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Abstract 
This thesis aims to determine whether machine learning algorithms 

effectively predict default loans and which machine learning algorithms 

are better performers than others. The research started by gathering 

information about which machine learning methods there are, 

implementing and processing their algorithms, and determining their 

performances.  

For this thesis, I have used a dataset from a Taiwanese credit lending 

company consisting of 30,000 credit lenders, whereas the defaulters of this 

dataset are known. The choice has been made to train, test and validate six 

different machine learning algorithms, determine their performances, and 

gather helpful information on whether they are accurate in their predictions 

or flawed.  

The main research question for this thesis is:  

 How effective are machine learning algorithms in predicting 

defaults in loans? 

Some model performance measures have been used to determine the 

machine learning algorithms’ performances. The Area Under the Curve has 

been set as a primary model performance measure. In this classifier 

measure, a score between 0 and 1 is calculated. While a classifier with 1 

AUC is the perfect model, a classifier with 0.5 AUC is as good as a random 

guessing one. There are also three other measurements to determine the 

final models: Recall, Precision, and Accuracy. The table below showcases 

the performance of the six algorithms after training and validation on the 

original dataset.  
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Table 1. Summary of the performance of all the different algorithms 

when trained and validated on the original dataset. 

Algorithm AUC Recall Precision Accuracy 

Logistic Regression 0.762 0.34 0.67 0.816 

Neural Network 0.790 0.34 0.68 0.820 

k Nearest Neighbors 0.760 0.33 0.63 0.815 

Decision Tree 0.784 0.38 0.60 0.819 

Random Forest 0.766 0.30 0.67 0.815 

XGBoost  0.783 0.37 0.64 0.822 

 

From the performances, it has been determined that machine learning 

algorithms are highly effective in predicting default in loans. The average 

accuracy between the algorithms is 81.7%, and AUC is relatively high. The 

highest-performing algorithms are the Neural Network and the Decision 

Tree, having an AUC score of 0.790 and 0.784, respectively.  
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1.  Introduction 

1.1 Project Context 

This master thesis aims to explore and analyze the potential of alternative and diverse 

machine learning approaches to accurately estimate the default risk on individual 

customer credit loans/mortgages. A bank’s primary function is to loan money to 

individuals and businesses, but in doing so, they risk not being repaid the total amount of 

the principal. Accurate predictions are essential for any credit lending company, as they 

must strike a delicate balance between preventing losses from customers who will default 

and ensuring they are reasonable, thereby missing potential income. In recent years, 

corporations have been able to access more data about customer behavior than ever 

before, prompting the consideration of alternative machine learning techniques to the 

traditional logistic regression model. Logistic regression has long been favored for its 

predictive accuracy and interpretability. Still, this new wealth of information begs the 

question of whether other approaches could yield even better results. 

So, what is modeling the probability of default or credit scoring? A simple explanation is 

that statistical models are used to transform relevant data into numerical measures that 

guide credit decisions. (Anderson 2007). As mentioned, credit scoring has been used for 

centuries. Still, advances in computing power have enabled further development of more 

subjective credit score techniques and taking a higher advantage of the now more 

significant amount of available data. There are a few different ways of credit scoring, and 

the most valuable and informative way to distinguish between them is to separate them 

into application scores and behavior scores. Behavior score deals more with predicting or 

scoring current customers and their likelihood of defaulting. It is used to guide decision-

making, such as evaluating risk and over-limit management. On the other hand, 

application scores are used for newly customer appliances and for their likelihood to be 

profitable customers. It is used when checking the history of the new applicant. The 

borrower’s income, previous history with other banks, loan size, and such. (SAS 2019). 

This thesis will focus on creating models for predicting default probability based on an 

existing dataset of customers who already have received loans, in other words, applicant 

scores. 
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Credit scoring tools are based on statistical and operational research techniques and are 

some of the most successful and profitable applications of statistical theory over the last 

20 years. These predictive model techniques can be separated into parametric and non-

parametric models. While the common factor of parametric models is that particular 

critical assumptions are made when they are used in relation to the data, non-parametric 

models require few, if any assumptions at all. (Anderson 2007). As mentioned, banks 

commonly employ logistic regression models when calculating the likelihood of default, 

which is a parametric model. 

While machine learning models are primarily associated with non-parametric models and 

are increasingly considered and used by financial institutions, these models have some 

drawbacks. The two disadvantages are a tendency to overfit and the lack of transparency. 

However, all modern machine learning tools allow the data to be split into training sets, 

validation, and testing splits, reducing the tendency to overfit. A strength of the 

parametric logistic regression is that the model is highly interpretable, which is why it is 

used in such a high grade by the banks, as the regulators require them to provide evidence 

of its interpretability. However, some non-parametric machine learning models have high 

interpretability, such as the decision tree models. 

1.2 Problem Description 

An exciting approach when experimenting with credit risks and default loans is looking 

at the possibility of improvements for the bank by applying modern machine learning 

techniques. Several scientific papers are written about expected benefits in default 

prediction when using machine learning. Still, equality between most of them is the 

limitation of the number of algorithms compared. These papers show that machine 

learning may lead to higher accuracy in predicting default. However, two problems might 

arise; one must be cautious in comparing results from different papers, as error rates might 

be defined differently. Secondly, nearly all papers use different data sets, making 

comparison of results difficult. This presents an opportunity to evaluate the effectiveness 

of various algorithms using the same datasets.  

1.3 Research Objective 

Having identified and described a problem, the objective of this research project can be 

established. The aim of this thesis is to gain a deeper understanding of the predictive 



9 
 

performance of various machine learning algorithms when applied to loan default 

prediction. The research will involve implementing multiple machine learning algorithms 

for classifying samples and using them to predict defaults on loans. The performance of 

these algorithms will be compared and evaluated to determine the most suitable for this 

specific task. The dataset used is based on credit lenders in Taiwan, and in this research 

project, the lenders who went into default are known. The last part of the objective is 

comparing the algorithms’ performances and determining which are most suitable for 

predicting default loans.  

For this thesis to reach its objective, some research questions must be answered. I have 

taken the liberty to separate these into one main research question and some sub-

questions. I believe and hope that the sub-questions will answer the main question. 

1.3.1 Main Research Question 

The main research question is defined as: 

         How effective are machine learning algorithms in predicting default in loans? 

1.3.2 Sub-Questions 

What are the appropriate machine learning algorithms for classification? 

Firstly, I must determine which machine learning methods to use. When researching and 

discovering what machine learning and algorithms exists, I will have made out a selection 

of which to use in this research project. 

How do I accurately measure the different machine learning 

algorithms performance? 

As mentioned, evaluating and comparing of the different algorithm’s effectiveness is a 

goal for this research project. If I want to do it objectively, I must accurately measure the 

predictive performance. 

 Which machine learning algorithm has the highest performance? 
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Lastly, I want to determine the performance of the different methods used and determine 

which performed better than the other. This last question is set to be the last sub-question 

but ultimately is the second main question for this research project.  

To answer the main question and determine the efficiency and which machine learning 

method is preferably the best, all sub-questions are required to be answered. This leads to 

highly prepared datasets, which leads to the algorithm's possibility to configure high 

performances.  
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2. Literature review 

Machine learning has not become a standalone practice for credit scoring and granting 

loans. Various credit scoring methods have been employed depending on the type of loans 

and the type of customer. The FICO score was first introduced by the Fair Isaac 

Corporation (FICO) in the United States in the late ‘50s and early ‘60s, and by the late 

‘80s, FICO scores were first introduced. It quickly became the industry standard for 

assessing credit risk, and by 2000, over 100 billion FICO scores were sold. The FICO 

score is calculated by evaluating five factors which is payment history, amounts owned, 

length of credit history, new credit, and types of credit in use. The weighting of each 

factor is different, and the outcome is a credit score that typically ranges from 350 to 850, 

with a higher score indicating a lower credit risk and a lower score indicating a higher 

risk. (FICO, 2022) The score range is defined as: 

300-579: Poor 

580-669: Fair 

670-739: Good 

740-799: Very Good 

800-850: Exceptional 

Research on predicting default loans or credit scoring using machine learning is not new 

and can be dated back to before the year 2000. Langley & Simon (1995) is an example of 

the already mentioned application of machine learning and making credit decisions. Since 

the mid- ‘90s, a lot has happened with machine learning, especially as new technology 

has emerged. More and more research is being performed on predicting defaults and 

credit scoring using machine learning. 

Crook, Edelman & Thomas (2007) provide a representation of different publications 

investigating predictive modeling with machine learning techniques. (a list of these will 

be included in the reference list.) They provide ten different research where they look at 

the relative predictive accuracy of different classifiers using credit application data and 

the percentage correctly classified (Crook et al. Table 2, 2007). When comparing the 

various machine learning methods, it is notably the neural network that is found to 
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perform best. Notably, these comparisons only include the relevant techniques, Logistic 

Regression, Decision trees, k-nearest neighbors, and neural networks. As well as a short 

list of comparisons, one also must be cautious when comparing results between different 

study papers because of the error rates in different classifiers and data usage. 

Hand & Henley (1996) did a similar study on “statistical classification methods in 

consumer credit scoring’’ and used neural networks and logistic regression to predict 

credit scoring. In this study, they concluded that both methods were good performers but 

also concluded that there are no best overall methods, and the method used is highly 

dependent on the dataset used. Hand (2006) further suggests that the distinctions in 

predicting capabilities among the classifiers may be overstated and that one classifier that 

works well on one data set may not work as well on new data. He also suggests that a 

classifier’s aim should be profit maximizing. This means using a profit matrix may yield 

different results compared with the more commonly used ROC AUC statistic in research. 

As mentioned in the problem description, several papers have been written on the 

possibilities of using machine learning in default predictions. Two examples are Alaraj, 

Abbod & Hunaiti (2014) and Khandani, Kim & Lo (2010). Many of these state that 

machine learning can lead to high accuracy of default predictions, but as stated, they are 

limited in the number of compared models, and using different data sets to evaluate 

results, which again makes the results incomparable. In their 2014 study, Alaraj et al. 

utilized a neural network for default prediction, but never made a comparison to other 

techniques. On the other hand, in Kahandi et al. study from 2010, they applied machine 

learning algorithms to predict defaults and compare them. However, their comparison 

was limited to only three algorithms. In contrast, this research project aims to 

comprehensively compare various methods I will use.  
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3. Theory/ Classification 

3.1 Definition of credit risk 

As mentioned before, the goal of this research project is to assess whether machine 

learning can be used to make better decisions on loans. The reasoning for chasing this 

goal is to minimize the credit risk the credit lender is exposed to.  

Credit risk is the risk of loss that a business or individual may incur due to a borrower 

defaulting on payments owed. Credit risk arises when a borrower expects to use future 

cash flows to pay a current debt. It is the risk that a borrower will not pay a loan or other 

debt obligation or that the debt obligation will not be paid in full or on time. As in any 

financial business, the lender’s purpose, is to minimize costs and maximize revenue. The 

primary goal of credit lending businesses is to maximize loan volume and interest revenue 

while minimizing defaults on loans. (Brock & Eichler, 2022) 

3.2 Definition of Default 

The Basel Framework is a comprehensive set of guidelines established by the Basel 

Committee on Banking Supervision (BCBS) for the regulation of banks. The BCBS, a 

global standard-setting body, has been adopted by its members, who have agreed to fully 

implement these standards and apply them to internationally active banks in their 

respective jurisdictions. (BIS, 2023). The Basel Committee has released three accords, 

referred to as The Basel Accords I, II, and III. With the probability of default modeling, 

the first and most important consideration to make when defining defaults is the 

regulatory requirements, and it is stated under the second accord that a default is 

considered to have occurred when either or both of the two following events have taken 

place:  

(1)   “The bank considers that the obligor is unlikely to pay its credit obligations to 

the banking group in full, without recourse by the bank to actions such as realizing 

security (if held)”  

(2)   “The obligor is past due more than 90 days on any material credit obligation to 

the banking group. Overdrafts will be considered as being past due once the 

customer has breached an advised limit or been advised of a limit smaller than 

current outstanding” (BIS, 2023) 
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3.3 Machine Learning 

Machine learning is a field of computer science focused on giving computers the 

capabilities to learn. The development of algorithms and statistical models enables 

computer systems to learn and improve from data without being explicitly programmed. 

The main goal of machine learning is creating algorithms and training computer systems 

to analyze and interpret patterns in data automatically, further make decisions and 

predictions, and based on input received, adapt its behavior. 

Machine learning is a branch of Artificial Intelligence, broadly defined as a machine’s 

capability to imitate intelligent human behavior. Artificial intelligence systems are used 

to perform complex tasks in a way that is similar to how humans solve problems. (Sara 

Brown, 2021)  

Tom Mitchell, a computer scientist and professor at Carnegie Mellon University and a 

prominent figure that has contributed significantly to the field of machine learning, 

defines machine learning as:  

"A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E." (Mitchell, 1997)  

We can interpret Tom Mitchell's definition of Machine learning and apply it to the goal 

of credit scoring: A credit scoring model requires information on historical credit data (E) 

to train a model into learning to predict creditworthiness (T) and the performance measure 

(P) if the performance of predicting creditworthiness improves with the analysis of 

historical credit data.  

3.3.2 Learning Methods 

This section describes the three primary categories machine learning models fall into. The 

three categories are often referred to as machine learning problems: supervised, semi-

supervised, and unsupervised machine learning.  

• Supervised learning  
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We define supervised learning by its use of labeled datasets to train algorithms to predict 

outcomes accurately or classify data. Supervised learning are methods that attempt to 

discover the relationship between a target attribute (dependent variable) and input 

attributes (independent variable) (Maimon & Rokach, 2010). When input data is fed to 

the model, it adjusts its weight until fitted appropriately. This happens as part of a cross-

validation process to ensure that the model avoids under or overfitting (IBM, n.d.). 

There are many benefits to using supervised machine learning, and it can help 

organizations solve various real-world problems at scale. An example is classifying and 

separating spam mail from another folder in your inbox. Supervised machine learning 

uses a trained set of many cases consisting of features with value and resulting class. 

Another example is a dataset describing the color, top speed, and capacity of the trunks 

of a certain number of cars and the classification of the cars being a family car or not. The 

supervised machine learning algorithm then uses the data to infer functions relating the 

features of the car being a family car or not. (Alpaydin, 2010) 

Reinforcement machine learning is very similar to supervised learning, but the difference 

is that the reinforcement machine learning algorithms are not trained using sample data. 

This type of model learns as it goes, by trial and error, receiving feedback in the form of 

rewards or penalties based on its actions. So when a sequence of successful outcomes 

occurs, these will be reinforced to develop the best recommendation for a specific 

problem. (Alpaydin, 2010) 

• Unsupervised learning 

Unsupervised machine learning uses the algorithms to analyze and cluster unlabeled 

datasets. So, the algorithm is trained using just an input set, and desired results or 

feedback is given. The algorithm then finds the structure in the data by itself. Due to the 

data generated being so high, humans will not be able to analyze all the data, so an 

algorithm based on unsupervised learning finds hidden patterns or data groupings without 

the need of human intervention (IBM n.d.). This method is excellent for exploratory data 

analysis, and examples where it can be utilized are with customer segmentation and sales 

strategies. Using unsupervised learning, a seller/company can detect sales patterns and 

image recognitions, and behavior-based network security detection.  

• Semi-supervised learning  
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Semi-supervised learning considers the classification problem only when smaller labeled 

subsets of the observation have corresponding class labels. When training, it uses the 

smaller subset to guide classification and feature extraction from a large and unlabeled 

dataset. It uses labeled data to data to ground predictions and unlabeled data to learn 

shapes of the larger data distributions. Semi-supervised machine learning lies between 

the two, supervised and unsupervised learning, and using semi-supervised learning; one 

can achieve results with only fractions of the labeled data, which can save valuable time 

and money.  

3.4 Model Performance Measures  

In this next section of the thesis, we will look at and discuss different statistics to assess 

the performance of the different models. When evaluating a model's performance, there 

are many different approaches and methods to consider, and each might differ in 

performance depending on the problem. As the goal of this thesis is to compare and find 

which methods of machine learning perform better, and a criterion on which methods 

used to compare them is required.  

3.4.1 Confusion Matrix 

Confusion matrix is a method to visualize the accuracy using a table. To easily explain 

the confusion matrix, we assume a classifier that classifies instances as positive and 

negative. We then have four fields to be calculated in the matrix: true positive, true 

negative, false positive, and false negative. In a binary classification problem, a confusion 

matrix is typically a 2x2 table with four cells representing different prediction outcomes: 

Table 3.1 Confusion Matrix 

 

 

True Positive shows the models correctly predicted positive instances as positive. 

True Negative shows the models correctly predicted negative instances as negative. 

False Positive shows the models incorrectly predicted negative instances as positive. 

False Negative shows the models incorrectly predicted positive instances as negative.   

 Predicted Positive Predicted Negative 

Positive True Positive (Tp) False Negative (Fn) 

Negative False Positive (Fp) True Negative (Tn) 
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There are several advantages that the confusion matrix offers. Firstly, it is efficient to use 

and requires little computational power. Secondly, because of its simplicity, it is easy not 

just for professionals to understand but also for individuals with different backgrounds. 

Additionally, in my case, utilizing the confusion matrix along with accuracy, can help 

with the verification of the model's effectiveness in predicting default and non-defaulters. 

Which provides a comprehensive assessment of the model’s predictive performance 

across different classes.  

3.4.2 Accuracy 

The possibility of calculating other statistical measures occurs when using the values 

found from a confusion matrix. The first one we will look at is the accuracy. A confusion 

matrix provides a clear and structured representation of the model's prediction and can 

help in decision-making based on the specific requirements of the classification task. To 

find the accuracy of the correct percentage of predictions made by the model, we can use 

the following formula:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛 

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑛 + 𝐹𝑝
 

In accuracy, a random classifier will get, on average, half of the classification correctly, 

which means that values above 0.5 indicate that the model has a higher accuracy as 

random guessing. A perfect prediction has an accuracy of 1.0.  

The accuracy paradox is a phenomenon referring to an accuracy being high but 

misleading when evaluating the performance of a predictive model. The accuracy paradox 

states that a model with overall high accuracy, in reality, performs poorly in predictions. 

Imagine having two models that predict bankruptcy.  

Below, in Table 3.2, the confusion matrices for the two models are showcased. The first 

model, let’s call it A, predicts 200 out of 500 cases of bankruptcy, and the accuracy of the 

model is as follows:  

200 + 8.300

500 + 8.600
= 0.934 

Model B, however, does not have the ability to detect any bankruptcy at all, and the 

accuracy of the model is as follows:  
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0 + 8.500

500 + 8.500
= 0.944 

From the performances, model B has the highest accuracy, even though it does not have 

any predictive powers. This disadvantage, the accuracy paradox, is very important to have 

in mind, not to determine and evaluate models that might score highly but, in reality, have 

less predictive powers.  

Table 3.2 Confusion Matrices of Model A and B 

      Model A        Model B 

 

It is crucial to be aware of the accuracy paradox when evaluating model performance. To 

only rely on accuracy as the sole evaluation metric might be misleading. Several other 

statistics have been developed to quantify model performance, and to gain a more 

comprehensive understanding of model effectiveness, some of them will be analyzed. The 

first ones we will look at are Precision and Recall.  

3.4.3 Precision and Recall 

Precision: It is a performance metric that measures the proportion of correctly predicted 

instances of positive instances and indicates how reliable the model is when it identifies 

positive instances. A high precision indicates a low rate of false positives. It is measures 

with: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝 

𝑇𝑝 + 𝐹𝑝
 

Recall: Is a metric that measures the proportion of correctly predicted positive instances 

out of all actual positive instances. A high recall indicates a low rate of false negatives. It 

is measured with:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

 Predicted 

 Positive Negative 

Positive  200 100 

Negative 500 8300 
 

 

 Predicted 

 Positive Negative 

Positive  0 500 

Negative 0 8500 
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Both metrics provide valuable insights into different aspects of model performance, and 

they are often used together. They are often given together or combined in making another 

statistic, called F1-score.  

3.4.4 F1-Score 

The F1-score is, as mentioned, a combined metric between precision and recall, making 

a balanced measure of a model's performance. The F1-score is equal to the harmonic 

mean of the two, providing an evaluation of the model’s ability to correctly predict 

positive instances while minimizing the false negatives and false positives. Naturally, a 

negative with the F1-score is that it does not consider true negatives. A high f1-score 

indicates better overall model performance and is measured by:  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

 

3.4.5 Receiver operating characteristics Area under the curve (ROC AUC) 

A receiver operating characteristics (ROC) graph is a technique for visualizing classifiers 

based on their performance and has long been used in signal detection theory to depict 

the tradeoff between hit rates and false alarm rates of classifiers (Fawcett, 2006)  

The ROC graph is created by plotting the true positive rate against the false positive rate. 

The true positive rate, also called hit rate and as earlier talked about, recall, is calculated 

by taking the positives correctly classified divided by total positives. The false positive 

rate, also called false alarm rate, is calculated by dividing the negatives incorrectly 

classified with total negatives (Fawcett, 2006). 

𝑇𝑝 𝑅𝑎𝑡𝑒 =
𝑇𝑝

𝑃
 

𝐹𝑝 𝑅𝑎𝑡𝑒 =
𝐹𝑝

𝑁
 

In classifiers, scores between 0 and 1 are calculated, and a threshold must be selected to 

determine the boundary between positive and negative classifications. The score, denoted 

as x, can be considered a sample from a continuous random distribution X. An instance 
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is classified as positive when x > T, where T represents the chosen threshold. Varying the 

threshold will give different rates of true positives and false positives. 

Figure 3.1 provides three examples of a ROC curve, with one model being random and 

two models having predictive capabilities. In the two models (A) and (B), which perform 

better than the random guessing one, the true positive rate will be higher than the false 

positive rate, and the ROC curve will be above the stippled, diagonal random model. This 

is easier explained with an example. Let's say we want to classify some instances as either 

positive or negative. When choosing a random fraction, R, as our threshold, then the R 

proportion of the instances that are true positives will be identified as positive, and the 

same for R proportion of instances that are true negatives will be identified as negatives. 

This means that the chosen threshold decides how accurately the positive and negative 

instances are classified.  

Figure 3.1: One graph containing the ROC of three random models, with one random 

and two better performing. 

 

An important summary statistic is the Area Under the ROC curve (AUC). As the name 

implies, this is simply the area under a classifier’s curve expressed as a fraction of the 

unit square. Its value ranges from 0 to 1. Though a ROC curve provides more information 

than its area, the AUC is useful when a single number is needed to summarize 

performance or when nothing is known about the operating conditions (Fawcett & 

Provost, 2015).  

For a random classifier, the AUC is precisely 0.5, while models that are better than a 

random classifier will have an AUC above 0.5, with the perfect classifier having an AUC 

score of 1. If the AUC is below 0.5, the model performs worse than a random guesser and 
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most probably is not able to handle the data information properly. In short, the AUC is a 

measure that summarizes the overall performance of a classifier model by measuring the 

area under the ROC curve with one single number. (Hullermeier & Vanderlooy, 2008) 

3.5 Cross-Validation 

When training a model to make predictions, it needs an estimate of how accurate it will 

predict in practice. Cross-validation is a technique to assess the performance and 

generalization ability of a model. In cross-validation, the available data is partitioned into 

subsets, also called training sets, used to train the model and to a set where the model is 

tested and evaluated, also called test sets or validation sets. This practice is repeated 

several times, usually using different partitions, relying on multiple iterations to reduce 

variability and to obtain more reliable estimations of the model’s performance.  

3.5.1 k-fold Cross Validation 

In k-fold cross validation the data is divided into k equally sized subsets. Of all the k 

subsets, only one is retained to be used as a test set, while all k-1 remaining sets are used 

as training sets. This process is repeated k times, with each subsets being used as a test or 

validation set once. The results of the performance are then averaged over all iterations 

to obtain an accurate estimation of the model performance. K-fold are widely used and 

are one of the more commonly used cross-validation methods. However, the k-fold cross-

validation has an upwards bias, which can be biased when applied to a large dataset. This 

can be negligible in leave-one-out cross-validation, but it sometimes cannot be neglected 

in 5-fold or 10-fold cross-validation, which is the favorite from a computational 

standpoint. (Fushiki Tadayoshi, 2011) 

3.5.2 Holdout Method 

The Holdout validation method splits the dataset into two sets, one training set, and one 

test set. The model is trained using the training set and validated using the test set. The 

majority of data is assigned to the training set, and splitting is typically ranged from 30:70 

to 10:90. The holdout method is much simpler and less intensive than the k-fold cross-

validation, making it suitable when using large datasets. However, because this method 

uses a single train/test split, it may yield high variance in the performance estimate, 
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especially in smaller datasets, making the method susceptible to random variations 

(Zhang, 2009). 

3.5.3 Repeated random sub-sampling validation 

The repeated random sub-sampling or also known as Monte Carlo cross validation works 

just like the holdout method but differs in that it splits the dataset into training and test 

sets multiple times. In each repetition, the dataset is split into random training and test 

sets. The resulting performance is then averaged over all the iterations (Berrar, 2019). 

The negatives with this method are that some samples of the data may never be used as 

validation, as well as some might be selected multiple times. This method can also result 

in higher variance compared to the k-fold cross-validation, because each random partition 

of the data might yield different subsets of the data.  

3.6 Model Description 

In this chapter of the thesis, I will look at the machine learning algorithms that are most 

common for credit scoring, as well as the algorithms I will use in this thesis. All the chosen 

models are non-parametric except the logistic regression model. I will in this chapter give 

an explanation of the classification techniques, and present some parameters to be tuned 

and determined. 

3.6.1 Logistic Regression 

Logistic regression models the probabilities for classification problems with two possible 

outcomes. It is an extension of the linear regression model for classification problems. 

The problem when using the linear regression is that there are no upper or lower limits 

for the response variable. The linear model extrapolates and gives values below zero and 

higher than one. (Christoph Molnar, 2022). In this case, there would be a problem if a 

client of the said bank had somewhat of an extreme balance value; the value predicted 

could result in being outside of [0, 1]. The main goal is to predict the probability of 

default, which would create a problem, as predicting probabilities would have to be in 

range between 1 and 0. 

 

 



23 
 

The logistic function is given by: 

𝑝(𝑥) =
𝑒𝛽1+𝛽1∗𝑋1+⋯+𝛽𝑘∗𝑋𝑘

𝑒𝛽1+𝛽1∗𝑋1+⋯+𝛽𝑘∗𝑋𝑘 + 1
 

Where p is the probability that a case is in a particular category, e is the base of natural 

logarithms, 𝛽0 is the constant of the equation, and 𝑏𝑘 are the coefficients of the predictor 

variables. 

Figure 3.2: Standard Logistic Regression 

Logistic regression uses maximum likelihood to estimate parameters in the model, and 

by transforming the logistic function given, we can find the odds for any given data points. 

The form of the logistic regression equation is: 

𝐿𝑜𝑔 (
p(X̅) 

1 − p(X̅) 
) = 𝛽0 + 𝛽1 ∗ 𝑋1 + ⋯ + 𝛽𝑘 ∗ 𝑋𝑘 

We find the log odds from the parameters on the right side of the formula. For our case, 

the maximum likelihood estimates the parameters of each observation and it will predict 

a value closer to 0 for those who most likely would not default and closer to 1 for those 

likely to default.  

Lastly, the parameters that will be analyzed and determined for the Logistic regression 

are the solver, regularization term, and regularization. The solver parameters are the one 

that determines the coefficients. This method is an iterative process in which, in each 

iteration, the coefficients change in a way, so the maximum likelihood is improved. The 

solver parameter consists of two methods to fit the model. These models are Liblinear 

and Saga. The liblinear is used for the coordination of descent algorithms to find the 

utmost suitable values for the coefficient. The Saga solver, however, uses a stochastic 

average gradient descent and is usually faster when applied to larger datasets.  
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The regularization term, often called C, is a term that penalizes complex algorithms and 

is favorable for simpler models. Further, there are two types of regularization methods 

commonly used, which are called L1 and L2. The L1 is favorable for sparse models, and 

models with a large fraction of coefficients equal to zero. The L1 is the better choice if 

the dataset consists of highly correlated features. The L2 is used when a sparse model is 

not suitable. While the L1 suits better for correlated features, the L2 simply shrinks the 

coefficients of all correlated features.  

3.6.2 Neural Network 

The core neural network algorithm is the neuron (a unit). Many neurons arranged in an 

interconnected structure make up a neural network, with each neuron linking to the 

inputs and outputs of other neurons. Neural networks can be visually represented as 

neurons distributed between layers, where the first and the last layers play an important 

role. The first layer, called the input layer, picks up the features from each data example 

processed by the network. The last layer, called the output layer, releases the results. 

They receive input, compute a weighted value, sum them, and use an activation function 

to evaluate the result, which transforms it in a non-linear way (Mueller & Massaron, 

2021). 

Figure 3.3: Simplified Neural Network Illustration. 

 

Figure 3.3 above is an example of a schematic overview of a neural network. The two 

nodes on the beginning left are the input nodes, and our predictors are at this stage. The 
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last nodes on the right are the output nodes, and the nodes in the middle are the hidden 

layers. (Du & Swamy, 2013) 

Typically, one, two, or three layers are used, with neurons split equally between them. 

The number of neurons and layers is a part of the parameters that must be specified before 

training. Even though neural networks are much used in practice for the modeling of 

probability for defaulting, due to the great recognition of patterns, this machine learning 

technique is one of the most prone to overfitting. 

For Neural Network algorithms, it is important to tune the parameters well to avoid 

overfitting. However, there is another problem endured if not tuning the parameters well, 

and that is the Black Box problem. Concerns about the neural network and other machine 

learning algorithms and their trustworthiness are increasing. With automation of routine 

decisions joined with highly complex information architecture and the usage of 

algorithmic systems of deep learning, which can remain hidden from human 

comprehension. This problem is commonly called the Black box problem. (Eschenback, 

2021) 

The parameters to be tuned and determined in Neural Network algorithms are usually the 

Solver, Hidden layers, Activation functions, Learning rates, Tolerance, Regularization 

term, and Maximum Iterations. The Hidden layers are the size and number of layers in 

between the input and output layers. The Activation function is the function shape which 

is used to transform the signals of the input of the neurons. Just as in the case of the 

Logistic regression model, the regularization term's goal is to penalize complex models, 

mainly used for countering overfitting the model. Learning rates are the step size where 

weights are changed. The last two parameters, tolerance, and maximum iterations are 

parameters working to stop the algorithm. Tolerance stops the training if the decrease in 

loss during training is smaller than the threshold, and the maximum number of iterations 

is the number of iterations to reach convergence. Not being highly careful when tuning 

and determining these parameters will most likely end in flaws in the algorithm.  

3.6.3 k Nearest Neighbor  

The k Nearest Neighbor classification method base a classification on the k samples 

closest to the instance that has to be classified. What defines a near neighbor is part of 

the parameters, and to give an example; we define a number of neighbors of a test 



26 
 

subject to be five. Our test subject’s pattern closely resembles three of the five 

neighbors, and the new observation is then assigned to those three. Their responses are 

yes, yes, and no. If we then take a majority vote on these values, we predict yes for our 

test subject. We further assign a score to it, as scores give more information than just a 

yes or a no-decision. If we then score the yes decision to be = 1 and average the scores 

from our test subjects’ neighbors, we average the score for David to be 2/3. In an actual 

experiment, using more than three nearest neighbors to compute the probability 

estimates strengthens the estimates. (Provost & Fawcett. 2013). 

Figure 3.4: Example from Provost & Fawcett. 2013) 

 

Our test subject is labeled with a question mark and would, in this case, be classified as a 

+ because its nearest neighbors weighted average is a + as well. The downside of using 

this method is that it is a ‘’lazy’’ algorithm. Meaning because the method bases a 

classification on the k-samples closest to the instance that has to be classified, the method 

does not induce a model, it just stores instances of the training data, making it biased 

again depending on the k-nearest neighbors. The smaller the sample size, the more 

effective and accurate this method would be. 

Lastly, the distance to a neighbor is defined as the Euclidean distance. The Euclidean 

distance is one of the most common geometric ways to measure distance, and with this, 
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we can compute the overall distance by computing the distances of the individual features 

in our setting. (Provost & Fawcett 2013) The Euclidean distance is defined by: 

Figure 3.5: The Educlian Distance 

 

There are three commonly used computation methods for the k Nearest Neighbor 

algorithm: Brute Force, k-d Tree, and Ball Tree. The first one, Brute Force, is the simplest 

computation method for this algorithm. The brute force method calculates the distances 

between the points in the data and uses the distance to determine which ones are the 

closest. However, this method is usually better for smaller datasets and is prone to be 

infeasible when datasets increase in size.  

The second computation method, the k-d tree, is a more efficient method for larger 

datasets compared to the brute force method. The k-d tree divides the data into two parts, 

the right node and the left node, where either of the nodes is searched according to query 

records. (Bhatia, 2010) the k-d tree effectively uses a decision tree to store information 

on distance, requiring fewer computations. An easy explanatory example is having three 

points, where the first point (1) is far away from the second point (2), but point (2) and 

three (3) are close. The k-d tree uses this information to determine that point (1) then also 

is far away from point (3).  

The last computation method, the ball tree method, is favorable to use when the k-d tree 

is difficult to create due to high dimensional space. (Bhatia, 2010) Each node in this 

method splits the data into two further sets, with each set then contained by the smallest 

‘ball’, containing all the points. The points are then assigned to the sphere where the 

center is closest.  
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3.6.4 Decision Trees 

A decision tree is one of the best-known classifiers due to its logical structure. A decision 

tree consists of nodes connecting, forming a tree with one single root node as a starting 

point. This node is called the “root” node and has no incoming edges. All nodes following 

the root node have a single incoming edge; if a node also has outgoing edges, that node 

is called an internal or test node. The internal node splits the data set into two or more 

subspaces according to a certain logic. Lastly, we have nodes called leaves, also known 

as terminal or decision nodes. Leaf nodes only have incoming edges, do not split like the 

internal nodes, and are assigned to a label based on which label is most appropriate. The 

classification process of a decision tree begins at the root node and continues by traversing 

through the internal nodes until a leaf is reached. (Maimon & Rokach pg. 149, 2010). 

The figure below gives an example of a simple decision tree. (Maimon & Rokach pg. 

150, 2010). 

Figure 3.4: Simple Decision Tree 

 

The decision tree incorporates both nominal and numeric attributes. Each node is labeled 

with the attribute it tests, and the tree’s branches are labeled with its corresponding values. 

When using decision trees, impurity is measured to determine the split, and some 

parameters must be specified. The Gini Index and Entropy are the two most popular. The 

Gini index advantage is that it favors the production of pure over impure descendant 

nodes. When all possible candidate splits have been generated for one variable, the 
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procedure is repeated for another variable. From the maximum set of possible single 

variable splits, the split with the largest purity is applied to generate a new partition. The 

Gini Index corresponds to the variance of the outcome and ranges from 1 to 0. The lower 

the impurity value, the more accurately each observation can be classified into the 

appropriate split. (Kattan & Cowen, 2009) 

The Gini Index is defined by: 

𝑇ℎ𝑒 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑝𝑗
2

𝑐

𝑗=1

 

Further parameters for the Decision tree are the determination of maximum depth, which 

is used to specify the maximum size of the constructed tree. A high-dimensional, deeper 

tree tends to have higher performance rates than less deep trees. Also, the number of 

features used at each split is a parameter usually determined for the decision tree. This 

parameter decreases the number of features used at each split, which decreases the chance 

of overfitting. 

3.6.5 Random Forest  

Random forest is, as its name suggests, also a ‘’tree’ like method. The difference between 

the decision tree and the random forests method is that the random forests are a classifier 

consisting of a collection of tree-structured classifiers. i.e., the random forests classifier 

consists of multiple trained decision trees that together make a classification. This 

technique is called Bootstrap Aggregation, or ‘’Bagging’’ for short. The bagging 

technique is to reduce the variance by averaging multiple samples, enhance accuracy 

when using random features and give ongoing estimates of the generalization error of the 

combined ensemble of trees, as well as estimates for the strength and correlation. (L. 

Breiman 2001) 

The training procedure is similar to how a normal decision tree is trained, except that at 

each split in a tree, a random selection of features is selected, and from there, the future 

for the split is selected. The point of the random selection feature is to decrease the 

correlation between all the individual trees. Further, at least three parameters must be 

specified, and those are the number of features to consider at each node, the number of 
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samples to select out of which the algorithm is constructed, and lastly, the maximum 

depth/maximum number of layers each individual tree can contain. 

3.6.6 XGBoost 

XGBoost Is used widely by data scientists to achieve state-of-the-art results and is a 

scalable machine learning system for tree boosting. The impact of the system has been 

widely recognized in a number of machine learning and data mining challenges. The 

machine learning algorithm uses Gradient Boosting based on the second order from 

Friedmann et al. (Chen & Guestrin, 2016.)  

The Gradient Boosting technique utilized an ensemble of tree methodology to generate a 

series of Decision Trees based on a given data sample. The output of the model is the sum 

of predictions from each individual tree. To prevent any overfitting, XGBoost implements 

a regularized objective model, which is given by this specified formula: 

ℒ(𝜙) = ∑ 𝑙(�̂�𝑖 , 𝑦𝑖)

𝑖

+ ∑ 𝛺(𝑓𝑘)

𝑘

 

Where: 𝛺(𝑓) = 𝛾𝑇 +
1

2
𝛾‖𝜔‖2 

The differentiable convex loss function l measures the difference between the prediction 

�̂�𝑖 and the target 𝑦𝑖. At the same time, the regularization term Ω penalizes the complexity 

of the model (e.g., the regression tree functions). The regularization term helps to smooth 

the final learned weights, thus preventing overfitting. (Chen & Guestrin, 2016.) The 

XGBoost uses a multiple set of parameters, and further parameters to be determined, 

which not mentioned are the Maximum depth, n number of Estimators, weight and 

Learning rates. 
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4.0 Methodology 

After the theoretical background covered in the last chapter, this new chapter of the thesis 

will consist of the methodology, which indicates the description of how the objectives of 

this research project will be realized. The design of the research project is split into two 

phases, with phase one being data preparation and the second being model training and 

model testing.  

4.1 Research Framework 

In this next section of the thesis, I will discuss the approach to achieving the research 

objective.  

The first step in this research framework is gathering and thoroughly reviewing the latest 

scientific literature on three specific subjects. The three subjects are machine learning 

theory, credit risk theory, and statistical theory. The purpose of reviewing machine 

learning theory is to develop and create various models that effectively can classify credit 

by assessing the likelihood of default. These models will first be trained using a dataset 

and then evaluated using another dataset to obtain the performing results. Combining all 

three literature sources, I can further create the assessment criteria to compare the 

models.  

4.2 Data Preparation 

As mentioned, the first stage is to prepare the data for machine learning. The data 

preparations start with one original dataset and for this dataset to be ready for machine 

learning, three steps must be performed. These steps are feature engineering, normalizing 

numerical features, and vectorizing categorical features. 

In the first step in data preparation, feature engineering, the features will be analyzed and 

changed in the dataset, so the information is better represented. Future engineering is a 

dynamic process that highly depends on the futures in the original dataset and is, 

therefore, identical for each dataset. It can consist of adding, merging, and splitting 

features. An easy example of this is splitting a feature with two characteristics. By 

splitting the feature, the data might be more logically represented. It is then important to 
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assess the effectiveness of the engineered features through training and testing the 

algorithms on the modified dataset.  

The second step in data preparation is the vectorization of categorical features. This step 

consists of making a separate feature for each value that the original feature consists of. 

These new features in the column are binary, taking only values of zero and one. Doing 

vectorizing makes the machine learning algorithms ‘’understand’’ the feature easier. For 

example, for this thesis, in the dataset, there is one feature representing sex, 1 if male and 

2 if female. In machine learning algorithms nature, this order will be assumed in the 

values, and the feature will be treated as being numerical. This will lead to 

misinterpretation of the feature in the learning process. To counter this, the feature must 

be vectorized into two new binary features. Making two separate gender features, binary, 

one for male and one for female.  

The third and last step in data preparation is the normalization of numerical features. 

Normalization is transforming the values of the feature in a way that it has the mean of 

zero, and a standard deviation of one. The way of doing normalization of the values is 

represented in the equation below. The z is the normalized value, X is the original value, 

µ is the average of the feature, and σ is the standard deviation of the feature.  

𝑧 =
𝑥 − 𝜇

𝜎
 

The point of this transformation is to change all numerical features so that the mean and 

standard deviation is the same. This is further because one feature might have a higher 

influence than another based on their difference in scale. While the difference in influence 

does not always happen, the average machine learning models learn faster and more 

accurately with normalized features. As a last note, this type of transformation should 

also be applied to all newly generated numerical features during feature engineering. (Qi 

& Zhang, 2002).  

4.3 Model Training and Testing 

The next stage in the approach to reach the objectives of this experiment is the training 

and testing phase. The dataset that has been conducted from the previous stage is now 

used to train and test different algorithms. This phase is roughly split into two separate 

processes, which naturally are training and testing.  
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Before either of the processes of training or testing can start, the dataset has to be split 

into training and testing sets. The reasoning for this cross-validating is to test the final 

algorithm settings on an unseen dataset. In this research experiment, a split of 30:70 is 

used, with 70% being the training set. Figure 4.1 below shows the 30% dataset being 

separated to only be used for testing the model at the last phase.  

Figure 4.1: k-fold cross-validation 

 

4.3.1 Training  

The training phase is more complicated than first intended and involves more than simply 

training the models on the dataset. The process is iterative, aimed at updating the model 

parameters, intending to enhance the predictive performance. The input in this phase is 

the training set generated in the previous phase. During each iteration, the algorithm’s 

parameters are changed and modified, and by using k-fold cross-validation, the 

performance is determined. In essence, the k-fold cross-validation entails a repeated 

process of training and validating an algorithm with the same settings. In each iteration, 

a different part of the training set is used for training, and the remaining part is used for 

validating the trained model. The average of the performances achieved in each iteration 

is then the model’s performance.  

Once an interaction of the training is complete, the parameters are changed and adjusted, 

and the performance is evaluated through k-fold cross-validation. This process is repeated 

until a comprehensive understanding of the influence of the various settings is reached. 

Due to computational limitations and to keep computation time realistic, it is impractical 

to calculate all the possible combinations of all possible parameter values. Because of 

this, the parameters will be individually analyzed. When reaching a good understanding 
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of the individual parameters, the allowance of combinations is there, by changing multiple 

parameters.  

In this research project, all computations have been utilized using my own computer, Acer 

Aspire A315-42. Processor: AMD Ryzen 3 3200U with Radeon Vega Mobile Gfx 

running at 2.60GHz. More importantly, the algorithms have been implemented using 

Python learning.  

4.3.2 Model Performance Measure 

It is often required to accurately determine the predictive performance of an algorithm. 

Discussions of various model measures have been completed, and a selection of which 

measures to use in this research experiment must be made. The chosen measure should 

provide accurate indications of model performance while also being susceptible to 

problems such as the accuracy paradox or class imbalance, and simpler measures prone 

to these problems are naturally excluded. For this thesis and research experiment, the 

measure to express the performance of choice is the Area Under the Curve (AUC). The 

AUC has been theorized in Chapter 3. Additionally, in certain situations, such as 

resampling and assessing the final tested performance, a confusion matrix might be 

utilized. This will allow the reader to calculate alternative measures if desired.  

4.3.3 Model Testing  

The final step is the testing phase. This step aims to evaluate the final model’s 

performance using a portion of the dataset that the model has not previously seen. This 

ensures that the performance measure is not inflated due to overfitting. The portion of the 

dataset that was separated during the initial phase of the experiment can now be utilized 

for testing.  This is represented as the last row in Figure 4.1 above, where the withheld 

portion of the dataset is employed for making predictions, while the rest of the data is 

used for model training. The results and outcomes from doing such analysis will then be 

used to conjure a conclusion about the performances of the different machine learning 

algorithms when used to predict defaults.  
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5. Data Description and Preparation 

5.1 Data Description  

The dataset is publicly available from multiple sources and collected from two. The two 

are Kaggle and UCI Machine Learning Repository. This dataset was based on Taiwanese 

credit card customers in 2004. The dataset contains details of 30,000 Taiwanese credit 

lenders, where 6,636, or roughly 22% of the customers, are actual defaulters. There are 

25 variables in this dataset, including the response variables that indicate default or non-

default. The dataset’s features can be split into two categories: personal and financial. 

While the personal category consists of sex, education, marriage, and age, The financial 

category consists of the amount paid per month and the amount on the billing statement 

per month, as well as the credit limit. It is important to note that this data set has no 

missing values in the dataset. 

Below some Tables provide further information. In the first table, Table 5.1, all features 

are described. Table 5.1 Separates the feature types. Table 5.3 provides a statistical 

summary of all numerical features in the dataset, consisting of feature means, standard 

deviations, and minimum and maximum values. Tables 5.4 and 5.5 summarize the 

financial and personal categories, respectively.  

Table 5.1: Dataset Feature Description  

Features Description 

ID The ID of each client 

LIMIT_BAL Client’s Maximum given credit 

SEX Gender of the client 

EDUCATION Level of Education of the client 

MARRIAGE Marital status of the client 

AGE Age of client in years 

PAY_1 Payment status in September 2005  

… … 

PAY_6 Payment status in April 2005  

BILL_AMT1 Amount of bill statement in September 

2005 

… … 

BILL_AMT6 Amount of bill statement in April 2005 

PAY_AMT1 Amount paid by September 2005 

… … 

PAY_AMT6 Amount paid by April 2005  

DEFAULT Whether the client defaulted of not 
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Table 5.2: Feature Types 

Numerical Features Categorical Features 

LIMIT_BAL GENDER 

AGE EDUCATION 

BILL_AMT1 ... BILL_AMT6 MARRIAGE 

PAY_AMT1 … PAY_AMT6 PAY_1 … PAY_6 

 DEFAULT 

 

Table 5.3: Statistical summary of numerical features. 

Feature Mean Std Min 25% 50% 75% Max 

LIMIT_BAL 167,484 129,747 10,000 50,000 140,000 240,000 1,000,000 

AGE 35 9,2 21 28 34 41 79 

BILL_AMT1 51,223 73,635 -165,580 3,558 22,381 67,091 964,511 

BILL_AMT2 49,179 71,173 -69,777 2,984 21,200 64,006 983,931 

BILL_AMT3 47,013 69,349 -157,264 2,666 20,089 60,165 1,664,089 

BILL_AMT4 43,263 64,333 -170,000 2,327 19,052 54,506 891,586 

BILL_AMT5 40,311 60,797 -81,334 1,763 18,105 50,191 927,171 

BILL_AMT6 38,872 59,554 -339,603 1,256 17,071 49,198 961,664 

PAY_AMT1 5,664 16,563 0 1,000 2,100 5,006 873,552 

PAY_AMT2 5,921 23,041 0 833 2,009 5,000 1,684,259 

PAY_AMT3 5,226 17,607 0 390 1,800 4,505 896,040 

PAY_AMT4 4,826 15,666 0 296 1,500 4,013 621,000 

PAY_AMT5 4,799 15,278 0 253 1,500 4,032 426,529 

PAY_AMT6 5,216 17,777 0 118 1,500 4,000 528,666 
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Summary of the Categorical Features 

Table 5.4: Summary of the financial category. PAY_1, PAY_2 and PAY_3 Features. 

  PAY_1 PAY_2 PAY_3 

Value Description n % n  % n % 

-2 No Consumption 2,759 9.20% 3,782 12.61% 4,085 13.62% 

-1 Paid In Full 5,686 18.95% 6,050 20.17% 5,938 19.79% 

0 Revolving Credit 14,737 49.12% 15,730 52.43% 15,764 52.55% 

1 One Month Late 3,688 12.29% 28 0.09% 4 0.01% 

2 Two Months Late 2,667 8.89% 3,927 13.09% 3,819 12.73% 

3 Three Months Late 322 1.07% 326 1.09% 240 0.80% 

4 Four Months Late 76 0.25% 99 0.33% 76 0.25% 

5 Five Months Late 26 0.09% 25 0.08% 21 0.07% 

6 Six Months Late 11 0.04% 12 0.04% 23 0.08% 

7 Seven Months Late 9 0.03% 20 0.07% 27 0.09% 

8 Eight Months Late 19 0.06% 1 0.00% 3 0.01% 

 

Table 5.5: Summary of the financial category. PAY_4, PAY_5 and PAY_6 Features. 

  PAY_4 PAY_5 PAY_6 

Value Description n % n  % n % 

-2 No Consumption 4,348 14.49% 4,546 15.15% 4,895 16.32% 

-1 Paid In Full 6,687 18.96% 5,539 18.46% 5,740 19.13% 

0 Revolving Credit 16,455 54.85% 16,947 56.49% 16,286 52.29% 

1 One Month Late 2 0.01% 0 0.00% 0 0.00% 

2 Two Months Late 3,159 10.53% 2,626 8.75% 2,766 9.22% 

3 Three Months Late 180 0.60% 178 0.59% 184 0.61% 

4 Four Months Late 69 0.23% 84 0.28% 49 0.16% 

5 Five Months Late 35 0.12% 17 0.06% 13 0.04% 

6 Six Months Late 5 0.02% 4 0.01% 19 0.06% 

7 Seven Months Late 85 0.19% 58 0.19% 46 0.15% 

8 Eight Months Late 2 0.01% 1 0.00% 2 0.01% 
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Summary of the Categorical Personal Categories. 

Table 5.6: Gender 

Value Description n  % 

1 Male 11,888 39.63% 

2 Female 18,112 60.37% 

 

Table 5.7: Education 

 

 

 

 

 

Table 5.8: Marriage 

Value Description n  % 

0 Other 54 0.18% 

1 Married 13,659 45.53% 

2 Single 15,964 53.21% 

3 Divorced 323 1.08% 

 

To better understand the dataset, several features will be looked at and more extensively 

described, and some relations between features will be shown, as they seem interesting.  

First, we will look at the average age and default rate for different categories. Below, 

three tables are displayed. Table 5.9 considers the average age and default rate for marital 

status, and Table 5.10 considers the average age and default rate for the educational 

categories. Lastly Table 5.11 considers both genders average age and default rate. The 

first notable and interesting notation is that for both features that consist of “other,” the 

Value Description n  % 

0 Other 14 0.05% 

1 Graduate School 10,585 32.28% 

2 University 14,030 46.77% 

3 High School 4,917 16.39% 

4 Other 123 0.41% 

5 Other 280 0.93% 

6 Other 51 0.17% 
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“other” category has a relatively low default rate. One conclusion from this might be that 

these people probably have a high income or net worth.  

Further, we see a clear difference between the “single” individuals and the “divorced” 

individuals, where the divorced have a higher default rate than the single ones. 

Interestingly, individuals who have finished graduation school have a lower default rate 

than those who have gone through high school and university. Lastly, when looking at 

the age difference between males and females, there are two years apart in average age, 

which is considered to be almost equal to each other, and there is only a 2.5% higher 

default rate for women.  

Table 5.9: Average Age and Default Rate for Marital status 

Marital Status Average Age Default Rate 

Other 38 9% 

Married 40 23% 

Single 31 21% 

Divorced 43 26% 

5.10: Average Age and Default Rate for the Educational categories 

Educational Status Average Age Default Rate 

Other 36 7% 

Graduate School 34 19% 

University 35 24% 

High School 40 25% 

Table 5.11: Average Age and Default Rate for Male and Female 

Gender Average Age Default Rate 

Male 37 8% 

Female 35 10.5% 
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5.2 Correlations  

Calculation the correlation between the features is the next step in analyzing the dataset. 

Table 5.9 below shows the calculated correlation between all numerical features, and we 

see from the table that the correlations between the bill amount features are highest, 

ranging from 0.8 to 0.95. The correlations are high between the previous and next periods. 

This is because the values of those features change respectively to the value in the next 

period.  

The correlations between the payment amounts are lower than the bill amount. The 

reasoning for this is probably the fact that the payments amount and the amount of the 

previous period are unrelated.  

Lastly, the balance limit also shows strong positive correlations between the other 

features. This does make sense, as a higher balance limit provides the opportunity to take 

out larger loans. Age’s highest positive correlation between the other features is between 

the balance limit feature, and the most probable cause for this is that older people, on 

average, have a higher income, meaning they have higher loans as well. 
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Table 5.12 Correlations between all numerical features. 
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5.3 Vectorization and Normalization 

In an earlier chapter, vectorization and normalization have been described. It was then 

stated that this phase will be performed after the future engineering stage. This is because 

new and/or changed features also, if necessary, have to be vectorized and normalized. 

However, in this phase, the order of the two has been switched, and the reason for this is 

to see and determine whether the impact of the engineered features affects the models, as 

well as if the engineered features must be analyzed with or without vectorization and 

normalization.  

In this phase of analyzing the dataset, the first step, is to determine the performance of all 

the algorithms when the algorithms are trained and validated using an unchanged original 

dataset. The results are given in the table below, and there is a high variety between all 

the models. The algorithms that are based on trees perform better than the others, with 

XGBoost and Random Forest having the highest AUC at 0.76. 

Table 5.13 Performance of the different model algorithms when trained and validated 

on the original dataset. 

Model Algorithms AUC 

Logistic Regression 0.64 

Neural Network 0.65 

Decision Tree 0.62 

k Nearest Neighbor 0.60 

Random Forests 0.76 

XGBoost 0.76 

Now that the original dataset has been trained and validated, and the performance without 

doing any changes to it is gathered, the next step is preparing the dataset in order for the 

machine learning algorithms to better their performance. The first thing to prepare is the 

two preparation techniques of vectorization and normalization. The first one I will tackle 

is vectorization, dealing with categorial features. For example, when certain categorical 

features are used as input in its original form, such as in the original dataset, the model 

might have difficulty distinguishing the gender. This is due to machine learning 

algorithms assuming a certain order in the feature values, and vectorizing the gender 

feature will solve this problem. For this experiment, there will be vectorization of the 
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categorical features, such as gender, education, and marriage. Below, three tables is 

provided, highlighting vectorization of the features.  

Table 5.14: Gender Feature Vectorized 

ID Gender Male Female 

46 2 0 1 

47 2 0 1 

48 1 1 0 

49 1 1 0 

50 1 1 0 

 

 

 

Table 5.15: Education Feature Vectorized 

 

Table 5.16: Marriage Feature Vectorized 

 

 

 

 

Now that categorical features have been vectorized, numerical features can be prepared 

by normalization. By normalizing the features, we manipulate the values in the features 

so that the average will be zero and the standard deviation will be one. We transform them 

ID Education Other Graduate School University High School 

46 1 0 1 0 0 

47 4 0 0 0 0 

48 2 1 0 1 0 

49 1 0 1 0 0 

50 3 0 0 0 1 

ID Marriage Married Single Divorced Other 

36 1 1 0 0 0 

37 2 0 1 0 0 

38 2 0 1 0 0 

39 2 0 1 0 0 

40 2 0 1 0 0 



44 
 

so they all have the same mean and standard deviation. As mentioned in Chapter 4, 

minimizing the different levels of influences between the features is the goal. 

Table 5.17: Balance Limit Feature Normalized 

ID LIMIT_BAL Balance Limit 

46 20,000 -1.137 

47 150,000 -1.135 

48 380,000 1.638 

49 20,000 -1.138 

50 20,000 -0.751 

 

Table 5.18: Pay Amount 1 Feature Normalized 

ID  PAY_AMT1 Pay Amount 1 

46 3,000 -0.160 

47 1,013 -0.280 

48 21,540 -0.958 

49 1,318 -0.262 

50 0 -0.341 

After applying vectorization and normalization to the original dataset, it is now possible 

to determine the impact on the performance compared to the performance without. Below, 

Table 5.12, display the results of training and validating the model algorithms with the 

vectorized and normalized features of the original dataset.  

Table 5.19 Showcasing Performance after vectorizing and normalizing. 

Model Algorithms AUC Change 

Logistic Regression 0.72 +0.08 

Neural Network 0.78 +0.13 

Decision Tree 0.62 +0.00 

k Nearest Neighbor 0.70 +0.10 

Random Forest 0.76 +0.00 

XGBoost 0.76 +0.00 

 

The results show that the AUC of all algorithms is either the same or higher, providing 

information that pursuing vectorization and normalization for all algorithms is a good 

idea. The highest increase in performance is Neural Network, with the AUC increasing 

from 0.65 to 0.78. The reason for no change in the Decision Tree, Random Forest, and 
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XGBoost is that these types of algorithms, based on trees, do not rely on the scale of a 

feature. 

5.4 Feature Engineering  

After vectorizing and normalizing, the next step in preparing the dataset, is further 

tweaking and feature engineering, which will enhance performance further. Just as before, 

the goal is to change possible features in such a way that the algorithms “understand” the 

dataset better and easier, so it can produce better results.  

In the education feature, there are seven different value possibilities, whereas four of these 

are labeled as non, other, and unknown. There is zero explanation to what these mean and 

no possible way to distinguish between them. The result then, is combining all these 

values to belong to the 0 category, or other. My hypothesis is that this change has little to 

no impact on all the models results, and doing this keeps the consistency to all categorical 

features.  

The most interesting change done to one of the features was the PAY_n features. These 

categorical features contain much information. They contain, referring to Table 5.5, 

information regarding whether the credit is revolving or installment, if there has been any 

consumption, and if the credit is paid on time or late. In total, 11 different values are 

mapped onto this feature, which, in many cases of machine learning algorithms, is 

difficult to read and understand. This applies especially to the values being negative. To 

make the data easier for the algorithms to read, three new and separate characteristics 

have been installed into new features.  
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In the table above, an explanation of the new features and their values are provided. The 

first two features are for consumption and credit type, extracted from the PAY_n values, 

and are made binary [1, 0]. The last feature provides information on a client's lateness, 

ranging from 0 - 8, with 0 being on time and 1 through 8 depending on how many months 

the clients are behind. This change, in splitting the features, has no negative effect on any 

of the results of the algorithms, compared to the results from the vectorization and 

normalization phase, and is reason enough to keep the changes.  

Additionally, as there are no missing or extreme values in the dataset, I started by 

removing the “ID” feature, as it has no predictive powers and is just a range of 

identification for the clients. The second little change was changing PAY_0 to PAY_1 

for the feature to stay fit with BILL_AMT1 and PAY_AMT1. I also changed the response 

variable “default.payment.next.month” to Default, for personal preferences.  
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6. Model Training  

In this chapter, the machine learning algorithms parameters will be determined. The 

results from the prepared dataset have been inspected and will be used in this section. 

There have been many different forms of feature engineering applied to all different 

algorithms. First, all datasets for all algorithms will be vectorized and normalized. The 

new features based on PAY_n and the combined values for “others” in education will 

also apply to all algorithms. This makes the datasets more logical, has no negative effect 

on any algorithms, and provides better and positive results. The exact data preparation is 

further discussed with each of the algorithms.   

6.1 Logistic Regression  

For Logistic regression, there are two regularizations available, l1 and l2. There are two 

types of solvers, which are Saga and Liblinear. As well as one regularization term, C.  

I start by examining the regularization and solver together, and the performance of the 

four possible combinations is determined here, showcased in Table 6.1.  

Table 6.1.1 The Performance of the different Regularizations and Solvers. 

Regularization Solver AUC 

Liblinear l2 0.726 

Liblinear l2  0.726 

Saga l1 0.726 

Saga l2 0.726 

The resulting AUC scores for all four combinations have no difference, leading to an 

AUC score of 0.762. However, the time difference for the models to run is slightly 

different. Although there were only small differences, the model running fastest was the 

one with liblinear and l2, which determines the use of them further.  

The determination of the Regularization term is set to the default value of 1.0, as testing 

a range from 0,1 to 5 does not impact any results when testing with the regularizations 

and solvers.   
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Table 6.1.2 Parameters selected for Logistic Regression 

Parameter  Selected 

Regularization l2 

Solver Liblinear 

C 1.0 

  

6.2 Neural Network 

The “easiest” way to determine the parameters for neural networks is by splitting the 

process into two phases. These phases are based on the two possible solvers one can use: 

adam and sgd. The parameters that will be examined and determined in the two phases 

are the number and size of the layers between the output and input layers, called Hidden 

layers. The function shape used to transform the input signal of the neurons is called the 

Activation function. A constant or adaptive rate of the step size where weight is changed 

is called the Learning rate. The Regularization term, is used to penalize complex models, 

countering potential over-fitting. Lastly, Max iterations are the maximum number of 

iterations to reach convergence. 

I will start by determining the parameters for the adam solver, then for the sgd solver. In 

both stages, I determine the hidden layers, followed by the activation function and 

learning rate. Throughout, the maximum number of iterations will be determined.  

6.2.1 Adam Solver  

As mentioned, the first parameter I will analyze in this stage is the hidden layers. Since 

there are 30 features in the dataset the number of input nodes is equal after preparations. 

This is usually a standard, having the number of nodes in each hidden layer be the same 

as the input nodes. With each hidden layer, the computation time increases and will be 

considered when determining the parameters. To analyze closer, some different hidden 

layers are considered, ranging from one to three hidden layers with a range of 10 to 30 

nodes per layer. In the table below, I showcase the performance of the different hidden 

layers, in combination with the three activation functions, named Logistic, ReLu, and 

Tanh.  
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Table 6.2.1 The Performance of the different hidden layers with the activation 

functions. All models are trained with the Adam solver. 

 Nodes per Layer  Logistic ReLu Tanh 

First Layer Second Layer Third Layer AUC AUC AUC 

30 20 10 0.780 0.742 0.751 

30 20 - 0.771 0.755 0.759 

30 10 - 0.768 0.758 0.760 

20 10 - 0.799 0.765 0.761 

30 - - 0.780 0.774 0.764 

20 - - 0.781 0.770 0.759 

10 - - 0.788 0.778 0.765 

- - - 0.712 0.721 0.732 

Adding no hidden layers has the lowest AUC, concluding that it is necessary to add 

hidden layers for all activation functions. This is easy to understand, as neural networks 

can only make linear separations without hidden layers. When analyzing the results, we 

can also point out that adding more layers does not necessarily lead to higher AUC results 

but only adds computational time. Further, very little separates the AUC scores between 

the activation functions, but using the logistic activation function seems to perform 

slightly better, especially when only using one layer with ten nodes (0,79 AUC when 

rounded up).   

The next step in this neural network parameter analysis is determining the Learning rate. 

A too high learning rate might cause overshooting, causing the training process to stop 

before intended. As mentioned, the learning rate can either be constant or adaptive, and 

when adaptive, the learning rate decreases each time the stopping criteria are reached 

instead of the training process stopping. Then, when the learning rate reaches a certain 

value, the training process stops. The two tables below showcase the performance of the 

model when using the different constant learning rates, as well as the performance of an 

adaptive learning rate, ranging from 0.1 to 0.0001.  
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Table 6.2.2 The Performance on different constant learning rates and the activation 

functions. 

 Logistic ReLu Tanh 

Learning Rate AUC AUC AUC 

0.1 0.758 0.754 0.760 

0.01 0.768 0.767 0.768 

0.001 0.791 0.777 0.772 

0.0001 0.742 0.738 0.750 

Table 6.2.3 The Performance on different adaptive learning rates and the activation 

functions. 

 Logistic ReLu Tanh 

Learning Rate AUC AUC AUC 

0.1 to 0.0001 0.771 0.762 0.769 

From the results, the AUC performance is very close to each other, and the performance 

effects are minimal and probably caused by random variation. Yet again, the Logistic 

activation function performs better, and the best AUC results were performed when the 

constant learning rate was set as 0.001.  

The next step is determining the generalization term. A more general model is led by a 

higher value of the generalization term, and thus higher value leads to reduced overfitting. 

To determine the generalization term, the term has been tested with a variety from 0 to 

10. When testing values between 0 and 1, there were no influences at all. While the model 

becomes more general as the generalization term increases, the generalization term has 

been decided to be set as 0.0001. This is because 0.0001 is the standard default value. 

Because there were no influences between 0 and 1, there is no reason for having it higher 

than 1, risking the model being too general.  

The last parameter, the Maximum iterations, works closely with another unmentioned 

parameter, called Tolerance. Both parameters work in the determining when the training 

should stop and are more important when computation time is high. For this dataset, the 

computation times are very low, taking only a couple of minutes in some cases, and 

therefore, these parameters are set as loose. The tolerance is set to zero, meaning the 

training will only stop when the maximum of iterations has been reached. To not have the 

iterations easily reached, the maximum iterations have been set to 20,000.  
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6.2.2 Sgd Solver 

Below, in Table 6.2.4, the same shapes as before are considered, just as with the adam 

solver. From the table, we see, just as before, that there is no reason to add more than one 

hidden layer. The performances are not as strong as with the adam solver, but the results 

conclude that no more than one hidden layer is enough, preferably 10, as found earlier. 

In contrast to the results with the adam solver, we see that the usage of the logistic 

activation function provides a slightly lesser result than the other two.  

Table 6.2.4 The Performance of the different hidden layers with the activation 

functions. All models are trained with the Sgd solver. 

 Nodes per Layer  Logistic ReLu Tanh 

First Layer Second Layer Third Layer AUC AUC AUC 

30 20 10 0.662 0.775 0.754 

30 20 - 0.728 0.767 0.771 

30 10 - 0.734 0.771 0.765 

20 10 - 0.727 0.763 0.762 

30 - - 0.731 0.763 0.764 

20 - - 0.733 0.766 0.768 

10 - - 0.724 0.745 0.757 

- - - 0.704 0.709 0.708 

Next in line to be analyzed are the learning rate parameters. Just as with the adam solver, 

the same rates are considered, 0.1 to 0.0001. The main differences noticed when analyzing 

the learning rates in using sgd solver were the computing time and the AUC scores tended 

to decrease with decreased learning rates. The computing time, however performed better 

when using the adaptive learning rate.  

Table 6.2.5 The Performance on different constant learning rates and the activation 

functions 

 Logistic ReLu Tanh 

Learning Rate AUC AUC AUC 

0.1 0.772 0.764 0.769 

0.01 0.769 0.778 0.765 

0.001 0.717 0.748 0.766 

0.0001 0.676 0.729 0.714 
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Table 6.2.6 The Performance on different adaptive learning rates and the activation 

functions. 

 Logistic ReLu Tanh 

Learning Rate AUC AUC AUC 

0.1 to 0.0001 0.724 0.763 0.749 

When analyzing the last three parameters, regularization term, maximum iterations, and 

tolerance, the values compared to the adam solver are similar, if not identical. The 

behavior of the regularization term was just as the adam solver. It only affected the result 

negatively when higher values were appointed. The same reasoning applies here for the 

last two parameters as it did with the adam solver. The tolerance was set to 0, and the 

maximum iterations were set to 20,000. 

6.2.3 Comparing Adam and Sgd  

Now that both solvers have been analyzed, comparing, and deciding which parameters to 

use is in order. The differences between the two algorithms, either with the adam or sgd 

solver, are small. However, the adam solver edges the sgd out and performs slightly 

better. The highest performance AUC was 0.79, using the adam solver, being the highest 

performer between the two. The adam solver had a clear relation with the learning rate, 

while the sgd solver was rather unclear, even having decreasing performance with lower 

learning rates. One last point; even though all algorithms were relatively fast to compute, 

the adam solver edges the sgd solver out with a usual 50% shorter computing time. Thus, 

a conclusion of using the adam solver has been made. The following selection of 

parameters for the neural network: 

Table 6.2.7 Parameters selected for Neural Network 

Parameters Selected 

Solver Adam 

Hidden Layers One Layer with 10 Nodes 

Activation Function Logistic 

Learning Rate 0.001 

Regularization Term 0.0001 

Tolerance 0 

Maximum Iterations 20,000 
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6.3 Decision Trees 

The Decision tree works by constructing a branching tree, splitting the data at each branch 

according to a feature’s value. When a branch no longer splits, it is called a leaf, 

containing a certain class. To evaluate the best performance of the decision tree, the 

additional feature engineering, as mentioned in the last chapter, has been applied. Further, 

three parameters are analyzed to determine the performance. These three are the Criterion, 

Max Depth, and n Features. The Criterion is what measures of impurity to use when 

basing the split of branches. Max depth is the maximum depth of the constructed tree, and 

n Features are the number of features considered for each split.  

The first two parameters are combined in an experiment to determine their values for the 

best performance of the decision tree. This is due to easily showcasing the results of both 

parameters in a single plot. Firstly, the criterion, which is a value that expresses dataset’s 

impurity, has the goal of each split to minimize the impurity. There are two criterions 

generally used for decision trees, which are already mentioned in Chapter 2, the Gini 

index and Entropy. Secondly, the maximum depth is used to specify the maximum size 

of the tree constructed. It is usual to expect a higher performance with a deeper decision 

tree.  

Figure 6.3.1: The Performance of both Criterions with different Maximum Depth 

 

Figure 6.3.1 above shows the usual expectancy of higher performance with a deeper 

decision tree only applies to a certain degree of maximum depth. Having a higher max 
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depth between 5 and 6 decreases the overall performance. This is due to the training set 

overfitting. Deeper trees will fit itself to the exact dataset instead of the underlying 

structure of the data in the set. Further examination shows that the entropy criterion 

performs slightly better than the Gini index, with the best performance being with the 

value 6 of maximum depth.  

The last parameter to analyze is the n features or the number of features considered at 

each split. The point is to decrease the number of features to prevent overfitting. The 

features are randomly selected from all available features in the dataset. To test the n 

features, three different values of features are tested, together with maximum depth again, 

to determine the parameter that performs better. The three different values of features are 

the n number of features, the square root of n, and log2 of n. The results are showcased 

in the table/plot below. Here we can see that the n numbers of features perform better 

than the others until we reach approximately 7 numbers of maximum depth. As before, 

the expected decrease in performance with higher maximum depths still applies, and we 

start to see a decrease in performance after 6 maximum depths as before.  

Table 6.3.2: The Performance of the three different n features with different Maximum 

Depth 
 

n Sqrt n Log2 n 

Max 

Depth 
AUC 

0 0.619 0.607 0.618 

2 0.693 0.696 0.692 

4 0.738 0.741 0.737 

6 0.756 0.749 0.751 

7 0.754 0.745 0.749 

8 0.752 0.745 0.747 

9 0.747 0.733 0.750 

10 0.737 0.725 0.725 

12 0.709 0.713 0.703 

14 0.672 0.664 0.659 

16 0.640 0.642 0.660 
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From the results of the two analyses, these are the resulting parameters determined to the 

decision tree algorithm.  

Table 6.3.3: Parameters selected for Decision Tree 

 

 

 

6.4 Random Forest 

The random forest model is constructed from many individual decision trees. Each of the 

individual trees are trained on a random subset of the training data. During each split, a 

subset of the features is considered, on which the selected feature base the next selection 

to base the split on. After the training process, the classification is then determined by the 

output of all individual trees and combines them. The parameters to determine for the 

Random Forest algorithm are Maximum depth, Maximum features, and n Estimators. The 

Maximum depth and Maximum features are the number of layers the individual trees can 

contain and the number of features to consider at each split. The n Estimator is the number 

of individual trees from which the classifier is constructed.  

The maximum depth parameter will be the first determined for the random forest 

algorithm. There will be two different methods to decide the maximum depth. The first 

one is the decision stump, which uses trees that consist of a maximum of one depth. This 

method involves having the number of estimators higher for the result to get better. The 

second method involves using the same maximum depth determined by in the decision 

tree algorithm. This method will lead to fewer estimators with higher performance. Tables 

6.4.1 and 6.4.2 below displays the performance of both methods, using the three 

maximum features, n, n squared, and Log2 n.  

 

 

Parameters Selected 

Maximum Depth 6 

Criterion Entropy 

n Features n  
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Figure 6.4.1: The Performances of Maximum Depth = 1, using the three different 

Maximum Features, in relation to n Estimators. 

 

 

Figure 6.4.2: The Performances of Maximum Depth = 6, using the three different 

Maximum Features, in relation to n Estimators. 

 

The result shows that both experiments’ performances increased fast from the estimator 

value between 0 and 10. Beyond the estimator value 10, both experiments’ performances 

stayed consistent at approx. The highest performance value for that same experiment. 

This indicates that determining the value of estimators at 10 might be a good idea. Further, 
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as mentioned, the performance increases faster when the estimators are lower, when 

maximum depth equals 6, confirming my initial thought.  

When the maximum depth is one, the performance increase is slower, and one exception 

is, however, when trees with the maximum depth of one is used in combination with n 

features available at each branch-split. This is shown in Table 6.4.1, where the AUC 

equals 0.639 in every case of estimator value. This is caused by the same split being made 

in each of the decision stumps in the ensembled tree. Finally, there is a clear “winner” of 

the two, whereas the algorithm with maximum depth of 6 has a significantly higher 

performance.  

Lastly, to verify that the maximum depth of 6 and the estimator of 10 are the right choice 

for the random forest, reversing the analysis just done has been made. The tables below 

showcase the performance of Estimator equals 5 and 10 using the same three different 

maximum features in relation to a maximum depth between 1 and 35. 

Figure 6.4.3: The Performance of Estimator = 5, using the three different Maximum 

Features, in relation to Max Depth 
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Figure 6.4.4: The Performance of Estimator = 10, using the three different Maximum 

Features, in relation to Max Depth 

 

From the results, the same conclusion as with the decision tree can be made. Overfitting 

causes the performances to decrease with higher maximum depth reaching a certain value 

and the performance decrease with a higher number of estimators. Lastly, the highest 

performing value is when the maximum features are n and the maximum depth is approx. 

6. This, therefore, verifies that having a maximum depth of 6, just as the decision tree, 

and the estimator value of 10, is a good choice.  

From the results of the analysis, these are the resulting parameters that have been 

determined to the random forest algorithm.  

Table 6.4.1: Parameters selected for Random Forest 

Parameters Selected 

Maximum Features n 

n Estimators 10 

Maximum Depth 6 

 

6.5 k Nearest Neighbors  

The next algorithm to determine the parameters is the k Nearest Neighbors model. The k 

Nearest Neighbors algorithm makes a classification based on the classes of the closest 
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sample, or as the name implies, the nearest neighbors. The parameters to be determined 

are Algorithms, Leaf Size, n Neighbors, and Weights. There are three algorithms to be 

analyzed and compared: Brute Force, k - d Tree, and Ball Tree. The Leaf size is the 

number of samples per leaf, only used for the k - d Tree and Ball Tree algorithms. n 

Neighbors, is the number of neighbors in the algorithm, and Weights which are the 

weights, or importance of the individual neighbors used for the classification.  

For each calculated parameter, the n Neighbors will be combined.  

The first parameters to analyze and determine are the three different algorithms that can 

be used for the k nearest neighbor algorithm. To analyze the difference between these, 

each of these has been calculated using different values for n neighbors to evaluate if the 

algorithms performance effects differ with different values for n neighbors.  

Table 6.4.1: The Performance of the three Algorithms, in combination with different n 

Neighbors. 

n Neighbors Brute Force k-d Tree Ball Tree 

 AUC AUC AUC 

1 0.605 0.604 0.600 

5 0.703 0.695 0.703 

10 0.730 0.740 0.730 

15 0.744 0.742 0.745 

20 0.746 0.744 0.746 

25 0.751 0.747 0.743 

30 0.753 0.746 0.758 

35 0.760 0.758 0.759 

40 0.760 0.755 0.748 

45 0.755 0.755 0.758 

50 0.755 0.751 0.752 

From the table above, the performances of the three different algorithms are very similar. 

All algorithms perform better with higher n Neighbors, with the value of n Neighbors of 

35 being at the top of performances, for all three algorithms. The Brute Force algorithm 

edges it out compared to the other two, with a +0.02 and +0.01 better performance result, 

respectively. To further strengthen the Brute Force algorithm, its computation time 

compared to the other two, was considerably shorter. While the Brute Force used, on 

average approx. 10 seconds to run, the other two used at least a minute to compute. The 

reason the Brute Force is so much faster is because k-d Tree and Ball Tree both construct 
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a tree during the training process, while the Brute Force does not, and only compares each 

sample. Having larger datasets increases computation time, and while this dataset isn’t 

the biggest, the Brute Force algorithm still performs better.  

Lastly, the Weights parameter is analyzed and determined. The two weight parameters 

work in such a way that the n Neighbors get an identical weight if the Uniform is chosen, 

and if the Distance is chosen, the closest n Neighbor gets the highest weight. Table 6.4.2, 

showcase the performances of the difference of the two weight parameters, in 

combination with different n Neighbors. The result shows that there is very little that 

separates the two. However, the Uniform has been chosen for this experiment. This is 

because the uniform performances just about edges the distance out, and the uniform is 

more commonly used, due to the distance being more complex.  

Table 6.4.2 The Performance of Weights, in combination with different n Neighbors. 

Distance Weights Distance Weights Uniform Weights 

n Neighbors AUC AUC 

1 0.611 0.600 

5 0.698 0.699 

10 0.721 0.727 

15 0.745 0.744 

20 0.745 0.737 

25 0.744 0.755 

30 0.748 0.745 

35 0.748 0.751 

40 0.757 0.759 

45 0.751 0.752 

50 0.759 0.759 

Notably, since the Brute Force has been chosen, there will be no need to determine the 

leaf size, as the Brute Force algorithm is, as mentioned, not a tree-based algorithm.  
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The parameters chosen for the k Nearest Neighbors are presented in Table 6.4.3. 

Table 6.4.3 Parameters selected for k Nearest Neighbors 

Parameters Selected 

Algorithm Brute Force 

n Neighbors 35 

Weights Uniform 

Leaf Size Not Applied 

 

 

 

6.6 XGBoost 

XGBoost is an advanced implementation of a gradient boosting algorithm, a sophisticated 

algorithm that uses parallel computation, where multiple decision trees are parallel trained 

to determine the final performance. This algorithm uses a multiple set of parameters, and 

the parameters to be determined in this experiment are the following: Maximum Depth, 

n Estimators Weights, Learning Rate and Regularization Term. While all these 

parameters have been used and explained in this chapter earlier, I will retain from 

explaining them again.  

The first parameter I will analyze and determine is the maximum depth. This will be done 

in a similar way as in the random forest phase. I will use the same two methods, where 

the first method was using a decision stump, and the second method using the same 

amount of maximum depth as determined in the decision tree algorithm. Below, the 

resulting performances using maximum depth equal to 1 and 6 are showcased. Table 6.6.1 

provides an easy conclusion of using the full tree rather than the decision stump. Even 

though the decision stump seems to climb with increased estimators, the AUC stops 

increasing when 500+ estimators are reached. The maximum AUC the decision stump 

computed was 0.77, whereas the algorithm with  the maximum depth of 6 reached a 

performance of 0.78 with 15 valued as the estimator.   
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Figure 6.6.1: The Performances of using different n Estimators in combination with 

Maximum Depth = 1 and 6. 

 

The following parameter to determine is the weight parameter. This parameter defines 

the minimum sum of weights of all observations required in a branch and controls over-

fitting. Here it is about finding the right balance. Even though weight is controls over-

fitting, a high value of weight can cause under-fitting. In Table 6.6.2, the performances 

of the algorithm consisting of different values of weights, combined with a n Estimator 

of 15, are showcased.  

As the default value of weight is 1, and the results showcase the highest AUC being 0.78 

at two different weights, the lowest weight has been considered, which is 3.  
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Table 6.6.2 The Performance of using different weights, in combination with Maximum 

Depth = 1 and n Estimator = 15 

 

Max Depth = 6 n Estimator = 15 

Weight AUC 

1 0.779 

2 0.779 

3 0.780 

4 0.776 

5 0.778 

7 0.777 

10 0.778 

15 0.780 

20 0.780 

25 0.777 

30 0.779 

The last two parameters to be determined are the Learning Rates and the Regularization 

Term. These two are determined by simply adding learning rates and regularization terms 

to the algorithm and finding the values that provide the highest performances. From Table 

6.3.1 it is concluded that using a Learning Rate of 0.1 provides the highest performance. 

Further, from Tables 6.6.2 and 6.6.3, it is concluded that a regularization term of 0.1 

provides the highest performances.  
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Table 6.6.1: The Performances of using different values of Learning Rates 

Learning Rate AUC 

0.1 0.777 

0.01 0.772 

0.001 0.759 

0.0001 0.759 

 

Table 6.6.2: The Performances of using different values of Regularization Terms 

Regularization Term AUC 

0.1 0.778 

0.01 0.777 

0.001 0.777 

0.0001 0.777 

 

Table 6.6.3: Further inspection on the Regularization Term. Regularization Term closer 

to the Optimum value = 0.1 

Regularization Term AUC 

0.05 0.777 

0.08 0.778 

0.1 0.778 

0.12 0.778 

0.15 0.778 

The parameters that have been selected for the XGBoost are as follows.  

Table 6.6.4 Parameters selected for XGBoost. 

Parameters Selected 

Maximum Depth 6 

n Estimators 15 

Weights 3 

Learning Rate 0.1 

Regularization Term 0.1 

  

6.7 Tested Results 

The last step in determining the different algorithms performances is verifying the 

performances with the test set. The 70% of the data that has now been trained is applied 

to the 30% test set, and the performance is then determined for all algorithms. This is 

essentially the result performance of the different algorithms. In the table below the 

performances of testing the models are showcased.  
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Table 6.7.1 The performances of the algorithms when determined using the test set 

Algorithm AUC 

Logistic Regression 0.762 

Neural Network 0.790 

k Nearest Neighbors  0.760 

Decision Tree 0.784 

Random Forest 0.766 

XGBoost 0.783 

 

6.8 Data Influences and Feature Importance 

Now that the parameters for all algorithms have been determined, further experimentation 

of which data and variables have most influence and are the most important. This section's 

experiments will mostly consist of testing the separated personal categorical features, 

marriage and education. This is done to see whether there are any differences between 

the groups and if the differences influence the algorithm performance. Further, the feature 

importance will be checked for each algorithm. This will be done to examine if there are 

any inconsistencies or significant differences between the algorithms.  

6.8.1 Marital Features 

Firstly, referring back to Table 5.5 from the data description, we see the summary of the 

marital status. There are four possible values, being “Other”, “Married”, “single” and 

“Divorced”. Whereas roughly 98.7% of clients are either married or single. Of the two 

categories that roughly contain 1.3% of the data, the “Other” category only has 54 

samples, being the smallest category. Containing such a small number of values makes 

the determination of influence difficult. Hence I will not take this category into 

consideration when experimenting. With Divorce being the category containing the 

second lowest value, with only 323 samples, my hypothesis is that the algorithm's 

performance will stay lower for this category compared with the other two. 

Table 6.8.1 Summary of the Marital category. 

Value Description n  % 

0 Other 54 0.18% 

1 Married 13,659 45.53% 

2 Single 15,964 53.21% 

3 Divorced 323 1.08% 
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Below, the resulting performances of the algorithms are showcased when the samples 

only belonging to the stated marital status are used. Overall, the performances are just 

below the original algorithm performances and stay relatively consistent throughout all 

categories. Even though some algorithms perform lesser with the Divorced category, the 

differences are very small, not confirming nor denying my hypothesis. The reason for the 

difference between the original and the categories being small might be for the simple 

reason that the algorithm features importance, and whether the marital features are not as 

important overall. This will be analyzed further at a later stage.  

Table 6.8.2 Performances of the algorithms, when the samples only belonging to the 

stated marital status is used. 

Algorithm Original Married Single Divorced 

Logistic Regression 0.762 0.759 0.759 0.759 

Neural Network 0.790 0.778 0.777 0.769 

k Nearest Neighbors 0.760 0.746 0.745 0.745 

Decision Tree 0.784 0.753 0.753 0.753 

Random Forest 0.766 0.764 0.754 0.763 

XGBoost 0.783 0.776 0.776 0.776 

 

6.8.2 Educational Features 

Referring back to Table 5.5 from the data description, the summary of the educational 

category status, there are 4 different possible values. These being “Other”, “Graduate 

School”,  “University” and “High School”. The “other” category only consists of 1.56%, 

or 468 clients, of the dataset, and just as with the marital category, this category is 

hypothetically set to produce the lowest overall performances throughout all algorithms. 

The two highest valued categories are the university and graduate school, consisting of 

46.77% and 35.28% of the dataset, respectively. The “high School” category, however, 

consists of the remaining 16.39% of the dataset, which should be a significant amount 

and should produce decent performances throughout all algorithms. 

Below, the resulting performances of all the algorithms are displayed, when the samples 

only belonging to the stated educational status are used. The results are almost as 

conclusive as with the marital category. The performances are just below the original 

algorithms. The only difference here is that no feature that stands out in being different. 



67 
 

They are all relatively producing the same performances, just below the original 

algorithm. This again, might be due to the algorithms feature importance.  

Table 6.8.3 Performances of the algorithms, when the samples only belonging to the 

stated educational status is used. 

Algorithm Original Graduate School University High School Other 

Logistic Regression 0.762 0.759 0.758 0.759 0.760 

Neural Network 0.790 0.782 0.778 0.778 0.778 

k Nearest Neighbors 0.760 0.739 0.738 0.741 0.742 

Decision Tree 0.784 0.754 0.753 0.754 0.754 

Random Forest 0.766 0.764 0.764 0.763 0.764 

XGBoost 0.783 0.776 0.776 0.776 0.776 

 

6.8.3 Feature Importance  

The last analysis I will endure in this chapter is the feature importance of all algorithms. 

This implies checking which features each algorithm found as most important and lesser 

important. Doing this will verify whether the personal categorical features are highly 

important. My hypothesis is that this method will provide an explanation that both the 

marital and educational features are not as relied on.  

This is simply done by importing relevant packages and applying certain python 

code(Permutation_Importance) to each algorithm. The permutation importance reveals 

which features the algorithm relies most upon in their predictions. An example of a feature 

importance code has been added to the appendix. The results are displayed in Table 6.8.1 

below. 

Table 6.8.4 Feature Importance, top three of each algorithm 

Algorithm Most Important Second Most  Third Most  

Logistic Regression Limit Balance Pay Amount 2 Bill Amount 1 

Neural Network Pay Amount 2 Pay Amount 1 Limit Balance 

k Nearest Neighbors Limit Balance Pay Amount 1 Bill Amount 1 

Decision Tree Pay Amount 1 Pay Amount 2 Limit Balance 

Random Forest Pay Amount 1 Pay Amount 2 Limit Balance 

XGBoost Limit Balance Bill Amount 1 Pay Amount 2 

From the results, there is a clear selection of which features are most important and most 

relied upon. The four most important features are ‘Limit Balance’, ‘Pay Amount 1’ and 
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‘Pay Amount 2’, and ‘Bill Amount 1’, in no particular order. This proved my hypothesis 

to be right; both educational and marital features are not among any top three features for 

any algorithms, which proves why there are so few differences in performance for each 

subfeature in each category. However, this does not conclude that both categorical 

features should be left out of the original algorithms, referring to the original algorithms 

performing better with the features than without.  
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7.0 Conclusions 

This research project's main goal was to provide the performances of six different 

machine learning algorithms when they are used to predict default loans. This research 

has been finalized using a dataset containing 30,000 Taiwanese credit lenders. The main 

question for this thesis was: “How effective are machine learning algorithms in predicting 

default in loans?”, which this conclusion mainly will answer. Throughout the research, 

the Area Under the Curve has been used as the primary source of performances, but to 

make better conclusions and comparisons between the algorithms, Recall, Precision, and 

Accuracy have been added for the possibility of assessing the performances in more 

detail. In addition, the confusion matrix for each algorithm has been added to the 

appendix. Table 7.1 showcases all the above-mentioned performances of all the 

algorithms, when trained and validated on the original dataset.  

Table 7.1 Summary of the performance of all the different algorithms when trained and 

validated on the original dataset. 

Algorithm AUC Recall Precision Accuracy 

Logistic Regression 0.762 0.34 0.67 0.816 

Neural Network 0.790 0.34 0.68 0.820 

k Nearest Neighbors 0.760 0.33 0.63 0.815 

Decision Tree 0.784 0.38 0.60 0.819 

Random Forest 0.766 0.30 0.67 0.815 

XGBoost  0.783 0.37 0.64 0.822 

From the results, the performances are relatively similar. The AUC scores span between 

the algorithms where only 0.03. The k Nearest Neighbor performed lowest with an AUC 

of 0.760, while the Neural Network had the highest AUC of 0.790. Even though 

concluding that Neural Network performs best out of all the algorithms, all performances 

are so closely resembling that drawing this conclusion based on AUC, without taking 

further research into account, might be difficult.  

There are more important measures to consider when concluding between algorithms, 

such as recall, precision, and accuracy. When looking at the recall and precision scores 

between the algorithm, some changes in performances are made. When the goal is to 

reach the highest recall, the Decision Tree has the highest score, with a recall score of 

0.38, however, the Decision Tree has the lowest precision score among all algorithms. 

With Decision Tree having the lowest performing precision (0.60), the Random Forest 
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algorithm has the second highest, providing a precision score of 0.67, but, yet again, a 

high scorer of precision has the lowest recall score (0.30). To separate and compare the 

two, looking at the accuracy score might shed a light on which performance should be 

preferred. Both the Decision Tree and Random Forest algorithms have similar accuracy, 

with only +0.04 higher accuracy separating the Decision Tree from the Random Forest, 

with the latter having an accuracy of 0.815.  

From the results, when looking at the accuracy, there is very little that separates the 

algorithms. The highest scorer, however, is the XGBoost with an accuracy of 0.822, and 

the second highest having yet again a high score, the Neural Network. Interestingly, the 

Decision Tree only lies 0.001 behind the Neural Network, having a strong accuracy score 

as well. The algorithms with the lowest accuracy score are the Random Forest and the k 

Nearest Neighbors, sharing an accuracy score of 0.815. While all the algorithms have a 

decent accuracy score, all being in a range of 0.1 accuracy score between each other, 

further examination has been made.  

Explainability must be considered, which changes the view a little on which algorithms 

perform best. The Decision Tree, for example, is one of the most explainable algorithms. 

The classifications are explainable and can easily be graphed and plotted. However, when 

looking at algorithms and explainability, the choice must be made whether explainability 

‘beats’ performances. For the sake of the Decision Tree being highly explainable, an 

example of the Decision Tree is made. The Decision Tree which again, has a high 

explainability, has a high AUC score, only being 0.06 behind the highest AUC value. 

Further, the Decision Tree has the highest Recall, but the lowest Precision, as well as a 

decent Accuracy score. Concluding whether to use a highly explainable algorithm or a 

performance-based algorithm all depend on the situation.  

Based on the analysis of the findings, I can now put an end to the main question, machine 

learning algorithms are highly effective in predicting default loans. Overall, the models 

have on average 81.7% accuracy, which is good, with only 18.3% being misclassification. 

I have, in this case, concluded that both the Neural Network and the Decision Tree are 

the best algorithms for predicting default. Both of these algorithms share the first and 

second place for the AUC score. While the Decision Tree has the highest Recall score, 

the Neural Network has the highest Precision score. They both share high Accuracy 

scores as well. The most common disadvantage of these two algorithms is that they both 
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are prone to overfitting, as well as the Neural Network tends to become a ‘black box’, 

due to its challenges to interpret and understand.  
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8.0 Further Research 

In a bank's management, simulation plays a big part in decision-making. Simulation, 

predicting default, serves as a primary factor for accurately assessing a bank’s resilience 

against economic shocks, such as bankruptcy. Using fine-tuned machine learning 

algorithms will benefit banks in credit risk management. However, implementing 

machine learning is heavily detained by the GDPR. This is due to the protection of the 

customers and is strictly following the development and deployment of AI and Machine 

learning. GDPR art 22 states, “The data subject shall have the right not to be subject to a 

decision based solely on automated processing”, which means that no customers can be 

determined as high risk without human intervention. 

Many different machine learning algorithms are biased or working like a ‘black box’. 

This new possible further research aims at the possibility of removing this black box 

paradox. The algorithms are prone to decision making based on such features like gender 

and ethnicity. It is difficult to know exactly how and why these machine learning 

algorithms do this but being able to reduce or even remove this flaw, will increase 

performances, as well as increase credibility to use machine learning algorithms more in 

depth. Just as mentioned, this is one huge reason for the detainment of the GDPR, which 

solely stops decision making based on automated processing, or machine learning, in this 

case.  

There might be many possibilities in making the algorithms non bias, and better 

performing. Research on combining multiple algorithms is limited, and researching the 

possibilities in making new algorithms, sound interesting. Algorithms with higher 

performances and fewer flaws. A though might be combining the Neural Network and 

Decision Trees, which are the two top performances in this experiment. 
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Appendix 
 

Confusion Matrices 

Logistic Regression 

 Predictive Positive Predicted Negative 

Positive 669 337 

Negative 1291 6703 

 

Neural Network 

 Predicted Positive Predicted Negative 

Positive 697 321 

Negative 1298 6684 

 

k Nearest Neighbor 

 Predicted Positive Predicted Negative 

Positive 700 347 

Negative 1268 6685 

 

Decision Tree 

 Predicted Positive Predicted Negative 

Positive 732 500 

Negative 1216 6552 

 

Random Forest 

 Predicted Positive Predicted Negative 

Positive 593 296 

Negative 1267 6744 

 

 

XGBoost 

 Predicted Positive Predicted Negative 

Positive 718 378 

Negative 1230 6674 
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Table 6.3.1: The Performance of both Criterions with different Maximum Depth 

 Gini Entropy 

Max Depth AUC AUC 

0 0.601 0.617 

2 0.685 0.685 

4 0.736 0.742 

5 0.753 0.751 

6 0.749 0.756 

7 0.747 0.754 

8 0.741 0.747 

10 0.716 0.729 

12 0.682 0.701 

14 0.644 0.672 

 

 

Table 6.4.1: The Performances of Maximum Depth = 1, using the three different 

Maximum Features, in relation to n Estimators. 

Maximum Depth = 1 

 AUC 

n Estimators  n  Sqrt n  Log2 n 

1 0.639 0.614 0.602 

3 0.639 0.635 0.702 

5 0.639 0.730 0.680 

7 0.639 0.682 0.728 

10 0.639 0.737 0.733 

12 0.639 0.740 0.738 

15 0.639 0.754 0.749 

20 0.639 0.749 0.723 

25 0.639 0.751 0.756 

30 0.639 0.752 0.758 

35 0.639 0.750 0.757 
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Table 6.4.2: The Performances of Maximum Depth = 1, using the three different 

Maximum Features, in relation to n Estimators. 

Maximum Depth = 6 

 AUC 

n Estimators  n  Sqrt n  Log2 n 

1 0.704 0.705 0.701 

3 0.759 0.753 0.748 

5 0.761 0.764 0.759 

7 0.763 0.764 0.763 

10 0.767 0.768 0.764 

12 0.768 0.766 0.768 

15 0.769 0.769 0.768 

20 0.769 0.769 0.767 

25 0.769 0.769 0.770 

30 0.769 0.769 0.770 

35 0.767 0.766 0.770 

 

Table 6.4.3 The Performance of Estimator = 5, using the three different Maximum 

Features, in relation to Max Depth 

5 Estimators 

 n Sqrt n Log2 n 

Maximum Depth AUC AUC AUC 

1 0.726 0.704 0.689 

3 0.755 0.750 0.755 

5 0.761 0.760 0.761 

6 0.766 0.765 0.756 

7 0.764 0.762 0.761 

10 0.754 0.760 0.759 

12 0.742 0.749 0.741 

15 0.736 0.720 0.726 

20 0.722 0.708 0.713 

25 0.706 0.699 0.691 

30 0.702 0.695 0.695 

35 0.703 0.706 0.706 
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Table 6.4.4 The Performance of Estimator = 5, using the three different Maximum 

Features, in relation to Max Depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.6.1: The Performances of using different n Estimators in combination with 

Maximum Depth = 1 and 6. 

 Maximum Depth = 1 Maximum Depth = 6 

n Estimators AUC AUC 

1 0.645 0.759 

3 0.707 0.773 

5 0.718 0.775 

7 0.724 0.776 

10 0.748 0.776 

12 0.759 0.777 

15 0.762 0.779 

20 0.764 0.776 

25 0.767 0.776 

30 0.768 0.776 

35 0.769 0.775 

40 0.770 0.774 

50 0.771 0.770 

100 0.774 0.762 

500 0.775 0.750 

1000 0.774 0.745 

10 Estimators 

 AUC 

Maximum Depth n Sqrt n Log2 n 

1 0.748 0.711 0.707 

3 0.760 0.755 0.747 

5 0.764 0.764 0.763 

6 0.766 0.764 0.766 

7 0.767 0.768 0.766 

10 0.766 0.764 0.763 

12 0.759 0.763 0.759 

15 0.744 0.753 0.748 

20 0.743 0.730 0.727 

25 0.725 0.723 0.725 

30 0.731 0.721 0.727 

35 0.720 0.727 0.726 
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Table 6.6.2 The Performance of using different weights, in combination with Maximum 

Depth = 1 and n Estimator = 15 

Maximum Depth = 6 n Estimator = 15 

Weight AUC 

1 0.779 

2 0.779 

3 0.780 

4 0.776 

5 0.778 

7 0.777 

10 0.778 

15 0.780 

20 0.780 

25 0.777 

30 0.779 

 

 

An Example of Permutation Feature Importance code in Python (Brownlee, J. 2020) 

# permutation feature importance with knn for regression 
from sklearn.datasets import make_regression 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.inspection import permutation_importance 
from matplotlib import pyplot 
 

# define dataset 
X, y = make_regression(n_samples=1000, n_features=10, n_informative=5, random_state=1) 
 

# define the model 
model = KNeighborsRegressor() 
 

# fit the model 
model.fit(X, y) 
 

# perform permutation importance 
results = permutation_importance(model, X, y, scoring='neg_mean_squared_error') 
 

# get importance 
importance = results.importances_mean 
 

# summarize feature importance 
for i,v in enumerate(importance): 
 print('Feature: %0d, Score: %.5f' % (i,v)) 
 

# plot feature importance 
pyplot.bar([x for x in range(len(importance))], importance) 
pyplot.show() 

 

 


