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1. Introduction 

1.1 Problem Formulation 

Employee turnover is a pervasive issue faced by organizations across various 

industries (Korff et al., 2015). When employees decide to leave a company, it not 

only disrupts daily operations but also imposes costs associated with recruiting and 

training new talent (Cascio & Boudreau, 2011; Matthew & Kung, 2007). As a 

result, accurately predicting and understanding employee turnover has become a 

critical objective for many businesses. The advent of machine learning has opened 

up new possibilities for predicting and analyzing employee turnover. By leveraging 

vast amounts of data, organizations can develop sophisticated models that 

effectively forecast the likelihood of an employee leaving the company. These 

predictive models enable organizations to proactively address turnover risks, devise 

targeted retention and succession strategies, and create a more stable and successful 

work environment (Chanodkar et al., 2019; Perryer et al., 2010). This thesis 

primarily focuses on tackling the challenge of employee turnover prediction using 

supervised machine learning models. By utilizing four widely recognized 

supervised learning models, namely Decision Tree (DT), Random Forest (RF), 

Gradient Boosting Decision Tree (GBDT), and Extreme Gradient Boosting 

(XGBoost), we conduct a comparative analysis to determine the model that 

demonstrates the highest predictive power for employee turnover. Through our 

analysis, we aim to contribute to the field of employee turnover prediction by 

advancing the understanding of the factors that drive turnover and developing 

effective prediction models. 

1.2 Contributions 

This section highlights the significant contributions of our thesis in the field of 

predicting employee turnover using supervised machine learning models. Our 

thesis makes the following key contributions: 

Comprehensive Analysis: Our thesis undertakes a thorough examination of the 

factors influencing employee turnover and employs four widely recognized 

supervised machine learning models to achieve accurate turnover predictions. 

Through a meticulous analysis of demographic features and the application of 
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robust methodologies, our study offers a comprehensive understanding of the 

predictive models involved in employee turnover. 

Dataset with Broad Coverage: Our study utilizes a dataset with extensive coverage, 

encompassing diverse industries and countries. This dataset enables us to capture a 

more comprehensive understanding of employee turnover dynamics and facilitates 

the generalization of our findings to different contexts. 

Comparative Evaluation of Supervised Learning Models: We compare the 

performance of four popular supervised learning models, including DT, RF, GBDT, 

and XGBoost. By evaluating their predictive abilities and identifying the model 

with the highest performance, we offer valuable insights into the most effective 

model for predicting employee turnover. 

Addressing Previous Limitations: We overcome limitations identified in previous 

research, such as limited generalization, feature selection, and metrics selection. By 

employing advanced techniques and methodologies, we aim to enhance the 

accuracy and reliability of employee turnover prediction models. 

Practical Implications: Our thesis provides practical implications for organizations 

in developing effective retention or succession strategies. By identifying the factors 

contributing to employee turnover and accurately predicting turnover, 

organizations can take proactive measures to mitigate turnover risks and enhance 

their workforce management practices. 

Overall, our study contributes to the existing body of knowledge by offering a 

comprehensive analysis of employee turnover prediction, addressing previous 

limitations, and providing practical insights for organizations to make informed 

decisions regarding their workforce management strategies. 

1.3 Structure of the Thesis 

This thesis is organized into eight chapters, each focusing on a specific aspect of 

predicting employee turnover using supervised machine learning models. The 

following provides an overview of the structure and content of the thesis: 
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Chapter 1 presents the problem formulation, emphasizing the importance of 

accurately predicting employee turnover. We delve into the significance of this 

topic and elaborate on the contributions our work brings to the field. 

Chapter 2 delves into the background information related to employee turnover. We 

examine the impact of employee voluntary turnover on organizations and 

emphasize the benefits of predicting employee turnover. Additionally, we examine 

the role of machine learning in addressing this issue and provide a summary of 

previous studies conducted in this domain. We also discuss the limitations of prior 

research and outline our efforts to overcome them in this study. 

Chapter 3 focuses on the methodology employed in our study. We describe the 

statistical techniques used for feature selection, including Analysis of Variance 

(ANOVA), Chi-square Test, and Correlation Analysis. We also delve into the four 

supervised learning models utilized in our study: Decision Tree (DT), Random 

Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme Gradient 

Boosting (XGBoost). Furthermore, we discuss the evaluation metrics used to assess 

the performance of these models. 

Chapter 4 provides detailed information about the data used in our study. We 

discuss the data source, data structure, and the process of data cleaning. 

Additionally, we present a descriptive analysis of the data and explain the steps 

taken for data preprocessing, including categorical data encoding and data splitting. 

We also elaborate on the feature selection methods applied, namely ANOVA, Chi-

square Test, and Correlation Analysis. 

Chapter 5 presents the training procedures for each of the machine learning models 

utilized in our study, including the hyperparameter tuning process. We thoroughly 

evaluate each model, examining their performance both with and without 

hyperparameter tuning. 

Chapter 6 presents the overall results of our study. We discuss the performance of 

each model and highlight the business value derived from predicting employee 

turnover. In addition, we identify potential avenues for future research and discuss 

possible extensions and improvements to the methods and models employed in this 

study. 
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Chapter 7 includes additional supplementary material, such as a step-by-step 

process for conducting feature selection, hyperparameter tuning, and the K-fold 

Cross Validation (KCV) results for each of the models utilized. 

Chapter 8 contains a comprehensive list of the references cited throughout the 

thesis, ensuring proper attribution of the sources consulted. 

By following this structured approach, we aim to provide a comprehensive analysis 

of predicting employee turnover using supervised machine learning models.  
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2. Background 

In this chapter, we delve into the background of employee turnover prediction and 

its various aspects. We begin by introducing the concept of employee turnover (2.1) 

and exploring its implications within organizations. Subsequently, we examine the 

impact of voluntary employee turnover (2.2), highlighting the significant effects it 

can have on businesses. Recognizing the importance of predicting and mitigating 

turnover, we then discuss the benefits of such predictions (2.3), emphasizing the 

potential advantages for organizations. To facilitate these predictions, we turn our 

attention to machine learning (2.4) and its potential in this context. Specifically, we 

explore supervised learning models (2.5) as a powerful tool for predicting employee 

turnover. Lastly, we address the limitations of previous research (2.6), recognizing 

the need for further advancements in this area.  

2.1 Introduction to Employee Turnover 

Employee turnover refers to the number or the percentage of the total number of 

employees who leave the company and are replaced by hiring and appointing new 

employees to fill the vacant positions within a certain period of time (Chanodkar et 

al., 2019). Employees are often regarded as important assets of a company, 

especially those who are considered valuable by the company. Stovel and Bontis 

(2002) viewed employee turnover to be the loss of an organization’s intellectual 

capital. According to Korff et al. (2015), employee turnover has been a long-

standing problem in companies. Relevant organizational studies have confirmed 

that a variety of factors can influence a person’s decision to quit a position, 

including job satisfaction, job performance, job security, work environment, wages, 

and the existence of clearly defined organizational goals (Allen & Griffeth, 1999; 

Al-Suraihi et al., 2021; Parker, 2014). Storey (2016) stated that employee retention 

and job satisfaction are interdependent and fundamental to a company’s 

performance. Similar conclusions regarding the impact of organizational direction 

and support on employee job satisfaction and general commitment were made in 

Kim et al. (2005) ’s study on corporate orientation. Additionally, a number of 

researchers have discussed the impact of employee demographics on their turnover 

decisions. Demographics such as age, gender, tenure, ethnicity, education, and 

marital status have been proven to be strong predictors of employee resignation 



 

Page 6 

(Cotton & Tuttle, 1986; Holtom et al., 2008; Sacco & Schmitt, 2005; von Hippel et 

al., 2013).  

Most studies categorize employee turnover into voluntary and involuntary turnover. 

Voluntary turnover occurs when the decision to leave the company is made 

primarily by the employee, including all resignation forms; involuntary turnover, 

which includes termination, dismissing, and other forms, refers to when the 

decision to leave the company is made mostly by the employer (Shaw et al., 1998). 

In contrast to involuntary turnover, which is predictable and manageable, voluntary 

turnover is often unpredictable and can have a greater impact on companies 

(Chanodkar et al., 2019). The analysis in this paper focuses on voluntary turnover. 

Additionally, according to the characteristics of the departing employee, employee 

turnover can also be classified into internal and external turnover, as well as skilled 

and unskilled turnover. Internal turnover is when employees move from one 

position to another within the same organization, while external turnover occurs 

when employees leave to work for another organization. Skilled turnover refers to 

the departure of highly skilled and educated employees, while unskilled turnover 

involves the departure of employees in positions that require untrained, unskilled, 

or uneducated workers (Akinyomi, 2016). These categories provide a deeper 

understanding of the factors and consequences of employee turnover in 

organizations. 

2.2 Impact of Employee Voluntary Turnover 

Voluntary employee turnover can negatively affect several aspects of an 

organization. A high turnover rate might harm the company financially because of 

high indirect costs, such as the cost of hiring, training, and developing new 

employees (Cascio & Boudreau, 2011; Matthew & Kung, 2007). In terms of 

company resources, training new employees requires additional time, manpower, 

and material resources (Bapna et al., 2012). At the same time, the productivity of 

the company will be impacted since new employees often need some time to 

familiarize themselves with the business operation (Matthew & Kung, 2007). In 

addition, both customer satisfaction (Kamalanabhan et al., 2009) and company 

reputation (Beheshtifar & Allahyary, 2012) can be influenced in a similar manner. 

A high rate of employee turnover is also bad for a company’s reputation 

(Beheshtifar & Allahyary, 2012). Internally, the departure of experienced 



 

Page 7 

employees can lead to low morale and disrupt ongoing work (Matthew & Kung, 

2007; Punnoose & Ajit, 2016). Zhang (2016) decomposed the cost of employee 

turnover into two categories: explicit costs (such as hiring, training, and 

productivity loss), and hidden costs (morale, corporate reputation, damage to 

position chain, loss of opportunity, etc.). Moreover, the consequences of employee 

turnover can vary across industries. For example, research focused on the 

Information Technology (IT) sector by Shanmugam and Giri Babu (2016) 

highlights that high turnover leads to decreased productivity in this field. Sexton et 

al. (2005) conducted a thorough examination of the customer service industry, 

revealing that unexpected employee departures harm customer loyalty and diminish 

service quality. Additionally, in high-tech industries, the replacement of employees 

possessing specialized skill sets or domain expertise presents a significant challenge 

(Esmaieeli Sikaroudi et al., 2015). While there are drawbacks, employee turnover 

can also bring benefits such as replacing underperforming employees and fostering 

organizational creativity, flexibility, and adaptability (Purohit, 2016; Zhang, 2016). 

Overall, organizations need to carefully manage employee turnover to mitigate 

negative consequences and capitalize on potential advantages. 

2.3 Benefits of Predicting Employee Turnover 

Given the internal and external impact of employee turnover discussed in the 

previous section, there is no doubt that it is beneficial for companies to anticipate 

employee turnover. Vasantham and Swarnalatha (2015) concluded that the 

retention of competent employees is critical to a company’s long-term health and 

success. By predicting employee turnover, companies can take appropriate 

proactive actions, such as planning for retention and succession (Chanodkar et al., 

2019). If a drastic increase in employee resignation is predicted, both management 

and Human Resources (HR) teams can take necessary precautions in advance. As a 

result, companies are able to reduce or maintain employee turnover as needed, 

thereby increasing overall productivity and profitability. Accurate forecasts also 

provide companies with insights to estimate the budget for human resource 

management-related activities, such as cost per hire (Chanodkar et al., 2019). In 

addition, Punnoose and Ajit (2016) pointed out that any organization that wants to 

take the appropriate action to maintain its market position and accomplishment 

must first determine the main causes of employee attrition. Through the 

development of a predictive model, companies can gain valuable insights into the 
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key reasons behind employee turnover, provide the right incentives for employees, 

or find suitable personnel for future vacancies. Furthermore, employee turnover 

predictions can be used to formulate strategies related to productivity or expansion 

for the continued growth and development of the company (Perryer et al., 2010). 

2.4 Machine Learning 

Machine learning is a field of study in computer science that focuses on the use of 

data and algorithms to imitate the learning process of humans, with the aim of 

continuously improving its accuracy over time (Woolf, 2009). It can be categorized 

into several types based on different learning processes and methods. According to 

recent studies, these types include supervised learning, unsupervised learning, 

semi-supervised learning, reinforcement learning, and deep learning (Alpaydin, 

2020; Géron, 2022; LeCun et al., 2015; Sutton & Barto, 2018). Supervised learning 

involves training models using labeled data, where the desired output is already 

known. Conversely, unsupervised learning involves training models on unlabeled 

data, where the desired output is unknown. Semi-supervised learning combines 

elements of both supervised and unsupervised learning, utilizing datasets that 

contain both labeled and unlabeled data. Reinforcement learning involves training 

algorithms to make decisions by leveraging feedback received from the 

environment. Finally, deep learning employs artificial neural networks to emulate 

the structure and function of the human brain, enabling the resolution of complex 

problems. Given that the nature of our work is to predict whether an employee will 

resign, and the classes in the dataset are known: all employees will be labeled as 

resigned (positive) or not resigned (not resigned). Therefore, the machine learning 

models used in our analysis are all supervised learning. 

The development of machine learning models has resulted in the emergence of 

robust quantitative techniques that are being applied across a range of industries, 

including biology and medical sciences (Bakry et al., 2017; Seddik & Shawky, 

2015), transportation (Mathias & Ragusa, 2017; Ye et al., 2009), and political 

science (Durant & Smith, 2007). In the field of human resource management, 

different machine learning models have been studied by researchers to improve 

productivity in areas such as employee performance prediction (Al-Radaide & Al 

Nagi, 2012), personnel selection (Chien & Chen, 2008), and recruitment system 

construction (Li et al., 2010). Machine learning also serves as a valuable tool for 
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predicting employee turnover, as demonstrated by recent studies summarized in the 

next chapter.  

2.5 Supervised Learning Models for Employee Turnover 

The use of supervised machine learning algorithms has been explored by several 

studies to predict employee turnover. Alao and Adeyemo (2013) investigated the 

use of Decision Tree (DT) algorithms in predicting employee attrition and identified 

some of the important factors in predicting employee attrition, including salary and 

tenure. Esmaieeli Sikaroudi et al. (2015) proposed using several machine learning 

algorithms to predict employee turnover, including DT, K-Nearest Neighbor 

(KNN), Multi-Layer Perception (MLP), Naïve Bayes (NB), Probabilistic Neural 

Network (PNN), Random Forests (RF), and Support Vector Machine (SVM). They 

found that the RF model achieved the best performance in predicting employee 

turnover, with an accuracy rate of 90%, and identified work experience as the most 

important factor in predicting employee turnover. Punnoose and Ajit (2016) 

compared seven machine learning algorithms in predicting employee turnover. 

These algorithms are Linear Discriminant Analysis (LDA), Logistic Regression 

(LR), KNN, NB, RF, SVM, and Extreme Gradient Boosting (XGBoost). The 

researchers found that XGBoost outperformed the other models in terms of Area 

Under the Receiver Operating Characteristic Curve (ROC-AUC). Zhao et al. (2018) 

explored machine learning algorithms including DT, Gradient Boosting Decision 

Tree (GBDT), KNN, LDA, LR, NB, Neural Networks (NN), RF, SVM, XGBoost, 

and found that GBDT achieved the best performance in predicting employee 

turnover using ROC-AUC. Overall, these studies highlight the potential of machine 

learning algorithms in predicting employee turnover and identifying factors that 

contribute to it. 

In Table 2-1, we present a summary of recent publications (after 2010) in the field 

of predicting employee turnover. Researchers in these studies focused on one or 

more machine learning models to predict employee turnover and compared their 

performance using pre-selected metrics to identify the model with the best 

predictive ability. Building upon the insights gained from this literature review, our 

thesis incorporates four wildly recognized supervised learning models, namely DT, 

RF, GBDT, and XGBoost, to develop predictive models for employee turnover. 



 

Page 10 

 

2.6 Limitation of Previous Research 

Despite the fact that a number of studies have focused on utilizing machine learning 

to develop predictive models for employee turnover, the models developed from 
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these studies tend to be specific to the industry or country in which they were 

developed, making it challenging to apply them in other contexts. One possible 

reason for this is the limited availability of data. Developing predictive models for 

employee turnover requires access to HR data that includes sensitive and 

confidential personal information, such as employee performance, salary, tenure, 

and reasons for leaving. However, companies generally prefer to keep such 

information private (Seth & Sethi, 2011), which makes it challenging to collect data 

on a large scale within one study, especially when it involves multiple countries and 

industries. Most of the studies summarized in Table 2-1 conducted analyses using 

datasets belonging to a single industry and from a single country, while others did 

not mention the source of their datasets. The resulting models, therefore, have a 

restricted capacity to be generalized. The dataset used in our thesis is provided by 

a global company with operations covering multiple industries. The dataset 

comprises ten countries where the company has the highest number of employees 

across the globe. The countries are China, Germany, India, Italy, the Netherlands, 

Norway, Poland, Spain, the United Kingdom, and the United States. Additionally, 

it includes nine industries, namely consultancy, cyber security, data management, 

energy, HR, IT, insurance, maritime and supply chain. A thorough description and 

descriptive analysis of the dataset are provided in Chapter 4.  

Another reason for the limited generalization of previous studies can be the 

inclusion of sentimental features. These features, such as employee satisfaction 

level, job security perceptions, and peer relationships, are often incorporated into 

the dataset to predict employee turnover. Although, as mentioned in Chapter 2.1, 

studies in organizational research have demonstrated the importance of sentimental 

features in reflecting employees’ decisions to leave their jobs, it is difficult to ensure 

the consistency and accuracy of such data. Companies generally send employees 

surveys or questionnaires to find out how they feel about the company, their job, or 

their colleagues (Moyes et al., 2008; Okechukwu, 2017; Saleem et al., 2010). 

However, the design of each company’s survey is likely to be different. For 

instance, some companies may ask about job satisfaction, while others may ask 

about workload satisfaction. This means that the sentimental features included in 

datasets from different companies are likely to be incomparable. In addition, 

individuals perceive satisfaction differently, especially across different cultures 

(Kristensen & Johansson, 2008). As a result, analyses designed using sentimental 
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features are difficult to verify in other companies, let alone in a different industry 

or country. To mitigate this issue, the analysis in our thesis only focuses on 

employee demographic features such as age, gender, and tenure. These features are 

available to most companies and have been consistently identified as significant 

factors in predicting employee turnover in prior research (Cotton & Tuttle, 1986; 

Holtom et al., 2008; Sacco & Schmitt, 2005; von Hippel et al., 2013) 

In previous studies, the evaluation of supervised learning models in predicting 

employee turnover often relied heavily on accuracy as the primary metric. 

However, this approach may have limitations when working with imbalanced 

datasets (Boughorbel et al., 2017; Jeni et al., 2013). Imbalanced datasets are 

common in employee turnover prediction studies because the number of employees 

who actually leave a company is typically a small fraction compared to the total 

number of employees. Our thesis deals with a highly imbalanced dataset, with only 

2.66% of the data labeled as “resigned” (positive). In cases like these, accuracy is 

not a practical metric for evaluating model performance. For instance, a model can 

achieve 97.33% accuracy simply by predicting all instances as negative. Therefore, 

we use F1score and ROC-AUC as our preferred metrics in the analysis. These 

metrics are more suitable for handling imbalanced datasets (Cahyana et al., 2019; 

Zhao et al., 2018). Detailed information on the calculation of each metric can be 

found in Chapter 3.10. 

In conclusion, previous research on employee turnover prediction using machine 

learning has faced challenges regarding generalizability and practical application. 

The specificity of the models developed for particular industries or countries has 

hindered their transferability to diverse organizational contexts. Our thesis 

addresses this limitation by utilizing a dataset encompassing multiple countries and 

industries. In addition, instead of relying on subjective sentimental features, we 

incorporate a diverse range of demographic features to enhance the robustness and 

reliability of our models. Previous studies also heavily relied on accuracy as the 

primary evaluation metric, which may not be suitable for imbalanced datasets 

commonly used in employee turnover prediction. To address this issue, we adopt 

F1score and ROC-AUC as our preferred evaluation metrics, as they provide more 

robust performance measures for imbalanced data. By addressing these limitations 

and adopting a comprehensive approach, our thesis strives to make valuable 

contributions to the field of employee turnover prediction using machine learning. 
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3. Methodology 

In this chapter, we present the methodology employed to develop and evaluate our 

predictive models for employee turnover. We begin by discussing the feature 

selection techniques used, namely Analysis of Variance (ANOVA), Chi-square 

Test, and Correlation Analysis (3.1-3.3). These methods enable us to identify the 

most relevant features for predicting employee turnover. Next, we delve into the 

machine learning models employed in our analysis, including Decision Tree (DT), 

Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme 

Gradient Boosting (XGBoost) (3.4-3.7). These models were carefully chosen based 

on their proven performance in predicting employee turnover and their wide 

adoption in the field of machine learning. In order to ensure the robustness of our 

models, we employ K-fold Cross Validation (KCV) (3.8) to assess their stability 

and generalizability. For evaluating model performance, we utilize various metrics 

(3.9-3.10). These include the Confusion Matrix, which provides a comprehensive 

overview of model predictions, and relevant metrics such as accuracy, precision, 

recall, and F1 score (3.10.1-3.10.4). Additionally, we employ the Area Under the 

Receiver Operating Characteristic Curve (ROC-AUC) to evaluate the models’ 

discrimination power and ability to handle imbalanced datasets (3.10.5). 

3.1 Analysis of Variance (ANOVA) 

In our analysis, we employ Analysis of Variance (ANOVA) as a feature selection 

technique to identify relevant numerical features for our machine learning model. 

ANOVA is a statistical method that assesses the statistical significance of 

differences between groups (Kishore et al., 2017), in this case, the relationship 

between each numerical feature and the target variable, “Resigned”. The steps for 

using ANOVA for feature selection in our analysis can be outlined as follows: 

1. Data Preparation: We start by preparing our dataset, ensuring that it is 

properly formatted and contains the target variable and the numerical 

features of interest, such as Age, Tenure, and so on. 

2. Grouping: We divide our dataset into two groups corresponding to the two 

classes: “Resigned” and “Not Resigned”. 

3. F-statistic Calculation: Using the grouped data, we calculate the F-statistic 

for each selected feature. This statistic measures the variability between the 
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groups compared to the variability within each group. It quantifies the extent 

to which the feature explains the variation in the target variable. 

4. Significance Testing: We assess the statistical significance of the F-statistic 

by calculating the p-value. The p-value represents the probability of 

observing a result as extreme as, or more extreme than, the one obtained 

under the null hypothesis. A low p-value indicates a significant difference 

between the groups and suggests that the feature is informative for 

predicting the target variable. 

5. Feature Selection: Based on the calculated p-values, we rank the features in 

descending order of their significance. We set the significance threshold to 

0.05 and select the features with p-values below this threshold. These 

features are considered relevant to our model. 

3.1.1 F-statistic Calculation 

In Step 3 of using ANOVA for feature selection, we calculate the F-statistic for 

each feature. Mathematically, the F-statistic can be calculated using the following 

formula: 

𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝑊
 ,           (3-1) 

where 𝑀𝑆𝐵 denotes the mean square between groups and 𝑀𝑆𝑊 denotes the mean 

square within groups. 

To calculate 𝑀𝑆𝐵 , we compute the sum of squares between groups (𝑆𝑆𝐵) by 

summing the squared differences between the group means and the overall mean, 

and then divide it by the degrees of freedom between groups (𝑑𝑓𝐵). The formula 

for 𝑀𝑆𝐵 is: 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝐵
             (3-2) 

To calculate 𝑀𝑆𝑊 , we compute the sum of squares within groups (𝑆𝑆𝑊 ) by 

summing the squared differences between each observation and its respective group 

mean, and then divide it by the degrees of freedom within groups (𝑑𝑓𝑊). The 

formula for 𝑀𝑆𝑊 is: 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑊
              (3-3) 
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The 𝑑𝑓𝐵 is equal to the number of groups minus one, while the 𝑑𝑓𝑊 is equal to 

the total number of observations minus the number of groups. 

In summary, ANOVA-based feature selection provides a statistical framework to 

identify the numerical features that contribute to the target variable. This helps to 

focus the model’s learning on the informative features, potentially improving 

efficiency and reducing the risk of overfitting. 

3.2 Chi-square Test 

The Chi-square test is a statistical test used to determine if there is a significant 

association between two categorical variables by evaluating their independence 

(Thaseen et al., 2019). In our analysis, we utilize the Chi-square test for feature 

selection, specifically focusing on categorical features. This test allows us to 

identify relevant categorical features by measuring their dependence on the target 

variable.  

The process of using the Chi-square test for feature selection is similar to that of 

using ANOVA, with the difference being the type of features analyzed (categorical 

instead of numerical) and the statistic used (Chi-square test statistic instead of F-

statistic). 

3.2.1 Chi-square Test Statistic Calculation 

The Chi-square test statistic is calculated based on the observed and expected 

frequencies. Mathematically, it is calculated as follows: 

𝐶ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒 = ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
   (3-4) 

In this equation, the summation symbol (Σ) represents the summation operation 

conducted over all cells in a contingency table that captures the frequencies of the 

categorical feature and the target variable. For each cell, we calculate the difference 

between the observed frequency (the actual count in the cell) and the expected 

frequency (the count expected assuming independence between the feature and the 

target variable). We then square this difference, divide it by the expected frequency, 

and sum up these terms for all cells in the table. 
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By calculating the Chi-square test statistic, we obtain a single numerical value that 

measures the overall discrepancy between the observed and expected frequencies. 

A larger Chi-square value indicates a stronger association between the feature and 

the target variable, while a smaller value suggests a weaker or no association. This 

statistic is subsequently used to determine the degrees of freedom and calculate the 

p-value, enabling us to assess the significance of the association. 

In summary, by applying the Chi-square test and analyzing the resulting p-values, 

we can identify informative categorical features for the target variable. This process 

helps reduce the dimensionality of the dataset and potentially enhances the 

efficiency and interpretability of the model. 

3.3 Correlation Analysis 

Correlation analysis is a statistical technique used to assess the strength and 

direction of the linear relationship between two numerical variables (Hauke & 

Kossowski, 2011). In our analysis, we use correlation analysis as an additional 

feature selection technique to identify the numerical features that are relevant to our 

target variable. Furthermore, we examine the correlations among the features 

themselves to gain insights into the relationships between the features and identify 

potential issues such as multicollinearity. The steps involved in using correlation 

analysis for feature selection are as follows: 

1. Calculation of Correlation Coefficients: We compute the correlation 

coefficients between each numerical feature and the target variable using 

Pearson’s correlation coefficient, which quantifies the linear relationship 

between two variables. This coefficient measures the linear relationship 

between two variables, ranging from -1 to 1. A value close to 1 indicates a 

strong positive correlation, a value close to -1 indicates a strong negative 

correlation and a value close to 0 suggests no or weak correlation. 

2. Evaluation of Correlation Strength: We assess the strength of the correlation 

coefficients to identify the numerical features that exhibit a significant 

relationship with the target variable. Features with high absolute correlation 

coefficients are considered to have a stronger association with the target 

variable and are more likely to provide meaningful information for 

prediction. 



 

Page 17 

3.3.1 Pearson’s Correlation Coefficient Calculation 

Pearson’s correlation coefficient is used to quantify the linear relationship between 

features and the target variable. It is calculated using the formula: 

𝑟 =
∑((𝑋𝑖−�̅�)(𝑌𝑖−�̅�))

𝑛∗𝜎𝑋∗𝜎𝑌
 ,        (3-5) 

where 𝑟 represents Pearson’s correlation coefficient, X and Y represent the features 

and the target variable, �̅� and �̅� are the mean of 𝑋 and 𝑌, 𝑛 represents the number 

of data points in the dataset, and 𝜎𝑋 and 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌. 

In summary, by utilizing correlation analysis, we can identify the numerical features 

that have a strong relationship with the target variable, allowing us to focus on the 

informative features for our predictive model. This feature selection process helps 

reduce dimensionality, enhance model interpretability, and potentially improve the 

model’s performance. 

3.4 Decision Tree (DT) 

Decision Tree (DT) is a supervised learning algorithm that can be used for 

classification and regression tasks (Breiman et al., 2017). It builds a tree-like model 

consisting of nodes and branches, which represent decisions and their possible 

outcomes. Root nodes and internal nodes correspond to features, such as an 

employee’s age, while branches represent the possible values or ranges for those 

features. Leaf nodes indicate class labels, which in our context would indicate 

whether an employee has resigned or not.  

To illustrate the functionality of a DT model, we use an example of fruit 

classification. We start with a dataset that contains information about fruits, 

including their color and shape, along with labels indicating whether they are 

“Apple” or “Orange”. The objective is to build a DT model using this dataset to 

classify new fruits based on their color and shape. Figure 3-1 showcases one 

potential structure for the DT model. To make predictions using this model, we start 

at the root node labeled “Color” and follow the branches based on the feature values 

of the new fruits. Eventually, we reach a leaf node representing either “Apple” or 

“Orange”. 



 

Page 18 

 
Figure 3-1 Decision Tree Structure for Fruit Classification 

3.4.1 Gini Impurity 

The detailed features of the DT model and its algorithm can be referred to Breiman 

et al. (2017) and Priyam et al. (2013). This section is dedicated to examining the 

splitting criterion of our final DT model. The splitting criterion determines the 

optimal feature and value for dividing the data at each node of the tree. The two 

most commonly used splitting criteria are Information Gain and Gini Impurity. In 

our thesis, the final DT model utilized Gini Impurity as the splitting criterion. It is 

calculated using the following formula: 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑(𝑝(𝑖)2) ,            (3-6) 

where 𝑝(𝑖) represents the probability of class 𝑖 appearing in the dataset 𝑆. 

The resulting Gini Impurity reflects the degree of impurity or disorder within the 

dataset or subset. A Gini Impurity of 0 indicates a perfectly pure dataset, where all 

instances belong to the same class. Higher values indicate higher impurity, with 0.5 

being the maximum impurity when classes are evenly distributed.  

When considering a split on a specific feature, the Gini Impurity is calculated for 

each possible split point. The optimal split is chosen based on the split that 

minimizes the weighted average of the Gini Impurity for the resulting subsets. By 

using the Gini Impurity as the splitting criterion, the DT algorithm aims to create 
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splits that generate subsets with the least impurity, which leads to a more accurate 

and informative tree. 

In summary, DT is a supervised learning algorithm that involves recursively 

partitioning the data based on the most informative features, ultimately creating a 

tree structure that can classify new instances. The selection of an appropriate 

splitting criterion is crucial in determining the optimal splits and overall accuracy 

and interpretability of the DT model. 

3.5 Random Forest (RF) 

Ensemble learning refers to algorithms that aggregate predictions from multiple 

models. Random Forest (RF) is an ensemble learning algorithm that combines 

multiple DTs to make predictions. RF can be applied to both classification and 

regression tasks, offering improved accuracy, reduced overfitting, and the ability to 

handle high-dimensional datasets with a large number of features (Breiman, 2001). 

Similar to DT, RF builds a collection of tree-like models. However, unlike a single 

DT, RF builds each individual tree by selecting a random subset of the dataset with 

replacement (known as bootstrap sampling) and using a random subset of features 

for nodes.  

Building upon our fruit classification example, Figure 3-2 presents a potential 

structure for using a RF model to classify fruits. In this structure, when classifying 

a new fruit, each tree in the RF independently provides its prediction (e.g., “Apple” 

or “Orange”). The final prediction is then determined through majority voting, 

where the class that receives the most votes across all trees is chosen, resulting in a 

more reliable and accurate classification. 

 
Figure 3-2 Random Forest Structure for Fruit Classification 
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3.5.1 Bootstrap Sampling 

For the detailed features of the RF model and its algorithm, please refer to Breiman 

(2001) and Rodriguez-Galiano et al. (2012). This section delves into the 

examination of bootstrap sampling, which holds significant importance in the RF 

algorithm due to its crucial role in constructing individual DTs. It involves creating 

multiple resamples (bootstrap samples) from an original dataset by randomly 

selecting observations with replacement. The term “with replacement” indicates 

that each selected observation is returned to the dataset before the next selection, 

allowing the possibility of selecting the same observation more than once within a 

resample. The fundamental steps involved in bootstrap sampling are as follows: 

1. Begin with an original dataset 𝐷, containing 𝑁 observations. 

2. Randomly select an observation from the original dataset and add it to a 

bootstrap sample. 

3. Repeat Step 2 𝑁 times, with replacement, to create a bootstrap resample of 

the same size as the original dataset. 

4. Repeat Steps 2 and 3 a total of 𝐵 times to generate 𝐵 bootstrap samples, 

denoted as 𝐷1 , 𝐷2 , …, 𝐷𝐵. 

5. For each bootstrap sample, construct a decision tree using the DT algorithm. 

By following these steps, we can generate multiple bootstrap samples from the 

original dataset and build each individual DT using each bootstrap sample, resulting 

in an ensemble of DTs. Additionally, for every bootstrap sample, a random subset 

of features is chosen from the available feature set. Typically, the subset size is 

smaller than the total number of features. These procedures introduce diversity 

among the DTs as each tree learns from a slightly different combination of data and 

features. Ultimately, this diversity aids in mitigating overfitting and improving the 

generalization capability of the RF model. 

In summary, RF is an ensemble learning algorithm that combines multiple DTs to 

enhance prediction accuracy. By employing bootstrap sampling and random feature 

selection, RF ensures diversity among the individual trees, resulting in improved 

performance and robustness. 
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3.6 Gradient Boosting Decision Tree (GBDT) 

Gradient Boosting Decision Tree (GBDT) is an ensemble learning algorithm that 

can be used for both classification and regression tasks (Friedman, 2000). GBDT 

aims to create a robust predictive model by iteratively combining weak learners, in 

this case, DTs, in a systematic manner. In comparison to RF, where trees are built 

independently, GBDT constructs trees in a sequential manner, with each subsequent 

tree designed to rectify the mistakes made by the previous trees. This iterative 

process enhances the model’s predictive capability and reduces errors. 

Additionally, while both RF and GBDT utilize ensembles of DTs to make final 

predictions, RF relies on majority voting, whereas GBDT combines the predictions 

from all the trees. 

The construction process of DTs in GBDT can be summarized in the following 

steps: 

1. Begin with a single DT as the initial model. 

2. Calculate the residuals or errors between the predictions of the current 

model and the true values of the target variable. 

3. Construct a new DT specifically to predict the residuals, aiming to minimize 

the residuals and improve the overall model performance. 

4. Update the model by adding the newly constructed DT to the ensemble, 

adjusting the predictions by a certain learning rate. 

5. Repeat steps 2-4 until the desired number of trees is reached or the 

performance metric converges. 

To provide a clearer understanding, Figure 3-3 presents a simplified example of 

using GBDT to predict a person’s age. We begin with an initial DT that predicts an 

age of 20. Upon comparing this prediction with the true age, we calculate a residual 

of 10. To address this residual, a second DT is constructed specifically for 

predicting it, estimating a value of 6 and resulting in a residual of 4. This iterative 

process continues with the third tree predicting the new residual, and it persists until 

the fourth tree is built to handle the remaining residuals. To obtain the ultimate 

prediction, we sum up the predictions made by these four trees, resulting in a sum 

of 30, representing the final age prediction. This sequential approach of iteratively 
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correcting errors made by previous models allows GBDT to progressively improve 

its predictive power and achieve more accurate predictions. 

 
Figure 3-3 A Simplified GBDT Structure for Age Prediction 

3.6.1 Loss Function 

The detailed features of the GBDT model and its algorithm can be referred to 

Friedman (2000) and Ke et al. (2017). This section presents the loss function used 

in our final GBDT model. The Loss function is used to quantify and capture the 

discrepancy between the predicted values made by the GBDT model and the true 

values. It plays a crucial role in guiding the construction of subsequent DTs and 

optimizing the overall model performance. The choice of the loss function depends 

on the specific problem at hand, such as binary classification, multiclass 

classification, or regression. In our thesis, the final GBDT model incorporates 

deviance as the chosen loss function. It is calculated using the formula: 

𝐿(𝑦, 𝐹(𝑥)) = log(1 + exp (−2𝑦𝐹(𝑥))) ,           (3-7) 

where 𝐿 is the loss function, 𝑦 is the true output and 𝐹(𝑥) is the predicted output. 

GBDT employs gradient descent to optimize the model. It utilizes the gradients of 

the loss function with respect to the predictions of the current model to guide the 

construction of subsequent trees. This approach ensures that each new tree is built 

in a direction that minimizes the loss function, leading to a more accurate and 

effective ensemble. 

In conclusion, GBDT is a powerful ensemble learning algorithm that sequentially 

combines DTs to enhance prediction accuracy. Through iterative error correction, 

GBDT creates a strong ensemble capable of handling complex tasks. 
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3.7 Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) is an ensemble learning algorithm 

introduced by Chen and Guestrin (2016). It builds upon the principles of GBDT 

while incorporating several key enhancements to optimize computation efficiency 

and model performance. One important improvement is the normalization of the 

loss function, which reduces model variance and mitigates the risk of overfitting, 

resulting in improved stability and robustness. XGBoost also employs a sparsity-

aware algorithm that efficiently handles attributes with a high occurrence of zero or 

missing value entries by excluding them from potential splits, enhancing overall 

algorithm efficiency. Additionally, XGBoost utilizes parallelizable learning to 

accelerate the computation of the best split, significantly reducing computational 

complexity and enabling faster model building without sacrificing ensemble 

accuracy.  

3.7.1 Objective Function 

For an in-depth understanding of the XGBoost model, Chen and Guestrin (2016) 

offer detailed insights into its algorithm. This section focuses on presenting the 

definition of the objective function in XGBoost, which distinguishes it from GBDT. 

The objective function in XGBoost, which can be derived from the loss function 

described in Equation 3-7, can be expressed as follows: 

𝐿(𝑦, 𝐹(𝑥)) + 𝛺(𝐹(𝑥)) ,       (3-8) 

where 𝛺(𝐹(𝑥)) represents the regularization term. 

In comparison to GBDT, XGBoost incorporates the regularization term to control 

the complexity of the model. In the objective function, the loss function aims to 

ensure that the model fits the training data as closely as possible, the same as in 

GBDT. On the other hand, the regularization term promotes simpler models by 

penalizing complexity, reducing the impact of randomness when fitting the model 

with limited data. As a result, it mitigates the risk of overfitting and leads to more 

stable predictions from the model. 
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3.7.2 Taylor Expansion 

Another key difference between XGBoost and GBDT is the use of a second-order 

Taylor expansion on the loss function. During each boosting iteration in XGBoost, 

Taylor expansion is used to approximate the loss function by using a polynomial 

expansion around a given point and making the optimization process more efficient. 

This allows for more efficient computation of the gradients and Hessians, which are 

used to update the model parameters during training.  

Based on the loss function in Equation 3-8, the Taylor expansion of the loss function 

around a point 𝐹(𝑥0) can be expressed mathematically as follows: 

𝐿(𝑦, 𝐹(𝑥)) ≈ 𝐿(𝑦, 𝐹(𝑥0)) + (𝐹(𝑥) − 𝐹(𝑥0)) ∗
𝜕𝐿(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)
+ (𝐹(𝑥) − 𝐹(𝑥0))

2
∗

𝜕2𝐿(𝑦,𝐹𝑥))

𝜕𝐹(𝑥)2

2!
+ ⋯ , 

               (3-9) 

where 𝐿(𝑦, 𝐹(𝑥))  represents the loss function. The first term 

𝐿(𝑦, 𝐹(𝑥0)) represents the loss at the point 𝑥0. The second term (𝐹(𝑥) − 𝐹(𝑥0)) ×

𝜕𝐿(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)
 represents the first-order derivative of the loss function with respect to 

𝐹(𝑥) evaluated at 𝑥0, multiplied by the difference between 𝐹(𝑥) and 𝐹(𝑥0). The 

third term (𝐹(𝑥) − 𝐹(𝑥0))
2

×

𝜕2𝐿(𝑦,𝐹𝑥))

𝜕𝐹(𝑥)2

2!
 represents the second-order derivative of 

the loss function with respect to 𝐹(𝑥) evaluated at 𝑥0, multiplied by the squared 

difference between 𝐹(𝑥) and 𝐹(𝑥0), divided by 2! (which is 2 factorial). 

By utilizing the Taylor expansion, XGBoost reduces the complexity of computing 

the loss function and its derivatives, which leads to faster training and improved 

efficiency. It is worth noting that the specific implementation details may vary 

between different versions of XGBoost, but the general idea of using Taylor 

expansion to approximate the loss function remains consistent. 

In summary, XGBoost is a powerful ensemble learning algorithm that combines 

efficiency, scalability, regularization techniques, and an enhanced objective 

function to deliver superior classification accuracy. 
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3.8 K-fold Cross Validation (KCV) 

K-fold cross validation (KCV) is a widely used technique for evaluating the 

performance of machine learning models (Anguita et al., 2012). In our analysis, we 

utilize KCV to select the best hyperparameters and assess the performance of the 

trained model. The process involves partitioning the dataset into 𝑘  equal-sized 

folds, where 𝑘 represents the desired number of folds, in our case, 𝑘 is set to 10.  

The steps of KCV can be summarized as follows: 

1. Partitioning: The dataset is divided into 𝑘 equal-sized folds, ensuring that 

each fold contains a representative subset of the data. 

2. Training and Testing: The model is trained on 𝑘 − 1 folds and evaluated on 

the remaining fold. This process is repeated 𝑘 times, with each fold serving 

as the testing set exactly once.  

3. Performance Metric: A performance metric, such as accuracy, precision, 

recall, or F1 score, is calculated for each iteration of the training and testing 

process. 

4. Aggregation: The performance metrics obtained from each fold are 

averaged to provide an overall performance estimate of the model. 

KCV is beneficial for model evaluation as it mitigates the risk of overfitting and 

provides a robust estimate of the model’s performance on unseen data. It allows us 

to assess the model’s ability to generalize across different subsets of the dataset and 

select the best hyperparameters based on the aggregated performance metrics. In 

our analysis, KCV serves as a valuable tool for model assessment and 

hyperparameter tuning, contributing to the overall reliability and validity of our 

results. 

3.9 Confusion Matrix  

A confusion matrix is a tabular representation that summarizes the performance of 

a classification model by showing the counts of true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN) predictions (Deng et al., 2016). It 

provides valuable insights into the accuracy and error types of the model’s 

predictions. 
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The structure of a confusion matrix is as follows:  

 

The sum of TP, TN, FP, and FN represents the total number of instances in the 

dataset. 

3.10 Relevant Metrics 

The confusion matrix provides several performance metrics that can be derived to 

evaluate the model’s performance, including accuracy, precision, recall, and F1 

score. These metrics help assess the model’s ability to correctly classify instances 

and identify potential imbalances or biases in the predictions. 

3.10.1 Accuracy 

Accuracy evaluates the overall correctness of a classification model. It represents 

the proportion of correct predictions out of the total number of predictions made by 

the model. The formula to calculate accuracy from a confusion matrix is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
      (3-10) 

Accuracy ranges from 0 to 1, where 1 indicates a perfect classification with no 

errors, and 0 indicates complete misclassification. Accuracy provides an overall 

measure of how well the model is able to classify instances correctly. However, it 

may not be suitable for imbalanced datasets, where the number of instances in 

different classes is significantly different. In such cases, accuracy alone may be 

misleading (Boughorbel et al., 2017; Jeni et al., 2013). 

Table 3-1. Confusion Matrix

                Predicted

Actual
Negative Positive

Negative True Negative (TN) False Positive (FP)

Positive False Negative (FN) True Positive (TP)

*TP: Instances where the model correctly predicted the positive class. 

*FN: Instances where the model incorrectly predicted the negative class, but they were actually of the positive class.

*FP: Instances where the model incorrectly predicted the positive class, but they were actually of the negative class.

*TN: Instances where the model correctly predicted the negative class.



 

Page 27 

3.10.2 Precision 

Precision focuses on the accuracy of positive predictions made by a classification 

model. It quantifies the ratio of TP predictions to the total number of positive 

predictions generated by the model. The formula to calculate precision is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

 𝑇𝑃+𝐹𝑃
        (3-11) 

Precision ranges from 0 to 1, where 1 indicates perfect precision with no FP 

predictions and 0 indicates complete misclassification of positive instances. 

Precision is particularly useful in scenarios where the cost of FP is high. It indicates 

how well the model is able to identify the TP instances while minimizing FP. A 

high precision value indicates a low rate of FP and a high level of confidence in the 

positive predictions made by the model.  

3.10.3 Recall 

Recall measures the proportion of TP predictions out of all actual positive instances 

in a classification problem. It quantifies the ability of a model to correctly identify 

positive instances. The formula to calculate recall from a confusion matrix is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3-12) 

Recall ranges from 0 to 1, where 1 indicates a perfect recall with no FN predictions 

and 0 indicates complete misclassification of positive instances. Recall is 

particularly important in scenarios where the cost of FN is high. It indicates how 

well the model captures all positive instances and minimizes FN. A high recall 

indicates a low rate of FN and a high level of sensitivity in detecting positive 

instances.  

3.10.4 F1 Score 

F1 score combines both precision and recall into a balanced measure of a model’s 

performance. It provides a harmonic mean of precision and recall, giving equal 

importance to both metrics. The formula to calculate F1 score from precision and 

recall is: 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
            (3-13) 
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F1 score ranges from 0 to 1, where 1 indicates the best possible performance and 0 

indicates the worst. When F1 score is high, it indicates that the model has achieved 

a good trade-off between precision and recall. F1 score is particularly useful in 

scenarios where there is an imbalance between positive and negative instances in 

the dataset (Cahyana et al., 2019). It provides a way to assess a model’s ability to 

achieve both high precision (minimizing FP) and high recall (minimizing FN). 

3.10.5 Area Under the Receiver Operating Characteristic Curve (ROC-AUC) 

Area Under the Receiver Operating Characteristic Curve (ROC-AUC) is a 

performance metric used to evaluate the predictive power of a binary classification 

model. 

The ROC curve is a graphical representation of the model’s performance by plotting 

the true positive rate (TPR) on the y-axis against the false positive rate (FPR) on 

the x-axis at various classification thresholds. The curve illustrates how well the 

model can distinguish between the positive and negative classes across different 

threshold settings. 

The AUC refers to the area under the ROC curve. It assesses the overall 

performance of the model by quantifying the probability that the model will assign 

a higher rank to a randomly selected positive instance compared to a randomly 

selected negative instance. 

The AUC value ranges from 0 to 1, where a value of 1 indicates a perfect classifier 

and a value of 0.5 suggests a random classifier (no better than random). 

TPR, also known as recall, is calculated with reference to Equation 3-12. FPR is 

calculated as: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
               (3-14) 

A higher ROC-AUC score indicates that the model has a stronger ability to 

accurately differentiate between classes. It is particularly useful when dealing with 

imbalanced datasets, where the distribution of positive and negative instances is 

unequal (Miao & Zhu, 2020). Figure 3-4 shows an example of the ROC-AUC plot 

derived from the final XGBoost model of our analysis. 
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Figure 3-4 ROC-AUC Plot of the Final XGBoost Model 

  



 

Page 30 

4. Data 

In this chapter, we focus on the data used in our analysis and the various steps 

involved in preparing it for analysis. We begin by discussing the data source and 

structure (4.1). Next, we address the crucial process of data cleaning (4.2). This step 

involves identifying and handling missing values and inconsistencies in the dataset 

to ensure its quality and reliability. To gain a better understanding of the dataset, 

we conduct descriptive analysis (4.3), which involves summarizing and visualizing 

key characteristics and patterns present in the data. Subsequently, we move on to 

data preprocessing (4.4). This stage includes several steps such as categorical data 

encoding (4.4.1) to transform categorical features into numerical representations 

suitable for different machine learning algorithms. We also discuss data splitting 

(4.4.2), which involves dividing the dataset into training, validation, and testing sets 

to evaluate model performance accurately. Feature selection plays a crucial role in 

building effective predictive models. We explore different techniques for feature 

selection (4.5), including Analysis of Variance (ANOVA) (4.5.1), Chi-square test 

(4.5.2), and correlation analysis (4.5.3). These methods help identify the most 

relevant features that contribute to predicting employee turnover. We summarize 

the findings of the feature selection process (4.5.4), highlighting the selected 

features for further analysis. By thoroughly examining the data source, cleaning and 

preprocessing the dataset, and performing feature selection, we ensure the data’s 

quality and suitability for developing accurate and reliable models for predicting 

employee turnover. These steps lay the foundation for the subsequent analysis and 

modeling stages of our work. 

4.1 Data Source and Structure 

The dataset used in the analysis is provided by a multinational corporation 

headquartered in Oslo, Norway. The company has over 10,000 employees in more 

than 100 countries worldwide. The dataset consists of two files: one file contains 

monthly employee demographic information spanning from January 2021 to June 

2022, while the second file contains a list of employees who left the company 

between January 2021 and September 2022, including their departure dates and 

reasons for leaving. It is important to note that the data specifically focuses on 

permanent employees of the company, excluding temporary employees who have 

predetermined end dates for their employment. Additionally, to ensure a more 
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focused analysis, the dataset only includes employee data from the top 10 countries 

with the highest number of employees in the company. By narrowing the scope to 

these countries, which include China, Germany, India, Italy, Netherlands, Norway, 

Poland, Spain, United Kingdom, and the United States, the analysis concentrates 

on regions with substantial employee representation. For a comprehensive 

overview of the dataset's structure and content, Table 4-1 presents a detailed list of 

all columns included in both data files, accompanied by their respective 

descriptions. Furthermore, to provide a glimpse of the dataset's contents, examples 

of rows from the employee demographics file and the termination file can be found 

in Table 4-2 and Table 4-3, respectively. 
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4.2 Data Cleaning 

In order to prepare the dataset for model training, we conducted several rounds of 

data cleaning. 

Firstly, we merged the two files based on the common column, Employee ID. After 

merging, employees with recorded dates of resignation were identified as having 

left the company. The prediction period of our model was set at three months. 

Therefore, employees who had resigned within three months of the data extraction 

date were labeled as “resigned” (positive), while others were labeled as “not 

resigned” (negative). We determined the three-month prediction period in 

consultation with the company that provided the data. They highlighted that if the 

prediction period was too short, such as one month, the company would not have 

sufficient time to take action even if they knew they were going to lose employees. 

On the other hand, we discovered that if the prediction period was too long, it would 

adversely affect the model’s performance. Overall, the three-month prediction 

period provides companies with an early warning of employee turnover and allows 

them enough time to take preventative action. 

Secondly, we cleaned the merged file by column: 

Employee ID: Given that the employee identifier is unique and does not contribute 

meaningful information to the prediction task, we have made the decision to 

exclude this column. This simplification allows us to focus on relevant features that 

have a more direct impact on the prediction outcome. 

Exaction date: Considering that this feature merely indicates the date when the 

data was collected from the HR system. It is unrelated to actual resignation 

outcomes and does not provide direct insights into an employee’s decision-making 

process. We have made the decision to exclude this column.  

Table 4-3. Sample Rows from the Employee Termination File

Employee ID Termination date Termination type Termination reason

xxx 2022-07-31 00:00:00 Voluntary Voluntary

xxx 2022-01-31 00:00:00 Voluntary Voluntary

xxx 2021-02-28 00:00:00 Involuntary Transfer

xxx 2021-01-31 00:00:00 Voluntary Voluntary

xxx 2022-03-31 00:00:00 Voluntary Voluntary

xxx 2021-09-30 00:00:00 Involuntary Transfer
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Age: The initial range of values in this column extended from -1 to 86, suggesting 

potential errors in data entry. Taking into account variations in retirement age across 

different countries, we have chosen to narrow down the range and only include 

employee ages between 20 and 70. This adjustment, which removed 0.25% of the 

data, ensures a more realistic representation of the dataset while accounting for the 

typical age demographics of employees.  

Education: Around 8.00% of employees in our dataset have been labeled as “Not 

Applicable” or “Unknown” in this column, amounting to a total of 12,693 rows. 

Removing these rows would result in a reduction in the overall size of our dataset, 

which is not ideal for maintaining an adequate sample size for analysis and 

modeling purposes. As a result, we have concluded that excluding the “Education” 

column is a more favorable approach in order to ensure the integrity and reliability 

of our dataset. 

Gender: This column contained entries labeled as “Unknown”, which constituted 

approximately 0.04% of the data. To maintain the dataset’s accuracy and reliability, 

we have made the decision to exclude the “Unknown” entries from our analysis.  

Hire date & Tenure: After careful consideration, we have opted to remove the 

“Hire date” column from our dataset. This decision is made based on the fact that 

the information conveyed by the “Hire date” column is essentially redundant with 

the “Tenure” column. By removing the “Hire date” column, we can streamline our 

analysis and maintain data consistency by focusing on a single column to capture 

employee tenure information.  

Industry: Although the dataset primarily focuses on registered employees within 

the company, it contains data on external individuals working for the company, 

referred to as “External”. These external employees comprise 0.04% of the dataset. 

We have excluded the external employees’ data from our analysis. 

Last date of promotion: During the analysis of this column, we discovered that 

approximately 2.37% of the entries were missing. Upon further examination, it was 

determined that these blank entries were likely erroneous. Even employees who 

have never been promoted have their hire date recorded as the last promotion date. 

In order to maintain the completeness and consistency of our dataset, we have made 

the decision to remove these blank entries.  
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Level: The entry labeled as “Unknown” was identified as an error in this column. 

It is evident that these errors were introduced during the data input process. 

Consequently, we have removed these entries which accounted for 0.11% of the 

employees in the dataset.  

Title: In this column, we have excluded the entries labeled as “No Title” and 

“Unknown”. These values accounted for only 0.06% of the dataset.  

Termination date, Termination type & Termination reason: In alignment with 

our analysis focus on voluntary turnover prediction, we have exclusively included 

voluntary resignations in the dataset. Consequently, termination types such as 

dismissals, transfers, illnesses, and deaths, which fall under the category of 

involuntary reasons for leaving, have been deliberately excluded. Additionally, to 

avoid target leakage in our analysis, we have made the decision not to include the 

“Termination date”, “Termination type” and “Termination reason” columns in our 

dataset. Given that our objective is to predict an employee’s decision to leave the 

company, including these columns would introduce information that becomes 

available only after an employee has already left. 

After completing the data cleaning process, the dataset contains a total of 146,885 

data points. Among these, 3,912 instances are labeled as positive, representing 

approximately 2.66% of the dataset. These positive instances indicate individuals 

who have resigned within a three-month time frame. The dataset includes eight 

features: Age, Country, Gender, Industry, Last date of promotion, Level, Tenure, 

and Title. These features provide valuable information about the individuals in the 

dataset and can be used for further analysis and modeling. Additionally, there is one 

target column, “Resigned”, which serves as an indicator variable, indicating 

whether an employee has resigned or not within the specified time period. 

4.3 Descriptive Analysis 

The dataset used in our analysis is thoroughly examined through the following 

graphs, offering a comprehensive descriptive analysis. Figure 4-1 illustrates the 

complete dataset encompassing all employees, providing insights into various 

aspects. On the other hand, Figure 4-2 focuses specifically on the data of employees 

who have resigned, allowing for a more targeted examination of this subgroup. 
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Figure 4-1 Descriptive Analysis of All Employees 
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Figure 4-2 Descriptive Analysis of Resigned Employees 
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4.4 Data Preprocessing 

4.4.1 Categorical Feature Encoding 

In order to ensure that the same dataset can be used for training different machine 

learning models, we performed categorical feature encoding during the data 

preprocessing stage. We encoded the categorical features using the “LabelEncoder” 

function from the “sklearn.preprocessing” module in Python. The code used for 

feature encoding can be found in Appendix 7.1. This process allows us to convert 

categorical data into a numeric format, as the DT and RF algorithms in the scikit-

learn library for Python do not support categorical variables (Pedregosa et al., 

2011). By applying the LabelEncoder function, we transformed each unique 

category within categorical features, including Industry, Gender, Title, and 

Country, into a corresponding unique integer. This encoding procedure guarantees 

that the data is in a suitable format that can be effectively utilized by various 

machine learning models for both training and analysis purposes. 

4.4.2 Data Splitting 

To ensure a robust evaluation process for model performance, we conducted data 

splitting during the data preprocessing stage using the “train_test_split” function 

from the “sklearn.model_selection” module. The code used for data splitting can be 

found in Appendix 7.2. The dataset is randomly divided into three subsets: the 

training set, the validation set, and the testing set. The training set is allocated 60% 

of the total data, while both the validation and testing sets accounted for 20% each. 

Additionally, the proportion of positive instances in all three subsets remains 

consistent at 2.66%, which is the same as the proportion in the original dataset. This 

stratified splitting ensures a balanced representation of the target variable across the 

subsets. By splitting the data into distinct sets, we can avoid using the validation 

and testing sets for feature selection and model training. This ensures that the model 

is evaluated on previously unseen instances, minimizing the risk of biased 

evaluation and information leakage. Moreover, having a separate validation set 

allows us to fine-tune the model’s hyperparameters without compromising the 

integrity of the results. Data splitting plays a crucial role in providing a more 

realistic estimation of the model’s generalization capabilities and enhances the 
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overall reliability of our analysis. Table 4-4 presents the distribution of positive and 

negative instances across different subsets after data splitting. 

 

4.5 Feature Selection 

In order to train our machine learning model with the most significant and 

influential features from the dataset, we applied three widely recognized 

(Chandrashekar & Sahin, 2014; J. Li et al., 2017; Khalid et al., 2014) feature 

selection techniques: Analysis of Variance (ANOVA), Chi-square test and 

correlation analysis. Each technique was selected based on its specific strengths and 

suitability for our classification task. In this chapter, we examine the outcomes of 

each feature selection test and discuss their implications for our analysis. The 

detailed step-by-step process for each feature selection test can be found in 

Appendix 7.3. 

4.5.1 ANOVA for Numerical Feature Selection 

 

Table 4-5 presents the result of the ANOVA, which examined the statistical 

significance of each numerical feature at a 5% significance level using p-values. 

The analysis revealed that all the analyzed features, namely Age, Tenure, Last date 

of promotion, and Level, demonstrated statistical significance. This indicates that 

these features have a substantial impact on the target variable and possess valuable 

predictive power for employee turnover. These findings align with the descriptive 

analysis presented in Figure 4-2. For instance, the Age feature suggests that younger 

employees are more likely to resign, while the Tenure feature indicates that 

employees with shorter tenures have a higher probability of leaving their jobs. In 

Table 4-4. Resigned vs. Unresigned Individuals in Different Subsets

Resigned 2,347

Unresigned 85,784

Resigned 782

Unresigned 28,595

Resigned 782

Unresigned 28,595

Training Set

Validation Set

Testing Set

Table 4-5. ANOVA Test Results: Feature Significance at 5% Level

Feature Statistically Significant at 5% Level?

Tenure TRUE

Age TRUE

Level TRUE

Last date of promotion TRUE

* Features are sorted in ascending order according to their p-value.
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summary, the ANOVA reveals a strong relationship between employee turnover 

and all the numerical features in the dataset, including Age, Tenure, Last date of 

promotion, and Level. 

4.5.2 Chi-square Test for Categorical Feature Selection  

 

Table 4-6 presents the results of the Chi-square test conducted for each categorical 

feature at a 5% significance level. The results indicate that Country, Industry, and 

Title show a strong association with the target variable, suggesting that these 

features have a significant impact on employee turnover. On the other hand, the 

Chi-square test reveals that the Gender feature has a limited impact on the target 

variable, suggesting that it may not be a strong predictor of employee turnover. The 

lack of significance for gender could be attributed to several possible reasons. One 

reason could be the dataset itself may not capture all the relevant aspects related to 

gender and employee turnover. Factors such as gender bias or gender-related 

disparities in the workplace may not be adequately represented in the available data, 

leading to a limited impact of gender on the prediction of employee turnover. 

Additionally, it is important to consider the nature of the specific industry or 

organizational context. Certain industries or workplaces may have a more gender-

neutral or inclusive culture, where gender may have a limited influence on 

employee turnover compared to other factors. In conclusion, the Chi-square test 

results indicate that Country, Industry, and Title have a significant association with 

the target variable, suggesting that they play a crucial role in predicting employee 

turnover. However, the Gender feature shows a limited impact on the target 

variable, indicating that it may not be a strong predictor. It is important to recognize 

the contextual factors and potential variations in different datasets or organizational 

settings. The significance of gender as a predictor of employee turnover can vary 

depending on the industry, workplace culture, and specific characteristics of the 

dataset. 

Table 4-6. Chi-square Test Results: Feature Significance at 5% Level

Feature Statistically Significant at 5% Level?

Country TRUE

Industry TRUE

Title TRUE

Gender FALSE

* Features are sorted in ascending order according to their p-value.
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4.5.3 Correlation Analysis for Numerical Feature Selection 

 
Figure 4-3 Correlation Heatmap of Numerical Features and the Target Variable 

Figure 4-3 shows the correlation heatmap among all the numerical features and the 

target variable (Resigned). The overall low correlation between the target variable 

and the numerical features indicates the challenge of accurately predicting 

employee turnover based solely on a single variable. In addition, Age and Tenure 

have the highest correlation among the features themselves, with a correlation 

coefficient of 0.65. This is reasonable, considering that employees with longer 

tenures within a company are typically older on average. It is worth noting that the 

features generally demonstrate a low degree of correlation with each other, 

suggesting that each feature carries unique information and contributes 

independently to the prediction of employee turnover. 

4.5.4 Summary 

In summary, the application of ANOVA, Chi-square test, and correlation analysis 

revealed that Age, Tenure, Last date of promotion, Country, Level, Industry, and 

Title are identified as key features exhibiting a strong relationship with the target 

variable, Resigned. However, Gender did not demonstrate statistical significance in 

the Chi-square test. As a result, we made the decision to remove Gender from the 

dataset. However, it is important to acknowledge that the significance of Gender 

may vary across different contexts or datasets, and the decision to exclude it should 

be evaluated in consideration of the specific industry, workplace culture, and 
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available data. Additionally, it is important to recognize the potential biases in the 

dataset such as the imbalanced class distribution, where the number of employees 

who resigned is significantly smaller than those who did not. This class imbalance 

can impact the performance of the feature selection tests and should be taken into 

account. Overall, while the feature selection techniques provided valuable insights, 

it is crucial to interpret the results with caution and account for the limitations and 

biases inherent in the dataset.  
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5. Analysis 

In this chapter, our focus is on the training process of the machine learning models 

employed in this study, namely Decision Tree (DT) (5.1), Random Forest (RF) 

(5.2), Gradient Boosting Decision Tree (GBDT) (5.3), and Extreme Gradient 

Boosting (XGBoost) (5.4). For each model, we begin by examining its performance 

without any hyperparameter tuning, establishing a baseline for comparison. 

Subsequently, we delve into the hyperparameter tuning process, providing a 

practical example to illustrate the methodology (5.1.2). Finally, we evaluate the 

model’s performance after the hyperparameter tuning phase, allowing us to assess 

the effectiveness of the optimized configurations. 

5.1 Decision Tree (DT) 

In this section, we focus on the training of the Decision Tree (DT) model, which 

serves as the foundation for the other three models. 

5.1.1 Model Performance Without Hyperparameter Tuning 

We begin by evaluating the performance of the DT model without any 

hyperparameter tuning using the training set. This initial step allows us to explore 

the model’s compatibility with the dataset and gain insights into its predictive 

capabilities. As shown in Table 5-1, the DT model demonstrates excellent 

performance on the training set, achieving an F1 score of 0.98. This high F1 score 

indicates a strong ability of the model to correctly classify the target variable based 

on the training data. Furthermore, the model maintains a commendable 

performance on the validation set, with an F1 score of 0.90. This suggests that the 

model generalizes well to unseen data, reinforcing its effectiveness in predicting 

employee turnover. It is important to note that the extremely high accuracy values 

obtained for both the training and validation sets can be misleading. The dataset is 

highly imbalanced, so accuracy alone is not the most appropriate metric for 

evaluating model performance in this case. Overall, the DT model without any 

hyperparameter tuning demonstrates a reasonable ability to classify employees into 

their respective turnover categories. Given these initial results, it is evident that the 

DT model has the potential to be a valuable tool for identifying employees at risk 

of turnover. However, further improvements can be made through hyperparameter 

tuning, which is discussed in the following sections. 
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5.1.2 Hyperparameter Tuning Process (with example) 

Hyperparameter tuning involves adjusting the model’s parameters to find the 

optimal configuration that improves its performance and generalization ability. By 

fine-tuning the hyperparameters, we aim to strike a balance between model 

complexity and generalization ability. The classification DT model has a total of 12 

parameters that can be adjusted (sklearn.tree.DecisionTreeClassifier, n.d.). After a 

thorough examination, we categorize these parameters into three categories based 

on their significance and impact on the model’s performance. The three categories 

are as follows: 

1. Hyperparameters for model tuning: 

• criterion: This parameter allows us to choose between “entropy” or 

“gini” as the measure of the importance of features in splitting the 

nodes of the tree. 

• max_depth: It limits the maximum depth of the DT. Considering the 

large sample size in our analysis, we choose to limit the maximum 

depth to prevent overfitting. 

• max_features: It controls the number of features that are considered 

when looking for the best split at each node of the tree. By tuning it, 

we can influence the randomness and diversity of the feature 

selection process. 

• min_samples_split: This parameter sets the minimum number of 

samples required in a node for it to be considered for further 

splitting. The default value is 2, meaning that a node will only 

continue to split if it contains more than 2 samples. 

• min_samples_leaf: When the number of samples assigned to a leaf 

node is less than the set number, the leaf node will be pruned. This 

can help remove some obvious noise data. 

2. Hyperparameters for handling an unbalanced dataset: 

Table 5-1. DT Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 1 0.99

Precision 0.99 0.92

Recall 0.97 0.89

F1 score 0.98 0.90
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• class_weight: This parameter is used to assign different weights to 

positive and negative samples when the dataset is highly 

imbalanced. In our case, where the dataset is highly imbalanced, we 

have adjusted this parameter to account for the unequal distribution 

of classes. 

3. Other hyperparameters. 

For our analysis, the remaining parameters do not require manual 

adjustment, as they typically do not significantly impact the model’s 

performance. 

To fine-tune these hyperparameters, we employ the K-fold Cross Validation (KCV) 

and grid search to explore different combinations of hyperparameter values and 

identify the best-performing configuration. In Appendix 7.4, we provide a detailed 

description of the hyperparameter tuning process for the DT model, including the 

range of values considered for each hyperparameter and the evaluation metrics used 

to assess the performance of different parameter configurations. Here, we will 

demonstrate the process of tuning the “max_depth” parameter as an example. The 

“max_depth” parameter determines the maximum depth of the DT, which controls 

the complexity of the model. 

First to narrow down the range of values for “max_depth”, we use KCV with 5 

folds and the F1 score as the scoring function. We examine the range starting from 

10 to 100, with increments of 10. Figure 5-1 shows the F1 score as a function of 

different depths. The result shows that the F1 score reaches its peak when the depth 

is around 40. Based on this finding, we further narrow our search range to focus on 

values between 30 and 50. Figure 5-2 shows the F1 score as a function of different 

“max_depth” values within this range. It appears that the F1 score initially increases 

with the increase in the depth and reaches its highest value at a “max_depth” of 35, 

with a score of 0.78 on the training set. This indicates that setting the tree depth to 

35 achieves the optimal balance between capturing relevant information from the 

data and preventing overfitting. Using the value of 35 for the “max_depth” 

parameter, we can move on to adjust the other parameters to further optimize the 

model’s performance. 
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Figure 5-1 Cross-Validation Search of «max_depth» (Range 10 to 100) 

 
Figure 5-2 Cross-Validation Search of «max_depth» (Range 30 to 50) 

After conducting hyperparameter tuning for the DT model, we obtain the final 

hyperparameter configuration, which is listed in Table 5-2. 

 

5.1.3 Model Performance After Hyperparameter Tuning 

To evaluate the performance of the final DT model, we first conduct KCV on the 

training set to assess its stability. The detailed KCV process can be found in 

Appendix 7.5. The average F1 score on the training set is 0.79, indicating a 

reasonably good performance in classifying the training data. Additionally, the 

average ROC-AUC score is 0.86, suggesting a relatively robust performance. To 

further evaluate the model, we compare its performance on the testing set before 

and after hyperparameter tuning. Table 5-3 presents the model score before and 

after tuning. The precision of the model increases from 0.92 to 0.95, indicating a 

Table 5-2. Hyperparameter Configuration for the DT Model

Hyperparameter Value

class_weight None

ccp_alpha 0.0

criterion gini

max_depth 35

max_features 2

max_leaf_nodes None

min_impurity_decrease 0.0

min_samples_leaf 1

min_samples_split 2

min_weight_fraction_leaf 0.0

random_state 42

spliter best
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higher accuracy in predicting positive instances. The recall remains the same at 

0.89, and the F1 score increases by 0.02. To gain more insight, we examine the 

confusion matrix, which provides a detailed breakdown of the model’s predictions. 

As shown in Table 5-4, the model correctly predicts 14 additional instances 

(TN+TF) compared to the model without hyperparameter tuning. Additionally, the 

number of FP predictions decreases by 16 and the number of FN decreases by 7, 

indicating a reduction in misclassifications. Although the overall improvement in 

the performance metrics may appear subtle, a closer examination of the confusion 

matrix reveals that the model’s predictions have become more accurate and aligned 

with the true labels. 

 

 

In summary, the DT model proves to be highly suitable for predicting employee 

turnover using the available dataset. Through the process of hyperparameter tuning, 

the model demonstrates slightly improved performance, including higher accuracy 

in predicting positive instances and a reduction in misclassifications. These 

enhancements further enhance the model’s effectiveness in identifying employees 

at risk of turnover. 

5.2 Random Forest (RF) 

In this section, we delve into the training of the Random Forest (RF) model, which 

builds upon the foundation of the DT model. By leveraging the power of ensemble 

learning, RF enhances the predictive performance and generalization ability 

compared to a single DT. 

Table 5-3. DT Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.99 0.99

Precision 0.92 0.95

Recall 0.89 0.89

F1 score 0.90 0.92

Table 5-4. Confusion Matrix on Testing Set of the DT Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,519 76

1 (Resigned) 176 606

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,526 60

1 (Resigned) 169 613

Tunned Hyperarameter
Predicted Label

True Label

Predicted Label

True Label

Default Hyperparameter
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5.2.1 Model Performance Without Hyperparameter Tuning 

To assess the compatibility of the RF model with the dataset, we initially evaluate 

the model performance using the default parameters. As shown in Table 5-5, the 

results are highly promising. The model achieves an F1 score of 0.98 on the training 

set and 0.92 on the validation set. These scores surpass the performance of the DT 

model, which is reasonable considering that RF is built upon DT. To explore the 

potential for further improvement, we proceed with hyperparameter tuning to 

optimize the RF model's performance. 

 

5.2.2 Hyperparameter Tuning Process 

Compared to the DT model, the RF model introduces 6 additional hyperparameters 

(sklearn.ensemble.RandomForestClassifier, n.d.). In the process of hyperparameter 

tuning, we have chosen to focus on tuning several specific hyperparameters that we 

found to be crucial for enhancing the model’s performance. These hyperparameters 

include class_weight, criterion, max_depth, max_features, min_samples_split, and 

min_samples_leaf, which are introduced in the DT model. In addition, we also 

considered the following new hyperparameters introduced by the RF model:  

n_estimators: This hyperparameter controls the number of trees in the forest. 

Increasing the number of trees typically leads to an improvement in the performance 

of the model. However, there comes a point where adding more trees no longer 

significantly increases accuracy, and the computational cost of training the model 

increases. 

bootstrap: It determines whether to use bootstrap samples when building each tree 

in the random forest. Bootstrap sampling involves randomly sampling the training 

dataset with replacement, which can introduce diversity and improve the model’s 

generalization ability. 

oob_score: When bootstrap is set to True, this hyperparameter allows us to use out-

of-bag data to evaluate the model’s performance. Out-of-bag samples are data 

Table 5-5. RF Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 1 0.99

Precision 0.99 0.98

Recall 0.98 0.87

F1 score 0.98 0.92
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points that are not included in the bootstrap sample used for training a particular 

tree. 

The hyperparameter tuning process, including the range of values explored for each 

parameter and the evaluation metrics used to assess the performance of various 

parameter configurations, is provided in detail in Appendix 7.6. The final 

hyperparameter configuration of the RF model is listed in Table 5-6. 

 

5.2.3 Model Performance After Hyperparameter Tuning 

After conducting hyperparameter tuning, we first perform KCV to assess the 

stability of the final RF model. The detailed procedures of the KCV can be found 

in Appendix 7.7. The average F1 score and ROC-AUC on the training set are 0.81 

and 0.98, respectively, indicating the model’s stability and its ability to generalize 

well across different folds of the data. Subsequently, we evaluate the performance 

of the RF model on the testing set before and after hyperparameter tuning, as shown 

in Table 5-7. Comparing the results with the DT model, the RF model after 

hyperparameter tuning does not show a significant improvement. One possible 

explanation for this observation is that the RF model with default hyperparameters 

already demonstrates satisfactory performance, leaving limited room for further 

enhancement. The F1 score is 0.92, indicating a strong overall performance in 

classifying positive and negative instances. The model has a high precision of 0.98, 

Table 5-6. Hyperparameter Configuration for the RF Model

Hyperparameter Value

bootstrap True

ccp_alpha 0.0

class_weight None

criterion gini

max_depth 31

max_features auto

max_leaf_nodes None

max_samples None

min_impurity_decrease 0.0

min_samples_leaf 1

min_samples_split 2

min_weight_fraction_leaf 0.0

n_estimators 169.0

n_jobs None

oob_score False

random_state 42

verbose 0.0

warm_start False
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indicating a low rate of FP predictions, and a relatively low recall of 0.87, 

suggesting a slightly higher rate of FN predictions. This finding is consistent with 

the confusion matrix shown in Table 5-8, where the number of FP predictions is 

only 13, while the number of FN is 221. 

 

 

In summary, the RF model proves to be highly effective for predicting employee 

turnover. Even without hyperparameter tuning, the model exhibits strong 

performance using the dataset at hand.  

5.3 Gradient Boosting Decision Tree (GBDT) 

In this section, we focus on the training of the Gradient Boosting Decision Tree 

(GBDT) model, which is a powerful ensemble learning model that improves upon 

the performance of a single DT. 

5.3.1 Model Performance Without Hyperparameter Tuning 

To assess the compatibility between the GBDT model and the dataset, we begin by 

evaluating the model’s performance using the default hyperparameters. However, 

the obtained results, presented in Table 5-9, indicate subpar performance compared 

to the DT and RF models. Both the training set and validation set show an F1 score 

of 0.50, suggesting that the GBDT model faces challenges in accurately identifying 

positive instances. These findings highlight the need for further optimization and 

hyperparameter tuning to better adapt the model to the distinct characteristics of the 

dataset. 

Table 5-7. RF Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.99 0.99

Precision 0.98 0.98

Recall 0.87 0.87

F1 score 0.92 0.92

Table 5-8. Confusion Matrix on Testing Set of the RF Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,582 13

1 (Resigned) 776 6

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,582 13

1 (Resigned) 221 561

Tunned Hyperarameter
Predicted Label

True Label

Default Hyperparameter
Predicted Label

True Label
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5.3.2 Hyperparameter Tuning Process 

The classification GBDT model has a total of 20 hyperparameters that can be 

adjusted (sklearn.tree.GradientBoostingClassifier, n.d.). After a thorough 

evaluation, we identified several critical hyperparameters that significantly impact 

model performance. The hyparameters we focus on include learning_rate, 

n_estimators, loss, subsample, min_samples_split, min_samples_leaf and 

max_depth. By fine-tuning these parameters, we aim to optimize the performance 

and predictive capabilities of the model. In addition to the previously mentioned 

hyperparameters, there are several new hyperparameters that require interpretation. 

These hyperparameters include: 

n_estimators: This hyperparameter refers to the number of boosting stages or 

iterations that GBDT will perform during the training process. In other words, it 

represents the number of DTs that will be sequentially added to the ensemble. 

Increasing the number of trees allows the model to learn more complex 

relationships within the data. However, it also increases the computational cost and 

the risk of overfitting.  

learning_rate: When a new tree is added to the model, its purpose is to correct the 

mistakes made by the sum of the previous trees. This hyperparameter determines 

the contribution of each individual tree to the final outcome. By adjusting the 

learning_rate, we control the weight or influence of each tree in the ensemble. A 

smaller learning_rate means each tree has a smaller impact on the final prediction, 

while a larger learning_rate allows each tree to have a stronger influence. 

loss: For classification models, there are two options for the loss function: the log-

likelihood loss function “deviance” and the exponential loss function 

“exponential”. 

subsample: This parameter represents the fraction of samples that will be used for 

fitting each individual base learner. It is important to note that the subsampling 

Table 5-9. GBDT Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 0.97 0.97

Precision 0.97 0.88

Recall 0.51 0.50

F1 score 0.50 0.50
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technique used here is different from that of RF. While RF employs replacement 

sampling, where samples are randomly selected with replacement, the subsampling 

in GBDT does not involve putting back the samples. 

In Appendix 7.8, we provide a detailed description of the hyperparameter tuning 

process for the GBDT model, including the range of values considered for each 

hyperparameter and the evaluation metrics used to assess the performance of 

different parameter configurations. The finalized hyperparameter configuration of 

the GBDT model is presented in Table 5-10. 

 

5.3.3 Model Performance After Hyperparameter Tuning  

To evaluate the performance of the final GBDT model, we first conduct KCV on 

the training set. The results show an average F1 score of 0.82 and an average ROC-

AUC of 0.94. These scores provide strong evidence of the GBDT model’s 

effectiveness in distinguishing between positive and negative instances. For a 

detailed account of the KCV process, please refer to Appendix 7.9. We also 

compare the model’s performance on the testing set before and after 

hyperparameter tuning. As shown in Table 5-11, the F1 score experiences a 

significant boost from 0.50 to 0.93, indicating an improved balance between 

precision and recall. Consistently, the recall score exhibits a substantial increase 

Table 5-10. Hyperparameter Configuration for the GBDT Model

Hyperparameter Value

ccp_alpha 0.0

criterion friedman_mse

init None

learning_rate 0.22

loss deviance

max_depth 20.0

max_features None

max_leaf_nodes None

min_impurity_decrease 0.0

min_samples_leaf 1.0

min_samples_split 2.0

min_weight_fraction_leaf 0.0

n_estimators 8000

n_iter_no_change None

random_state 42

subsample 1.0

tol 0.0001

validation_fraction 0.1

verbose 0.0

warm_start False
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from 0.50 to 0.89. To gain a better insight, we analyze the confusion matrix. Table 

5-12 reveals a significant enhancement in the predictive performance of the final 

GBDT model. It accurately identifies an additional 586 instances (TN+TF) 

compared to the original model. In addition, there is a notable reduction of 605 

instances in FN predictions. However, it should be noted that there is a slight 

increase of 19 instances in FP predictions. 

 

 

In summary, the process of hyperparameter tuning had a transformative impact on 

the GBDT model, resulting in significant enhancements in its performance. 

Through the fine-tuning of hyperparameters, the model shows greater proficiency 

in correctly identifying positive instances and reducing FN predictions. These 

improvements make the tuned GBDT model a more reliable and effective tool for 

predicting employee turnover. 

5.4 Extreme Gradient Boosting (XGBoost) 

In this section, we explore the training of the Extreme Gradient Boosting 

(XGBoost) model, which builds upon the foundation of the GBDT model and is 

known for its efficiency, scalability, and high performance. 

5.4.1 Model Performance Without Hyperparameter Tuning  

We begin by evaluating the performance of the XGBoost model on the training set 

using its default hyperparameters. The results, as displayed in Table 5-13, show 

Table 5-11. GBDT Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.97 0.99

Precision 0.92 0.98

Recall 0.50 0.89

F1 score 0.50 0.93

Table 5-12. Confusion Matrix on Testing Set of the GBDT Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,594 1

1 (Resigned) 776 6

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,575 20

1 (Resigned) 171 611

True Label

Tunned Hyperarameter
Predicted Label

True Label

Default Hyperparameter
Predicted Label
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relatively low F1 scores of 0.66 on the training set and 0.59 on the validation set. 

Although these scores are slightly better than the GBDT model with default 

hyperparameters, it is evident that the XGBoost model without hyperparameter 

tuning struggles to accurately identify a considerable number of positive cases. To 

enhance the model’s performance, we proceed with hyperparameter tuning. 

  

5.4.2 Hyperparameter Tuning Process 

The classification XGBoost model has a total of 29 hyperparameters that can be 

adjusted to optimize its performance (XGBoost Parameters, n.d.). In our analysis, 

we focus on testing hyperparameters related to tree construction, boosting process, 

and regularization. To identify the optimal hyperparameter configuration, we 

systematically explore various combinations. Through this process, we discover 

that the most influential parameters affecting the model’s performance are 

learning_rate, n_estimators, subsample, and max_depth, which are introduced in 

the GBDT model. In addition, we also consider the following new hyperparameters 

introduced by the XGBoost model: 

booster: This parameter provides two choices: gbtree and gblinear. When selecting 

gbtree, the model employs a tree structure to process the data, allowing for non-

linear relationships and interactions to be captured. On the other hand, selecting 

gblinear utilizes a linear model, which assumes a linear relationship between the 

input features and the target variable. 

min_child_weight: This parameter specifies the minimum sum of sample weights 

required for a leaf node to be created during the tree-building process. This 

parameter is used to control the complexity of the tree and prevent the model from 

creating leaf nodes with very few samples. 

gamma: When a node is considered for splitting, the loss function is calculated 

before and after the split. The node will only be split if the loss function decreases 

by an amount greater than or equal to the specified gamma value. 

Table 5-13. XGBoost Model Score (Default Hyperparameter)

Training Set Validation Set

Accuracy 0.98 0.98

Precision 0.99 0.97

Recall 0.60 0.56

F1 score 0.66 0.59
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The hyperparameter tuning process, including the range of values explored for each 

parameter and the evaluation metrics used to assess the performance of various 

parameter configurations, is provided in detail in Appendix 7.10. Table 5-14 shows 

the hyperparameter configuration for the final XGBoost model. 

 

5.4.3 Model Performance After Hyperparameter Tuning  

To evaluate the performance of the final XGBoost model, we first conduct KCV to 

assess its stability. A detailed description of the KCV process can be found in 

Appendix 7.11. The average F1 score on the training set is 0.83, indicating a strong 

performance in classifying the training data. Moreover, the average ROC-AUC 

score of 0.94 suggests a robust performance. To further evaluate the model, we 

compare its performance on the testing set before and after hyperparameter tuning. 

Table 5-15 provides the model scores before and after tuning. The precision of the 

model remains consistent at 0.97, while the recall increases from 0.56 to 0.89. This 

increase signifies an improved ability to correctly identify positive instances. The 

Table 5-14. Hyperparameter Configuration for the XGBoost Model

Hyperparameter Value

objective binary:logistic

use_label_encoder True

base_score 0.5

booster gbtree

colsample_bylevel 1

colsample_bynode 1

colsample_bytree 1

enable_categorical False

gamma 0

gpu_id -1

importance_type None

learning_rate 0.22

max_delta_step 0

max_depth 12

min_child_weight 1.0

missing nan

n_estimators 2800

n_jobs 16

num_parallel_tree 1

predictor auto

random_state 42

reg_alpha 0

reg_lambda 1

scale_pos_weight 1

subsample 1

tree_method extract

validate_parameters 1

verbosity None
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better balance between high precision and high recall is further demonstrated by the 

F1 score, which rises from 0.59 to 0.93. To gain a better insight, we examine the 

confusion matrix, which provides a detailed breakdown of the model’s predictions. 

As shown in Table 5-16, we observe that compared to the model without 

hyperparameter tuning, the tuned model correctly predicts an additional 518 

instances (TN+TF), while the number of FN predictions decreases by 528. These 

improvements indicate a significant enhancement in the model’s performance. 

 

 

In summary, the hyperparameter tuning process had a significant impact on the 

XGBoost model. The tuned XGBoost model exhibits enhanced abilities to 

accurately identify positive instances and reduce FN predictions. The notable 

increase in the F1 score highlights the model’s improved balance between high 

precision and high recall, leading to more accurate and dependable predictions. 

Consequently, the tuned XGBoost model proves to be a highly reliable and effective 

tool for predicting employee turnover.   

Table 5-15. XGBoost Model Score on Testing Set

Default Hyperparameter Tunned Hyperarameter

Accuracy 0.98 0.99

Precision 0.97 0.97

Recall 0.56 0.89

F1 score 0.59 0.93

Table 5-16. Confusion Matrix on Testing Set of the XGBoost Model

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,593 2

1 (Resigned) 703 70

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) 28,574 21

1 (Resigned) 175 607

True Label

Tunned Hyperarameter
Predicted Label

True Label

Default Hyperparameter
Predicted Label



 

Page 56 

6 Result and Conclusion 

In this chapter, we present the results and conclusions derived from our study on 

predicting employee turnover using machine learning models. Specifically, we 

focus on three key aspects: the model results (6.1), the business value derived from 

our findings (6.2), and suggestions for future extensions and improvements (6.3). 

By examining these aspects, we aim to provide a comprehensive overview of the 

significance and implications of our thesis in the field of employee turnover 

prediction. 

6.1 Model Result 

Despite the Decision Tree (DT) and Random Forest (RF) models demonstrating 

reasonable performance even without hyperparameter tuning, they do not measure 

up to the performance of the final Gradient Boosting Decision Tree (GBDT) and 

Extreme Gradient Boosting (XGBoost) models with the available dataset. While 

both GBDT and XGBoost initially exhibit relatively poor performance with the 

default settings, the process of hyperparameter tuning significantly enhances their 

performance. On the other hand, the process of hyperparameter tuning does not lead 

to a significant change in the performance of the DT and RF models. One possible 

explanation for this difference in performance improvement is that the DT and RF 

models already operate near their optimal performance with the default settings, 

leaving limited room for further enhancement. This difference could also be 

attributed to the inherent characteristics of the models. GBDT and XGBoost are 

ensemble methods that sequentially add DTs to correct the errors made by previous 

models. This iterative process allows them to effectively learn complex patterns and 

relationships in the data. In contrast, DT and RF models do not have this boosting 

capability. Overall, the difference in performance before and after hyperparameter 

tuning highlights the importance of optimizing the hyperparameters for boosting-

based models like GBDT and XGBoost. It also emphasizes the potential limitations 

of DT and RF models in capturing complex patterns in the data. 

When comparing the performance of the final GBDT and XGBoost models, both 

models achieve a high F1 score of 0.93. The only minor difference in performance 

is that the GBDT model exhibits slightly higher precision (0.01), which indicates 

its proficiency in accurately identifying positive instances. However, there is a 
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significant difference in training time between the two models. The XGBoost model 

takes approximately 2.7 minutes to train on our training dataset, while the GBDT 

model requires around 100.7 minutes. This substantial difference in training time 

can be attributed to the underlying algorithms and implementation details of the two 

models. XGBoost is specifically designed to optimize the performance of GBDT 

through various algorithmic enhancements, including parallelization techniques. 

These optimizations allow XGBoost to efficiently process large datasets and 

expedite the training process. 

In conclusion, our analysis of the different supervised learning models for employee 

turnover prediction reveals that the GBDT and XGBoost models outperform the DT 

and RF models. This highlights the importance of hyperparameter tuning for 

boosting-based models and exposes the potential limitations of DT and RF models 

in capturing complex patterns in the data. When comparing GBDT and XGBoost, 

both models achieve a high F1 score of 0.93, with GBDT exhibiting slightly higher 

precision. However, there is a significant discrepancy in training time, with 

XGBoost being considerably faster due to its algorithmic optimizations. The choice 

between GBDT and XGBoost should consider the trade-off between slightly higher 

precision and faster training time. 

6.2 Business Value 

The application of machine learning models to predict employee turnover offers 

important business value to organizations. In this section, we will focus on the final 

GBDT model as an example to showcase the potential business benefits of 

implementing a predictive model. By analyzing the confusion matrix of the GBDT 

model on the testing set, we can observe its slightly better predictive performance 

compared to the final XGBoost model, with 5 additional correct predictions. 
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6.2.1 Feature Importance 

 
Figure 6-1 Feature Importance for the Final GBDT Model 

The feature importance plot in Figure 6-1 represents the relative importance of each 

feature in the final GBDT model. It reveals that “Age” as the most influential 

feature contributes approximately 26.8% to the overall importance. This indicates 

that age significantly affects the output of the classifier. By integrating this finding 

with the descriptive analysis depicted in Figure 4-2, we can conclude that age plays 

a critical role in predicting employee turnover, with younger individuals exhibiting 

a higher tendency to leave. This understanding of age’s impact can enable 

organizations to develop targeted strategies catering to the specific needs and 

concerns of different age groups. For instance, implementing mentorship programs 

or offering tailored career development opportunities for younger employees may 

help improve their job satisfaction and increase retention rates. Organizations can 

also create age-specific initiatives to foster a supportive work environment and 

address any age-related challenges that may contribute to turnover (Naim & Lenka, 

2018). By leveraging the insights gained from the feature importance analysis, 

organizations can make informed decisions on resource allocation and implement 

targeted interventions to effectively address the impact of important features on 

employee turnover.  

6.2.2 Profit Matrix 

Employee turnover is associated with indirect costs, such as recruitment, 

onboarding, and training expenses, as discussed in Chapter 2.2. Employee turnover 

prediction models offer valuable insights to organizations by identifying potential 
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risks and facilitating proactive measures. To gain a better understanding of the 

financial impact of such models, a profit matrix can be constructed, which defines 

the costs and benefits associated with different prediction outcomes. Table 6-1 

presents an example of the profit matrix, illustrating the potential costs and benefits 

for each prediction type. It should be noted that these estimates are derived from an 

interview with the HR department of the company that provided the dataset for our 

analysis and serve as simplified examples. The actual costs and benefits will vary 

depending on the specific circumstances of each organization, including factors 

such as industry, country, and company policies.  

 

The numbers in Table 6-1 for each prediction type align with the following 

interpretations: 

True Negative (TN): The model predicts an employee will stay and they do. There 

is no associated cost or benefit as the business continues as usual. The net profit 

would be $0.  

True Positive (TP): The model predicts an employee will leave and they do. The 

cost could be seen as the expenses associated with hiring and training a replacement. 

The benefit could be the cost savings from potentially avoiding a period of low 

productivity or the costs associated with a sudden departure. If we assume the cost 

to replace an employee is $10,000, and we successfully manage to avoid a 

productivity loss worth $15,000, the net profit would be +$5,000. 

False Positive (FP): The model predicts an employee will leave, but they stay. The 

cost might be the unnecessary expenditure on hiring or training a replacement. 

Using the same numbers, if we spend $10,000 preparing for a departure that does 

not happen and there is no productivity gain, our net profit would be -$10,000. 

False Negative (FN): The model predicts an employee will stay, but they leave. 

This could incur costs due to productivity loss, cost to hire and train a replacement, 

and potential overtime for other employees. Assuming these costs amount to 

$25,000 in total, the net profit would be -$25,000. 

Table 6-1. Profit Matrix

0 (Not Resigned) 1 (Resigned)

0 (Not Resigned) $0 -$10,000

1 (Resigned) -$25,000 +$5,000

Predicted Label

True Label
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Based on the estimated profit matrix, we can quantify the profit resulting from the 

implementation of a predictive model. For instance, if we use the data from June 

2022 in our dataset as an illustrative example. In this particular month, there are 

231 employees who are projected to resign within the next three months out of a 

total of 8,738 employees in the company. By comparing the costs associated with 

the baseline model (representing the absence of a predictive model) to those of the 

final GBDT model, we can assess the financial impact and potential profit achieved 

through the implementation of the final GBDT model. 

For the baseline model: 

True Negatives (TN):  

8,507 ∗  $0 =  $0     (6-1) 

False Negatives (FN):  

231 ∗  (−$25,000)  =  −$5,775,000       (6-2) 

False Positives (FP):  

0 ∗  (−$10,000)  =  $0         (6-3) 

True Positives (TP): 

0 ∗  $5,000 =  $0      (6-4) 

Summing up these values, we get: 

$0 +  (−$5,775,000)  +  $0 +  $0 =  −$5,775,000       (6-5) 

Therefore, the estimated cost based on the absence of a predictive model is 

$5,775,000. 

The predictions from the final GBDT model on this dataset are TN are 8507, TP 

are 223, FP are 0, and FN are 8. We can calculate the associated costs: 

Based on the predictions generated by the final GBDT model on this dataset, we 

have 8,507 TN, 223 TP, 8 FN, and 0 FP. With this information, we can proceed to 

calculate the associated costs: 
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True Negatives (TN):  

8,507 ∗  $0 =  $0     (6-6) 

False Negatives (FN):  

8 ∗  (−$25,000)  =  −$200,000         (6-7) 

False Positives (FP):  

0 ∗  (−$10,000)  =  $0         (6-8) 

True Positives (TP):  

223 ∗  $5,000 =  $1,115,000   (6-9) 

Summing up these values, we get: 

$0 +  (−$200,000)  +  $0 +  $1,115,000 =  $915,000          (6-10) 

The estimated profit based on the final GBDT model is $915,000. 

In this case, the implementation of the final GBDT model in this company results 

in a profit gain of $915,000 for the three months following June 2022 instead of 

incurring a cost of $5,775,000. This outcome demonstrates the substantial financial 

benefits that can be achieved by implementing an effective predictive model to 

identify and manage turnover risks. By leveraging the insights gained from a 

predictive model, organizations can optimize their workforce management 

strategies, mitigate turnover risks, and effectively reduce recruitment and training 

costs. This ultimately leads to substantial cost reductions, providing tangible 

business value and improved financial performance for organizations. 

6.3 Future Extension and Improvement 

While this study provides valuable insights into predicting employee turnover using 

supervised machine learning models, there are several avenues for future research 

and potential improvements to enhance the effectiveness of these models. Here, we 

outline some potential areas of focus for future extensions and improvements: 

Integration of additional data sources: Expanding the dataset to include more 

diverse and comprehensive sources of data, such as external factors like industry 
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trends and economic indicators, can enrich the predictive models. Incorporating 

these additional variables can provide a more holistic understanding of employee 

turnover and improve the accuracy of predictions. 

Feature engineering: Exploring advanced feature engineering techniques can help 

in identifying and creating more informative features that capture the complex 

relationships and interactions among variables. Techniques like feature interaction, 

feature scaling, and dimensionality reduction can enhance the predictive power of 

the models and uncover hidden patterns within the data. 

Incorporating temporal analysis: Employee turnover patterns can exhibit temporal 

dependencies, such as seasonality or trends over time. By incorporating temporal 

analysis techniques, such as time series modeling or recurrent neural networks, into 

the prediction models, organizations can better capture the dynamic nature of 

employee turnover and improve the accuracy of long-term forecasts. 

Continuous model monitoring and updating: Employee turnover dynamics can 

change over time due to various internal and external factors. Therefore, 

establishing a system for continuous model monitoring and updating is crucial. 

Regularly evaluating the model’s performance, incorporating new data, and 

retraining the models can ensure their reliability and effectiveness in real-world 

scenarios. 

By addressing these future extensions and improvements, organizations can 

enhance their employee turnover prediction capabilities, enabling them to make 

more informed decisions regarding retention strategies, succession planning, and 

overall human resource management.  
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7 Appendix 

7.1 Code for Categorical Feature Encoding 

The following code snippet demonstrates the process of encoding categorical 

features into numerical representations: 

from sklearn import preprocessing 

industry_le = 

preprocessing.LabelEncoder().fit(df["Industry"].unique()) 

df["Industry"] = industry_le.transform(df["Industry"]) 

title_le = preprocessing.LabelEncoder().fit(df["Title"].unique()) 

df["Title"] = title_le.transform(df["Title"]) 

country_le = 

preprocessing.LabelEncoder().fit(df["Country"].unique()) 

df["Country"] = country_le.transform(df["Country"]) 

df[["Industry", "Title", "Country"]] = df[["Industry", "Title", 

"Country"]].astype("int64") 

7.2 Code for Data Splitting 

The following code is used to splitting the dataset into training, validation and 

testing set: 

from sklearn.model_selection import train_test_split 

from collections import Counter 

y = df["Resigned"] 

X = df.drop("Resigned", axis=1) 

 

# split training and test data.  

X_train, X_test, y_train, y_test = train_test_split(X, y, 

random_state=42, test_size = .40, stratify = y) 

print('train shape %s' % Counter(y_train)) 

 

# split test data into a valuation set and a holdout set 

X_value, X_test, y_value, y_test = train_test_split(X_test, y_test, 

random_state=42, test_size = .5, stratify = y_test) 

7.3 Process for Feature Selection 

7.3.1 ANOVA for Numerical Feature Selection Process 

The following code snippet demonstrates the process of encoding the “Last date of 

promotion” column and selecting numerical features for data splitting in 

preparation for ANOVA: 
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df["Last date of promotion"] = pd.to_datetime(df["Last date of 

promotion"]).view("int64") 

 

X_num = df[["Age", "Tenure","Last date of promotion","Level"]] 

y = df["Resigned"] 

 

# split training and test data.  

X_train, X_test, y_train, y_test = train_test_split(X_num, y, 

random_state=42, test_size = .40, stratify = y) 

print('train shape %s' % Counter(y_train)) 

 

# split test data into a valuation set and a holdout set 

X_value, X_test, y_value, y_test = train_test_split(X_test, y_test, 

random_state=42, test_size = .5, stratify = y_test) 

print("value/test shape %s" % Counter(y_test)) 

The following code snippet demonstrates the implementation of ANOVA: 

from sklearn.feature_selection import SelectKBest, f_classif 

selector = SelectKBest(f_classif, k=4) 

selector.fit(X_train, y_train) 

 

p_values = pd.Series(selector.pvalues_, index= X_train.columns) 

p_values.sort_values(ascending = True , inplace = True) 

print(p_values<=0.05) 

The output of the ANOVA is as follows: 

Tenure                    True 

Age                       True 

Level                     True 

Last date of promotion    True 

dtype: bool 

7.3.2 Chi-square test for Categorical Feature Selection Process 

To prepare the data for the Chi-square test, the following code was used: 

X_num = df[["Age", "Tenure","Last date of promotion","Level"]] 

y = df["Resigned"] 

 

# split training and test data.  

X_train, X_test, y_train, y_test = train_test_split(X_cat, y, 

random_state=42, test_size = .40, stratify = y) 

print('train shape %s' % Counter(y_train)) 

 

# split test data into a valuation set and a holdout set 

X_value, X_test, y_value, y_test = train_test_split(X_test, y_test, 

random_state=42, test_size = .5, stratify = y_test) 

print("value/test shape %s" % Counter(y_test)) 
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The following code snippet demonstrates the implementation of Chi-square test: 

from sklearn.feature_selection import chi2 

# Create and fit selector 

selector= SelectKBest(chi2, k=4) 

selector.fit(X_train, y_train) 

 

p_values = pd.Series(selector.pvalues_, index= X_train.columns) 

p_values.sort_values(ascending = True , inplace = True) 

print(p_values<=0.05) 

The output of the Chi-square test is as follows: 

Country      True 

Industry     True 

Title        True 

Gender      False 

dtype: bool 

7.3.3 Correlation Analysis for Numerical Feature Selection Process 

The code snippet below demonstrates the implementation of correlation analysis, 

which follows the same data preparation process as ANOVA: 

import seaborn as sns 

%matplotlib inline 

sns.set(rc = {'figure.figsize':(15,10)}) 

train = pd.concat([X_train, y_train], axis = 1) 

corr = train.corr() 

sns.heatmap(corr, annot=True, 

            xticklabels=corr.columns.values,  

            yticklabels=corr.columns.values) 

7.4 Hyperparameter Tuning Process for the DT Model 

• criterion 

For criterion, we have two options to choose from. We used grid search to determine 

which criterion yielded the highest F1 score. The code used for this purpose is as 

follows: 

criterion = ["gini", "entropy"] 

parameter = dict(criterion = criterion) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 
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print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output of our analysis indicates that the “gini” criterion performed the best, as 

it resulted in the highest F1 score: 

{'criterion': 'gini'} 

best score = 0.78 

• class_weight 

In a similar manner to the criterion search, we employed grid search to determine 

the optimal setting for the class weight. The code used is: 

class_weight = [None, "balanced"] 

parameter = dict(class_weight = class_weight) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output shows: 

{'class_weight': None} 

best score = 0.78 

• max_depth 

To search for the best max_depth, we implemented a for loop combined with cross-

validation methodology, and plot the scores as a function of this parameter. The 

code used is: 

ScoreAll = [] 

for i in range(): 

    DT = DecisionTreeClassifier(max_depth = i, random_state = 42) 

    score = cross_val_score(DT, X_train, y_train, cv=5, scoring = 

"f1").mean() 

    ScoreAll.append([i,score]) 

ScoreAll = np.array(ScoreAll) 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score])   

plt.figure(figsize=[20.7,5.27]) 

plt.plot(ScoreAll[:,0],ScoreAll[:,1]) 

plt.show() 

We first search within range(10,100,10), and the output shows:  



 

Page 67 

 

best parameter & score: [40.         0.7754104] 

After refining our search to range(30,50), the output displayed the following 

results: 

 

best parameter & score: [35.         0.7754104] 

• max_features 

Given that we have 7 features in the dataset, we used grid search to explore the 

optimal max_features from 1 to 7, and visualized the changes in F1 score with 

different max_features values using a heatmap: 

max_features = [None, 1, 2, 3, 4, 5, 6, 7] 

parameter = dict(max_features = max_features) 

model = DecisionTreeClassifier(max_depth=35, random_state=42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

dt = pd.DataFrame(grid_search.cv_results_) 

dt.param_ max_features = dt.param_ max_features.astype(str) 

table = pd.pivot_table(dt, values='mean_test_score', index='param_ 

max_features) 

sns.heatmap(table) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output shows: 
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{'max_features': 2} 

best score = 0.78 

• min_samples_leaf & min_samples_split 

Considering the interactivity between min_samples_leaf and min_samples_split, 

we decided to tune them together. Utilizing grid search, we explored various 

combinations of these parameters and obtained the corresponding F1 score. 

Subsequently, we generated a heatmap to visualize the relationship between the 

different parameter combinations and the F1 score. The code used is as follows: 

min_samples_split = [2, 3, 4, 5, 6] 

min_samples_leaf = [1, 2, 3, 4, 5] 

parameter = dict(min_samples_split = min_samples_split, 

min_samples_leaf = min_samples_leaf) 

model = DecisionTreeClassifier(max_depth=35, max_features=2, 

random_state=42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

dt = pd.DataFrame(grid_search.cv_results_) 

dt.param_min_samples_split = dt.param_min_samples_split.astype(str) 

dt.param_min_samples_leaf = dt.param_min_samples_leaf.astype(str) 

table = pd.pivot_table(dt, values='mean_test_score', 

index='param_min_samples_split', columns='param_min_samples_leaf') 

sns.heatmap(table) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output shows: 
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{'min_samples_leaf': 1, 'min_samples_split': 2} 

best score = 0.78 

7.5 KCV for the DT Model 

To assess the model’s performance, we utilized K-fold Cross Validation (KCV) 

with 10 folds on the training set. Firstly, we obtained 10 F1 score through this 

process and calculated their average value. Subsequently, we repeated the same 

procedure to obtain and average the ROC-AUC scores. This approach allowed us 

to gain a comprehensive understanding of the model’s performance across different 

folds. The code used is as follows: 

f1_scores = cross_val_score(model_1, X_train, y_train, cv=10, 

scoring='f1') 

f1_scores 

mean(f1_scores) 

roc_auc = cross_val_score(model_1, X_train, y_train, cv=10, 

scoring='roc_auc') 

roc_auc 

mean(roc_auc) 

The output for F1 score is: 

array([0.84140969, 0.80742459, 0.77674419, 0.76738609, 0.80652681,       

0.78983834, 0.8       , 0.75238095, 0.78983834, 0.81132075]) 

 

mean: 0.7942869750760719 

The output for ROC-AUC is: 
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array([0.91950086, 0.89136138, 0.88028983, 0.86765636, 0.88739452, 

       0.88314714, 0.88937014, 0.86391362, 0.88504884, 0.89009639]) 

 

mean: 0.885777907843261 

7.6 Hyperparameter Tuning Process for the RF Model 

• criterion 

The code snippet below demonstrates the use of grid search to determine the 

criterion that yields the highest F1 score: 

criterion = ["gini", "entropy"] 

parameter = dict(criterion = criterion) 

model = RandomForestClassifier(random_state=42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output of our analysis indicates that the “gini” criterion performed the best, 

resulting in the highest F1 score. 

{'criterion': 'gini'} 

best score = 0.78 

• bootstrap 

In a similar manner to the criterion search, we employed grid search to determine 

the optimal setting for the bootstrap parameter. The range for bootstrap is as 

follows: 

bootstrap = ["True", "False"] 

The output shows: 

{'bootstrap': 'True'} 

best score = 0.78 

• oob_score 

In a similar manner to the criterion search, we employed grid search to determine 

the optimal setting for the oob_score parameter. The range for oob_score is as 

follows: 
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bootstrap = ["True", "False"] 

The output shows: 

{'oob_score': 'True'} 

best score = 0.78 

• class_weight 

In a similar manner to the criterion search, we employed grid search to determine 

the optimal setting for the class_weight parameter. The range for class_weight is as 

follows: 

class_weight = [None, "balanced"] 

The output shows: 

{'class_weight': None} 

best score = 0.78 

• n_estimators 

The code used to search for the best n_estimators using a for loop combined with 

cross-validation methodology and plot the scores as a function of this parameter is 

as follows: 

ScoreAll = [] 

for i in range(10,200,10): 

    RF = RandomForestClassifier(n_estimators = i, oob_score=True, 

random_state = 42) 

    score = cross_val_score(RF, X_train, y_train, cv=5, scoring = 

"f1").mean() 

    ScoreAll.append([i,score]) 

ScoreAll = np.array(ScoreAll) 

 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score])   

# print(ScoreAll[,0]) 

plt.figure(figsize=[20.7,5.27]) 

plt.plot(ScoreAll[:,0],ScoreAll[:,1]) 

plt.show() 

Based on the implemented code, the output for the range (10, 200, 10) shows 

the scores as a function of the n_estimators parameter is: 
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best parameter & score: [170.           0.77780047] 

After refining the search to range (160, 180), the output displayed the following 

results for the scores as a function of the n_estimators parameter: 

 

best parameter & score: [169.           0.77905861] 

• max_depth 

To search for the best max_depth, we implemented a for loop combined with cross-

validation methodology, and plot the scores as a function of this parameter. The 

code used is: 

ScoreAll = [] 

for i in range(10, 50, 5): 

    RF = RandomForestClassifier(n_estimators = 169, oob_score=True, 

max_depth = i, random_state = 42) 

    score = cross_val_score(RF, X_train, y_train, cv=5, scoring = 

"f1").mean() 

    ScoreAll.append([i,score]) 

ScoreAll = np.array(ScoreAll) 

 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score])   

 

plt.figure(figsize=[20.7,5.27]) 

plt.plot(ScoreAll[:,0],ScoreAll[:,1]) 

plt.show() 

We first search within range(10,50,10), and the output shows:  
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best parameter & score: [40.         0.7754104] 

After refining our search to range(30,50), the output displayed the following 

results: 

 

best parameter & score: [31.          0.77984613] 

• min_samples_leaf & min_samples_split 

Considering the interactivity between min_samples_leaf and min_samples_split, 

we decided to tune them together. Using grid search, we explored various 

combinations of these parameters and obtained the corresponding F1 score. 

Subsequently, we generated a heatmap to visualize the relationship between the 

different parameter combinations and the F1 score. The code used for this purpose 

is as follows: 

min_samples_split = [2, 3, 4, 5, 6] 

min_samples_leaf = [1, 2, 3, 4, 5] 

parameter = dict(min_samples_split = min_samples_split, 

min_samples_leaf = min_samples_leaf) 

model = RandomForestClassifier(n_estimators=169, max_depth=31, 

oob_score=True, random_state=42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

rf = pd.DataFrame(grid_search.cv_results_) 

rf.param_min_samples_split = rf.param_min_samples_split.astype(str) 

rf.param_min_samples_leaf = rf.param_min_samples_leaf.astype(str) 

table = pd.pivot_table(rf, values='mean_test_score', 

index='param_min_samples_split', columns='param_min_samples_leaf') 

sns.heatmap(table) 
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print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output shows: 

 

{'min_samples_leaf': 1, 'min_samples_split': 2} 

best score = 0.78 

• max_features 

Given that we have 7 features in the dataset, we used grid search to explore the 

optimal max_features from 1 to 7. We then visualized the changes in F1 score with 

different max_features values using a heatmap. The code used for this process is as 

follows: 

max_features = [None, 1, 2, 3, 4, 5, 6, 7] 

parameter = dict(max_features = max_features) 

model = RandomForestClassifier(n_estimators=169, max_depth=31, 

oob_score=True, random_state=42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

rf = pd.DataFrame(grid_search.cv_results_) 

rf.param_ max_features = rf.param_ max_features.astype(str) 

table = pd.pivot_table(rf, values='mean_test_score', index='param_ 

max_features) 

sns.heatmap(table) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output shows: 
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7.7 KCV for the RF Model 

The following code snippet demonstrates the implementation of KCV for the final 

RF model: 

f1_scores = cross_val_score(model_1, X_train, y_train, cv = 10, 

scoring= "f1") 

f1_scores 

f1_scores.mean() 

roc_auc = cross_val_score(model_1, X_train, y_train, cv = 10, 

scoring= "roc_auc") 

roc_auc 

roc_auc.mean() 

The output for F1 score is:  

array([0.85377358, 0.82926829, 0.82089552, 0.79207921, 0.80604534, 

       0.79301746, 0.80589681, 0.76214834, 0.7970297 , 0.81572482]) 

f1_scores.mean() 0.8075879066494746 

The output for ROC-AUC is: 

array([0.9813508 , 0.99114639, 0.98858298, 0.97771616, 0.98578724, 

       0.97750728, 0.97800038, 0.97489446, 0.98029819, 0.98444338]) 

roc_auc.mean() 0.9819727262753244 

7.8 Hyperparameter Tuning Process for the GBDT Model 

• n_estimator & learning rate 
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To identify the optimal values for two key parameters, namely n_estimators and 

learning_rate, we employed grid search methodology. Through multiple runs with 

different parameter ranges, we determined that the final range for n_estimators is 

set between 5000 and 10000, while the range for learning_rate is defined as 0.20 to 

0.25. The following code snippet showcases the implementation of the grid search 

process: 

n_estimators = [5000, 6000, 7000, 8000, 9000, 10000] 

learning_rate = [0.25, 0.24, 0.23, 0.22, 0.21, 0.20] 

parameter1 = dict(n_estimators = n_estimators, learning_rate = 

learning_rate) 

Model = GradientBoostingClassifier(random_state = 42) 

grid_search1 = GridSearchCV(Model, parameter1, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search1.fit(X_train, y_train) 

print(grid_search1.best_params_) 

print('''best score = {:.2f}'''.format(grid_search1.best_score_)) 

The output shows: 

{'learning_rate': 0.22, 'n_estimators': 8000} 

best score = 0.67 

• loss 

The code snippet below demonstrates the use of grid search to determine the loss 

parameter that yields the highest F1 score: 

loss = ['deviance', 'exponential'] 

parameter = dict(loss = loss) 

model = GradientBoostingClassifier(n_estimators = 8000, 

learning_rate = 0.22, random_state = 42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output of our analysis indicates that the “deviance” criterion performed the 

best, resulting in the highest F1 score. 

{'loss': 'deviance'} 

best score = 0.67 

• subsample 
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To find the best value for the subsample parameter, we utilized a for loop in 

conjunction with cross-validation methodology. The following code snippet 

outlines the implementation: 

ScoreAll = [] 

for i in np.arange(0.1,1,0.1): 

    GB = GradientBoostingClassifier(n_estimators = 8000, 

learning_rate = 0.22, max_depth = i, random_state = 42) 

    score = cross_val_score(GB, X_train, y_train, cv=5, scoring = 

"f1").mean() 

    ScoreAll.append([i,score]) 

ScoreAll = np.array(ScoreAll) 

 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score])   

The output shows: 

best parameter & score: [1.         0.6718683] 

• min_samples_leaf & min_samples_split 

Using grid search, we conducted an exploration of various combinations of the 

min_samples_leaf and min_samples_split hyperparameters. By systematically 

evaluating different values for these hyperparameters, we were able to identify the 

best combination that has the highest F1 score. The following code snippet outlines 

the implementation: 

min_samples_split = [2, 3, 4, 5, 6] 

min_samples_leaf = [1, 2, 3, 4, 5] 

parameter = dict(min_samples_split = min_samples_split, 

min_samples_leaf = min_samples_leaf) 

model = GradientBoostingClassifier(n_estimators = 8000, 

learning_rate = 0.22, random_state = 42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output shows: 

{'min_samples_leaf': 1, 'min_samples_split': 2} 

best score = 0.68 

• max_depth 
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To find the best value for the max_depth parameter, we utilized a for loop in 

conjunction with cross-validation methodology. The following code snippet 

outlines the implementation: 

ScoreAll = [] 

for i in range(1,50): 

    GBT = GradientBoostingClassifier(n_estimators = 8000, 

learning_rate = 0.22, max_depth = i, random_state = 42) 

    score = cross_val_score(GBT, X_train, y_train, cv=10, scoring = 

"f1").mean() 

ScoreAll.append([i,score]) 

 

ScoreAll = np.array(ScoreAll) 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score]) 

The output shows: 

best parameter & score: [20.         0.8133697] 

7.9 KCV for the GBDT Model 

The following code snippet demonstrates the implementation of KCV for the final 

GBDT model: 

f1_scores = cross_val_score(Model_f1, X_train, y_train, cv = 10, 

scoring= "f1") 

f1_scores 

f1_scores.mean() 

roc_auc = cross_val_score(Model_f1, X_train, y_train, cv = 10, 

scoring= "roc_auc") 

roc_auc 

roc_auc.mean() 

The output for F1 score is:  

array([0.87414188, 0.84309133, 0.82857143, 0.79805353, 0.82014388,    

0.81730769, 0.8156682 , 0.78640777, 0.81235154, 0.82352941]) 

 

f1_scores.mean() 0.8219266670539529 

The output for ROC-AUC is: 

array([0.95525913, 0.96359676, 0.94545392, 0.92682041, 0.93703487, 

0.93633789, 0.94069143, 0.93040361, 0.93488712, 0.95091327]) 

 

roc_auc.mean() 0.9421398392936672 
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7.10 Hyperparameter Tuning Process for the XGBoost Model 

• booster 

For booster, we have two options to choose from. We used grid search to determine 

which criterion yielded the highest F1 score. The code used for this purpose is as 

follows: 

criterion = ["gbtree", "gblinear"] 

parameter = dict(criterion = criterion) 

model= XGBClassifier(random_state = 42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output of our analysis indicates that the “gbtree” criterion performed the best, 

as it resulted in the highest F1 score: 

 {'criterion': 'gbtree'} 

best score = 0.60 

• n_estimator & learning_rate 

To identify the optimal values for two key parameters, namely n_estimators and 

learning_rate, we employed grid search methodology. Through multiple runs with 

different parameter ranges, we determined that the final range for n_estimators is 

set between 2500 and 3000, while the range for learning_rate is defined as 0.20 to 

0.25. The following code snippet showcases the implementation of the grid search 

process: 

n_estimators = [2500, 2600, 2700, 2800, 2900, 3000] 

learning_rate = [0.25, 0.24, 0.23, 0.22, 0.21, 0.20] 

parameter1 = dict(n_estimators = n_estimators, learning_rate = 

learning_rate) 

model= XGBClassifier(random_state = 42) 

grid_search1 = GridSearchCV(model, parameter1, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search1.fit(X_train, y_train) 

print(grid_search1.best_params_) 

print('''best score = {:.2f}'''.format(grid_search1.best_score_)) 

The output shows: 
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{'learning_rate': 0.22, 'n_estimators': 2800} 

best score = 0.80 

• subsample 

To find the best value for the subsample parameter, we utilized a for loop in 

conjunction with cross-validation methodology. The following code snippet 

outlines the implementation: 

ScoreAll = [] 

for i in np.arange(0.1,1,0.1): 

    XGB = XGBClassifier(n_estimators = 2800, learning_rate = 0.22, 

random_state = 42) 

    score = cross_val_score(XGB, X_train, y_train, cv=5, scoring = 

"f1").mean() 

    ScoreAll.append([i,score]) 

ScoreAll = np.array(ScoreAll) 

 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score])   

The output shows: 

best parameter & score: [1.         0.7978683] 

• min_child_weight 

To find the best value for the min_child_weight parameter, we utilized a for loop 

in conjunction with cross-validation methodology. The following code snippet 

outlines the implementation: 

min_child_weight = [1, 2, 3, 4, 5, 6] 

parameter = dict(criterion = criterion) 

model = XGBClassifier(n_estimators = 2800, learning_rate = 0.22, 

random_state = 42) 

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1, 

n_jobs = -1, scoring = "f1") 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 

print('''best score = {:.2f}'''.format(grid_search.best_score_)) 

The output shows: 

best parameter & score: [1.         0.80] 
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• max_depth 

To find the best value for the max_depth parameter, we utilized a for loop in 

conjunction with cross-validation methodology. The following code snippet 

outlines the implementation: 

ScoreAll = [] 

for i in range(1,50,10): 

    xgb = XGBClassifier(n_estimators = 2800, learning_rate = 0.22, 

max_depth = i, random_state = 42) 

    score = cross_val_score(xgb, X_train, y_train, cv=10, scoring = 

"f1").mean() 

    ScoreAll.append([i,score]) 

ScoreAll = np.array(ScoreAll) 

 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score]) 

We first search within range(10,50,10), and the output shows:  

 

best parameter & score: [10.          0.82864885] 

After refining our search to range (10,15), and the output displayed the following 

results: 

 

best parameter & score: [12.          0.82980737] 

• gamma 

To find the best value for the gamma parameter, we utilized a for loop in 

conjunction with cross-validation methodology. The following code snippet 

outlines the implementation: 
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ScoreAll = [] 

for i in np.arange(0,1,0.1): 

    XGB = XGBClassifier(n_estimators = 2800, learning_rate = 0.22, 

max_depth = 12, random_state = 42) 

    score = cross_val_score(XGB, X_train, y_train, cv=5, scoring = 

"f1").mean() 

    ScoreAll.append([i,score]) 

ScoreAll = np.array(ScoreAll) 

 

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]  

print("best parameter & score:",ScoreAll[max_score])   

The output shows: 

best parameter & score: [0.         0.83040745] 

7.11 KCV for the XGBoost Model 

The following code snippet demonstrates the implementation of KCV for the final 

XGBoost model: 

f1_scores = cross_val_score(model_1, X_train, y_train, cv=10, 

scoring='f1') 

f1_scores 

roc_auc = cross_val_score(model_1, X_train, y_train, cv=10, 

scoring='roc_auc') 

roc_auc 

The output for F1 score is:  

array([0.86836028, 0.85781991, 0.8377724 , 0.80295567, 0.84107579, 

0.81265207, 0.84160757, 0.82409639, 0.82211538, 0.8321513 ]) 

mean(f1_scores) 

0.8340606742621919 

The output for ROC-AUC is: 

array([0.96682622, 0.96901946, 0.96071928, 0.93057635, 0.95593081, 

0.9515222 , 0.95299108, 0.94000759, 0.9535633 , 0.96570271]) 

mean(roc_auc) 

0.9546858993543491  
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