameter, we utilized a for loop

in conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

min_child_weight = [1, 2, 3, 4, 5, 6]

parameter = dict(criterion = criterion)

model = XGBClassifier(n_estimators = 2800, learning_rate = 0.22,

random_state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

print('''best score = {:.2f}'''.format(grid_search.best_score_))

The output shows:

best parameter & score: [1. 0.80]

Page 81

• max_depth

To find the best value for the max_depth parameter, we utilized a for loop in

conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

ScoreAll = []

for i in range(1,50,10):

 xgb = XGBClassifier(n_estimators = 2800, learning_rate = 0.22,

max_depth = i, random_state = 42)

 score = cross_val_score(xgb, X_train, y_train, cv=10, scoring =

"f1").mean()

 ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

We first search within range(10,50,10), and the output shows:

best parameter & score: [10. 0.82864885]

After refining our search to range (10,15), and the output displayed the following

results:

best parameter & score: [12. 0.82980737]

• gamma

To find the best value for the gamma parameter, we utilized a for loop in

conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

Page 82

ScoreAll = []

for i in np.arange(0,1,0.1):

 XGB = XGBClassifier(n_estimators = 2800, learning_rate = 0.22,

max_depth = 12, random_state = 42)

 score = cross_val_score(XGB, X_train, y_train, cv=5, scoring =

"f1").mean()

 ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]

print("best parameter & score:",ScoreAll[max_score])

The output shows:

best parameter & score: [0. 0.83040745]

7.11 KCV for the XGBoost Model

The following code snippet demonstrates the implementation of KCV for the final

XGBoost model:

f1_scores = cross_val_score(model_1, X_train, y_train, cv=10,

scoring='f1')

f1_scores

roc_auc = cross_val_score(model_1, X_train, y_train, cv=10,

scoring='roc_auc')

roc_auc

The output for F1 score is:

array([0.86836028, 0.85781991, 0.8377724 , 0.80295567, 0.84107579,

0.81265207, 0.84160757, 0.82409639, 0.82211538, 0.8321513])

mean(f1_scores)

0.8340606742621919

The output for ROC-AUC is:

array([0.96682622, 0.96901946, 0.96071928, 0.93057635, 0.95593081,

0.9515222 , 0.95299108, 0.94000759, 0.9535633 , 0.96570271])

mean(roc_auc)

0.9546858993543491

Page 83

8. References

Akinyomi, O. J. (2016). Labour turnover: Causes, consequences and prevention.

Fountain University Journal of Management and Social Sciences, 5(1),

105–112.

Alao, D., & Adeyemo, A. B. (2013). Analyzing employee attrition using decision

tree algorithms. Computing, Information Systems, Development

Informatics and Allied Research Journal, 4(1), 17–28.

Allen, D. G., & Griffeth, R. W. (1999). Job performance and turnover: A review

and integrative multi-route model. Human Resource Management Review,

9(4), 525–548. https://doi.org/10.1016/s1053-4822(99)00032-7

Alpaydin, E. (2020). Introduction to machine learning. MIT press.

Al-Radaide, Q. A., & Al Nagi, E. (2012). Using data mining techniques to build a

classification model for predicting employees performance. International

Journal of Advanced Computer Science and Applications, 3(2), 144–151.

https://doi.org/10.14569/ijacsa.2012.030225

Al-Suraihi, W. A., Samikon, S. A., Al-Suraihi, A. H. A., & Ibrahim, I. (2021).

Employee turnover: Causes, importance and retention strategies.

European Journal of Business and Management Research, 6(3), 1–10.

https://doi.org/10.24018/ejbmr.2021.6.3.893

Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., & Ridella, S. (2012). The ‘K’ in

K-fold Cross Validation. Computational Intelligence.

Anwar Hossen, M., Hossain, E., Zahereel Ishwar, A. K., & Siddika, F. (2021).

Ensemble method based architecture using random forest importance to

predict employee’s turn over. Journal of Physics: Conference Series,

1755. https://doi.org/10.1088/1742-6596/1755/1/012039

Page 84

Bakry, U., Ayeldeen, H., Ayeldeen, G., & Shaker, O. (2017). Classification of

liver fibrosis patients by multi-dimensional analysis and SVM classifier:

An egyptian case study. Proceedings of SAI Intelligent Systems

Conference (IntelliSys) 2016, 15, 1085–1095. https://doi.org/10.1007/978-

3-319-56994-9_75

Bapna, R., Langer, N., Mehra, A., Gopal, R., & Gupta, A. (2012). Human capital

investments and employee performance: An analysis of IT services

industry. Management Science, 59(3), 641–658.

https://doi.org/10.1287/mnsc.1120.1586

Beheshtifar, M., & Allahyary, M. H. (2012). Study the relationship among

organizational reputation with organizational commitment and employees’

turnover intention. International Research Journal of Applied and Basic

Sciences, 6(10), 1467–1478.

Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifier for

imbalanced data using matthews correlation coefficient metric. PloS One,

12(6). https://doi.org/10.1371/journal.pone.0177678

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification

and regression trees. In Routledge eBooks. Routledge.

https://doi.org/10.1201/9781315139470

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

Cahyana, N., Khomsah, S., & Aribowo, A. S. (2019). Improving imbalanced

dataset classification using oversampling and gradient boosting. In 2019

5th International Conference on Science in Information Technology

(ICSITech). IEEE. https://doi.org/10.1109/icsitech46713.2019.8987499

Page 85

Cascio, W., & Boudreau, J. (2011). Investing in people: Financial impact of

human resource initiatives (2nd ed.). FT Press.

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods.

Computers & Electrical Engineering, 40(1), 16–28.

https://doi.org/10.1016/j.compeleceng.2013.11.024

Chanodkar, A., Changle, R., & Mamtani, D. (2019). Prediction of employee

turnover in organizations using machine learning algorithms. Prestige

International Journal of Management and Research, 12(1/2), 222–226.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 785–794.

https://doi.org/10.1145/2939672.2939785

Chien, C. F., & Chen, L. F. (2008). Data mining to improve personnel selection

and enhance human capital: A case study in high-technology industry.

Expert Systems With Applications, 34(1), 280–290.

https://doi.org/10.1016/j.eswa.2006.09.003

Cotton, J. L., & Tuttle, J. M. (1986). Employee turnover: A meta-analysis and

review with implications for research. Academy of Management Review,

11(1), 55–70. https://doi.org/10.5465/amr.1986.4282625

Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to

construct basic probability assignment based on the confusion matrix for

classification problem. Information Sciences, 340–341, 250–261.

https://doi.org/10.1016/j.ins.2016.01.033

Durant, K. T., & Smith, M. D. (2007). Predicting the political sentiment of web

log posts using supervised machine learning techniques coupled with

Page 86

feature selection. Advances in Web Mining and Web Usage Analysis,

4811, 187–206. https://doi.org/10.1007/978-3-540-77485-3_11

Esmaieeli Sikaroudi, A., Ghousi, R., & Sikaroudi, A. (2015). A data mining

approach to employee turnover prediction (case study: Arak automotive

parts manufacturing). Journal of Industrial and Systems Engineering, 8(4),

106–121.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting

machine. Annals of Statistics, 1189–1232.

https://www.jstor.org/stable/2699986

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and

Tensorflow. O’Reilly Media, Inc.

Hauke, J., & Kossowski, T. (2011). Comparison of Values of Pearson’s and

Spearman’s Correlation Coefficients on the Same Sets of Data. QUAGEO,

30(2), 87–93. https://doi.org/10.2478/v10117-011-0021-1

Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International

Conference on Document Analysis and Recognition, 1, 278–282.

https://doi.org/10.1109/ICDAR.1995.598994

Holtom, B. C., Mitchell, T. R., Lee, T. W., & Eberly, M. B. (2008). Turnover and

retention research: A glance at the past, a closer review of the present, and

a venture into the future. The Academy of Management Annals, 2(1), 231–

274. https://doi.org/10.1080/19416520802211552

Jeni, L. A., Cohn, J. F., & De La Torre, F. (2013). Facing imbalanced data--

recommendations for the use of performance metrics. 2013 Humaine

Association Conference on Affective Computing and Intelligent

Interaction, 245–251. https://doi.org/10.1109/acii.2013.47

Page 87

Kamalanabhan, T. J., Prakash Sai, L. P., & Mayuri, D. (2009). Employee

engagement and job satisfaction in the information technology industry.

Psychological Reports, 105(3), 759–770.

https://doi.org/10.2466/pr0.105.3.759-770

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.

(2017). LightGBM: A highly efficient gradient boosting decision tree. In

Advances in neural information processing systems (Vol. 30, pp. 3149–

3157).

Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and

feature extraction techniques in machine learning. 2014 Science and

Information Conference, 372–378.

https://doi.org/10.1109/sai.2014.6918213

Khera, S. N., & Divya. (2018). Predictive modelling of employee turnover in

indian IT industry using machine learning techniques. Vision, 23(1), 12–

21. https://doi.org/10.1177/0972262918821221

Kim, W. G., Leong, J. K., & Lee, Y. K. (2005). Effect of service orientation on

job satisfaction, organizational commitment, and intention of leaving in a

casual dining chain restaurant. International Journal of Hospitality

Management, 24(2), 171–193. https://doi.org/10.1016/j.ijhm.2004.05.004

Kishore, R. A., Sanghadasa, M., & Priya, S. (2017). Optimization of segmented

thermoelectric generator using Taguchi and ANOVA techniques. Scientific

Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-16372-8

Korff, V. P., Balbo, N., Mills, M., Heyse, L., & Wittek, R. (2015). The impact of

humanitarian context conditions and individual characteristics on aid

worker retention. Disasters, 39(3), 522–545.

https://doi.org/10.1111/disa.12119

Page 88

Kristensen, N., & Johansson, E. (2008). New evidence on cross-country

differences in job satisfaction using anchoring vignettes. Labour

Economics, 15(1), 96–117. https://doi.org/10.1016/j.labeco.2006.11.001

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification

with deep convolutional neural networks. Communications of the ACM,

60(6), 84–90.

LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature,

521(7553), 436–444. https://doi.org/10.1038/nature14539

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H.

(2017). Feature selection: A data perspective. ACM Computing Surveys,

50(6), 94. https://doi.org/10.1145/3136625

Li, Y. M., Lai, C. Y., & Kao, C. P. (2010). Building a qualitative recruitment

system via SVM with MCDM approach. Applied Intelligence, 35(1), 75–

88. https://doi.org/10.1007/s10489-009-0204-9

Mathias, H. D., & Ragusa, V. R. (2017). Micro aerial vehicle path planning and

flight with a multi-objective genetic algorithm. Proceedings of SAI

Intelligent Systems Conference (IntelliSys) 2016, 15, 107–124.

https://doi.org/10.1007/978-3-319-56994-9_8

Matthew, O., & Kung, M. C. (2007). The cost of employee turnover. Industrial

Management, 49(1), 14–19.

Moyes, G. D., Shao, L. P., & Newsome, M. (2008). Comparative analysis of

employee job satisfaction in the accounting profession. Journal of

Business &Amp; Economics Research (JBER), 6(2).

https://doi.org/10.19030/jber.v6i2.2392

Page 89

Naim, M. F., & Lenka, U. (2018). Development and retention of generation y

employees: a conceptual framework. Employee Relations, 40(2), 433–455.

https://doi.org/10.1108/er-09-2016-0172

Okechukwu, W. (2017). Influence of training and development, employee

performance on job satisfaction among the staff. Journal of Technology

Management and Business, 4(1).

Parker, S. K. (2014). Beyond motivation: Job and work design for development,

health, ambidexterity, and more. Annual Review of Psychology, 65, 661–

691. https://doi.org/10.1146/annurev-psych-010213-115208

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,

Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É.

(2011). Scikit-learn: Machine learning in python. Journal of Machine

Learning Research, 12(85), 2825–2830.

Perryer, C., Jordan, C., Firns, I., & Travaglione, A. (2010). Predicting turnover

intentions: The interactive effects of organizational commitment and

perceived organizational support. Management Research Review, 33(9),

911–923. https://doi.org/10.1108/01409171011070323

Priyam, A., Gupta, R., Rathee, A., Srivastava, S., & Abhijeeta. (2013).

Comparative analysis of decision tree classification algorithms.

International Journal of Current Engineering and Technology, 3(2), 334–

337.

Punnoose, R., & Ajit, P. (2016). Prediction of employee turnover in organizations

using machine learning algorithms: A case for extreme gradient boosting.

International Journal of Advanced Research in Artificial Intelligence,

5(9), 22–26. https://doi.org/10.14569/ijarai.2016.050904

Page 90

Purohit, M. (2016). A study on - employee turnover in IT sector with special

emphasis on wipro and infosys. Journal of Business and Management,

18(4), 47–51. https://doi.org/10.9790/487X-1804014751

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-

Sánchez, J. (2012). An assessment of the effectiveness of a random forest

classifier for land-cover classification. ISPRS Journal of Photogrammetry

and Remote Sensing, 67, 93–104.

https://doi.org/10.1016/j.isprsjprs.2011.11.002

Sacco, J. M., & Schmitt, N. (2005). A dynamic multilevel model of demographic

diversity and misfit effects. Journal of Applied Psychology, 90(2), 203–

231. https://doi.org/10.1037/0021-9010.90.2.203

Saleem, R., Mahmood, A., & Mahmood, A. (2010). Effect of work motivation on

job satisfaction in mobile telecommunication service organizations of

pakistan. International Journal of Business and Management, 5(11), 213–

222. https://doi.org/10.5539/ijbm.v5n11p213

Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert

Systems With Applications, 38(3), 1999–2006.

https://doi.org/10.1016/j.eswa.2010.07.134

Seddik, A. F., & Shawky, D. M. (2015). Logistic regression model for breast

cancer automatic diagnosis. 2015 SAI Intelligent Systems Conference

(IntelliSys). https://doi.org/10.1109/intellisys.2015.7361138

Seth, M., & Sethi, D. (2011). Human resource outsourcing: Analysis based on

literature review. International Journal of Innovation, Management and

Technology, 2(2).

Page 91

Sexton, R. S., McMurtrey, S., Michalopoulos, J. O., & Smith, A. M. (2005).

Employee turnover: A neural network solution. Computers & Operations

Research, 32(10), 2635–2651. https://doi.org/10.1016/j.cor.2004.06.022

Shanmugam, R., & Giri Babu, N. (2016). Assessment of employee attrition

among IT employees. International Journal of Applied Engineering

Research, 11(5), 3449–3453.

Shaw, J. D., Delery, J. E., Jenkins, G. D., & Gupta, N. (1998). An organization-

level analysis of voluntary and involuntary turnover. Academy of

Management Journal, 41(5), 511–525. https://doi.org/10.2307/256939

sklearn.ensemble.GradientBoostingClassifier. (n.d.). Scikit-learn. Retrieved May

26, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingCla

ssifier.html

sklearn.ensemble.RandomForestClassifier. (n.d.). Scikit-learn. Retrieved May 15,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassi

fier.html

sklearn.tree.DecisionTreeClassifier. (n.d.). Scikit-learn. Retrieved May 12, 2023,

from https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.ht

ml#sklearn.tree.DecisionTreeClassifier

Storey, D. J. (2016). Understanding the small business sector (routledge library

editions: Small business) (1st ed.). Routledge.

https://doi.org/10.4324/9781315544335

Page 92

Stovel, M., & Bontis, N. (2002). Voluntary turnover: Knowledge management –

friend or foe? Journal of Intellectual Capital, 3(3), 303–322.

https://doi.org/10.1108/14691930210435633

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction

(Vol. 16). MIT press.

Thaseen, I. S., Kumar, Ch. A., & Ahmad, A. (2019). Integrated Intrusion

Detection Model Using Chi-Square Feature Selection and Ensemble of

Classifiers. Arabian Journal for Science and Engineering, 44(4), 3357–

3368. https://doi.org/10.1007/s13369-018-3507-5

Vasantham, S. T., & Swarnalatha, C. (2015). Need and importance of employee

retention. International Journal in Management & Social Science, 3(8),

415–417.

Von Hippel, C., Kalokerinos, E. K., & Henry, J. D. (2013). Stereotype threat

among older employees: Relationship with job attitudes and turnover

intentions. Psychology and Aging, 28(1), 17–27.

https://doi.org/10.1037/a0029825

Woolf, B. P. (2009). Building intelligent interactive tutors: Student-centered

strategies for revolutionizing e-learning (Vols. 221–297). Morgan

Kaufmann. https://doi.org/10.1016/B978-0-12-373594-2.00007-1

XGBoost Parameters. (n.d.). XGBoost Documentation. Retrieved May 30, 2023,

from https://xgboost.readthedocs.io/en/stable/parameter.html#

Ye, Q., Zhang, Z., & Law, R. (2009). Sentiment classification of online reviews to

travel destinations by supervised machine learning approaches. Expert

Systems With Applications, 36(3), 6527–6535.

https://doi.org/10.1016/j.eswa.2008.07.035

Page 93

Zhang, Y. (2016). A review of employee turnover influence factor and

countermeasure. Journal of Human Resource and Sustainability Studies,

04(02), 85–91. https://doi.org/10.4236/jhrss.2016.42010

Zhao, Y., Hryniewicki, M. K., Cheng, F., Fu, B., & Zhu, X. (2018). Employee

turnover prediction with machine learning: A reliable approach.

Proceedings of SAI Intelligent Systems Conference, 869, 737–758.

https://doi.org/10.1007/978-3-030-01057-7_56

