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1. Introduction

1.1 Problem Formulation

Employee turnover is a pervasive issue faced by organizations across various
industries (Korff et al., 2015). When employees decide to leave a company, it not
only disrupts daily operations but also imposes costs associated with recruiting and
training new talent (Cascio & Boudreau, 2011; Matthew & Kung, 2007). As a
result, accurately predicting and understanding employee turnover has become a
critical objective for many businesses. The advent of machine learning has opened
up new possibilities for predicting and analyzing employee turnover. By leveraging
vast amounts of data, organizations can develop sophisticated models that
effectively forecast the likelihood of an employee leaving the company. These
predictive models enable organizations to proactively address turnover risks, devise
targeted retention and succession strategies, and create a more stable and successful
work environment (Chanodkar et al., 2019; Perryer et al., 2010). This thesis
primarily focuses on tackling the challenge of employee turnover prediction using
supervised machine learning models. By utilizing four widely recognized
supervised learning models, namely Decision Tree (DT), Random Forest (RF),
Gradient Boosting Decision Tree (GBDT), and Extreme Gradient Boosting
(XGBoost), we conduct a comparative analysis to determine the model that
demonstrates the highest predictive power for employee turnover. Through our
analysis, we aim to contribute to the field of employee turnover prediction by
advancing the understanding of the factors that drive turnover and developing

effective prediction models.
1.2 Contributions

This section highlights the significant contributions of our thesis in the field of
predicting employee turnover using supervised machine learning models. Our

thesis makes the following key contributions:

Comprehensive Analysis: Our thesis undertakes a thorough examination of the
factors influencing employee turnover and employs four widely recognized
supervised machine learning models to achieve accurate turnover predictions.

Through a meticulous analysis of demographic features and the application of
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robust methodologies, our study offers a comprehensive understanding of the

predictive models involved in employee turnover.

Dataset with Broad Coverage: Our study utilizes a dataset with extensive coverage,
encompassing diverse industries and countries. This dataset enables us to capture a
more comprehensive understanding of employee turnover dynamics and facilitates

the generalization of our findings to different contexts.

Comparative Evaluation of Supervised Learning Models: We compare the
performance of four popular supervised learning models, including DT, RF, GBDT,
and XGBoost. By evaluating their predictive abilities and identifying the model
with the highest performance, we offer valuable insights into the most effective
model for predicting employee turnover.

Addressing Previous Limitations: We overcome limitations identified in previous
research, such as limited generalization, feature selection, and metrics selection. By
employing advanced techniques and methodologies, we aim to enhance the
accuracy and reliability of employee turnover prediction models.

Practical Implications: Our thesis provides practical implications for organizations
in developing effective retention or succession strategies. By identifying the factors
contributing to employee turnover and accurately predicting turnover,
organizations can take proactive measures to mitigate turnover risks and enhance

their workforce management practices.

Overall, our study contributes to the existing body of knowledge by offering a
comprehensive analysis of employee turnover prediction, addressing previous
limitations, and providing practical insights for organizations to make informed

decisions regarding their workforce management strategies.

1.3 Structure of the Thesis

This thesis is organized into eight chapters, each focusing on a specific aspect of
predicting employee turnover using supervised machine learning models. The

following provides an overview of the structure and content of the thesis:
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Chapter 1 presents the problem formulation, emphasizing the importance of
accurately predicting employee turnover. We delve into the significance of this
topic and elaborate on the contributions our work brings to the field.

Chapter 2 delves into the background information related to employee turnover. We
examine the impact of employee voluntary turnover on organizations and
emphasize the benefits of predicting employee turnover. Additionally, we examine
the role of machine learning in addressing this issue and provide a summary of
previous studies conducted in this domain. We also discuss the limitations of prior

research and outline our efforts to overcome them in this study.

Chapter 3 focuses on the methodology employed in our study. We describe the
statistical techniques used for feature selection, including Analysis of Variance
(ANOVA), Chi-square Test, and Correlation Analysis. We also delve into the four
supervised learning models utilized in our study: Decision Tree (DT), Random
Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme Gradient
Boosting (XGBoost). Furthermore, we discuss the evaluation metrics used to assess

the performance of these models.

Chapter 4 provides detailed information about the data used in our study. We
discuss the data source, data structure, and the process of data cleaning.
Additionally, we present a descriptive analysis of the data and explain the steps
taken for data preprocessing, including categorical data encoding and data splitting.
We also elaborate on the feature selection methods applied, namely ANOVA, Chi-
square Test, and Correlation Analysis.

Chapter 5 presents the training procedures for each of the machine learning models
utilized in our study, including the hyperparameter tuning process. We thoroughly
evaluate each model, examining their performance both with and without

hyperparameter tuning.

Chapter 6 presents the overall results of our study. We discuss the performance of
each model and highlight the business value derived from predicting employee
turnover. In addition, we identify potential avenues for future research and discuss
possible extensions and improvements to the methods and models employed in this

study.
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Chapter 7 includes additional supplementary material, such as a step-by-step
process for conducting feature selection, hyperparameter tuning, and the K-fold
Cross Validation (KCV) results for each of the models utilized.

Chapter 8 contains a comprehensive list of the references cited throughout the

thesis, ensuring proper attribution of the sources consulted.

By following this structured approach, we aim to provide a comprehensive analysis

of predicting employee turnover using supervised machine learning models.
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2. Background

In this chapter, we delve into the background of employee turnover prediction and
its various aspects. We begin by introducing the concept of employee turnover (2.1)
and exploring its implications within organizations. Subsequently, we examine the
impact of voluntary employee turnover (2.2), highlighting the significant effects it
can have on businesses. Recognizing the importance of predicting and mitigating
turnover, we then discuss the benefits of such predictions (2.3), emphasizing the
potential advantages for organizations. To facilitate these predictions, we turn our
attention to machine learning (2.4) and its potential in this context. Specifically, we
explore supervised learning models (2.5) as a powerful tool for predicting employee
turnover. Lastly, we address the limitations of previous research (2.6), recognizing
the need for further advancements in this area.

2.1 Introduction to Employee Turnover

Employee turnover refers to the number or the percentage of the total number of
employees who leave the company and are replaced by hiring and appointing new
employees to fill the vacant positions within a certain period of time (Chanodkar et
al., 2019). Employees are often regarded as important assets of a company,
especially those who are considered valuable by the company. Stovel and Bontis
(2002) viewed employee turnover to be the loss of an organization’s intellectual
capital. According to Korff et al. (2015), employee turnover has been a long-
standing problem in companies. Relevant organizational studies have confirmed
that a variety of factors can influence a person’s decision to quit a position,
including job satisfaction, job performance, job security, work environment, wages,
and the existence of clearly defined organizational goals (Allen & Griffeth, 1999;
Al-Suraihi et al., 2021; Parker, 2014). Storey (2016) stated that employee retention
and job satisfaction are interdependent and fundamental to a company’s
performance. Similar conclusions regarding the impact of organizational direction
and support on employee job satisfaction and general commitment were made in
Kim et al. (2005) ’s study on corporate orientation. Additionally, a number of
researchers have discussed the impact of employee demographics on their turnover
decisions. Demographics such as age, gender, tenure, ethnicity, education, and

marital status have been proven to be strong predictors of employee resignation
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(Cotton & Tuttle, 1986; Holtom et al., 2008; Sacco & Schmitt, 2005; von Hippel et
al., 2013).

Most studies categorize employee turnover into voluntary and involuntary turnover.
Voluntary turnover occurs when the decision to leave the company is made
primarily by the employee, including all resignation forms; involuntary turnover,
which includes termination, dismissing, and other forms, refers to when the
decision to leave the company is made mostly by the employer (Shaw et al., 1998).
In contrast to involuntary turnover, which is predictable and manageable, voluntary
turnover is often unpredictable and can have a greater impact on companies
(Chanodkar et al., 2019). The analysis in this paper focuses on voluntary turnover.
Additionally, according to the characteristics of the departing employee, employee
turnover can also be classified into internal and external turnover, as well as skilled
and unskilled turnover. Internal turnover is when employees move from one
position to another within the same organization, while external turnover occurs
when employees leave to work for another organization. Skilled turnover refers to
the departure of highly skilled and educated employees, while unskilled turnover
involves the departure of employees in positions that require untrained, unskilled,
or uneducated workers (Akinyomi, 2016). These categories provide a deeper
understanding of the factors and consequences of employee turnover in

organizations.
2.2 Impact of Employee Voluntary Turnover

Voluntary employee turnover can negatively affect several aspects of an
organization. A high turnover rate might harm the company financially because of
high indirect costs, such as the cost of hiring, training, and developing new
employees (Cascio & Boudreau, 2011; Matthew & Kung, 2007). In terms of
company resources, training new employees requires additional time, manpower,
and material resources (Bapna et al., 2012). At the same time, the productivity of
the company will be impacted since new employees often need some time to
familiarize themselves with the business operation (Matthew & Kung, 2007). In
addition, both customer satisfaction (Kamalanabhan et al., 2009) and company
reputation (Beheshtifar & Allahyary, 2012) can be influenced in a similar manner.
A high rate of employee turnover is also bad for a company’s reputation

(Beheshtifar & Allahyary, 2012). Internally, the departure of experienced
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employees can lead to low morale and disrupt ongoing work (Matthew & Kung,
2007; Punnoose & Ajit, 2016). Zhang (2016) decomposed the cost of employee
turnover into two categories: explicit costs (such as hiring, training, and
productivity loss), and hidden costs (morale, corporate reputation, damage to
position chain, loss of opportunity, etc.). Moreover, the consequences of employee
turnover can vary across industries. For example, research focused on the
Information Technology (IT) sector by Shanmugam and Giri Babu (2016)
highlights that high turnover leads to decreased productivity in this field. Sexton et
al. (2005) conducted a thorough examination of the customer service industry,
revealing that unexpected employee departures harm customer loyalty and diminish
service quality. Additionally, in high-tech industries, the replacement of employees
possessing specialized skill sets or domain expertise presents a significant challenge
(Esmaieeli Sikaroudi et al., 2015). While there are drawbacks, employee turnover
can also bring benefits such as replacing underperforming employees and fostering
organizational creativity, flexibility, and adaptability (Purohit, 2016; Zhang, 2016).
Overall, organizations need to carefully manage employee turnover to mitigate

negative consequences and capitalize on potential advantages.
2.3 Benefits of Predicting Employee Turnover

Given the internal and external impact of employee turnover discussed in the
previous section, there is no doubt that it is beneficial for companies to anticipate
employee turnover. Vasantham and Swarnalatha (2015) concluded that the
retention of competent employees is critical to a company’s long-term health and
success. By predicting employee turnover, companies can take appropriate
proactive actions, such as planning for retention and succession (Chanodkar et al.,
2019). If a drastic increase in employee resignation is predicted, both management
and Human Resources (HR) teams can take necessary precautions in advance. As a
result, companies are able to reduce or maintain employee turnover as needed,
thereby increasing overall productivity and profitability. Accurate forecasts also
provide companies with insights to estimate the budget for human resource
management-related activities, such as cost per hire (Chanodkar et al., 2019). In
addition, Punnoose and Ajit (2016) pointed out that any organization that wants to
take the appropriate action to maintain its market position and accomplishment
must first determine the main causes of employee attrition. Through the
development of a predictive model, companies can gain valuable insights into the
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key reasons behind employee turnover, provide the right incentives for employees,
or find suitable personnel for future vacancies. Furthermore, employee turnover
predictions can be used to formulate strategies related to productivity or expansion

for the continued growth and development of the company (Perryer et al., 2010).
2.4 Machine Learning

Machine learning is a field of study in computer science that focuses on the use of
data and algorithms to imitate the learning process of humans, with the aim of
continuously improving its accuracy over time (Woolf, 2009). It can be categorized
into several types based on different learning processes and methods. According to
recent studies, these types include supervised learning, unsupervised learning,
semi-supervised learning, reinforcement learning, and deep learning (Alpaydin,
2020; Geéron, 2022; LeCun et al., 2015; Sutton & Barto, 2018). Supervised learning
involves training models using labeled data, where the desired output is already
known. Conversely, unsupervised learning involves training models on unlabeled
data, where the desired output is unknown. Semi-supervised learning combines
elements of both supervised and unsupervised learning, utilizing datasets that
contain both labeled and unlabeled data. Reinforcement learning involves training
algorithms to make decisions by leveraging feedback received from the
environment. Finally, deep learning employs artificial neural networks to emulate
the structure and function of the human brain, enabling the resolution of complex
problems. Given that the nature of our work is to predict whether an employee will
resign, and the classes in the dataset are known: all employees will be labeled as
resigned (positive) or not resigned (not resigned). Therefore, the machine learning

models used in our analysis are all supervised learning.

The development of machine learning models has resulted in the emergence of
robust quantitative techniques that are being applied across a range of industries,
including biology and medical sciences (Bakry et al., 2017; Seddik & Shawky,
2015), transportation (Mathias & Ragusa, 2017; Ye et al., 2009), and political
science (Durant & Smith, 2007). In the field of human resource management,
different machine learning models have been studied by researchers to improve
productivity in areas such as employee performance prediction (Al-Radaide & Al
Nagi, 2012), personnel selection (Chien & Chen, 2008), and recruitment system

construction (Li et al., 2010). Machine learning also serves as a valuable tool for
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predicting employee turnover, as demonstrated by recent studies summarized in the

next chapter.
2.5 Supervised Learning Models for Employee Turnover

The use of supervised machine learning algorithms has been explored by several
studies to predict employee turnover. Alao and Adeyemo (2013) investigated the
use of Decision Tree (DT) algorithms in predicting employee attrition and identified
some of the important factors in predicting employee attrition, including salary and
tenure. Esmaieeli Sikaroudi et al. (2015) proposed using several machine learning
algorithms to predict employee turnover, including DT, K-Nearest Neighbor
(KNN), Multi-Layer Perception (MLP), Naive Bayes (NB), Probabilistic Neural
Network (PNN), Random Forests (RF), and Support Vector Machine (SVM). They
found that the RF model achieved the best performance in predicting employee
turnover, with an accuracy rate of 90%, and identified work experience as the most
important factor in predicting employee turnover. Punnoose and Ajit (2016)
compared seven machine learning algorithms in predicting employee turnover.
These algorithms are Linear Discriminant Analysis (LDA), Logistic Regression
(LR), KNN, NB, RF, SVM, and Extreme Gradient Boosting (XGBoost). The
researchers found that XGBoost outperformed the other models in terms of Area
Under the Receiver Operating Characteristic Curve (ROC-AUC). Zhao et al. (2018)
explored machine learning algorithms including DT, Gradient Boosting Decision
Tree (GBDT), KNN, LDA, LR, NB, Neural Networks (NN), RF, SVM, XGBoost,
and found that GBDT achieved the best performance in predicting employee
turnover using ROC-AUC. Overall, these studies highlight the potential of machine
learning algorithms in predicting employee turnover and identifying factors that

contribute to it.

In Table 2-1, we present a summary of recent publications (after 2010) in the field
of predicting employee turnover. Researchers in these studies focused on one or
more machine learning models to predict employee turnover and compared their
performance using pre-selected metrics to identify the model with the best
predictive ability. Building upon the insights gained from this literature review, our
thesis incorporates four wildly recognized supervised learning models, namely DT,

RF, GBDT, and XGBoost, to develop predictive models for employee turnover.
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to develop predictive models for employee turnover, the models developed from

Despite the fact that a number of studies have focused on ut
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these studies tend to be specific to the industry or country in which they were
developed, making it challenging to apply them in other contexts. One possible
reason for this is the limited availability of data. Developing predictive models for
employee turnover requires access to HR data that includes sensitive and
confidential personal information, such as employee performance, salary, tenure,
and reasons for leaving. However, companies generally prefer to keep such
information private (Seth & Sethi, 2011), which makes it challenging to collect data
on a large scale within one study, especially when it involves multiple countries and
industries. Most of the studies summarized in Table 2-1 conducted analyses using
datasets belonging to a single industry and from a single country, while others did
not mention the source of their datasets. The resulting models, therefore, have a
restricted capacity to be generalized. The dataset used in our thesis is provided by
a global company with operations covering multiple industries. The dataset
comprises ten countries where the company has the highest number of employees
across the globe. The countries are China, Germany, India, Italy, the Netherlands,
Norway, Poland, Spain, the United Kingdom, and the United States. Additionally,
it includes nine industries, namely consultancy, cyber security, data management,
energy, HR, IT, insurance, maritime and supply chain. A thorough description and
descriptive analysis of the dataset are provided in Chapter 4.

Another reason for the limited generalization of previous studies can be the
inclusion of sentimental features. These features, such as employee satisfaction
level, job security perceptions, and peer relationships, are often incorporated into
the dataset to predict employee turnover. Although, as mentioned in Chapter 2.1,
studies in organizational research have demonstrated the importance of sentimental
features in reflecting employees’ decisions to leave their jobs, it is difficult to ensure
the consistency and accuracy of such data. Companies generally send employees
surveys or questionnaires to find out how they feel about the company, their job, or
their colleagues (Moyes et al., 2008; Okechukwu, 2017; Saleem et al., 2010).
However, the design of each company’s survey is likely to be different. For
instance, some companies may ask about job satisfaction, while others may ask
about workload satisfaction. This means that the sentimental features included in
datasets from different companies are likely to be incomparable. In addition,
individuals perceive satisfaction differently, especially across different cultures

(Kristensen & Johansson, 2008). As a result, analyses designed using sentimental
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features are difficult to verify in other companies, let alone in a different industry
or country. To mitigate this issue, the analysis in our thesis only focuses on
employee demographic features such as age, gender, and tenure. These features are
available to most companies and have been consistently identified as significant
factors in predicting employee turnover in prior research (Cotton & Tuttle, 1986;
Holtom et al., 2008; Sacco & Schmitt, 2005; von Hippel et al., 2013)

In previous studies, the evaluation of supervised learning models in predicting
employee turnover often relied heavily on accuracy as the primary metric.
However, this approach may have limitations when working with imbalanced
datasets (Boughorbel et al., 2017; Jeni et al., 2013). Imbalanced datasets are
common in employee turnover prediction studies because the number of employees
who actually leave a company is typically a small fraction compared to the total
number of employees. Our thesis deals with a highly imbalanced dataset, with only
2.66% of the data labeled as “resigned” (positive). In cases like these, accuracy is
not a practical metric for evaluating model performance. For instance, a model can
achieve 97.33% accuracy simply by predicting all instances as negative. Therefore,
we use Flscore and ROC-AUC as our preferred metrics in the analysis. These
metrics are more suitable for handling imbalanced datasets (Cahyana et al., 2019;
Zhao et al., 2018). Detailed information on the calculation of each metric can be
found in Chapter 3.10.

In conclusion, previous research on employee turnover prediction using machine
learning has faced challenges regarding generalizability and practical application.
The specificity of the models developed for particular industries or countries has
hindered their transferability to diverse organizational contexts. Our thesis
addresses this limitation by utilizing a dataset encompassing multiple countries and
industries. In addition, instead of relying on subjective sentimental features, we
incorporate a diverse range of demographic features to enhance the robustness and
reliability of our models. Previous studies also heavily relied on accuracy as the
primary evaluation metric, which may not be suitable for imbalanced datasets
commonly used in employee turnover prediction. To address this issue, we adopt
Flscore and ROC-AUC as our preferred evaluation metrics, as they provide more
robust performance measures for imbalanced data. By addressing these limitations
and adopting a comprehensive approach, our thesis strives to make valuable

contributions to the field of employee turnover prediction using machine learning.

Page 12



3. Methodology

In this chapter, we present the methodology employed to develop and evaluate our
predictive models for employee turnover. We begin by discussing the feature
selection techniques used, namely Analysis of Variance (ANOVA), Chi-square
Test, and Correlation Analysis (3.1-3.3). These methods enable us to identify the
most relevant features for predicting employee turnover. Next, we delve into the
machine learning models employed in our analysis, including Decision Tree (DT),
Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme
Gradient Boosting (XGBoost) (3.4-3.7). These models were carefully chosen based
on their proven performance in predicting employee turnover and their wide
adoption in the field of machine learning. In order to ensure the robustness of our
models, we employ K-fold Cross Validation (KCV) (3.8) to assess their stability
and generalizability. For evaluating model performance, we utilize various metrics
(3.9-3.10). These include the Confusion Matrix, which provides a comprehensive
overview of model predictions, and relevant metrics such as accuracy, precision,
recall, and F1 score (3.10.1-3.10.4). Additionally, we employ the Area Under the
Receiver Operating Characteristic Curve (ROC-AUC) to evaluate the models’

discrimination power and ability to handle imbalanced datasets (3.10.5).
3.1 Analysis of Variance (ANOVA)

In our analysis, we employ Analysis of Variance (ANOVA) as a feature selection
technique to identify relevant numerical features for our machine learning model.
ANOVA is a statistical method that assesses the statistical significance of
differences between groups (Kishore et al., 2017), in this case, the relationship
between each numerical feature and the target variable, “Resigned”. The steps for

using ANOVA for feature selection in our analysis can be outlined as follows:

1. Data Preparation: We start by preparing our dataset, ensuring that it is
properly formatted and contains the target variable and the numerical
features of interest, such as Age, Tenure, and so on.

2. Grouping: We divide our dataset into two groups corresponding to the two
classes: “Resigned” and “Not Resigned”.

3. F-statistic Calculation: Using the grouped data, we calculate the F-statistic

for each selected feature. This statistic measures the variability between the
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groups compared to the variability within each group. It quantifies the extent
to which the feature explains the variation in the target variable.

4. Significance Testing: We assess the statistical significance of the F-statistic
by calculating the p-value. The p-value represents the probability of
observing a result as extreme as, or more extreme than, the one obtained
under the null hypothesis. A low p-value indicates a significant difference
between the groups and suggests that the feature is informative for
predicting the target variable.

5. Feature Selection: Based on the calculated p-values, we rank the features in
descending order of their significance. We set the significance threshold to
0.05 and select the features with p-values below this threshold. These

features are considered relevant to our model.

3.1.1 F-statistic Calculation

In Step 3 of using ANOVA for feature selection, we calculate the F-statistic for
each feature. Mathematically, the F-statistic can be calculated using the following
formula:

_ MSB
T oMsw !

3-1)

where MSB denotes the mean square between groups and MSW denotes the mean

square within groups.

To calculate MSB, we compute the sum of squares between groups (SSB) by
summing the squared differences between the group means and the overall mean,
and then divide it by the degrees of freedom between groups (dfB). The formula
for MSB is:

SSB
MSB = (3-2)
To calculate MSW, we compute the sum of squares within groups (SSW) by
summing the squared differences between each observation and its respective group
mean, and then divide it by the degrees of freedom within groups (dfW). The

formula for MSW is:

SSw

MSW=de

(3-3)
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The df B is equal to the number of groups minus one, while the dfW is equal to

the total number of observations minus the number of groups.

In summary, ANOVA-based feature selection provides a statistical framework to
identify the numerical features that contribute to the target variable. This helps to
focus the model’s learning on the informative features, potentially improving

efficiency and reducing the risk of overfitting.
3.2 Chi-square Test

The Chi-square test is a statistical test used to determine if there is a significant
association between two categorical variables by evaluating their independence
(Thaseen et al., 2019). In our analysis, we utilize the Chi-square test for feature
selection, specifically focusing on categorical features. This test allows us to
identify relevant categorical features by measuring their dependence on the target

variable.

The process of using the Chi-square test for feature selection is similar to that of
using ANOVA, with the difference being the type of features analyzed (categorical
instead of numerical) and the statistic used (Chi-square test statistic instead of F-

statistic).

3.2.1 Chi-square Test Statistic Calculation

The Chi-square test statistic is calculated based on the observed and expected

frequencies. Mathematically, it is calculated as follows:

_ 2
Z (Observed—Expected) (3_4)

Chi — square =
Expected

In this equation, the summation symbol (X) represents the summation operation
conducted over all cells in a contingency table that captures the frequencies of the
categorical feature and the target variable. For each cell, we calculate the difference
between the observed frequency (the actual count in the cell) and the expected
frequency (the count expected assuming independence between the feature and the
target variable). We then square this difference, divide it by the expected frequency,

and sum up these terms for all cells in the table.
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By calculating the Chi-square test statistic, we obtain a single numerical value that
measures the overall discrepancy between the observed and expected frequencies.
A larger Chi-square value indicates a stronger association between the feature and
the target variable, while a smaller value suggests a weaker or no association. This
statistic is subsequently used to determine the degrees of freedom and calculate the

p-value, enabling us to assess the significance of the association.

In summary, by applying the Chi-square test and analyzing the resulting p-values,
we can identify informative categorical features for the target variable. This process
helps reduce the dimensionality of the dataset and potentially enhances the

efficiency and interpretability of the model.
3.3 Correlation Analysis

Correlation analysis is a statistical technique used to assess the strength and
direction of the linear relationship between two numerical variables (Hauke &
Kossowski, 2011). In our analysis, we use correlation analysis as an additional
feature selection technique to identify the numerical features that are relevant to our
target variable. Furthermore, we examine the correlations among the features
themselves to gain insights into the relationships between the features and identify
potential issues such as multicollinearity. The steps involved in using correlation

analysis for feature selection are as follows:

1. Calculation of Correlation Coefficients: We compute the correlation
coefficients between each numerical feature and the target variable using
Pearson’s correlation coefficient, which quantifies the linear relationship
between two variables. This coefficient measures the linear relationship
between two variables, ranging from -1 to 1. A value close to 1 indicates a
strong positive correlation, a value close to -1 indicates a strong negative
correlation and a value close to 0 suggests no or weak correlation.

2. Evaluation of Correlation Strength: We assess the strength of the correlation
coefficients to identify the numerical features that exhibit a significant
relationship with the target variable. Features with high absolute correlation
coefficients are considered to have a stronger association with the target
variable and are more likely to provide meaningful information for

prediction.
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3.3.1 Pearson’s Correlation Coefficient Calculation

Pearson’s correlation coefficient is used to quantify the linear relationship between
features and the target variable. It is calculated using the formula:

- = (KX i-7) ’

N*xox*0y

(3-5)

where r represents Pearson’s correlation coefficient, X and Y represent the features
and the target variable, X and Y are the mean of X and Y, n represents the number

of data points in the dataset, and gy and oy are the standard deviations of X and Y.

In summary, by utilizing correlation analysis, we can identify the numerical features
that have a strong relationship with the target variable, allowing us to focus on the
informative features for our predictive model. This feature selection process helps
reduce dimensionality, enhance model interpretability, and potentially improve the

model’s performance.
3.4 Decision Tree (DT)

Decision Tree (DT) is a supervised learning algorithm that can be used for
classification and regression tasks (Breiman et al., 2017). It builds a tree-like model
consisting of nodes and branches, which represent decisions and their possible
outcomes. Root nodes and internal nodes correspond to features, such as an
employee’s age, while branches represent the possible values or ranges for those
features. Leaf nodes indicate class labels, which in our context would indicate

whether an employee has resigned or not.

To illustrate the functionality of a DT model, we use an example of fruit
classification. We start with a dataset that contains information about fruits,
including their color and shape, along with labels indicating whether they are
“Apple” or “Orange”. The objective is to build a DT model using this dataset to
classify new fruits based on their color and shape. Figure 3-1 showcases one
potential structure for the DT model. To make predictions using this model, we start
at the root node labeled “Color” and follow the branches based on the feature values
of the new fruits. Eventually, we reach a leaf node representing either “Apple” or

“Orange”.
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Figure 3-1 Decision Tree Structure for Fruit Classification

3.4.1 Gini Impurity

The detailed features of the DT model and its algorithm can be referred to Breiman
et al. (2017) and Priyam et al. (2013). This section is dedicated to examining the
splitting criterion of our final DT model. The splitting criterion determines the
optimal feature and value for dividing the data at each node of the tree. The two
most commonly used splitting criteria are Information Gain and Gini Impurity. In
our thesis, the final DT model utilized Gini Impurity as the splitting criterion. It is
calculated using the following formula:

Gini(S) =1—- X(p®)?), (3-6)
where p(i) represents the probability of class i appearing in the dataset S.

The resulting Gini Impurity reflects the degree of impurity or disorder within the
dataset or subset. A Gini Impurity of 0 indicates a perfectly pure dataset, where all
instances belong to the same class. Higher values indicate higher impurity, with 0.5

being the maximum impurity when classes are evenly distributed.

When considering a split on a specific feature, the Gini Impurity is calculated for
each possible split point. The optimal split is chosen based on the split that
minimizes the weighted average of the Gini Impurity for the resulting subsets. By

using the Gini Impurity as the splitting criterion, the DT algorithm aims to create
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splits that generate subsets with the least impurity, which leads to a more accurate

and informative tree.

In summary, DT is a supervised learning algorithm that involves recursively
partitioning the data based on the most informative features, ultimately creating a
tree structure that can classify new instances. The selection of an appropriate
splitting criterion is crucial in determining the optimal splits and overall accuracy
and interpretability of the DT model.

3.5 Random Forest (RF)

Ensemble learning refers to algorithms that aggregate predictions from multiple
models. Random Forest (RF) is an ensemble learning algorithm that combines
multiple DTs to make predictions. RF can be applied to both classification and
regression tasks, offering improved accuracy, reduced overfitting, and the ability to
handle high-dimensional datasets with a large number of features (Breiman, 2001).
Similar to DT, RF builds a collection of tree-like models. However, unlike a single
DT, RF builds each individual tree by selecting a random subset of the dataset with
replacement (known as bootstrap sampling) and using a random subset of features
for nodes.

Building upon our fruit classification example, Figure 3-2 presents a potential
structure for using a RF model to classify fruits. In this structure, when classifying
a new fruit, each tree in the RF independently provides its prediction (e.g., “Apple”
or “Orange”). The final prediction is then determined through majority voting,
where the class that receives the most votes across all trees is chosen, resulting in a

more reliable and accurate classification.

Fruit

p-y

Y v T
Color Color Shape
Red Not Red Green Not Green Round Oval
o ~a e ~a - ~a

Apple Orange Apple Orange Orange Apple

Figure 3-2 Random Forest Structure for Fruit Classification

Page 19



3.5.1 Bootstrap Sampling

For the detailed features of the RF model and its algorithm, please refer to Breiman
(2001) and Rodriguez-Galiano et al. (2012). This section delves into the
examination of bootstrap sampling, which holds significant importance in the RF
algorithm due to its crucial role in constructing individual DTs. It involves creating
multiple resamples (bootstrap samples) from an original dataset by randomly
selecting observations with replacement. The term “with replacement” indicates
that each selected observation is returned to the dataset before the next selection,
allowing the possibility of selecting the same observation more than once within a

resample. The fundamental steps involved in bootstrap sampling are as follows:

1. Begin with an original dataset D, containing N observations.

2. Randomly select an observation from the original dataset and add it to a
bootstrap sample.

3. Repeat Step 2 N times, with replacement, to create a bootstrap resample of
the same size as the original dataset.

4. Repeat Steps 2 and 3 a total of B times to generate B bootstrap samples,
denotedas D, ,D,, ..., Dg.

5. For each bootstrap sample, construct a decision tree using the DT algorithm.

By following these steps, we can generate multiple bootstrap samples from the
original dataset and build each individual DT using each bootstrap sample, resulting
in an ensemble of DTs. Additionally, for every bootstrap sample, a random subset
of features is chosen from the available feature set. Typically, the subset size is
smaller than the total number of features. These procedures introduce diversity
among the DTs as each tree learns from a slightly different combination of data and
features. Ultimately, this diversity aids in mitigating overfitting and improving the

generalization capability of the RF model.

In summary, RF is an ensemble learning algorithm that combines multiple DTs to
enhance prediction accuracy. By employing bootstrap sampling and random feature
selection, RF ensures diversity among the individual trees, resulting in improved

performance and robustness.
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3.6 Gradient Boosting Decision Tree (GBDT)

Gradient Boosting Decision Tree (GBDT) is an ensemble learning algorithm that
can be used for both classification and regression tasks (Friedman, 2000). GBDT
aims to create a robust predictive model by iteratively combining weak learners, in
this case, DTs, in a systematic manner. In comparison to RF, where trees are built
independently, GBDT constructs trees in a sequential manner, with each subsequent
tree designed to rectify the mistakes made by the previous trees. This iterative
process enhances the model’s predictive capability and reduces errors.
Additionally, while both RF and GBDT utilize ensembles of DTs to make final
predictions, RF relies on majority voting, whereas GBDT combines the predictions

from all the trees.

The construction process of DTs in GBDT can be summarized in the following

steps:

1. Begin with a single DT as the initial model.

2. Calculate the residuals or errors between the predictions of the current
model and the true values of the target variable.

3. Construct a new DT specifically to predict the residuals, aiming to minimize
the residuals and improve the overall model performance.

4. Update the model by adding the newly constructed DT to the ensemble,
adjusting the predictions by a certain learning rate.

5. Repeat steps 2-4 until the desired number of trees is reached or the

performance metric converges.

To provide a clearer understanding, Figure 3-3 presents a simplified example of
using GBDT to predict a person’s age. We begin with an initial DT that predicts an
age of 20. Upon comparing this prediction with the true age, we calculate a residual
of 10. To address this residual, a second DT is constructed specifically for
predicting it, estimating a value of 6 and resulting in a residual of 4. This iterative
process continues with the third tree predicting the new residual, and it persists until
the fourth tree is built to handle the remaining residuals. To obtain the ultimate
prediction, we sum up the predictions made by these four trees, resulting in a sum

of 30, representing the final age prediction. This sequential approach of iteratively
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correcting errors made by previous models allows GBDT to progressively improve

its predictive power and achieve more accurate predictions.

30 .. Prediction ) 20
__ . 20+6+3+1=30
“,\‘... , o \\\\\ f,
10 Prediction 6
Residual .

4 Prediction 3

Residuai‘“"--._\ .
S 1 Prediction 1 7/
Residual

Figure 3-3 A Simplified GBDT Structure for Age Prediction

3.6.1 Loss Function

The detailed features of the GBDT model and its algorithm can be referred to
Friedman (2000) and Ke et al. (2017). This section presents the loss function used
in our final GBDT model. The Loss function is used to quantify and capture the
discrepancy between the predicted values made by the GBDT model and the true
values. It plays a crucial role in guiding the construction of subsequent DTs and
optimizing the overall model performance. The choice of the loss function depends
on the specific problem at hand, such as binary classification, multiclass
classification, or regression. In our thesis, the final GBDT model incorporates

deviance as the chosen loss function. It is calculated using the formula:

L(y, F(x)) = log(1 + exp (=2yF (x))) , 3-7)
where L is the loss function, y is the true output and F (x) is the predicted output.

GBDT employs gradient descent to optimize the model. It utilizes the gradients of
the loss function with respect to the predictions of the current model to guide the
construction of subsequent trees. This approach ensures that each new tree is built
in a direction that minimizes the loss function, leading to a more accurate and

effective ensemble.

In conclusion, GBDT is a powerful ensemble learning algorithm that sequentially
combines DTs to enhance prediction accuracy. Through iterative error correction,
GBDT creates a strong ensemble capable of handling complex tasks.

Page 22



3.7 Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is an ensemble learning algorithm
introduced by Chen and Guestrin (2016). It builds upon the principles of GBDT
while incorporating several key enhancements to optimize computation efficiency
and model performance. One important improvement is the normalization of the
loss function, which reduces model variance and mitigates the risk of overfitting,
resulting in improved stability and robustness. XGBoost also employs a sparsity-
aware algorithm that efficiently handles attributes with a high occurrence of zero or
missing value entries by excluding them from potential splits, enhancing overall
algorithm efficiency. Additionally, XGBoost utilizes parallelizable learning to
accelerate the computation of the best split, significantly reducing computational
complexity and enabling faster model building without sacrificing ensemble

accuracy.

3.7.1 Objective Function

For an in-depth understanding of the XGBoost model, Chen and Guestrin (2016)
offer detailed insights into its algorithm. This section focuses on presenting the
definition of the objective function in XGBoost, which distinguishes it from GBDT.
The objective function in XGBoost, which can be derived from the loss function

described in Equation 3-7, can be expressed as follows:

L(y, F(x)) + 2(F (x)) , (3-8)
where 2(F (x)) represents the regularization term.

In comparison to GBDT, XGBoost incorporates the regularization term to control
the complexity of the model. In the objective function, the loss function aims to
ensure that the model fits the training data as closely as possible, the same as in
GBDT. On the other hand, the regularization term promotes simpler models by
penalizing complexity, reducing the impact of randomness when fitting the model
with limited data. As a result, it mitigates the risk of overfitting and leads to more
stable predictions from the model.

Page 23



3.7.2 Taylor Expansion

Another key difference between XGBoost and GBDT is the use of a second-order
Taylor expansion on the loss function. During each boosting iteration in XGBoost,
Taylor expansion is used to approximate the loss function by using a polynomial
expansion around a given point and making the optimization process more efficient.
This allows for more efficient computation of the gradients and Hessians, which are
used to update the model parameters during training.

Based on the loss function in Equation 3-8, the Taylor expansion of the loss function

around a point F(x,) can be expressed mathematically as follows:

92L(y,Fx))
LOVF()) = L(y, F(o) + (F() = Fx)) » 2259 1 (F(x) — Fag))” » —Z28 4 oo

(3-9)

where L(y,F(x)) represents the loss function. The first term
L(ly, F(x)) represents the loss at the point x,. The second term (F (x) — F(x,)) X

%g()x)) represents the first-order derivative of the loss function with respect to
F(x) evaluated at x,, multiplied by the difference between F(x) and F(x,). The

92L(y,Fx))
third term (F(x) — F(xo))2 X "’F;—’f)z represents the second-order derivative of

the loss function with respect to F(x) evaluated at x,, multiplied by the squared
difference between F(x) and F (x,), divided by 2! (which is 2 factorial).

By utilizing the Taylor expansion, XGBoost reduces the complexity of computing
the loss function and its derivatives, which leads to faster training and improved
efficiency. It is worth noting that the specific implementation details may vary
between different versions of XGBoost, but the general idea of using Taylor

expansion to approximate the loss function remains consistent.

In summary, XGBoost is a powerful ensemble learning algorithm that combines
efficiency, scalability, regularization techniques, and an enhanced objective

function to deliver superior classification accuracy.
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3.8 K-fold Cross Validation (KCV)

K-fold cross validation (KCV) is a widely used technique for evaluating the
performance of machine learning models (Anguita et al., 2012). In our analysis, we
utilize KCV to select the best hyperparameters and assess the performance of the
trained model. The process involves partitioning the dataset into k equal-sized

folds, where k represents the desired number of folds, in our case, k is set to 10.
The steps of KCV can be summarized as follows:

1. Partitioning: The dataset is divided into k equal-sized folds, ensuring that
each fold contains a representative subset of the data.

2. Training and Testing: The model is trained on k — 1 folds and evaluated on
the remaining fold. This process is repeated k times, with each fold serving
as the testing set exactly once.

3. Performance Metric: A performance metric, such as accuracy, precision,
recall, or F1 score, is calculated for each iteration of the training and testing
process.

4. Aggregation: The performance metrics obtained from each fold are

averaged to provide an overall performance estimate of the model.

KCV is beneficial for model evaluation as it mitigates the risk of overfitting and
provides a robust estimate of the model’s performance on unseen data. It allows us
to assess the model’s ability to generalize across different subsets of the dataset and
select the best hyperparameters based on the aggregated performance metrics. In
our analysis, KCV serves as a valuable tool for model assessment and
hyperparameter tuning, contributing to the overall reliability and validity of our

results.
3.9 Confusion Matrix

A confusion matrix is a tabular representation that summarizes the performance of
a classification model by showing the counts of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) predictions (Deng et al., 2016). It
provides valuable insights into the accuracy and error types of the model’s

predictions.
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The structure of a confusion matrix is as follows:

Table 3-1. Confusion Matrix

Predicted . .
Actual Negative Positive
Negative True Negative (TN) |[False Positive (FP)
Positive False Negative (FN) |True Positive (TP)

*TP: Instances where the model correctly predicted the positive class.
*FN: Instances where the model incorrectly predicted the negative class, but they were actually of the positive class.
*FP: Instances where the model incorrectly predicted the positive class, but they were actually of the negative class.
*TN: Instances where the model correctly predicted the negative class.

The sum of TP, TN, FP, and FN represents the total number of instances in the

dataset.
3.10 Relevant Metrics

The confusion matrix provides several performance metrics that can be derived to
evaluate the model’s performance, including accuracy, precision, recall, and F1
score. These metrics help assess the model’s ability to correctly classify instances

and identify potential imbalances or biases in the predictions.

3.10.1 Accuracy

Accuracy evaluates the overall correctness of a classification model. It represents
the proportion of correct predictions out of the total number of predictions made by
the model. The formula to calculate accuracy from a confusion matrix is:

TP+TN
TP+FP+FN+TN

Accuracy = (3-10)

Accuracy ranges from 0 to 1, where 1 indicates a perfect classification with no
errors, and O indicates complete misclassification. Accuracy provides an overall
measure of how well the model is able to classify instances correctly. However, it
may not be suitable for imbalanced datasets, where the number of instances in
different classes is significantly different. In such cases, accuracy alone may be
misleading (Boughorbel et al., 2017; Jeni et al., 2013).
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3.10.2 Precision

Precision focuses on the accuracy of positive predictions made by a classification
model. It quantifies the ratio of TP predictions to the total number of positive
predictions generated by the model. The formula to calculate precision is:

TP
TP+FP

Precision = (3-11)

Precision ranges from 0 to 1, where 1 indicates perfect precision with no FP
predictions and O indicates complete misclassification of positive instances.
Precision is particularly useful in scenarios where the cost of FP is high. It indicates
how well the model is able to identify the TP instances while minimizing FP. A
high precision value indicates a low rate of FP and a high level of confidence in the

positive predictions made by the model.
3.10.3 Recall

Recall measures the proportion of TP predictions out of all actual positive instances
in a classification problem. It quantifies the ability of a model to correctly identify
positive instances. The formula to calculate recall from a confusion matrix is:

TP
TP+FN

Recall = (3-12)

Recall ranges from 0 to 1, where 1 indicates a perfect recall with no FN predictions
and 0 indicates complete misclassification of positive instances. Recall is
particularly important in scenarios where the cost of FN is high. It indicates how
well the model captures all positive instances and minimizes FN. A high recall
indicates a low rate of FN and a high level of sensitivity in detecting positive

instances.

3.10.4 F1 Score

F1 score combines both precision and recall into a balanced measure of a model’s
performance. It provides a harmonic mean of precision and recall, giving equal
importance to both metrics. The formula to calculate F1 score from precision and

recall is:

F1 =2« Precision*Recall (3_13)

Precision+Recall
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F1 score ranges from 0 to 1, where 1 indicates the best possible performance and 0
indicates the worst. When F1 score is high, it indicates that the model has achieved
a good trade-off between precision and recall. F1 score is particularly useful in
scenarios where there is an imbalance between positive and negative instances in
the dataset (Cahyana et al., 2019). It provides a way to assess a model’s ability to

achieve both high precision (minimizing FP) and high recall (minimizing FN).

3.10.5 Area Under the Receiver Operating Characteristic Curve (ROC-AUC)

Area Under the Receiver Operating Characteristic Curve (ROC-AUC) is a
performance metric used to evaluate the predictive power of a binary classification

model.

The ROC curve is a graphical representation of the model’s performance by plotting
the true positive rate (TPR) on the y-axis against the false positive rate (FPR) on
the x-axis at various classification thresholds. The curve illustrates how well the
model can distinguish between the positive and negative classes across different

threshold settings.

The AUC refers to the area under the ROC curve. It assesses the overall
performance of the model by quantifying the probability that the model will assign
a higher rank to a randomly selected positive instance compared to a randomly
selected negative instance.

The AUC value ranges from 0 to 1, where a value of 1 indicates a perfect classifier

and a value of 0.5 suggests a random classifier (no better than random).

TPR, also known as recall, is calculated with reference to Equation 3-12. FPR is

calculated as:

FP
FP+TN

FPR =

(3-14)

A higher ROC-AUC score indicates that the model has a stronger ability to
accurately differentiate between classes. It is particularly useful when dealing with
imbalanced datasets, where the distribution of positive and negative instances is
unequal (Miao & Zhu, 2020). Figure 3-4 shows an example of the ROC-AUC plot

derived from the final XGBoost model of our analysis.
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4. Data

In this chapter, we focus on the data used in our analysis and the various steps
involved in preparing it for analysis. We begin by discussing the data source and
structure (4.1). Next, we address the crucial process of data cleaning (4.2). This step
involves identifying and handling missing values and inconsistencies in the dataset
to ensure its quality and reliability. To gain a better understanding of the dataset,
we conduct descriptive analysis (4.3), which involves summarizing and visualizing
key characteristics and patterns present in the data. Subsequently, we move on to
data preprocessing (4.4). This stage includes several steps such as categorical data
encoding (4.4.1) to transform categorical features into numerical representations
suitable for different machine learning algorithms. We also discuss data splitting
(4.4.2), which involves dividing the dataset into training, validation, and testing sets
to evaluate model performance accurately. Feature selection plays a crucial role in
building effective predictive models. We explore different techniques for feature
selection (4.5), including Analysis of Variance (ANOVA) (4.5.1), Chi-square test
(4.5.2), and correlation analysis (4.5.3). These methods help identify the most
relevant features that contribute to predicting employee turnover. We summarize
the findings of the feature selection process (4.5.4), highlighting the selected
features for further analysis. By thoroughly examining the data source, cleaning and
preprocessing the dataset, and performing feature selection, we ensure the data’s
quality and suitability for developing accurate and reliable models for predicting
employee turnover. These steps lay the foundation for the subsequent analysis and

modeling stages of our work.

4.1 Data Source and Structure

The dataset used in the analysis is provided by a multinational corporation
headquartered in Oslo, Norway. The company has over 10,000 employees in more
than 100 countries worldwide. The dataset consists of two files: one file contains
monthly employee demographic information spanning from January 2021 to June
2022, while the second file contains a list of employees who left the company
between January 2021 and September 2022, including their departure dates and
reasons for leaving. It is important to note that the data specifically focuses on
permanent employees of the company, excluding temporary employees who have

predetermined end dates for their employment. Additionally, to ensure a more
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focused analysis, the dataset only includes employee data from the top 10 countries
with the highest number of employees in the company. By narrowing the scope to

these countries, which include China, Germany, India, Italy, Netherlands, Norway,
all columns included in both data files, accompanied by their respective

Poland, Spain, United Kingdom, and the United States, the analysis concentrates
on regions with substantial employee representation. For a comprehensive
overview of the dataset's structure and content, Table 4-1 presents a detailed list of
descriptions. Furthermore, to provide a glimpse of the dataset's contents, examples
of rows from the employee demographics file and the termination file can be found

in Table 4-2 and Table 4-3, respectively.
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Table 4-3. Sample Rows from the Employee Termination File

Employee ID

Termination date

Termination type

Termination reason

XXX

2022-07-31 00:00:00

Voluntary

Voluntary

XXX

2022-01-31 00:00:00

Voluntary

Voluntary

XXX

2021-02-28 00:00:00

Involuntary

Transfer

XXX

2021-01-31 00:00:00

Voluntary

Voluntary

XXX

2022-03-31 00:00:00

Voluntary

Voluntary

XXX

2021-09-30 00:00:00

Involuntary

Transfer

4.2 Data Cleaning

In order to prepare the dataset for model training, we conducted several rounds of
data cleaning.

Firstly, we merged the two files based on the common column, Employee ID. After
merging, employees with recorded dates of resignation were identified as having
left the company. The prediction period of our model was set at three months.
Therefore, employees who had resigned within three months of the data extraction
date were labeled as “resigned” (positive), while others were labeled as “not
resigned” (negative). We determined the three-month prediction period in
consultation with the company that provided the data. They highlighted that if the
prediction period was too short, such as one month, the company would not have
sufficient time to take action even if they knew they were going to lose employees.
On the other hand, we discovered that if the prediction period was too long, it would
adversely affect the model’s performance. Overall, the three-month prediction
period provides companies with an early warning of employee turnover and allows

them enough time to take preventative action.
Secondly, we cleaned the merged file by column:

Employee ID: Given that the employee identifier is unique and does not contribute
meaningful information to the prediction task, we have made the decision to
exclude this column. This simplification allows us to focus on relevant features that

have a more direct impact on the prediction outcome.

Exaction date: Considering that this feature merely indicates the date when the
data was collected from the HR system. It is unrelated to actual resignation
outcomes and does not provide direct insights into an employee’s decision-making

process. We have made the decision to exclude this column.
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Age: The initial range of values in this column extended from -1 to 86, suggesting
potential errors in data entry. Taking into account variations in retirement age across
different countries, we have chosen to narrow down the range and only include
employee ages between 20 and 70. This adjustment, which removed 0.25% of the
data, ensures a more realistic representation of the dataset while accounting for the

typical age demographics of employees.

Education: Around 8.00% of employees in our dataset have been labeled as “Not
Applicable” or “Unknown” in this column, amounting to a total of 12,693 rows.
Removing these rows would result in a reduction in the overall size of our dataset,
which is not ideal for maintaining an adequate sample size for analysis and
modeling purposes. As a result, we have concluded that excluding the “Education”
column is a more favorable approach in order to ensure the integrity and reliability

of our dataset.

Gender: This column contained entries labeled as “Unknown”, which constituted
approximately 0.04% of the data. To maintain the dataset’s accuracy and reliability,

we have made the decision to exclude the “Unknown” entries from our analysis.

Hire date & Tenure: After careful consideration, we have opted to remove the
“Hire date” column from our dataset. This decision is made based on the fact that
the information conveyed by the “Hire date” column is essentially redundant with
the “Tenure” column. By removing the “Hire date” column, we can streamline our
analysis and maintain data consistency by focusing on a single column to capture

employee tenure information.

Industry: Although the dataset primarily focuses on registered employees within
the company, it contains data on external individuals working for the company,
referred to as “External”. These external employees comprise 0.04% of the dataset.

We have excluded the external employees’ data from our analysis.

Last date of promotion: During the analysis of this column, we discovered that
approximately 2.37% of the entries were missing. Upon further examination, it was
determined that these blank entries were likely erroneous. Even employees who
have never been promoted have their hire date recorded as the last promotion date.
In order to maintain the completeness and consistency of our dataset, we have made

the decision to remove these blank entries.
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Level: The entry labeled as “Unknown” was identified as an error in this column.
It is evident that these errors were introduced during the data input process.
Consequently, we have removed these entries which accounted for 0.11% of the

employees in the dataset.

Title: In this column, we have excluded the entries labeled as “No Title” and

“Unknown”. These values accounted for only 0.06% of the dataset.

Termination date, Termination type & Termination reason: In alignment with
our analysis focus on voluntary turnover prediction, we have exclusively included
voluntary resignations in the dataset. Consequently, termination types such as
dismissals, transfers, illnesses, and deaths, which fall under the category of
involuntary reasons for leaving, have been deliberately excluded. Additionally, to
avoid target leakage in our analysis, we have made the decision not to include the
“Termination date”, “Termination type” and “Termination reason” columns in our
dataset. Given that our objective is to predict an employee’s decision to leave the
company, including these columns would introduce information that becomes

available only after an employee has already left.

After completing the data cleaning process, the dataset contains a total of 146,885
data points. Among these, 3,912 instances are labeled as positive, representing
approximately 2.66% of the dataset. These positive instances indicate individuals
who have resigned within a three-month time frame. The dataset includes eight
features: Age, Country, Gender, Industry, Last date of promotion, Level, Tenure,
and Title. These features provide valuable information about the individuals in the
dataset and can be used for further analysis and modeling. Additionally, there is one
target column, “Resigned”, which serves as an indicator variable, indicating

whether an employee has resigned or not within the specified time period.
4.3 Descriptive Analysis

The dataset used in our analysis is thoroughly examined through the following
graphs, offering a comprehensive descriptive analysis. Figure 4-1 illustrates the
complete dataset encompassing all employees, providing insights into various
aspects. On the other hand, Figure 4-2 focuses specifically on the data of employees

who have resigned, allowing for a more targeted examination of this subgroup.
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Figure 4-1 Descriptive Analysis of All Employees
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Figure 4-2 Descriptive Analysis of Resigned Employees
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4.4 Data Preprocessing

4.4.1 Categorical Feature Encoding

In order to ensure that the same dataset can be used for training different machine
learning models, we performed categorical feature encoding during the data
preprocessing stage. We encoded the categorical features using the “LabelEncoder”
function from the “sklearn.preprocessing” module in Python. The code used for
feature encoding can be found in Appendix 7.1. This process allows us to convert
categorical data into a numeric format, as the DT and RF algorithms in the scikit-
learn library for Python do not support categorical variables (Pedregosa et al.,
2011). By applying the LabelEncoder function, we transformed each unique
category within categorical features, including Industry, Gender, Title, and
Country, into a corresponding unique integer. This encoding procedure guarantees
that the data is in a suitable format that can be effectively utilized by various

machine learning models for both training and analysis purposes.

4.4.2 Data Splitting

To ensure a robust evaluation process for model performance, we conducted data
splitting during the data preprocessing stage using the “train_test_split” function
from the “sklearn.model_selection” module. The code used for data splitting can be
found in Appendix 7.2. The dataset is randomly divided into three subsets: the
training set, the validation set, and the testing set. The training set is allocated 60%
of the total data, while both the validation and testing sets accounted for 20% each.
Additionally, the proportion of positive instances in all three subsets remains
consistent at 2.66%, which is the same as the proportion in the original dataset. This
stratified splitting ensures a balanced representation of the target variable across the
subsets. By splitting the data into distinct sets, we can avoid using the validation
and testing sets for feature selection and model training. This ensures that the model
is evaluated on previously unseen instances, minimizing the risk of biased
evaluation and information leakage. Moreover, having a separate validation set
allows us to fine-tune the model’s hyperparameters without compromising the
integrity of the results. Data splitting plays a crucial role in providing a more

realistic estimation of the model’s generalization capabilities and enhances the
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overall reliability of our analysis. Table 4-4 presents the distribution of positive and

negative instances across different subsets after data splitting.

Table 4-4. Resigned vs. Unresigned Individuals in Different Subsets

Training Set Res|gr1ed =
Unresigned | 85,784
Validation Set RESIQhed =
Unresigned | 28,595
_ Resigned 782

T
esting Set Unresigned | 28,595

4.5 Feature Selection

In order to train our machine learning model with the most significant and
influential features from the dataset, we applied three widely recognized
(Chandrashekar & Sahin, 2014; J. Li et al., 2017; Khalid et al., 2014) feature
selection techniques: Analysis of Variance (ANOVA), Chi-square test and
correlation analysis. Each technique was selected based on its specific strengths and
suitability for our classification task. In this chapter, we examine the outcomes of
each feature selection test and discuss their implications for our analysis. The
detailed step-by-step process for each feature selection test can be found in
Appendix 7.3.

4.5.1 ANOVA for Numerical Feature Selection

Table 4-5. ANOVA Test Results: Feature Significance at 5% Level

Feature Statistically Significant at 5% Level?
Tenure TRUE
Age TRUE
Level TRUE
Last date of promotion TRUE

* Features are sorted in ascending order according to their p-value.

Table 4-5 presents the result of the ANOVA, which examined the statistical
significance of each numerical feature at a 5% significance level using p-values.
The analysis revealed that all the analyzed features, namely Age, Tenure, Last date
of promotion, and Level, demonstrated statistical significance. This indicates that
these features have a substantial impact on the target variable and possess valuable
predictive power for employee turnover. These findings align with the descriptive
analysis presented in Figure 4-2. For instance, the Age feature suggests that younger
employees are more likely to resign, while the Tenure feature indicates that

employees with shorter tenures have a higher probability of leaving their jobs. In
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summary, the ANOVA reveals a strong relationship between employee turnover
and all the numerical features in the dataset, including Age, Tenure, Last date of

promotion, and Level.

4.5.2 Chi-square Test for Cateqgorical Feature Selection

Table 4-6. Chi-square Test Results: Feature Significance at 5% Level

Feature Statistically Significant at 5% Level?
Country TRUE
Industry TRUE
Title TRUE
Gender FALSE

* Features are sorted in ascending order according to their p-value.

Table 4-6 presents the results of the Chi-square test conducted for each categorical
feature at a 5% significance level. The results indicate that Country, Industry, and
Title show a strong association with the target variable, suggesting that these
features have a significant impact on employee turnover. On the other hand, the
Chi-square test reveals that the Gender feature has a limited impact on the target
variable, suggesting that it may not be a strong predictor of employee turnover. The
lack of significance for gender could be attributed to several possible reasons. One
reason could be the dataset itself may not capture all the relevant aspects related to
gender and employee turnover. Factors such as gender bias or gender-related
disparities in the workplace may not be adequately represented in the available data,
leading to a limited impact of gender on the prediction of employee turnover.
Additionally, it is important to consider the nature of the specific industry or
organizational context. Certain industries or workplaces may have a more gender-
neutral or inclusive culture, where gender may have a limited influence on
employee turnover compared to other factors. In conclusion, the Chi-square test
results indicate that Country, Industry, and Title have a significant association with
the target variable, suggesting that they play a crucial role in predicting employee
turnover. However, the Gender feature shows a limited impact on the target
variable, indicating that it may not be a strong predictor. It is important to recognize
the contextual factors and potential variations in different datasets or organizational
settings. The significance of gender as a predictor of employee turnover can vary
depending on the industry, workplace culture, and specific characteristics of the

dataset.
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4.5.3 Correlation Analysis for Numerical Feature Selection

-0.094

Age

-08

Last date of promotion Tenure

Level

Resigned

Age Tenure Last date of promotion Level Resigned

Figure 4-3 Correlation Heatmap of Numerical Features and the Target Variable

Figure 4-3 shows the correlation heatmap among all the numerical features and the
target variable (Resigned). The overall low correlation between the target variable
and the numerical features indicates the challenge of accurately predicting
employee turnover based solely on a single variable. In addition, Age and Tenure
have the highest correlation among the features themselves, with a correlation
coefficient of 0.65. This is reasonable, considering that employees with longer
tenures within a company are typically older on average. It is worth noting that the
features generally demonstrate a low degree of correlation with each other,
suggesting that each feature carries unique information and contributes
independently to the prediction of employee turnover.

4.5.4 Summary

In summary, the application of ANOVA, Chi-square test, and correlation analysis
revealed that Age, Tenure, Last date of promotion, Country, Level, Industry, and
Title are identified as key features exhibiting a strong relationship with the target
variable, Resigned. However, Gender did not demonstrate statistical significance in
the Chi-square test. As a result, we made the decision to remove Gender from the
dataset. However, it is important to acknowledge that the significance of Gender
may vary across different contexts or datasets, and the decision to exclude it should

be evaluated in consideration of the specific industry, workplace culture, and
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available data. Additionally, it is important to recognize the potential biases in the
dataset such as the imbalanced class distribution, where the number of employees
who resigned is significantly smaller than those who did not. This class imbalance
can impact the performance of the feature selection tests and should be taken into
account. Overall, while the feature selection techniques provided valuable insights,
it is crucial to interpret the results with caution and account for the limitations and

biases inherent in the dataset.
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5. Analysis

In this chapter, our focus is on the training process of the machine learning models
employed in this study, namely Decision Tree (DT) (5.1), Random Forest (RF)
(5.2), Gradient Boosting Decision Tree (GBDT) (5.3), and Extreme Gradient
Boosting (XGBoost) (5.4). For each model, we begin by examining its performance
without any hyperparameter tuning, establishing a baseline for comparison.
Subsequently, we delve into the hyperparameter tuning process, providing a
practical example to illustrate the methodology (5.1.2). Finally, we evaluate the
model’s performance after the hyperparameter tuning phase, allowing us to assess

the effectiveness of the optimized configurations.
5.1 Decision Tree (DT)

In this section, we focus on the training of the Decision Tree (DT) model, which

serves as the foundation for the other three models.

5.1.1 Model Performance Without Hyperparameter Tuning

We begin by evaluating the performance of the DT model without any
hyperparameter tuning using the training set. This initial step allows us to explore
the model’s compatibility with the dataset and gain insights into its predictive
capabilities. As shown in Table 5-1, the DT model demonstrates excellent
performance on the training set, achieving an F1 score of 0.98. This high F1 score
indicates a strong ability of the model to correctly classify the target variable based
on the training data. Furthermore, the model maintains a commendable
performance on the validation set, with an F1 score of 0.90. This suggests that the
model generalizes well to unseen data, reinforcing its effectiveness in predicting
employee turnover. It is important to note that the extremely high accuracy values
obtained for both the training and validation sets can be misleading. The dataset is
highly imbalanced, so accuracy alone is not the most appropriate metric for
evaluating model performance in this case. Overall, the DT model without any
hyperparameter tuning demonstrates a reasonable ability to classify employees into
their respective turnover categories. Given these initial results, it is evident that the
DT model has the potential to be a valuable tool for identifying employees at risk
of turnover. However, further improvements can be made through hyperparameter

tuning, which is discussed in the following sections.
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Table 5-1. DT Model Score (Default Hyperparameter)

Training Set | Validation Set
Accuracy 1 0.99
Precision 0.99 0.92
Recall 0.97 0.89
F1 score 0.98 0.90

5.1.2 Hyperparameter Tuning Process (with example)

Hyperparameter tuning involves adjusting the model’s parameters to find the

optimal configuration that improves its performance and generalization ability. By

fine-tuning the hyperparameters, we aim to strike a balance between model

complexity and generalization ability. The classification DT model has a total of 12

parameters that can be adjusted (sklearn.tree.DecisionTreeClassifier, n.d.). After a

thorough examination, we categorize these parameters into three categories based

on their significance and impact on the model’s performance. The three categories

are as follows:

1. Hyperparameters for model tuning:

criterion: This parameter allows us to choose between “entropy” or
“gini” as the measure of the importance of features in splitting the
nodes of the tree.

max_depth: It limits the maximum depth of the DT. Considering the
large sample size in our analysis, we choose to limit the maximum
depth to prevent overfitting.

max_features: It controls the number of features that are considered
when looking for the best split at each node of the tree. By tuning it,
we can influence the randomness and diversity of the feature
selection process.

min_samples_split: This parameter sets the minimum number of
samples required in a node for it to be considered for further
splitting. The default value is 2, meaning that a node will only
continue to split if it contains more than 2 samples.
min_samples_leaf: When the number of samples assigned to a leaf
node is less than the set number, the leaf node will be pruned. This

can help remove some obvious noise data.

2. Hyperparameters for handling an unbalanced dataset:
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e class_weight: This parameter is used to assign different weights to
positive and negative samples when the dataset is highly
imbalanced. In our case, where the dataset is highly imbalanced, we
have adjusted this parameter to account for the unequal distribution
of classes.

3. Other hyperparameters.

For our analysis, the remaining parameters do not require manual
adjustment, as they typically do not significantly impact the model’s

performance.

To fine-tune these hyperparameters, we employ the K-fold Cross Validation (KCV)
and grid search to explore different combinations of hyperparameter values and
identify the best-performing configuration. In Appendix 7.4, we provide a detailed
description of the hyperparameter tuning process for the DT model, including the
range of values considered for each hyperparameter and the evaluation metrics used
to assess the performance of different parameter configurations. Here, we will
demonstrate the process of tuning the “max_depth” parameter as an example. The
“max_depth” parameter determines the maximum depth of the DT, which controls

the complexity of the model.

First to narrow down the range of values for “max_depth”, we use KCV with 5
folds and the F1 score as the scoring function. We examine the range starting from
10 to 100, with increments of 10. Figure 5-1 shows the F1 score as a function of
different depths. The result shows that the F1 score reaches its peak when the depth
is around 40. Based on this finding, we further narrow our search range to focus on
values between 30 and 50. Figure 5-2 shows the F1 score as a function of different
“max_depth” values within this range. It appears that the F1 score initially increases
with the increase in the depth and reaches its highest value at a “max_depth” of 35,
with a score of 0.78 on the training set. This indicates that setting the tree depth to
35 achieves the optimal balance between capturing relevant information from the
data and preventing overfitting. Using the value of 35 for the “max_depth”
parameter, we can move on to adjust the other parameters to further optimize the

model’s performance.
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Figure 5-2 Cross-Validation Search of «max_depth» (Range 30 to 50)

After conducting hyperparameter tuning for the DT model, we obtain the final

hyperparameter configuration, which is listed in Table 5-2.

Table 5-2. Hyperparameter Configuration for the DT Mode

Hyperparameter Value
class_weight None
ccp_alpha 0.0
criterion gini
max_depth 35
max_features 2
max_leaf nodes None
min_impurity decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight fraction_leaf 0.0
random _state 42
spliter best

5.1.3 Model Performance After Hyperparameter Tuning

To evaluate the performance of the final DT model, we first conduct KCV on the
training set to assess its stability. The detailed KCV process can be found in
Appendix 7.5. The average F1 score on the training set is 0.79, indicating a
reasonably good performance in classifying the training data. Additionally, the
average ROC-AUC score is 0.86, suggesting a relatively robust performance. To
further evaluate the model, we compare its performance on the testing set before
and after hyperparameter tuning. Table 5-3 presents the model score before and

after tuning. The precision of the model increases from 0.92 to 0.95, indicating a
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higher accuracy in predicting positive instances. The recall remains the same at
0.89, and the F1 score increases by 0.02. To gain more insight, we examine the
confusion matrix, which provides a detailed breakdown of the model’s predictions.
As shown in Table 5-4, the model correctly predicts 14 additional instances
(TN+TF) compared to the model without hyperparameter tuning. Additionally, the
number of FP predictions decreases by 16 and the number of FN decreases by 7,
indicating a reduction in misclassifications. Although the overall improvement in
the performance metrics may appear subtle, a closer examination of the confusion
matrix reveals that the model’s predictions have become more accurate and aligned

with the true labels.

Table 5-3. DT Model Score on Testing Set

Default Hyperparameter | Tunned Hyperarameter
Accuracy 0.99 0.99
Precision 0.92 0.95
Recall 0.89 0.89
F1 score 0.90 0.92

Table 5-4. Confusion Matrix on Testing Set of the DT Model

Default Hyperparameter Eredicted Label -
0 (Not Resigned) 1 (Resigned)
Tunned Hyperarameter 0 (Not Re:i ;ig:j(;ted Lla?;:asigned)

In summary, the DT model proves to be highly suitable for predicting employee
turnover using the available dataset. Through the process of hyperparameter tuning,
the model demonstrates slightly improved performance, including higher accuracy
in predicting positive instances and a reduction in misclassifications. These
enhancements further enhance the model’s effectiveness in identifying employees
at risk of turnover.

5.2 Random Forest (RF)

In this section, we delve into the training of the Random Forest (RF) model, which
builds upon the foundation of the DT model. By leveraging the power of ensemble
learning, RF enhances the predictive performance and generalization ability

compared to a single DT.
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5.2.1 Model Performance Without Hyperparameter Tuning

To assess the compatibility of the RF model with the dataset, we initially evaluate
the model performance using the default parameters. As shown in Table 5-5, the
results are highly promising. The model achieves an F1 score of 0.98 on the training
set and 0.92 on the validation set. These scores surpass the performance of the DT
model, which is reasonable considering that RF is built upon DT. To explore the
potential for further improvement, we proceed with hyperparameter tuning to

optimize the RF model's performance.

Table 5-5. RF Model Score (Default Hyperparameter)

Training Set | Validation Set
Accuracy 1 0.99
Precision 0.99 0.98
Recall 0.98 0.87
F1 score 0.98 0.92

5.2.2 Hyperparameter Tuning Process

Compared to the DT model, the RF model introduces 6 additional hyperparameters
(sklearn.ensemble.RandomForestClassifier, n.d.). In the process of hyperparameter
tuning, we have chosen to focus on tuning several specific hyperparameters that we
found to be crucial for enhancing the model’s performance. These hyperparameters
include class_weight, criterion, max_depth, max_features, min_samples_split, and
min_samples_leaf, which are introduced in the DT model. In addition, we also
considered the following new hyperparameters introduced by the RF model:

n_estimators: This hyperparameter controls the number of trees in the forest.
Increasing the number of trees typically leads to an improvement in the performance
of the model. However, there comes a point where adding more trees no longer
significantly increases accuracy, and the computational cost of training the model

increases.

bootstrap: It determines whether to use bootstrap samples when building each tree
in the random forest. Bootstrap sampling involves randomly sampling the training
dataset with replacement, which can introduce diversity and improve the model’s
generalization ability.

oob_score: When bootstrap is set to True, this hyperparameter allows us to use out-

of-bag data to evaluate the model’s performance. Out-of-bag samples are data
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points that are not included in the bootstrap sample used for training a particular

tree.

The hyperparameter tuning process, including the range of values explored for each
parameter and the evaluation metrics used to assess the performance of various
parameter configurations, is provided in detail in Appendix 7.6. The final

hyperparameter configuration of the RF model is listed in Table 5-6.

Table 5-6. Hyperparameter Configuration for the RF Model

Hyperparameter Value
bootstrap True
ccp_alpha 0.0
class_weight None
criterion gini
max_depth 31
max_features auto
max_leaf nodes None
max_samples None
min_impurity decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction leaf 0.0
n_estimators 169.0
n_jobs None
oob_score False
random state 42
verbose 0.0
warm start False

5.2.3 Model Performance After Hyperparameter Tuning

After conducting hyperparameter tuning, we first perform KCV to assess the
stability of the final RF model. The detailed procedures of the KCV can be found
in Appendix 7.7. The average F1 score and ROC-AUC on the training set are 0.81
and 0.98, respectively, indicating the model’s stability and its ability to generalize
well across different folds of the data. Subsequently, we evaluate the performance
of the RF model on the testing set before and after hyperparameter tuning, as shown
in Table 5-7. Comparing the results with the DT model, the RF model after
hyperparameter tuning does not show a significant improvement. One possible
explanation for this observation is that the RF model with default hyperparameters
already demonstrates satisfactory performance, leaving limited room for further
enhancement. The F1 score is 0.92, indicating a strong overall performance in

classifying positive and negative instances. The model has a high precision of 0.98,
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indicating a low rate of FP predictions, and a relatively low recall of 0.87,
suggesting a slightly higher rate of FN predictions. This finding is consistent with
the confusion matrix shown in Table 5-8, where the number of FP predictions is
only 13, while the number of FN is 221.

Table 5-7. RF Model Score on Testing Set

Default Hyperparameter | Tunned Hyperarameter
Accuracy 0.99 0.99
Precision 0.98 0.98
Recall 0.87 0.87
F1 score 0.92 0.92

Table 5-8. Confusion Matrix on Testing Set of the RF Model

Predicted Label
0 (Not Resigned) 1 (Resigned)
0 (Not Resigned) 28,582 13
1 (Resigned) 776 6
Predicted Label
0 (Not Resigned) 1 (Resigned)
0 (Not Resigned) 28,582 13
1 (Resigned) 221 561

Default Hyperparameter

True Label

Tunned Hyperarameter

True Label

In summary, the RF model proves to be highly effective for predicting employee
turnover. Even without hyperparameter tuning, the model exhibits strong

performance using the dataset at hand.
5.3 Gradient Boosting Decision Tree (GBDT)

In this section, we focus on the training of the Gradient Boosting Decision Tree
(GBDT) model, which is a powerful ensemble learning model that improves upon

the performance of a single DT.

5.3.1 Model Performance Without Hyperparameter Tuning

To assess the compatibility between the GBDT model and the dataset, we begin by
evaluating the model’s performance using the default hyperparameters. However,
the obtained results, presented in Table 5-9, indicate subpar performance compared
to the DT and RF models. Both the training set and validation set show an F1 score
of 0.50, suggesting that the GBDT model faces challenges in accurately identifying
positive instances. These findings highlight the need for further optimization and
hyperparameter tuning to better adapt the model to the distinct characteristics of the
dataset.
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Table 5-9. GBDT Model Score (Default Hyperparameter)

Training Set | Validation Set
Accuracy 0.97 0.97
Precision 0.97 0.88
Recall 0.51 0.50
F1 score 0.50 0.50

5.3.2 Hyperparameter Tuning Process

The classification GBDT model has a total of 20 hyperparameters that can be
adjusted (sklearn.tree.GradientBoostingClassifier, n.d.). After a thorough
evaluation, we identified several critical hyperparameters that significantly impact
model performance. The hyparameters we focus on include learning_rate,
n_estimators, loss, subsample, min_samples_split, min_samples_leaf and
max_depth. By fine-tuning these parameters, we aim to optimize the performance
and predictive capabilities of the model. In addition to the previously mentioned
hyperparameters, there are several new hyperparameters that require interpretation.

These hyperparameters include:

n_estimators: This hyperparameter refers to the number of boosting stages or
iterations that GBDT will perform during the training process. In other words, it
represents the number of DTs that will be sequentially added to the ensemble.
Increasing the number of trees allows the model to learn more complex
relationships within the data. However, it also increases the computational cost and

the risk of overfitting.

learning_rate: When a new tree is added to the model, its purpose is to correct the
mistakes made by the sum of the previous trees. This hyperparameter determines
the contribution of each individual tree to the final outcome. By adjusting the
learning_rate, we control the weight or influence of each tree in the ensemble. A
smaller learning_rate means each tree has a smaller impact on the final prediction,

while a larger learning_rate allows each tree to have a stronger influence.

loss: For classification models, there are two options for the loss function: the log-
likelihood loss function “deviance” and the exponential loss function

“exponential”.

subsample: This parameter represents the fraction of samples that will be used for

fitting each individual base learner. It is important to note that the subsampling
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technique used here is different from that of RF. While RF employs replacement
sampling, where samples are randomly selected with replacement, the subsampling

in GBDT does not involve putting back the samples.

In Appendix 7.8, we provide a detailed description of the hyperparameter tuning
process for the GBDT model, including the range of values considered for each
hyperparameter and the evaluation metrics used to assess the performance of
different parameter configurations. The finalized hyperparameter configuration of
the GBDT model is presented in Table 5-10.

Table 5-10. Hyperparameter Configuration for the GBDT Model

Hyperparameter Value
ccp_alpha 0.0
criterion friedman_mse
init None
learning_rate 0.22
loss deviance
max_depth 20.0
max_features None
max_leaf nodes None
min_impurity_decrease 0.0
min_samples_leaf 1.0
min_samples_split 2.0
min_weight fraction_leaf 0.0
n_estimators 8000
n_iter_no_change None
random _state 42
subsample 1.0
tol 0.0001
validation_fraction 0.1
verbose 0.0
warm_start False

5.3.3 Model Performance After Hyperparameter Tuning

To evaluate the performance of the final GBDT model, we first conduct KCV on
the training set. The results show an average F1 score of 0.82 and an average ROC-
AUC of 0.94. These scores provide strong evidence of the GBDT model’s
effectiveness in distinguishing between positive and negative instances. For a
detailed account of the KCV process, please refer to Appendix 7.9. We also
compare the model’s performance on the testing set before and after
hyperparameter tuning. As shown in Table 5-11, the F1 score experiences a
significant boost from 0.50 to 0.93, indicating an improved balance between

precision and recall. Consistently, the recall score exhibits a substantial increase
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from 0.50 to 0.89. To gain a better insight, we analyze the confusion matrix. Table
5-12 reveals a significant enhancement in the predictive performance of the final
GBDT model. It accurately identifies an additional 586 instances (TN+TF)
compared to the original model. In addition, there is a notable reduction of 605
instances in FN predictions. However, it should be noted that there is a slight

increase of 19 instances in FP predictions.

Table 5-11. GBDT Model Score on Testing Set

Default Hyperparameter | Tunned Hyperarameter
Accuracy 0.97 0.99
Precision 0.92 0.98
Recall 0.50 0.89
F1 score 0.50 0.93

Table 5-12. Confusion Matrix on Testing Set of the GBDT Model

Predicted Label
0 (Not Resigned) 1 (Resigned)
0 (Not Resigned) 28,594 1
1 (Resigned) 776 6
Predicted Label
0 (Not Resigned) 1 (Resigned)
0 (Not Resigned) 28,575 20
1 (Resigned) 171 611

Default Hyperparameter

True Label

Tunned Hyperarameter

True Label

In summary, the process of hyperparameter tuning had a transformative impact on
the GBDT model, resulting in significant enhancements in its performance.
Through the fine-tuning of hyperparameters, the model shows greater proficiency
in correctly identifying positive instances and reducing FN predictions. These
improvements make the tuned GBDT model a more reliable and effective tool for
predicting employee turnover.

5.4 Extreme Gradient Boosting (XGBoost)

In this section, we explore the training of the Extreme Gradient Boosting
(XGBoost) model, which builds upon the foundation of the GBDT model and is

known for its efficiency, scalability, and high performance.

5.4.1 Model Performance Without Hyperparameter Tuning

We begin by evaluating the performance of the XGBoost model on the training set
using its default hyperparameters. The results, as displayed in Table 5-13, show

Page 52



relatively low F1 scores of 0.66 on the training set and 0.59 on the validation set.
Although these scores are slightly better than the GBDT model with default
hyperparameters, it is evident that the XGBoost model without hyperparameter
tuning struggles to accurately identify a considerable number of positive cases. To

enhance the model’s performance, we proceed with hyperparameter tuning.

Table 5-13. XGBoost Model Score (Default Hyperparameter)

Training Set | Validation Set
Accuracy 0.98 0.98
Precision 0.99 0.97
Recall 0.60 0.56
F1 score 0.66 0.59

5.4.2 Hyperparameter Tuning Process

The classification XGBoost model has a total of 29 hyperparameters that can be
adjusted to optimize its performance (XGBoost Parameters, n.d.). In our analysis,
we focus on testing hyperparameters related to tree construction, boosting process,
and regularization. To identify the optimal hyperparameter configuration, we
systematically explore various combinations. Through this process, we discover
that the most influential parameters affecting the model’s performance are
learning_rate, n_estimators, subsample, and max_depth, which are introduced in
the GBDT model. In addition, we also consider the following new hyperparameters

introduced by the XGBoost model:

booster: This parameter provides two choices: gbtree and gblinear. When selecting
gbtree, the model employs a tree structure to process the data, allowing for non-
linear relationships and interactions to be captured. On the other hand, selecting
gblinear utilizes a linear model, which assumes a linear relationship between the

input features and the target variable.

min_child_weight: This parameter specifies the minimum sum of sample weights
required for a leaf node to be created during the tree-building process. This
parameter is used to control the complexity of the tree and prevent the model from

creating leaf nodes with very few samples.

gamma: When a node is considered for splitting, the loss function is calculated
before and after the split. The node will only be split if the loss function decreases

by an amount greater than or equal to the specified gamma value.
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The hyperparameter tuning process, including the range of values explored for each
parameter and the evaluation metrics used to assess the performance of various
parameter configurations, is provided in detail in Appendix 7.10. Table 5-14 shows

the hyperparameter configuration for the final XGBoost model.

Table 5-14. Hyperparameter Configuration for the XGBoost Model

Hyperparameter Value
objective binary:logistic
use_label_encoder True
base_score 0.5
booster gbtree
colsample_bylevel 1
colsample_bynode 1
colsample_bytree 1
enable_categorical False
gamma 0
gpu_id -1
importance_type None
learning_rate 0.22
max_delta_step 0
max_depth 12
min_child_weight 1.0
missing nan
n_estimators 2800
n_jobs 16
num_parallel_tree 1
predictor auto
random state 42
reg_alpha 0
reg_lambda 1
scale_pos_weight 1
subsample 1
tree_method extract
validate_parameters 1
verbosity None

5.4.3 Model Performance After Hyperparameter Tuning

To evaluate the performance of the final XGBoost model, we first conduct KCV to
assess its stability. A detailed description of the KCV process can be found in
Appendix 7.11. The average F1 score on the training set is 0.83, indicating a strong
performance in classifying the training data. Moreover, the average ROC-AUC
score of 0.94 suggests a robust performance. To further evaluate the model, we
compare its performance on the testing set before and after hyperparameter tuning.
Table 5-15 provides the model scores before and after tuning. The precision of the
model remains consistent at 0.97, while the recall increases from 0.56 to 0.89. This

increase signifies an improved ability to correctly identify positive instances. The
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better balance between high precision and high recall is further demonstrated by the
F1 score, which rises from 0.59 to 0.93. To gain a better insight, we examine the
confusion matrix, which provides a detailed breakdown of the model’s predictions.
As shown in Table 5-16, we observe that compared to the model without
hyperparameter tuning, the tuned model correctly predicts an additional 518
instances (TN+TF), while the number of FN predictions decreases by 528. These

improvements indicate a significant enhancement in the model’s performance.

Table 5-15. XGBoost Model Score on Testing Set

Default Hyperparameter | Tunned Hyperarameter
Accuracy 0.98 0.99
Precision 0.97 0.97
Recall 0.56 0.89
F1 score 0.59 0.93

Table 5-16. Confusion Matrix on Testing Set of the XGBoost Model

Predicted Label
0 (Not Resigned) 1 (Resigned)
0 (Not Resigned) 28,593 2
1 (Resigned) 703 70
Predicted Label
0 (Not Resigned) 1 (Resigned)
0 (Not Resigned) 28,574 21
1 (Resigned) 175 607

Default Hyperparameter

True Label

Tunned Hyperarameter

True Label

In summary, the hyperparameter tuning process had a significant impact on the
XGBoost model. The tuned XGBoost model exhibits enhanced abilities to
accurately identify positive instances and reduce FN predictions. The notable
increase in the F1 score highlights the model’s improved balance between high
precision and high recall, leading to more accurate and dependable predictions.
Consequently, the tuned XGBoost model proves to be a highly reliable and effective
tool for predicting employee turnover.
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6 Result and Conclusion

In this chapter, we present the results and conclusions derived from our study on
predicting employee turnover using machine learning models. Specifically, we
focus on three key aspects: the model results (6.1), the business value derived from
our findings (6.2), and suggestions for future extensions and improvements (6.3).
By examining these aspects, we aim to provide a comprehensive overview of the
significance and implications of our thesis in the field of employee turnover
prediction.

6.1 Model Result

Despite the Decision Tree (DT) and Random Forest (RF) models demonstrating
reasonable performance even without hyperparameter tuning, they do not measure
up to the performance of the final Gradient Boosting Decision Tree (GBDT) and
Extreme Gradient Boosting (XGBoost) models with the available dataset. While
both GBDT and XGBoost initially exhibit relatively poor performance with the
default settings, the process of hyperparameter tuning significantly enhances their
performance. On the other hand, the process of hyperparameter tuning does not lead
to a significant change in the performance of the DT and RF models. One possible
explanation for this difference in performance improvement is that the DT and RF
models already operate near their optimal performance with the default settings,
leaving limited room for further enhancement. This difference could also be
attributed to the inherent characteristics of the models. GBDT and XGBoost are
ensemble methods that sequentially add DTs to correct the errors made by previous
models. This iterative process allows them to effectively learn complex patterns and
relationships in the data. In contrast, DT and RF models do not have this boosting
capability. Overall, the difference in performance before and after hyperparameter
tuning highlights the importance of optimizing the hyperparameters for boosting-
based models like GBDT and XGBoost. It also emphasizes the potential limitations

of DT and RF models in capturing complex patterns in the data.

When comparing the performance of the final GBDT and XGBoost models, both
models achieve a high F1 score of 0.93. The only minor difference in performance
is that the GBDT model exhibits slightly higher precision (0.01), which indicates

its proficiency in accurately identifying positive instances. However, there is a
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significant difference in training time between the two models. The XGBoost model
takes approximately 2.7 minutes to train on our training dataset, while the GBDT
model requires around 100.7 minutes. This substantial difference in training time
can be attributed to the underlying algorithms and implementation details of the two
models. XGBoost is specifically designed to optimize the performance of GBDT
through various algorithmic enhancements, including parallelization techniques.
These optimizations allow XGBoost to efficiently process large datasets and

expedite the training process.

In conclusion, our analysis of the different supervised learning models for employee
turnover prediction reveals that the GBDT and XGBoost models outperform the DT
and RF models. This highlights the importance of hyperparameter tuning for
boosting-based models and exposes the potential limitations of DT and RF models
in capturing complex patterns in the data. When comparing GBDT and XGBoost,
both models achieve a high F1 score of 0.93, with GBDT exhibiting slightly higher
precision. However, there is a significant discrepancy in training time, with
XGBoost being considerably faster due to its algorithmic optimizations. The choice
between GBDT and XGBoost should consider the trade-off between slightly higher

precision and faster training time.
6.2 Business Value

The application of machine learning models to predict employee turnover offers
important business value to organizations. In this section, we will focus on the final
GBDT model as an example to showcase the potential business benefits of
implementing a predictive model. By analyzing the confusion matrix of the GBDT
model on the testing set, we can observe its slightly better predictive performance

compared to the final XGBoost model, with 5 additional correct predictions.
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6.2.1 Feature Importance
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Figure 6-1 Feature Importance for the Final GBDT Model

The feature importance plot in Figure 6-1 represents the relative importance of each
feature in the final GBDT model. It reveals that “Age” as the most influential
feature contributes approximately 26.8% to the overall importance. This indicates
that age significantly affects the output of the classifier. By integrating this finding
with the descriptive analysis depicted in Figure 4-2, we can conclude that age plays
a critical role in predicting employee turnover, with younger individuals exhibiting
a higher tendency to leave. This understanding of age’s impact can enable
organizations to develop targeted strategies catering to the specific needs and
concerns of different age groups. For instance, implementing mentorship programs
or offering tailored career development opportunities for younger employees may
help improve their job satisfaction and increase retention rates. Organizations can
also create age-specific initiatives to foster a supportive work environment and
address any age-related challenges that may contribute to turnover (Naim & Lenka,
2018). By leveraging the insights gained from the feature importance analysis,
organizations can make informed decisions on resource allocation and implement
targeted interventions to effectively address the impact of important features on
employee turnover.

6.2.2 Profit Matrix

Employee turnover is associated with indirect costs, such as recruitment,
onboarding, and training expenses, as discussed in Chapter 2.2. Employee turnover
prediction models offer valuable insights to organizations by identifying potential
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risks and facilitating proactive measures. To gain a better understanding of the
financial impact of such models, a profit matrix can be constructed, which defines
the costs and benefits associated with different prediction outcomes. Table 6-1
presents an example of the profit matrix, illustrating the potential costs and benefits
for each prediction type. It should be noted that these estimates are derived from an
interview with the HR department of the company that provided the dataset for our
analysis and serve as simplified examples. The actual costs and benefits will vary
depending on the specific circumstances of each organization, including factors

such as industry, country, and company policies.

Table 6-1. Profit Matrix

Predicted Label
0 (Not Resigned) 1 (Resigned)
0 (Not Resigned) $0 -$10,000
1 (Resigned) -$25,000 +$5,000

True Label

The numbers in Table 6-1 for each prediction type align with the following

interpretations:

True Negative (TN): The model predicts an employee will stay and they do. There
IS no associated cost or benefit as the business continues as usual. The net profit
would be $0.

True Positive (TP): The model predicts an employee will leave and they do. The
cost could be seen as the expenses associated with hiring and training a replacement.
The benefit could be the cost savings from potentially avoiding a period of low
productivity or the costs associated with a sudden departure. If we assume the cost
to replace an employee is $10,000, and we successfully manage to avoid a
productivity loss worth $15,000, the net profit would be +$5,000.

False Positive (FP): The model predicts an employee will leave, but they stay. The
cost might be the unnecessary expenditure on hiring or training a replacement.
Using the same numbers, if we spend $10,000 preparing for a departure that does

not happen and there is no productivity gain, our net profit would be -$10,000.

False Negative (FN): The model predicts an employee will stay, but they leave.
This could incur costs due to productivity loss, cost to hire and train a replacement,
and potential overtime for other employees. Assuming these costs amount to
$25,000 in total, the net profit would be -$25,000.
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Based on the estimated profit matrix, we can quantify the profit resulting from the
implementation of a predictive model. For instance, if we use the data from June
2022 in our dataset as an illustrative example. In this particular month, there are
231 employees who are projected to resign within the next three months out of a
total of 8,738 employees in the company. By comparing the costs associated with
the baseline model (representing the absence of a predictive model) to those of the
final GBDT model, we can assess the financial impact and potential profit achieved
through the implementation of the final GBDT model.

For the baseline model:

True Negatives (TN):

8,507 x $0 = $0 (6-1)
False Negatives (FN):
231 * (—=$25,000) = —$5,775,000 (6-2)
False Positives (FP):
0 * (—$10,000) = $0 (6-3)
True Positives (TP):
0 * $5,000 = $0 (6-4)

Summing up these values, we get:
$0 + (—$5,775,000) + $0 + $0 = —$5,775,000 (6-5)

Therefore, the estimated cost based on the absence of a predictive model is
$5,775,000.

The predictions from the final GBDT model on this dataset are TN are 8507, TP

are 223, FP are 0, and FN are 8. We can calculate the associated costs:

Based on the predictions generated by the final GBDT model on this dataset, we
have 8,507 TN, 223 TP, 8 FN, and 0 FP. With this information, we can proceed to
calculate the associated costs:
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True Negatives (TN):

8,507 = $0 = $0 (6-6)
False Negatives (FN):
8 * (—$25,000) = —$200,000 (6-7)
False Positives (FP):
0 * (—$10,000) = $0 (6-8)
True Positives (TP):
223 * $5,000 = $1,115,000 (6-9)

Summing up these values, we get:
$0 + (—%$200,000) + $0 + $1,115,000 = $915,000 (6-10)
The estimated profit based on the final GBDT model is $915,000.

In this case, the implementation of the final GBDT model in this company results
in a profit gain of $915,000 for the three months following June 2022 instead of
incurring a cost of $5,775,000. This outcome demonstrates the substantial financial
benefits that can be achieved by implementing an effective predictive model to
identify and manage turnover risks. By leveraging the insights gained from a
predictive model, organizations can optimize their workforce management
strategies, mitigate turnover risks, and effectively reduce recruitment and training
costs. This ultimately leads to substantial cost reductions, providing tangible

business value and improved financial performance for organizations.
6.3 Future Extension and Improvement

While this study provides valuable insights into predicting employee turnover using
supervised machine learning models, there are several avenues for future research
and potential improvements to enhance the effectiveness of these models. Here, we

outline some potential areas of focus for future extensions and improvements:

Integration of additional data sources: Expanding the dataset to include more

diverse and comprehensive sources of data, such as external factors like industry
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trends and economic indicators, can enrich the predictive models. Incorporating
these additional variables can provide a more holistic understanding of employee

turnover and improve the accuracy of predictions.

Feature engineering: Exploring advanced feature engineering techniques can help
in identifying and creating more informative features that capture the complex
relationships and interactions among variables. Techniques like feature interaction,
feature scaling, and dimensionality reduction can enhance the predictive power of

the models and uncover hidden patterns within the data.

Incorporating temporal analysis: Employee turnover patterns can exhibit temporal
dependencies, such as seasonality or trends over time. By incorporating temporal
analysis techniques, such as time series modeling or recurrent neural networks, into
the prediction models, organizations can better capture the dynamic nature of

employee turnover and improve the accuracy of long-term forecasts.

Continuous model monitoring and updating: Employee turnover dynamics can
change over time due to various internal and external factors. Therefore,
establishing a system for continuous model monitoring and updating is crucial.
Regularly evaluating the model’s performance, incorporating new data, and
retraining the models can ensure their reliability and effectiveness in real-world

scenarios.

By addressing these future extensions and improvements, organizations can
enhance their employee turnover prediction capabilities, enabling them to make
more informed decisions regarding retention strategies, succession planning, and

overall human resource management.
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7 Appendix

7.1 Code for Categorical Feature Encoding

The following code snippet demonstrates the process of encoding categorical

features into numerical representations:

from sklearn import preprocessing

industry_le =
preprocessing.LabelEncoder().fit(df["Industry"].unique())
df["Industry"] = industry_le.transform(df["Industry"])

title le = preprocessing.LabelEncoder().fit(df["Title"].unique())

df["Title"] = title_le.transform(df["Title"])

country le =
preprocessing.LabelEncoder().fit(df["Country"].unique())
df["Country"] = country_le.transform(df["Country"])
df[["Industry"”, "Title", "Country"]] = df[["Industry"”, "Title",
"Country"]].astype("int64")

7.2 Code for Data Splitting

The following code is used to splitting the dataset into training, validation and

testing set:

from sklearn.model selection import train_test split
from collections import Counter

df["Resigned"]

df.drop("Resigned", axis=1)

split training and test data.
_train, X test, y train, y test = train_test split(X, vy,
random_state=42, test size = .40, stratify =y)
print('train shape %s' % Counter(y train))

# split test data into a valuation set and a holdout set
X _value, X test, y value, y test = train test split(X test, y test,
random_state=42, test size = .5, stratify = y test)

7.3 Process for Feature Selection

7.3.1 ANOVA for Numerical Feature Selection Process

The following code snippet demonstrates the process of encoding the “Last date of
promotion” column and selecting numerical features for data splitting in
preparation for ANOVA:
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df["Last date of promotion"] = pd.to datetime(df["Last date of
promotion"]).view("int64")

X_num = df[["Age", "Tenure","Last date of promotion","Level"]]
y = df["Resigned"]

# split training and test data.

X_train, X _test, y train, y test = train_test_split(X_num, vy,
random_state=42, test size = .40, stratify =y)

print('train shape %s' % Counter(y_train))

# split test data into a valuation set and a holdout set

X_value, X test, y value, y test = train_test split(X_test, y_test,
random_state=42, test size = .5, stratify = y_test)
print("value/test shape %s" % Counter(y test))

The following code snippet demonstrates the implementation of ANOVA:

from sklearn.feature selection import SelectkBest, f classif
selector = SelectkBest(f classif, k=4)
selector.fit(X_train, y train)

p_values = pd.Series(selector.pvalues , index= X_train.columns)
p_values.sort_values(ascending = True , inplace = True)
print(p values<=0.05)

The output of the ANOVA is as follows:

Tenure

Age

Level

Last date of promotion
dtype: bool

7.3.2 Chi-square test for Categorical Feature Selection Process

To prepare the data for the Chi-square test, the following code was used:

X_num = df[["Age", "Tenure",
y = df["Resigned"]

Last date of promotion","Level"]]

# split training and test data.
X _train, X test, y train, y test = train_test split(X cat, vy,
random_state=42, test size = .40, stratify =y)

print('train shape %s' % Counter(y train))

# split test data into a valuation set and a holdout set

X value, X test, y value, y test = train_test split(X test, y test,
random_state=42, test size = .5, stratify = y test)
print("value/test shape %s" % Counter(y test))
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The following code snippet demonstrates the implementation of Chi-square test:

from sklearn.feature selection import chi2
# Create and fit selector

selector= SelectKBest(chi2, k=4)
selector.fit(X_train, y_train)

p_values = pd.Series(selector.pvalues , index= X_train.columns)
p_values.sort_values(ascending = True , inplace = True)
print(p values<=0.05)

The output of the Chi-square test is as follows:

Country True
Industry True
Title True
Gender False
dtype: bool

7.3.3 Correlation Analysis for Numerical Feature Selection Process

The code snippet below demonstrates the implementation of correlation analysis,

which follows the same data preparation process as ANOVA:

import seaborn as sns

%matplotlib inline

sns.set(rc = {'figure.figsize':(15,10)})

train = pd.concat([X _train, y train], axis

corr = train.corr()

sns.heatmap(corr, annot=True,
xticklabels=corr.columns.values,
yticklabels=corr.columns.values)

7.4 Hyperparameter Tuning Process for the DT Model

e criterion

For criterion, we have two options to choose from. We used grid search to determine
which criterion yielded the highest F1 score. The code used for this purpose is as

follows:

criterion = ["gini", "entropy"]
parameter = dict(criterion = criterion)
grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,

n_jobs = -1, scoring = "f1")
grid_search.fit(X_train, y train)
print(grid_search.best_params_)
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print('''best score = {:.2f}''"'.format(grid _search.best score ))

The output of our analysis indicates that the “gini” criterion performed the best, as

it resulted in the highest F1 score:

{'criterion': 'gini'}

best score = 0.78

e class_weight

In a similar manner to the criterion search, we employed grid search to determine

the optimal setting for the class weight. The code used is:

class_weight = [None, "balanced"]

parameter = dict(class_weight = class_weight)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

print('"''best score = {:.2f}'"'"'.format(grid search.best score ))

The output shows:

{'class_weight': None}
best score = 0.78

e max_depth

To search for the best max_depth, we implemented a for loop combined with cross-
validation methodology, and plot the scores as a function of this parameter. The

code used is:

ScoreAll = []
for i in range():
DT = DecisionTreeClassifier(max_depth = i, random_state = 42)
score = cross_val score(DT, X train, y train, cv=5, scoring =
"f£1").mean()
ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]
print("best parameter & score:",ScoreAll[max_score])
plt.figure(figsize=[20.7,5.27])
plt.plot(ScoreAll[:,0],ScoreAll[:,1])

plt.show()

We first search within range(10,100,10), and the output shows:
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10 20 k') 0 50 60 0 80 )

best parameter & score: [40. 0.7754104]

After refining our search to range(30,50), the output displayed the following

results:

0774
0773
0772
o771
0770

00 25 -0 75 400 25 450 475

best parameter & score: [35. 0.7754104 ]

e max_features

Given that we have 7 features in the dataset, we used grid search to explore the
optimal max_features from 1 to 7, and visualized the changes in F1 score with

different max_features values using a heatmap:

max_features = [None, 1, 2, 3, 4, 5, 6, 7]

parameter = dict(max_features = max_features)

model = DecisionTreeClassifier(max _depth=35, random state=42)
grid_search = GridSearchCV(model, parameter, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y train)

dt = pd.DataFrame(grid_search.cv_results_)

dt.param_ max_features = dt.param_max_features.astype(str)

table = pd.pivot_table(dt, values='mean_test score', index='param_
max_features)

sns.heatmap(table)

print(grid_search.best_params_)

print('"''best score = {:.2f}'"''.format(grid search.best score ))

The output shows:
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{'max_features': 2}
best score = 0.78

e min_samples_leaf & min_samples_split

Considering the interactivity between min_samples_leaf and min_samples_split,
we decided to tune them together. Utilizing grid search, we explored various
combinations of these parameters and obtained the corresponding F1 score.
Subsequently, we generated a heatmap to visualize the relationship between the

different parameter combinations and the F1 score. The code used is as follows:

min_samples_split = [2, 3, 4, 5, 6]

min_samples leaf = [1, 2, 3, 4, 5]

parameter = dict(min _samples split = min_samples split,
min_samples_Leaf = min_samples_leaf)

model = DecisionTreeClassifier(max depth=35, max features=2,
random_state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y train)

dt = pd.DataFrame(grid search.cv_results )
dt.param_min_samples split = dt.param min_samples split.astype(str)
dt.param_min_samples_leaf = dt.param_min_samples_leaf.astype(str)
table = pd.pivot table(dt, values='mean test score',
index="param_min_samples_split', columns='param_min_samples leaf')
sns.heatmap(table)

print(grid_search.best params )

print('''best score = {:.2f}'"'"'.format(grid search.best score ))

The output shows:
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param_min_samples_split
4 3

5

1 2 3 4 5
param_min_samples_leaf

{'min_samples leaf': 1, 'min_samples split': 2}
best score = 0.78

7.5 KCV for the DT Model

To assess the model’s performance, we utilized K-fold Cross Validation (KCV)
with 10 folds on the training set. Firstly, we obtained 10 F1 score through this
process and calculated their average value. Subsequently, we repeated the same
procedure to obtain and average the ROC-AUC scores. This approach allowed us
to gain a comprehensive understanding of the model’s performance across different

folds. The code used is as follows:

f1_scores = cross_val score(model 1, X train, y train, cv=10,
scoring="+1")

f1_scores

mean(f1l_scores)

roc_auc = cross_val score(model 1, X train, y train, cv=10,
scoring="roc_auc')

roc_auc

mean(roc_auc)

The output for F1 score is:

array([0.84140969, 0.80742459, 0.77674419, 0.76738609, 0.80652681,
0.78983834, 0.8 ,» ©.75238095, ©.78983834, 0.81132075])

mean: 0.7942869750760719

The output for ROC-AUC is:
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array([0.91950086, ©0.89136138, ©.88028983, 0.86765636, 0.88739452,
0.88314714, ©.88937014, 0.86391362, ©.88504884, 0.89009639])

mean: 0.885777907843261

7.6 Hyperparameter Tuning Process for the RF Model

e Criterion

The code snippet below demonstrates the use of grid search to determine the

criterion that yields the highest F1 score:

criterion ["gini", "entropy"]

parameter = dict(criterion = criterion)

model = RandomForestClassifier(random_state=42)

grid search = GridSearchCV(model, parameter, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)
print(grid_search.best_params_)

print('''best score = {:.2f}'"'"'.format(grid search.best score ))

The output of our analysis indicates that the “gini” criterion performed the best,

resulting in the highest F1 score.

{'criterion': 'gini'}

best score = 0.78

e bootstrap

In a similar manner to the criterion search, we employed grid search to determine

the optimal setting for the bootstrap parameter. The range for bootstrap is as

follows:

bootstrap = ["True", "False"]

The output shows:

{'bootstrap': 'True'}

best score = 0.78

e 00b_score

In a similar manner to the criterion search, we employed grid search to determine
the optimal setting for the oob_score parameter. The range for oob_score is as

follows:
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bootstrap = ["True", "False"]

The output shows:

{'oob_score': 'True'}
best score = 0.78

e class_weight

In a similar manner to the criterion search, we employed grid search to determine
the optimal setting for the class_weight parameter. The range for class_weight is as

follows:

class_weight = [None, "balanced"]

The output shows:

{'class_weight': None}
best score = 0.78

e n_estimators

The code used to search for the best n_estimators using a for loop combined with
cross-validation methodology and plot the scores as a function of this parameter is

as follows:

ScoreAll = []
for i in range(10,200,10):
= RandomForestClassifier(n estimators = i, oob score=True,

random_state = 42)

score = cross _val score(RF, X train, y train, cv=5, scoring =
"f£1").mean()

ScoreAll.append([i,score])
ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[e][@]
print("best parameter & score:",ScoreAll[max_score])

# print(ScoreAll[,0])

plt.figure(figsize=[20.7,5.27])
plt.plot(ScoreAll[:,0],ScoreAll[:,1])

plt.show()

Based on the implemented code, the output for the range (10, 200, 10) shows

the scores as a function of the n_estimators parameter is:
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best parameter & score: [170. 0.77780047 ]

After refining the search to range (160, 180), the output displayed the following
results for the scores as a function of the n_estimators parameter:

07790
07785
07780
07775
07770

07765

160.0 1625 165.0 1675 170.0 1725 175.0 1775

best parameter & score: [169. 0.77905861 ]

e max_depth

To search for the best max_depth, we implemented a for loop combined with cross-
validation methodology, and plot the scores as a function of this parameter. The

code used is:

ScoreAll = []
for i in range(10, 50, 5):

RF = RandomForestClassifier(n estimators = 169, oob_score=True,
max_depth = i, random_state = 42)

score = cross _val score(RF, X train, y train, cv=5, scoring =
"f£1").mean()

ScoreAll.append([i,score])
ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]
print("best parameter & score:",ScoreAll[max_score])

plt.figure(figsize=[20.7,5.27])
plt.plot(ScoreAll[:,0],ScoreAll[:,1])
plt.show()

We first search within range (10,50, 10), and the output shows:
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best parameter & score: [40. 0.7754104]

After refining our search to range(30,50), the output displayed the following

results:

07795

07790
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07780

07775

00 05 3.0 375 400 25 450 5

best parameter & score: [31. 0.77984613]

e min_samples_leaf & min_samples_split

Considering the interactivity between min_samples_leaf and min_samples_split,
we decided to tune them together. Using grid search, we explored various
combinations of these parameters and obtained the corresponding F1 score.
Subsequently, we generated a heatmap to visualize the relationship between the
different parameter combinations and the F1 score. The code used for this purpose

is as follows:

min_samples_split = [2, 3, 4, 5, 6]

min_samples _leaf = [1, 2, 3, 4, 5]

parameter = dict(min _samples split = min_samples split,
min_samples Leaf = min_samples leaf)

model = RandomForestClassifier(n_estimators=169, max_depth=31,
oob_score=True, random state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)

rf = pd.DataFrame(grid_search.cv_results )
rf.param_min_samples split = rf.param_min_samples split.astype(str)
rf.param_min_samples leaf = rf.param_min_samples leaf.astype(str)
table = pd.pivot_table(rf, values='mean_test score',
index="param_min_samples split', columns='param min_samples leaf')
sns.heatmap(table)
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print(grid_search.best_params_)

print('''best score = {:.2f}'"'"'.format(grid search.best score ))

The output shows:

]

param_min_samples_split
4

1 2 3 4 5
param_min_samples_leaf

{'min_samples_leaf': 1, 'min_samples_split': 2}
best score = 0.78

e max_features

Given that we have 7 features in the dataset, we used grid search to explore the
optimal max_features from 1 to 7. We then visualized the changes in F1 score with
different max_features values using a heatmap. The code used for this process is as
follows:

max_features = [None, 1, 2, 3, 4, 5, 6, 7]

parameter = dict(max_features = max_features)

model = RandomForestClassifier(n estimators=169, max_depth=31,
oob_score=True, random_state=42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y train)

rf = pd.DataFrame(grid search.cv_results )

rf.param_ max_features = rf.param_ max_features.astype(str)

table = pd.pivot_table(rf, values='mean_test score', index='param_
max_features)

sns.heatmap(table)

print(grid_search.best params_)

print('''best score = {:.2f}'"''.format(grid search.best score ))

The output shows:

Page 74



- 07925

— 0.7900

max_features
4

i

param

[

MNane

mean_test_score

7.7 KCV for the RF Model

The following code snippet demonstrates the implementation of KCV for the final
RF model:

f1_scores = cross_val score(model_1, X train, y_train, cv
scoring= "f1")

f1_scores

f1 scores.mean()

roc_auc = cross_val score(model 1, X train, y train, cv = 10,
scoring= "roc_auc"

roc_auc

roc_auc.mean()

The output for F1 score is:

array([0.85377358, 0.82926829, 0.82089552, 0.79207921, 0.80604534,
©.79301746, 0.80589681, 0.76214834, ©.7970297 , 0.81572482])
f1_scores.mean() 0.8075879066494746

The output for ROC-AUC is:

array([0.9813508 , 0.99114639, ©.98858298, 0.97771616, 0.98578724,

0.97750728, ©.97800038, 0.97489446, 0.98029819, 0.98444338])
roc_auc.mean() ©.9819727262753244

7.8 Hyperparameter Tuning Process for the GBDT Model

e n_estimator & learning rate
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To identify the optimal values for two key parameters, namely n_estimators and
learning_rate, we employed grid search methodology. Through multiple runs with
different parameter ranges, we determined that the final range for n_estimators is
set between 5000 and 10000, while the range for learning_rate is defined as 0.20 to
0.25. The following code snippet showcases the implementation of the grid search

process:

n_estimators = [5000, 6000, 7000, 8000, 9000, 10000]
learning_rate = [0.25, 0.24, 0.23, 0.22, 0.21, 0.20]
parameterl = dict(n_estimators = n_estimators, learning rate =
learning_rate)

Model = GradientBoostingClassifier(random_state = 42)

grid_searchl = GridSearchCV(Model, parameterl, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_searchl.fit(X_train, y_train)
print(grid_searchl.best_params_)

print('''best score = {:.2f}'"'"'.format(grid_searchl.best_score ))

The output shows:

{'learning_rate': 0.22, 'n_estimators': 8000}
best score = 0.67

e Joss

The code snippet below demonstrates the use of grid search to determine the loss
parameter that yields the highest F1 score:

loss = ['deviance', 'exponential']

parameter = dict(loss = loss)

model = GradientBoostingClassifier(n_estimators = 86000,
learning_rate = 0.22, random_state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose = 1,
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y train)

print(grid_search.best params )

print('''best score = {:.2f}'"'"'.format(grid search.best score ))

The output of our analysis indicates that the “deviance” criterion performed the

best, resulting in the highest F1 score.

{'loss': ‘'deviance'}
best score = 0.67

e subsample
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To find the best value for the subsample parameter, we utilized a for loop in
conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

ScoreAll = []
for i in np.arange(0.1,1,0.1):

GB = GradientBoostingClassifier(n_estimators = 8000,
learning_rate = 0.22, max_depth = i, random_state = 42)

score = cross_val _score(GB, X_train, y_train, cv=5, scoring =

"£1").mean()
ScoreAll.append([i,score])
ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]
print("best parameter & score:",ScoreAll[max_score])

The output shows:

best parameter & score: [1. 0.6718683]

e min_samples_leaf & min_samples_split

Using grid search, we conducted an exploration of various combinations of the
min_samples_leaf and min_samples_split hyperparameters. By systematically
evaluating different values for these hyperparameters, we were able to identify the
best combination that has the highest F1 score. The following code snippet outlines

the implementation:

min_samples_split = [2, 3, 4, 5, 6]

min_samples _leaf = [1, 2, 3, 4, 5]

parameter = dict(min _samples split = min_samples split,
min_samples_Leaf = min_samples_leaf)

model = GradientBoostingClassifier(n_estimators = 8000,
learning rate = 0.22, random_state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)
print(grid_search.best_params_)

print('"''best score = {:.2f}'"''.format(grid search.best score ))

The output shows:

{'min_samples leaf': 1, 'min_samples_split': 2}

best score = 0.68

e max_depth
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To find the best value for the max_depth parameter, we utilized a for loop in
conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

ScoreAll = []
for i in range(1,50):

GBT = GradientBoostingClassifier(n_estimators = 8000,
learning_rate = 0.22, max_depth = i, random_state = 42)

score = cross_val score(GBT, X_train, y train, cv=10, scoring =
"£1").mean()

ScoreAll.append([i,score])

ScoreAll = np.array(ScoreAll)
max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[@][@]
print("best parameter & score:",ScoreAll[max_score])

The output shows:

best parameter & score: [20. 0.8133697]

7.9 KCV for the GBDT Model

The following code snippet demonstrates the implementation of KCV for the final
GBDT model:

f1 scores = cross_val score(Model f1, X train, y train, cv = 10,
scoring= "f1")

f1_scores

f1_scores.mean()

roc_auc = cross_val_score(Model f1, X train, y_train, cv
scoring= "roc_auc")

roc_auc

roc_auc.mean()

The output for F1 score is:

array([0.87414188, ©.84309133, 0.82857143, 0.79805353, 0.82014388,
0.81730769, 0.8156682 , 0.78640777, ©.81235154, ©.82352941])

f1 scores.mean() 0.8219266670539529

The output for ROC-AUC is:

array([0.95525913, 0.96359676, ©.94545392, ©.92682041, 0.93703487,
0.93633789, 0.94069143, 0.93040361, ©.93488712, 0.95091327])

roc_auc.mean() ©.9421398392936672
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7.10 Hyperparameter Tuning Process for the XGBoost Model

e booster

For booster, we have two options to choose from. We used grid search to determine
which criterion yielded the highest F1 score. The code used for this purpose is as

follows:

criterion = ["gbtree", "gblinear"]

parameter = dict(criterion = criterion)

model= XGBClassifier(random state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose

n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y_train)
print(grid_search.best params )

print('''best score = {:.2f}''"'.format(grid_search.best score ))

The output of our analysis indicates that the “gbtree” criterion performed the best,

as it resulted in the highest F1 score:

{'criterion': 'gbtree'}
best score = 0.60

e n_estimator & learning_rate

To identify the optimal values for two key parameters, namely n_estimators and
learning_rate, we employed grid search methodology. Through multiple runs with
different parameter ranges, we determined that the final range for n_estimators is
set between 2500 and 3000, while the range for learning_rate is defined as 0.20 to
0.25. The following code snippet showcases the implementation of the grid search
process:

n_estimators = [2500, 2600, 2700, 2800, 2900, 3000]
learning_rate = [0.25, 0.24, 0.23, 0.22, 0.21, 0.20]
parameterl = dict(n_estimators = n_estimators, learning_rate =
learning_rate)

model= XGBClassifier(random state = 42)

grid searchl = GridSearchCV(model, parameterl, cv = 5, verbose = 1,
n_jobs = -1, scoring = "f1")

grid_searchl.fit(X_train, y_train)

print(grid_searchl.best_params_)

print('"''best score = {:.2f}'''.format(grid searchl.best score ))

The output shows:
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{'learning rate': 0.22, 'n_estimators': 2800}

best score = 0.80

e subsample

To find the best value for the subsample parameter, we utilized a for loop in
conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

ScoreAll = []
for i in np.arange(0.1,1,0.1):

XGB = XGBClassifier(n_estimators = 2800, learning_rate = 0.22,
random_state = 42)

score = cross_val _score(XGB, X_train, y_train, cv=5, scoring =
"£1").mean()

ScoreAll.append([i,score])
ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]
print("best parameter & score:",ScoreAll[max score])

The output shows:

best parameter & score: [1. 0.7978683 ]

e min_child_weight

To find the best value for the min_child_weight parameter, we utilized a for loop
in conjunction with cross-validation methodology. The following code snippet

outlines the implementation:

min_child weight = [1, 2, 3, 4, 5, 6]

parameter = dict(criterion = criterion)

model = XGBClassifier(n_estimators = 2800, learning rate = 0.22,
random_state = 42)

grid_search = GridSearchCV(model, parameter, cv = 5, verbose
n_jobs = -1, scoring = "f1")

grid_search.fit(X_train, y train)
print(grid_search.best params )

print('''best score = {:.2f}'"'"'.format(grid search.best score ))

The output shows:

best parameter & score: [1. 0.80]
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e max_depth

To find the best value for the max_depth parameter, we utilized a for loop in
conjunction with cross-validation methodology. The following code snippet
outlines the implementation:

ScoreAll = []
for i in range(1,50,10):

xgb = XGBClassifier(n_estimators = 2800, learning rate = 0.22,
max_depth i, random_state = 42)

score = cross_val _score(xgb, X_train, y train, cv=10, scoring =
"£1").mean()

ScoreAll.append([i,score])
ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][Q]
print("best parameter & score:",ScoreAll[max_score])

We first search within range(10,50,10), and the output shows:

o 5 10 15 n 5 0 % )

best parameter & score: [10. 0.82864885 ]

After refining our search to range (10,15), and the output displayed the following

results:

08208
0.8296
0.8204
08292
0.8290
0.8288
08286

0.8284

10.0 05 110 1"s 120 25 3.0 35 10

best parameter & score: [12. 0.82980737]
e gamma
To find the best value for the gamma parameter, we utilized a for loop in

conjunction with cross-validation methodology. The following code snippet
outlines the implementation:
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ScoreAll = []
for i in np.arange(9,1,0.1):

XGB = XGBClassifier(n_estimators = 2800, learning_rate = 0.22,
max_depth = 12, random state = 42)

score = cross_val score(XGB, X train, y train, cv=5, scoring =
"£1").mean()

ScoreAll.append([i,score])
ScoreAll = np.array(ScoreAll)

max_score = np.where(ScoreAll==np.max(ScoreAll[:,1]))[0][0]
print("best parameter & score:",ScoreAll[max score])

The output shows:

best parameter & score: [O. 0.83040745]

7.11 KCV for the XGBoost Model

The following code snippet demonstrates the implementation of KCV for the final
XGBoost model:

f1_scores = cross_val score(model 1, X train, y train, cv=10,
scoring="f1")

f1_scores

roc_auc = cross_val_score(model 1, X train, y_train, cv=10,
scoring="'roc_auc')

roc_auc

The output for F1 score is:

array([0.86836028, 0.85781991, 0.8377724 , 0.80295567, 0.84107579,
0.81265207, 0.84160757, 0.82409639, 0.82211538, ©.8321513 ])
mean(f1l_scores)

0.8340606742621919

The output for ROC-AUC is:

array([0.96682622, ©.96901946, 0.96071928, 0.93057635, 0.95593081,
©.9515222 , ©.95299108, 0.94000759, 0.9535633 , ©.96570271])

mean(roc_auc)
0.9546858993543491
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