
Handelsh0ysllolen Bl

MAN 51001 Analytics for Strategic Management

Term paper 60% - W

Predefinert informasjon

Startdato:

Sluttdato:

Ellsamensform:

Flowkode:

Intern sensor:

Navn:

Erlend Aas, Dominique Daniel Bye-Ribaut, Anita Røe

06-09-2022 09:00 CEST

04-05-2023 12:00 CEST

p

202310II1oosSIIINOBI IWIIP

(Anonymisert)

lnformasjon fra delta�er

Termin:

Vurderingsform:

Tittel •: The Predicted Usage Model (PUM)

Naun pA ueileder •: Chandler Johnson

lnneholder besuarelsen Nei
konfidensielt
materiale7:

Gruppe

ljruppenaun:

ljruppenummer:

Andre medlemmer i
gruppen:

(Anonymisert)

10

Kan besuarelsen
offentliggj•res?:

202310

Norsk 6-trinns sllala (A-F)

Ja

WISEflow
Europe/Oslo(CEST)

04 May 2023 �

Project paper

The Predicted Usage Model
(PUM)

Hand-in date:
 03.05.2023

Campus:
BI Oslo

Examination code and name:
MAN 51001 Analytics for Strategic Management

Programme:
Executive Master of Management

Term Paper in MAN 51001 03.05.2023

Page i

Content

Summary ... ii

Introduction .. 1

The baseline process: The role of the foreign duty editor ... 1

The solution: PUM ... 2

Data preparation ... 3

Modeling ... 4

Evaluation ... 7

Improving the model ... 10

Operationalization: fitting the model in the existing pipeline ... 11

Deployment considerations ... 12

Conclusion ... 14

References ... 16

Appendix ... 17

1. Data sources .. 17
2. Analytics steps/Data analytics minutes ... 17

Term Paper in MAN 51001 03.05.2023

Page ii

Summary

This predictive analytics project explores how machine learning can contribute to

increased customer usage of NTB’s foreign news articles. The result of this

research is the Predicted Usage Model (PUM) – a regression model that forecasts

the number of NTB customers that will run any given syndicated international

news story. The idea is that PUM can help the foreign duty editors select the

stories that have the greatest potential usage. The current baseline process does

not involve the use of analytical tools but is mainly based on editors’ individual

skills and experience. Thus, it is person-dependent and prone to variability. The

proposed model outperformed a simple baseline model that uses the mean as a

constant value for all the predictions. The paper describes how the model can be

further improved in subsequent iterations, outlines how it can be operationalized

within the existing system architecture, and lays out a way forward.

Term Paper in MAN 51001 03.05.2023

Page 1

Introduction

At the core of NTB’s business is the news service – a traditional wire service

consisting of news articles divided into three main categories: Domestic, Foreign

and Sports. While most of the domestic news is original content created by NTB’s

own journalists, the foreign news service consists mainly of syndicated stories

from other agencies: The Associated Press (AP), Reuters, Agence France-Presse

(AFP), Deutsche Presse-Agentur (DPA), TT Nyhetsbyrån and Ritzau.

The overarching business model of NTB is to sell the same product or service to

many clients, or – as in the case of the news service – produce content that will

get picked up and published by multiple customers. With a limited capacity – on

average NTB produces 48 foreign news articles daily – and more than 200

disparate news outlets on the client list, it’s imperative that NTB is able to select

the syndicated stories with the greatest potential usage.

The baseline process: The role of the foreign duty editor

The foreign duty editor is responsible for choosing the international news articles

that eventually will be offered to NTB customers. The syndicated stories –

totaling approximately 2000 on a daily basis – are ingested directly into the NTB

content management system (CMS). As the news comes in, the foreign duty editor

is tasked with assessing the relative newsworthiness of each of these stories and

their relevance to a diverse range of NTB clients. During the busiest periods,

incoming stories may amount to 10-20 per minute. If a story gets selected, the

foreign duty editor either assigns it to a reporter or processes it herself. Processing

entails translating the story to Norwegian, adding information from other articles

or sources if relevant, and choosing the appropriate tags with the assistance of a

cloud-based auto-tagging tool (iMatrics). The article is then distributed to clients

via the NTB news portal, or through the News API.

Term Paper in MAN 51001 03.05.2023

Page 2

Figure 1. Sketch of the baseline process.

There is a tendency among news media managers to characterize every decision

that doesn’t involve the direct use of analytics tools as being based on “gut

feeling” (Lilleby, 2019; Simonsen, 2023). Such characteristics don’t acknowledge

the value of experience, knowledge that might have been accumulated over

decades of service, nor the great problem solving capabilities of the human brain.

That being said, there are several potential drawbacks of the current process: it’s

susceptible to the duty editors’ personal preferences, likes and dislikes, habits,

lack of experience, disregard of – or unfamiliarity with – the business goals, and

activism.

The solution: PUM

The Predicted Usage Model (PUM) forecasts the number of clients that will pick

up each individual syndicated article. The model is trained on the semi-structured

metadata that follows every news article, combined with historical data on article

usage from Retriever. PUM is a regression model, where usage – the number of

clients – is the target variable (also called the dependent variable), and the article

metadata are the features (or the independent variables) whose values are used to

predict the value of the target variable. By integrating a non-disruptive ML

prediction into the current workflow, PUM can guide and assist the foreign duty

editor in the decision making.

Term Paper in MAN 51001 03.05.2023

Page 3

Figure 2. Sketch of process flow with integrated PUM.

Data preparation

Note: This paper is primarily aimed at stakeholders who don’t necessarily have

detailed knowledge about data science. Those technically inclined can dive into

the full code listing in the appendix.

The data was sourced from two separate APIs: the NTB News API (production

data) and the Retriever API (usage data). Python scripts were written to

1. extract the data by calling the APIs and uploading the articles to the

Google Cloud

2. convert the date format

3. transform from single JSON object to a collection of JSONL (newline-

delimited JSON), a format supported by Google BigQuery ML (BQML)

See appendix 2.1 for details. The BigQuery Python Client Library was then used

to load the data into BigQuery tables (appendix 2.2). Since the two datasets lacked

a common key, merging them required a solid mix of data science skills, domain

expertise and creativity (appendix 2.3). In light of the challenges we had matching

the two IDs, we suggest that the Retriever API should also include the original

NTB article ID in the future. This improvement would be useful not only in this

particular context, but also for other machine learning projects, as well as

descriptive analytics tasks.

After preparing the data and converting it to tabular form, we ended up with 20

features and 10,815 unique instances, or articles (figure 3).

Term Paper in MAN 51001 03.05.2023

Page 4

Figure 3. Illustration of model dataset.

Modeling

Google BigQuery ML (BQML) was used for the modeling as it supports training

on dataset with nested columns that were challenging to flatten out. In addition,

BQML does automatic feature preprocessing during training – missing value

imputation and feature transformations. Numeric features are standardized

automatically, while non-numerical columns are auto-encoded. The SQL syntax

made working with the feature set, updating the view, and retraining the model,

fairly straightforward. As with similar out-of-the-box machine learning platforms,

BQML automatically splits the input data into training, validation and holdout sets

to avoid overfitting.

In line with the fail-fast philosophy, we started out with a very simple linear

regression model (figure 4).

Term Paper in MAN 51001 03.05.2023

Page 5

Figure 4. Evaluation metrics for the first linear regression model.

This approach allowed us to quickly detect failures, iterate and improve. The first

few runs produced poor-performing models, but by adding features and tuning the

hyperparameters, we were able to improve the model performance substantially

from iteration to iteration (figure 5).

Figure 5. Evaluation metrics for boosted tree regressor.

To avoid time-dependent data leakage – in simple terms you don't want to use

data from the present to predict past events – we chose to split the data

sequentially. In addition, we made the decision to optimize the model for mean

absolute error (MAE) instead of R-squared. Before we get into the rationale

behind this choice, we will briefly introduce the two metrics. A basic

understanding of MAE and R-squared is necessary, not only to understand the

reasoning behind the hyperparameter tuning, but also the analysis of the model’s

performance in the evaluation chapter.

The coefficient of determination, also known as R-squared or R2, represents the

proportion of the variation in the dependent variable that is predictable from the

Term Paper in MAN 51001 03.05.2023

Page 6

independent variables in the model. R-squared ranges from negative infinity to 1,

but is normally between 0 and 1. For example, an R-squared of 0.70 indicates that

approximately 70% of the observed variation can be explained by the model’s

features. A negative R-squared indicates that the model’s performance is worse

than a horizontal line which predicts the mean value every time. It’s impossible, if

not meaningless, to define an acceptable R-squared value. What can be judged as

a good value depends on the use case, but overall, the higher the R-squared, the

better the model fits the data. Though R-squared is the default hyperparameter

objective in BQML, the metric has a few drawbacks. First of all, R-squared

increases as the number of features in the model is increased, even when the

features added to the model don’t have predictive quality. Secondly, while a high

R-squared is necessary for precise predictions, it is not adequate by itself. We

should add that R-squared can be hard to grasp for non-technical stakeholders,

which in turn may make them reluctant to support model deployment.

Mean absolute error (MAE) on the other hand, is easy to interpret and explain.

MAE is simply the average absolute error between the actual and the predicted

values. In figure 6, the blue line represents the predictions, while the data points

represent the actual values. The error is the distance between the two.

Figure 6. Illustration of prediction errors.

Term Paper in MAN 51001 03.05.2023

Page 7

MAE is a satisfyingly intuitive metric because it returns the error in the units we

care about – the units of the output variable – which in our case is “number of

customers”. The closer MAE is to zero, the better the model. By experimenting

with more complex model types and tuning the hyperparameters, we were able to

push the MAE lower and lower until the project deadline.

Evaluation

To the big question: How good is the final model? By themselves, the evaluation

metrics give cause for optimism (figure 7).

Figure 7. Metrics for the final model. Boosted tree regressor.

A MAE of about 1.86 tells us that the model’s predictions of usage are off by less

than two customers on average. At first glance a relatively low number, but bear

in mind that the actual average usage in the dataset is just 5.77. An R-squared of

0.2024 indicates that about 20% of the variance in usage is explained by the

features. As stated above, there is no general rule for determining if an R-squared

is adequate or too low. Some areas of study are simply more inherently

unpredictable than others, and sometimes there is considerable value in explaining

20% of the variation.

To establish whether the model can add value to NTB, we need a basis for

comparison. For regression problems, the average can serve as a simple yet

effective baseline model. We can calculate the baseline by predicting the mean for

Term Paper in MAN 51001 03.05.2023

Page 8

every observation in the dataset using Python, and we can use the MAE as a

comparison metric (figure 8).

Figure 8.

As figures 7 and 8 show, our model with a MAE of 1.8648 was able to beat the

baseline error rate of 2.2386. Thus, we can conclude that PUM has more

predictive power than a model that only guesses the average for every article. That

might not sound very impressive, but if the model can help increase article usage

even by a few decimals, it could have substantial business impact.

Compared to the earlier models trained on the same data set, the final version also

showed a considerably lower mean squared error (MSE). MSE is widely regarded

as one of the most useful evaluation metrics for regression models. As with other

loss functions that squares the errors, it gives more weight to large errors and is

sensitive to outliers.

The feature importance list, when sorted by importance gain, shows that

“districts” and “subject_names” are the features with the most predictive quality

(figure 9). “Districts” is a geographical tag (city, country or continent), while

“subject_names” are the main topics of the individual articles. The number of

topics per article in our dataset ranges from zero to 17.

Term Paper in MAN 51001 03.05.2023

Page 9

Figure 9.

From a domain expert’s perspective, it makes sense that geography and topics are

the most useful variables for predicting usage. In the media business, geographical

and cultural proximity has always been considered important criteria when

determining a story’s newsworthiness. Now we may have the data to support it.

Term Paper in MAN 51001 03.05.2023

Page 10

Improving the model

Although the model outperformed the simple baseline model, it is by no means

the finished product. As Provost and Fawcett states in Data Science For Business,

“iteration is the rule rather than the exception” (2013, p. 27). Judging from our

experience, the model’s performance can be further improved through feature

engineering, hyperparameter tuning and experimentation with different model

types. Platforms like BQML may enable people with limited machine learning

experience to train high-quality models, but they can’t fully substitute the nous

and experience of professionals. Experts in the fields of data science and statistics

will no doubt be able to find imperfections in the current model. This should not

be taken as proof of model inadequacy, but rather as a testament to its potential.

Most of the available input data was ingested in its purest form; only the most

necessary transformation of the data was performed. Therefore, it’s quite likely

that model performance can be improved substantially through feature

engineering, like creating new features and removing irrelevant ones. Manual

encoding of categorical variables should also be considered, as well as

standardization of numerical features. BQML does automatic one-hot encoding

and standardization for all available model types except random forest and

boosted tree models, the latter of which was the type of our final and best

performing model.

Another issue, though not directly related, is that of selection bias. The articles in

our dataset are only the articles that – for whatever reason – were picked for

translation. In other words, they are just a subset of the population of possible

articles. There are all these other instances – stories that never got picked up and

translated in the first place – that the model never gets to see. Thus, the data we’re

basing our predictions on might already be biased by the baseline selection

routine. There are a couple of ways we can correct for this. One is through the use

of importance weighting techniques, the other is to start investing in unbiased data

by picking a share of the syndicated stories at random for processing.

Term Paper in MAN 51001 03.05.2023

Page 11

The observant reader will notice that there is no mention of the article text. In this

project we sacrificed the text data for manageability. Mining the document text

would perhaps make the model perform better, but it would also make it far more

complicated. At a later stage, a more sophisticated model can make use of the

unstructured text data through text mining techniques like bag-of-words and

sentiment analysis.

Operationalization: fitting the model in the existing pipeline

For a predictive model to be adopted by the editorial staff, it should be integrated

into the technical architecture of the business’ existing production software, and

blend seamlessly into the newsroom workflow. A tool that would slow down the

current process, or create friction in any other way, no matter how ingenious or

valuable, will be rejected. By focusing on these preconditions, we were able to

narrow down and find the most viable solution. As shown in figure 10, today the

auto-tagging is only implemented after selection:

Figure 10. Existing pipeline.

By introducing auto-tagging further upstream, all the syndicated articles can be

automatically run through PUM pre-selection, thus providing the foreign duty

editor with a powerful new tool (figure 11.)

Figure 11.

The iMatrics auto-tagging feature is language independent (Solutions | IMatrics,

n.d.), and it is already integrated in the CMS, increasing the possibility of a viable

implementation. In operation, PUM assigns a usage number to each syndicated

Term Paper in MAN 51001 03.05.2023

Page 12

article. Figure 12 shows what the ML integration might look like when deployed

in production.

Figure 12. Illustration of NTB’s CMS with ML integration.

One of the strengths of this approach, is that it requires no end user training or

action. PUM operates independently of such factors.

Deployment considerations

Obviously, the model must go through a more rigorous evaluation process before

NTB can take the risk of deployment. The code needs to be cleaned, and the

model must be tested in a real-life environment. The latter can probably be done

semi-manually, cost-efficient and in parallel with the existing pipeline. Both

Sourcefabric, the CMS supplier, and iMatrics, the developer of the auto-tagging

integration, must be consulted about the viability of the proposed solution. Does

the system scale, or will auto-tagging cause latency when applied to a greater

volume of articles?

Model deployment is the process of integrating a model into an existing

production environment to make practical business decisions based on data. If and

Term Paper in MAN 51001 03.05.2023

Page 13

when NTB decides to deploy, a comprehensive framework for model governance

should be in place. Complete and thorough documentation of all systems and

processes is crucial. On the technical side, the predictions must be made available

for the production system through an API-layer. In addition, we need to monitor

the data quality and the model for skew and drifts as well as build pipelines for

deployment and versioning. Both AWS and Google Cloud have managed services

to handle ML ops (Sage Maker and Vertex AI), including managing ML Ops in

one place and deploying the model for inferences in another. The decision

concerning what platform to use should be taken by top management together

with the data science and developer teams who will manage the operations when

in production.

The world around us is constantly changing, and so is the news. The ideal model

would therefore be dynamic, meaning continuously updated, or at least

automatically retrained with fresh data in fixed periodic intervals. Data that goes

far back in time will probably not be very useful for predicting future usage. If the

model is not fed fresh data, its performance will most probably quickly degrade.

Figure 13. ML process flow.

Term Paper in MAN 51001 03.05.2023

Page 14

Conclusion

This research has demonstrated how a machine learning model can use existing

data to predict the number of NTB customers that will publish any given foreign

news story, thus equipping the duty editor with a powerful new tool. Much of the

raw data is already available to the duty editors, but extracting insight from it is

difficult and time-consuming, if not impossible. In a streamlined, non-intrusive

way, the Predicted Usage Model manifests the business’ strategy of becoming

more data-driven. Processing data yields information, which in turn can give

relevant insight that should lead to meaningful actions with measurable impact.

PUM encompasses it all.

The paper outlines how the model can be operationalized within the existing

system architecture. The implementation of PUM into the workflow would entail

a significant shift from a purely people-dependent process to a more robust and

consistent, system-dependent process.

Furthermore, we have suggested how the model can be improved through future

iterations. Since our project team of non-experts were able to beat the benchmark

model using predominantly the automatic features of BQML, it’s fair to assume

that a proper data scientist will find ways to squeeze more predictive juice out of

the data.

Due to the intrinsically unpredictable nature of the news, the media ecosystem and

the people in it, no model predicting article usage will ever be 100% correct. Or

even 80 %. But if our model can pick up only small signals in the data, and the

duty editors can act upon them, the benefits to NTB can be substantial: greater

service consistency, increased article usage, higher customer satisfaction and

greater customer retention.

As noted earlier, the model is vulnerable to biases that might already exist in the

data. This is an issue that needs to be addressed. On the upside, machine-based

Term Paper in MAN 51001 03.05.2023

Page 15

systems can be tested and improved, whereas “it is a lot harder to get humans to

acknowledge their biases (…) let alone do the hard work required to overcome

them” (McAfee, 2017, p. 53). The ability to learn, to capture dynamic changes

over time, is one of the model’s core strengths. It takes all the available data as

input, and its outputs – the predictions – are pure products of math.

Based on the model’s performance, its potential business impact, and the

seemingly natural path towards production, we recommend that NTB as a first

step assemble a cross-functional team to

1. Evaluate the model

2. Define metrics for success

3. Estimate the financial benefits

4. Assess the cost of integrating PUM in the existing workflow

The endgame is not to replace the foreign duty editors, but to augment their

capabilities.

Term Paper in MAN 51001 03.05.2023

Page 16

References
Brynjolfsson, E., & Mcafee, A. (2017). Machine, Platform, Crowd. WW Norton.

Fawcett, T., & Provost, F. (2013). Data Science for Business. O'Reilly.

Lilleby, A. M. (2019, June 24). Disse skal være «supersommervikarer» i landets Amedia-

aviser: – Vi gir dem et krasjkurs. Medier24. Retrieved April 4, 2023, from

https://m24.no/amedia-kurs-sommervikarer/disse-skal-vaere-supersommervikarer-

i-landets-amedia-aviser--vi-gir-dem-et-krasjkurs/221961

Simonsen, E. (2023, March 15). BT gjør endringer for publisering: – En revolusjon.

Medier24. Retrieved April 4, 2023, from https://m24.no/bergen-bergens-tidende-

bt/bt-gjor-endringer-for-publisering-en-revolusjon-1/592938

Solutions. (n.d.). iMatrics. Retrieved April 12, 2023, from https://imatrics.com/solutions/

Term Paper in MAN 51001 03.05.2023

Page 17

Appendix

1. Data sources

The dataset has been built by joining raw data from two data sources. Metadata
from NTB as API in xml and json format and usage data from Retriever API
available as json.

NTB:
/ntbWeb/api/x1/search/full?search.service=news&search.subcategory=
Nyheter
Limitations: can fetch 10.000 rows max per call, 30-50.000 total

Retriever:
/retriever/api/?from=2022-09-01&to=2022-09-25&summary=true

2. Analytics steps/Data analytics minutes

2.1 Data_extraction

2.1.1 Install_requirements.sh

2.1.2 Ntb_extracter.py

import os
import requests
import json

import datetime
from datetime import timedelta

Term Paper in MAN 51001 03.05.2023

Page 18

from google.cloud import storage

BUCKET_NAME = 'ntb-usage'
NTB_ENCODING = 'utf8'
SHOWNUMRESULTS = 5000 # server will crash at around 10.000

def fetch_to_gcs(url, payload, filename):
 filename, content_str = getContentFromURL(url, payload,
filename)
 upload_blob_from_memory(BUCKET_NAME,
 content_str,
 destination_blob_name=f"ntb/{filena
me}")

def getContentFromURL(url, payload, filename,
url_get=requests.get):
 # TODO for NTB: better authentisering than Basic htpp
 response = url_get(url,
 params=payload,
 auth=(os.getenv('NTB_USR'),
os.getenv('NTB_PWD')))

 # want to stop here, expect 401 if env not setup
 response.raise_for_status()
 print(
 f"http status code: {response.status_code}, encoding:
{response.encoding}"
)

 decoded_content = response.content.decode(NTB_ENCODING)
 content_str = fromJsonToJsonl(decoded_content)
 filename += 'l'
 return filename, content_str

def fromJsonToJsonl(data):
 docs = extractJsonDocs(data)

 return '\n'.join([json_dump(doc) for doc in docs])

def extractJsonDocs(data):
 records = json.loads(data)
 numResults = records['result']['numResults']
 docs = records['result']['documents']

 # Checking if number of results is not larger than the
requested number
 # default appears to be quite low
 if numResults > len(docs):
 raise Exception('More results than fetched, you are

Term Paper in MAN 51001 03.05.2023

Page 19

missing data',
 ' Max: '+ len(docs), ' actual: '+numResults)

 print(f'Number of news: {numResults}')

 # fix date format and nested arrays
 for doc in docs:
 # format in = "2022-02-28T23:55:59.000+0100"
 # weak management of date not adjusting to UTC, will be
UTC in BQ
 time_s = doc["time"]
 doc["time"] = time_s.replace('T', ' ')[:-9]

 keys = ['regions', 'districts', 'subjects',
'mediaList']
 for key in keys:
 if key in doc: doc[key] = doc[key][0]

 return docs

def json_dump(record):
 return json.dumps(
 record,
ensure_ascii=False).encode(NTB_ENCODING).decode(NTB_ENCODING)

Right out from the doc, should check
reasumable upload:
https://cloud.google.com/storage/docs/performing-resumable-
uploads
and streaming:
https://cloud.google.com/storage/docs/streaming#storage-stream-
upload-object-python
def upload_blob_from_memory(bucket_name, contents,
destination_blob_name):

 storage_client = storage.Client(
) #Alt: storage.Client(project="my-project-id")
 bucket = storage_client.bucket(bucket_name)
 blob = bucket.blob(destination_blob_name)

 try:
 blob.content_encoding = NTB_ENCODING
 blob.upload_from_string(contents)
 except Exception as e:
 print(f"Failed to upload to GCS, exception is {e}")

 print(f"{destination_blob_name} uploaded to
{bucket_name}.")

Term Paper in MAN 51001 03.05.2023

Page 20

fetch = fetch_to_gcs

Split from_date to to_date into reasonable number of days
defined by batch size
def extract_ntb(from_d, to_d, days_per_batch=10):
 # More than Batch size
 if (to_d - from_d > timedelta(days=days_per_batch)):
 do_fetch(from_d, from_d +
timedelta(days=days_per_batch))
 return extract_ntb(from_d +
timedelta(days=(days_per_batch + 1)), to_d,
 days_per_batch)
 # Less than or Equal Batch size
 return do_fetch(from_d, to_d)

def do_fetch(from_date, to_date):
 url, payload = build_url(from_date.replace(hour=0,
minute=0, second=0),
 to_date.replace(hour=23,
minute=59, second=59))
 filename =
f"ntb_{from_date.date().isoformat()}_{to_date.date().isoformat(
)}.json"
 fetch(url, payload, filename)

def build_url(f_datetime, t_datetime):
 payload = {
 'search.service': 'news',
 'search.subcategory': 'Nyheter',
 'search.startDate':
f_datetime.replace(microsecond=0).isoformat(),
 'search.endDate':
t_datetime.replace(microsecond=0).isoformat(),
 'search.showNumResults': SHOWNUMRESULTS
 }

 return "https://nyheter.ntb.no/ntbWeb/api/j1/search/full",
payload

if __name__ == "__main__":
 f_d = datetime.datetime.fromisoformat("2022-12-01")
 t_d = datetime.datetime.fromisoformat("2022-12-02")
 #fetch = fetch_printer
 extract_ntb(f_d, t_d, days_per_batch=3)

Term Paper in MAN 51001 03.05.2023

Page 21

2.1.3 Retriever_extract.py

import urllib.parse
from urllib.parse import urlunparse
from urllib.parse import urlencode
import datetime
from datetime import timedelta

from google.cloud import storage
import requests
import json

Google Cloud config: check
https://cloud.google.com/python/docs/reference/google-cloud-
core/latest/config
short version for now: run from a terminal where
you are logged in, typically `gcloud auth login`
Must run (maybe enough) gcloud beta auth application-default
login
set the right project `gcloud config set project PROJECT_ID`
BUCKET_NAME = 'ntb-usage'
RETRIEVER_ENCODING = 'iso-8859-1'

just print the URL it would use (for testing)
def fetch_printer(url, filename):
 print("url: ", url)
 print("filename: ", filename)

def fetch_to_gcs(url, filename):
 filename, content_str = getContentFromURL(url, filename)
 upload_blob_from_memory(BUCKET_NAME,
 content_str,
 destination_blob_name=f"retriever/{
filename}")

def getContentFromURL(url, filename, url_get=requests.get):
 # should have send the param as a dictionary, from the doc
 #payload = {'key1': 'value1', 'key2': 'value2'}
 #r = requests.get('https://httpbin.org/get',
params=payload)
 response = url_get(url)
 decoded_content =
response.content.decode(RETRIEVER_ENCODING)
 content_str = make_json_newLineDelimited(decoded_content)
 filename += 'l'
 return filename, content_str

Term Paper in MAN 51001 03.05.2023

Page 22

def make_json_newLineDelimited(data):
 records = json.loads(data)
 return '\n'.join([json_dump(record) for record in records])

def json_dump(record):
 return json.dumps(record, ensure_ascii=False).encode(
 RETRIEVER_ENCODING).decode(RETRIEVER_ENCODING)

Right out from the doc, should check
reasumable upload:
https://cloud.google.com/storage/docs/performing-resumable-
uploads
and streaming:
https://cloud.google.com/storage/docs/streaming#storage-stream-
upload-object-python
def upload_blob_from_memory(bucket_name, contents,
destination_blob_name):

 storage_client = storage.Client(
) #Alt: storage.Client(project="my-project-id")
 bucket = storage_client.bucket(bucket_name)
 blob = bucket.blob(destination_blob_name)

 try:
 blob.content_encoding = RETRIEVER_ENCODING
 blob.upload_from_string(contents)
 except Exception as e:
 print('Failed to upload to GCS, exception is {e}')

 print(f"{destination_blob_name} uploaded to
{bucket_name}.")

fetch = fetch_to_gcs

Split from_date to to_date into reasonable number of days
defined by batch size
def extract_retriever(from_d, to_d, days_per_batch=10):
 # More than Batch size
 if (to_d - from_d > timedelta(days=days_per_batch)):
 do_fetch(from_d, from_d +
timedelta(days=days_per_batch))
 return extract_retriever(from_d +
timedelta(days=(days_per_batch + 1)),
 to_d, days_per_batch)
 # Less than or Equal Batch size
 return do_fetch(from_d, to_d)

Term Paper in MAN 51001 03.05.2023

Page 23

def do_fetch(from_date, to_date):
 url = build_url(from_date.replace(hour=0, minute=0,
second=0),
 to_date.replace(hour=23, minute=59,
second=59))
 filename =
f"retriever_{from_date.date().isoformat()}_{to_date.date().isof
ormat()}.json"
 fetch(url, filename)

def build_url(f_datetime, t_datetime):
 q = urlencode({
 'source': 'ntb',
 'from': f_datetime.replace(microsecond=0).isoformat(),
 'to': t_datetime.replace(microsecond=0).isoformat()
 })

 return urlunparse(
 ('https', 'retriever-info.com', 'external/ntb/api', '',
q, ''))

if __name__ == "__main__":
 f_d = datetime.datetime.fromisoformat("2022-08-15")
 t_d = datetime.datetime.fromisoformat("2022-08-31")

 #f_d = datetime.datetime.fromisoformat("2022-08-01")
 #t_d = datetime.datetime.fromisoformat("2022-08-14")
 #fetch = fetch_printer
 extract_retriever(f_d, t_d, days_per_batch=10)

2.2 Data_load

2.2.1 Ntb_loader.py

from google.cloud import bigquery

Construct a BigQuery client object.
client = bigquery.Client()

table_id = 'emm-ntb-dom.ntb_news_usage.import_ntb'
schema_path = "../infra/schema_import_ntb.json"
schema = client.schema_from_json(schema_path)

Term Paper in MAN 51001 03.05.2023

Page 24

beware of inserting duplicate - should be explicit about
write strategy
job_config = bigquery.LoadJobConfig(
 schema=schema,
 source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON
)

uri = "gs://ntb-usage/ntb/ntb_2023-*.jsonl"

load_job = client.load_table_from_uri(
 uri,
 table_id,
 location="europe-north1", # Must match the destination
dataset location.
 job_config=job_config,

) # Make an API request.

load_job.result() # Waits for the job to complete.

destination_table = client.get_table(table_id)

print("Loaded {} rows.".format(destination_table.num_rows))

2.2.2 Retriever_loader.py

from google.cloud import bigquery

Construct a BigQuery client object.
client = bigquery.Client()

table_id = 'emm-ntb-dom.ntb_news_usage.import_retriever'
schema_path = "../infra/schema_import_retriever.json"
schema = client.schema_from_json(schema_path)
job_config = bigquery.LoadJobConfig(
 schema=schema,
 source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON
)

uri = "gs://ntb-usage/retriever/retriever_2023-*.jsonl"

load_job = client.load_table_from_uri(
 uri,
 table_id,
 location="europe-north1", # Must match the destination
dataset location.
 job_config=job_config,

Term Paper in MAN 51001 03.05.2023

Page 25

) # Make an API request.

load_job.result() # Waits for the job to complete.

destination_table = client.get_table(table_id)

print("Loaded {} rows.".format(destination_table.num_rows))

2.3 Data_transformation

2.3.1 Ntb_matchers.py

def match_ids(retriever_id: str, ntb_id: str) -> bool:
 """Return True if the shortened retriever ID matches the
shortened NTB ID.
 Arguments:
 retriever_id -- the retriever ID to match
 ntb_id -- the NTB ID to match
 """
 if not retriever_id or not ntb_id:
 raise ValueError("Both inputs must be non-empty
strings.")
 shorten_retriever_id =
remove_trailing_zeroes(keep_after_TB(retriever_id))
 shorten_NTB_id = remove_hyphen(keep_after_NTB(ntb_id))
 return shorten_retriever_id == shorten_NTB_id

def remove_hyphen(a_string: str) -> str:
 """Return the input string with all hyphens removed."""
 return a_string.replace(HYPHEN, "")

def keep_after_NTB(a_ntb_id: str) -> str:
 """Return the substring of the input string after the first
occurrence of 'NTB'."""
 return a_ntb_id.split(NTB_PREFIX, 1)[1]

def remove_trailing_zeroes(retriever_id: str) -> str:
 """Return the input string with the last two characters
removed."""
 return retriever_id[:-RETRIEVER_ID_SUFFIX_LENGTH]

def keep_after_TB(a_retriever_id: str) -> str:
 """Return the substring of the input string after the first

Term Paper in MAN 51001 03.05.2023

Page 26

occurrence of 'TB'."""
 return a_retriever_id.split(TB_PREFIX, 1)[1]

2.4 Data_xplore

2.4.1 NTB_notebook.ipynb

Reference SQL syntax from the original job
Use the jobs.query method to return the SQL syntax from the job. This can be
copied from the output cell below to edit the query now or in the future. Alternatively,
you can use this link back to BigQuery to edit the query within the BigQuery user
interface.

Running this code will display the query used to generate
your previous job

job = client.get_job('bquxjob_7be5430b_185016f356c') # Job ID
inserted based on the query results selected to explore
print(job.query)

select distinct(district) from `emm-ntb-
dom.ntb_news_usage.import_ntb`

Result set loaded from BigQuery job as a DataFrame
Query results are referenced from the Job ID ran from BigQuery and the query does
not need to be re-run to explore results. The to_dataframe method downloads the
results to a Pandas DataFrame by using the BigQuery Storage API.
To edit query syntax, you can do so from the BigQuery SQL editor or in the
Optional: sections below.

Running this code will read results from your previous job

query_job = client.query("select * from `emm-ntb-
dom.ntb_news_usage.feature_ntb`")
df = query_job.to_dataframe()
df.head()

Show descriptive statistics using describe()
Use the pandas DataFrame.describe() method to generate descriptive
statistics. Descriptive statistics include those that summarize the central tendency,
dispersion and shape of a dataset’s distribution, excluding NaN values. You may also
use other Python methods to interact with your data.

Term Paper in MAN 51001 03.05.2023

Page 27

query_job = client.query("select * from `emm-ntb-
dom.ntb_news_usage.feature_ntb_take1`")
df_1 = query_job.to_dataframe()

#print('All - mean usage {0}, MAE {1}'.format(df.usage.mean(),
df.usage.mad()))
print('uriks - mean usage {0}, MAE
{1}'.format(df_1.usage.mean(), df_1.usage.mad()))

uriks - mean usage 5.7711691680563275, MAE 2.238605887630529

<ipython-input-9-a87b3ee79db7>:5: FutureWarning: The 'mad' method
is deprecated and will be removed in a future version. To compute
the same result, you may do `(df - df.mean()).abs().mean()`.
 print('uriks - mean usage {0}, MAE {1}'.format(df_1.usage.mean(),
df_1.usage.mad()))

2.5 Infra

2.5.1 Gitignore at main

from
https://github.com/github/gitignore/blob/main/Terraform.gitignore
Local .terraform directories
**/.terraform/*

.tfstate files
*.tfstate
.tfstate.

Crash log files
crash.log
crash.*.log

Exclude all .tfvars files, which are likely to contain
sensitive data, such as
password, private keys, and other secrets. These should not be
part of version
control as they are data points which are potentially sensitive
and subject
to change depending on the environment.
*.tfvars
*.tfvars.json

Ignore override files as they are usually used to override
resources locally and so
are not checked in

Term Paper in MAN 51001 03.05.2023

Page 28

override.tf
override.tf.json
*_override.tf
*_override.tf.json

Include override files you do wish to add to version control
using negated pattern
!example_override.tf

Include tfplan files to ignore the plan output of command:
terraform plan -out=tfplan
example: *tfplan*

Ignore CLI configuration files
.terraformrc
terraform.rc

Ignore .terraform.lock.hcl
.terraform.*

2.5.2 Bq.tf

resource "google_bigquery_dataset" "ntb_news_usage" {
 project = local.project_id
 dataset_id = "ntb_news_usage"
 friendly_name = "Dataset for the NTB news usage"
 description = "Todo: add description"
 location = local.project_default_region
 #location = "EU" # for multi region in EU
 default_table_expiration_ms = 75 * 24 * 3600 * 1000 #
testing: everything is wipped after one month
}

resource "google_bigquery_table" "import_ntb" {
 project = local.project_id
 dataset_id =
google_bigquery_dataset.ntb_news_usage.dataset_id
 table_id = "import_ntb"
 deletion_protection=false

 time_partitioning {
 type = "DAY"
 }

 labels = {
 env = "default"
 }

Term Paper in MAN 51001 03.05.2023

Page 29

 schema = file("./schema_import_ntb.json")
}

resource "google_bigquery_table" "import_retriever" {
 project = local.project_id
 dataset_id =
google_bigquery_dataset.ntb_news_usage.dataset_id
 table_id = "import_retriever"
 deletion_protection=false

 time_partitioning {
 type = "DAY"
 }

 labels = {
 env = "default"
 }

 schema = file("./schema_import_retriever.json")
}

resource "google_bigquery_table" "imported_ntb" {
 project = local.project_id
 dataset_id =
google_bigquery_dataset.ntb_news_usage.dataset_id
 table_id = "imported_ntb"
 description = "View aggregating NTB-id with details
from the latest version and with normalized NTBid"
 deletion_protection = false
 view {
 query = templatefile("./imported_ntb_view.sql", {
pj = local.project_id, ds =
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl =
google_bigquery_table.import_ntb.table_id })
 use_legacy_sql = false
 }
}

resource "google_bigquery_table" "imported_retriever" {
 project = local.project_id
 dataset_id =
google_bigquery_dataset.ntb_news_usage.dataset_id
 table_id = "imported_retriever"
 description = "View exposing feature usable for usage
prediction and with normalized NTBid"
 deletion_protection = false
 view {
 query =
templatefile("./imported_retriever_view.sql", { pj =
local.project_id, ds =
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl =

Term Paper in MAN 51001 03.05.2023

Page 30

google_bigquery_table.import_retriever.table_id })
 use_legacy_sql = false
 }
}

resource "google_bigquery_table" "feature_usage" {
 project = local.project_id
 dataset_id =
google_bigquery_dataset.ntb_news_usage.dataset_id
 table_id = "feature_ntb"
 description = "View exposing features and usage
target"
 deletion_protection = false

 view {
 query = templatefile("./feature_usage_view.sql", {
pj = local.project_id, ds =
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl =
google_bigquery_table.import_retriever.table_id })
 use_legacy_sql = false
 }
}

resource "google_bigquery_table" "feature_usage_take1" {
 project = local.project_id
 dataset_id =
google_bigquery_dataset.ntb_news_usage.dataset_id
 table_id = "feature_ntb_take1"
 description = "trying ML"
 deletion_protection = false

 view {
 query =
templatefile("./feature_usage_take1_view.sql", { pj =
local.project_id, ds =
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl =
google_bigquery_table.import_retriever.table_id })
 use_legacy_sql = false
 }
}

2.5.3 Bucket.tf

resource "google_storage_bucket" "ntb_usage" {
 provider = google-beta
 project = local.project_id
 name = "ntb-usage"
 location = local.project_default_region

Term Paper in MAN 51001 03.05.2023

Page 31

 # Remove with prod data if you don't want to loose data when
destroy
 force_destroy = true

 public_access_prevention = "enforced"
}

2.5.4 Config.tf

locals {
 project_id = "emm-ntb-dom"
 project_number = 1055482349569
 project_default_region = "europe-north1"
 project_default_zone = "europe-north1-a"
 gcp_service_list = [
 # todo: list "XXX.googleapis.com",
]
}

resource "google_project_service" "gcp_services" {
 count = length(local.gcp_service_list)
 project = local.project_id
 service = local.gcp_service_list[count.index]
 disable_on_destroy = false
}

Backend config:

https://developer.hashicorp.com/terraform/language/settings/bac
kends/gcs
resource "google_storage_bucket" "tf_state" {
 provider = google-beta
 project = local.project_id
 name = "ntb-usage-tf-state"
 location = local.project_default_region

 # prevent accidental destroy of terraform state
 lifecycle {
 prevent_destroy = true
 }
 public_access_prevention = "enforced"

 ## as recommanded in the doc to ease rollback
 #versioning {
 # enabled = true
 #}

 #encryption is enabled by default in Google Cloud

Term Paper in MAN 51001 03.05.2023

Page 32

 # must be configured in AWS
 # Check doc for CMEK, EKM etc
}

terraform {
 required_version = ">= 1.3.2"

 backend "gcs" {
 bucket = "ntb-usage-tf-state"
 # maybe use per env prefix ntb-usage/dev osv
 prefix = "ntb-usage"
 }

 required_providers {
 archive = {
 source = "hashicorp/archive"
 version = "= 2.0.0"
 }

 google = {
 source = "hashicorp/google"
 version = "= 4.41.0"
 }

 google-beta = {
 source = "hashicorp/google-beta"
 version = "= 4.41.0"
 }
 }
}

2.5.5 Feature_usage_take1_view.sql

select n.*, r.docdate, r.wc, r.headline, r.usage
from `emm-ntb-dom.ntb_news_usage.imported_ntb` n
left outer join `emm-ntb-dom.ntb_news_usage.imported_retriever` r
on n.NTB_normalized = r.NTB_normalized
where n.category in ("Utenriks")

2.5.6 Feature_usage_view.sql

select n.*, r.docdate, r.wc, r.headline, r.usage
from `emm-ntb-dom.ntb_news_usage.imported_ntb` n
left outer join `emm-ntb-dom.ntb_news_usage.imported_retriever` r
on n.NTB_normalized = r.NTB_normalized
where n.category in ("Utenriks", "Innenriks", "Sport")

Term Paper in MAN 51001 03.05.2023

Page 33

2.5.7 Imported_ntb_view.sql

select agg.*, details.ntbVersion, details.keywords,
details.title, details.district, details.content,
details.writerEmail, ARRAY_LENGTH(details.subjects) as
subjects_count, details.category, details.subcategory,
details.districts,
details.priority, ARRAY_LENGTH(details.mediaList) as
medialist_count, Array(select name from
unnest(details.subjects)) as subject_names

from (
 SELECT max(id) as latest_id, substring(replace(ntbId,
'-', ''), 4) as NTB_normalized, ntbId
 FROM `emm-ntb-dom.ntb_news_usage.import_ntb`
 group by NTB_normalized, ntbId) as agg
 inner join `emm-ntb-dom.ntb_news_usage.import_ntb` as
details
 on agg.latest_id = details.id

order by latest_id

2.5.8 Imported_retriever_view.sql

SELECT doc_id, substr(doc_id, strpos(doc_id, 'TB')+2, 32) as
NTB_normalized, docdate, wc, (lookalike_print+lookalike_web) as
usage, headline
FROM `emm-ntb-dom.ntb_news_usage.import_retriever`

2.5.9 Schema_import_ntb.json

[
 {
 "mode": "required",
 "name": "id",
 "type": "STRING"
 },
 {
 "mode": "required",
 "name": "ntbId",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",

Term Paper in MAN 51001 03.05.2023

Page 34

 "name": "ntbVersion",
 "type": "INTEGER"
 },
 {
 "mode": "NULLABLE",
 "name": "time",
 "type": "TIMESTAMP"
 },
 {
 "mode": "NULLABLE",
 "name": "messageType",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "title",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "keywords",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "category",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "byline",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "service",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "priority",
 "type": "INTEGER"
 },
 {
 "mode": "NULLABLE",
 "name": "district",
 "type": "STRING"
 },
 {
 "mode": "REPEATED",
 "name": "districts",
 "type": "STRING"

Term Paper in MAN 51001 03.05.2023

Page 35

 },
 {
 "mode": "NULLABLE",
 "name": "editorialInfo",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "writerEmail",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "subcategory",
 "type": "STRING"
 },
 {
 "mode": "REPEATED",
 "name": "regions",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "content",
 "type": "STRING"
 },
 {
 "mode": "REPEATED",
 "name": "subjects",
 "type": "RECORD",
 "fields": [
 {
 "mode": "NULLABLE",
 "name": "name",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "reference",
 "type": "STRING"
 }
]
 },
 {
 "mode": "REPEATED",
 "name": "mediaList",
 "type": "RECORD",
 "fields": [
 {
 "mode": "NULLABLE",
 "name": "url",
 "type": "STRING"

Term Paper in MAN 51001 03.05.2023

Page 36

 },
 {
 "mode": "NULLABLE",
 "name": "mediaType",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "scanpixPicture",
 "type": "BOOLEAN"
 },
 {
 "mode": "NULLABLE",
 "name": "mimeType",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "caption",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "id",
 "type": "STRING"
 }
]
 }
]

2.5.10 Schema_import_teriever.json

[
 {
 "mode": "required",
 "name": "doc_id",
 "type": "STRING",
 "description": "Match an article from NTB, id includes part
of NTB-id"
 },
 {
 "mode": "NULLABLE",
 "name": "docdate",
 "type": "TIMESTAMP",
 "description": "Unclear witch date it is (retrieval or
NTB)"
 },
 {

Term Paper in MAN 51001 03.05.2023

Page 37

 "mode": "NULLABLE",
 "name": "lookalike_print",
 "type": "INTEGER"
 },
 {
 "mode": "NULLABLE",
 "name": "lookalike_web",
 "type": "INTEGER"
 },
 {
 "mode": "NULLABLE",
 "name": "wc",
 "type": "INTEGER"
 },
 {
 "mode": "NULLABLE",
 "name": "imgtext",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "headline",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "intro",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "category",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "story",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "preintro",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "author",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "subheadline",

Term Paper in MAN 51001 03.05.2023

Page 38

 "type": "STRING"
 },
 {
 "fields": [
 {
 "mode": "NULLABLE",
 "name": "url",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "story",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "preintro",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "imgtext",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "mediatype",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "headline",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "intro",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "docdate",
 "type": "TIMESTAMP"
 },
 {
 "mode": "NULLABLE",
 "name": "source_name",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "subheadline",

Term Paper in MAN 51001 03.05.2023

Page 39

 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "doc_id",
 "type": "STRING"
 },
 {
 "mode": "NULLABLE",
 "name": "ntb_story",
 "type": "STRING"
 }
],
 "mode": "REPEATED",
 "name": "lookalikes",
 "type": "RECORD"
 }
]

2.6 Tests

2.6.1 Test_ntb_extract.py

import unittest
import json
import datetime
import data_extraction.ntb_extracter

class TestNtbExtract(unittest.TestCase):
 f = datetime.datetime(2022, 12, 5, 21, 10, 36, 1234)
 t = datetime.datetime(2022, 12, 5, 21, 15, 36, 1234)

 def test_payload_for_url(self):
 url, payload =
data_extraction.ntb_extracter.build_url(self.f, self.t)

 self.assertDictEqual(payload, {'search.service': 'news',
'search.subcategory': 'Nyheter', 'search.startDate': '2022-12-
05T21:10:36', 'search.endDate': '2022-12-05T21:15:36'})

 def test_nested_array_to_jsonl(self):
 input = '''
 [
 {"foo":"bar", "answer":42, "subs":[[{"süb":1},
{"sub":2}]], "sabs":[[{"süb":1}, {"sub":2}]] },
 {"foo":"ball", "answer":66,"subs":[[{"sub":1},
{"sub":2}]]}

Term Paper in MAN 51001 03.05.2023

Page 40

]'''
 data = json.loads(input)
 for item in data:
 if 'subs' in item: item['subs'] = item['subs'][0]
 if 'sabs' in item: item['sabs'] = item['sabs'][0]
 # print(json.dumps(data, indent=2))

 input_1_doc_json = '''{
 "result": {
 "numResults": 15033,
 "documents": [{
 "id": 17859418,
 "ntbId": "NTB12ca9da6-0020-4dea-b10d-
84dd2dc0a610",
 "service": "news",
 "title": "Zelenskyj vil ha globalt forbud mot
russiske fly og skip",
 "priority": 4,
 "time": "2022-02-28T23:55:59.000+0100",
 "messageType": null,
 "byline": "NTB-AFP",
 "ntbVersion": "00",
 "content": "what ever",
 "keywords": "ukr zelenskyj forbud",
 "regions": [
 [
 "Europa"
]
],
 "district": "Europa",
 "districts": [
 [
 "Ukraina",
 "Russland",
 "Europa"
]
],
 "category": "Utenriks",
 "subcategory": "Nyheter",
 "writerEmail": "uvakt@ntb.no",
 "subjects": [
 [
 {
 "reference": "16000000",
 "name": "Krig/Konflikter"
 },
 {
 "reference": "11000000",
 "name": "Politikk"
 }
]
]

Term Paper in MAN 51001 03.05.2023

Page 41

 }]
 }
 }
'''
 def test_extract_json_fixes_time(self):
 output =
data_extraction.ntb_extracter.extractJsonDocs(self.input_1_doc_js
on)
 # time_s = "2022-02-28T23:55:59.000+0100"
 time_s = output[0]["time"]

 self.assertEqual("2022-02-28 23:55:59", time_s)

 def test_time_iso_jsonl(self):

 output =
data_extraction.ntb_extracter.fromJsonToJsonl(self.input_1_doc_js
on)
 expected = '''{"id": 17859418, "ntbId": "NTB12ca9da6-0020-
4dea-b10d-84dd2dc0a610", "service": "news", "title": "Zelenskyj
vil ha globalt forbud mot russiske fly og skip", "priority": 4,
"time": "2022-02-28 23:55:59", "messageType": null, "byline":
"NTB-AFP", "ntbVersion": "00", "content": "what ever",
"keywords": "ukr zelenskyj forbud", "regions": ["Europa"],
"district": "Europa", "districts": ["Ukraina", "Russland",
"Europa"], "category": "Utenriks", "subcategory": "Nyheter",
"writerEmail": "uvakt@ntb.no", "subjects": [{"reference":
"16000000", "name": "Krig/Konflikter"}, {"reference": "11000000",
"name": "Politikk"}]}'''

 self.assertEqual(expected, output)

2.6.2 Test_ntb_matchers.py

import unittest

import data_tranformation.ntb_matchers as ntb_matchers

NTB_ID = "NTB-match-123"
RETRIEVER_MATCH = "startTBmatch12300"
RETRIEVER_NO_MATCH = "startTBnot00"

class TestNTB_Matchers(unittest.TestCase):

Term Paper in MAN 51001 03.05.2023

Page 42

 def test_match(self):
 isMatch = ntb_matchers.match_ids(RETRIEVER_MATCH,
NTB_ID)
 self.assertTrue(isMatch)

 def test_not_match(self):
 isMatch = ntb_matchers.match_ids(RETRIEVER_NO_MATCH,
NTB_ID)
 self.assertFalse(isMatch)

if __name__ == "__main__":
 print("imported ntb matchers. Test ID is ", NTB_ID)
 unittest.main()

2.6.3 Test_retriever_extract.py

import unittest
import urllib.parse
from urllib.parse import urlparse
import datetime
import data_extraction.retriever_extract as rf

class TestRetriever_fetcher(unittest.TestCase):
 f = datetime.datetime(2022, 12, 5, 21, 10, 36, 1234)
 t = datetime.datetime(2022, 12, 5, 21, 15, 36, 1234)

 def test_usage_of_fixed_base_URL(self):
 url = rf.build_url(self.f, self.t)
 components = urlparse(url)
 # Willingly hard coded since only one URL as far as I
know
 self.assertEqual('https', components.scheme)
 self.assertEqual('retriever-info.com',
components.hostname)
 self.assertEqual("/external/ntb/api", components.path)

 def test_query_source_is_ntb(self):
 qs = self.extract_query_from_build_url()
 self.assertEqual('ntb', qs['source'][0])

 def test_query_has_from_date_isoformat(self):
 qs = self.extract_query_from_build_url()
 f = qs['from'][0]
 self.assertIsNotNone(f)
 self.assertIsInstance(datetime.datetime.fromisoformat(f

Term Paper in MAN 51001 03.05.2023

Page 43

),
 datetime.datetime)

 def test_query_has_to_date_isoformat(self):
 qs = self.extract_query_from_build_url()
 t = qs['to'][0]
 self.assertIsNotNone(t)
 self.assertIsInstance(datetime.datetime.fromisoformat(t
),
 datetime.datetime)

 # must rewrite to have f < t and f > t
 def test_query_from_lt_to(self):
 qs = self.extract_query_from_build_url()
 f = qs['from'][0]
 t = qs['to'][0]
 self.assertLess(f, t)

 def extract_query_from_build_url(self):
 url = rf.build_url(self.f, self.t)
 qs = urllib.parse.parse_qs(urlparse(url).query)
 return qs

class TestFromURLtoString(unittest.TestCase):

 class FakeHttpRespnse:

 def __init__(self):
 self.content = bytes('[{"the content": "åøæ"}]',
"iso-8859-1")
 self.encoding = "iso-18859-1"

 def test_iso8859_1(self):
 #a
 fake = self.FakeHttpRespnse()
 #a
 filename, output = rf.getContentFromURL("url",
 "file.name",
 url_get=lambda
enc: fake)
 #a
 self.assertEqual('{"the content": "åøæ"}', output)

Testing with some Norwegian letters... but I actually trust
Python string to work :-)
class TestJsonToJsonl(unittest.TestCase):

 def test_empty_array(self):
 input = "[]"
 output = rf.make_json_newLineDelimited(input)

Term Paper in MAN 51001 03.05.2023

Page 44

 self.assertEqual("", output)

 def test_one_simple_object(self):
 input = '[{"foo":"bår", "answer":42}]'
 output = rf.make_json_newLineDelimited(input)
 self.assertEqual('{"foo": "bår", "answer": 42}',
output)

 def test_two_simple_objects(self):
 input = '[{"foo":"bar","answer":42},{"foo":"tball",
"answer":66}]'
 output = rf.make_json_newLineDelimited(input)
 self.assertEqual(
 '{"foo": "bar", "answer": 42}\n{"foo": "tball",
"answer": 66}',
 output)

 def test_two_simple_objects_withNewLine(self):
 input = '[\n{"foo":"bar",\n "answer":42},\n\t
{"foo":"tball", "answer":66}]'
 output = rf.make_json_newLineDelimited(input)
 self.assertEqual(
 '{"foo": "bar", "answer": 42}\n{"foo": "tball",
"answer": 66}',
 output)

 def test_one_object_nested(self):
 input = '[{"foo":"bar", "answer":42, "subs":[{"sub":1},
{"sub":2}]}]'
 output = rf.make_json_newLineDelimited(input)
 self.assertEqual(
 '{"foo": "bar", "answer": 42, "subs": [{"sub": 1},
{"sub": 2}]}',
 output)

 def test_two_object_nested(self):
 input = '''
 [
 {"foo":"bar", "answer":42, "subs":[{"süb":1},
{"sub":2}]},
 {"foo":"tball", "answer":66,"subs":[{"sub":1},
{"sub":2}]},
 {"foo":"fighter", "answer":82}
]'''

 output = rf.make_json_newLineDelimited(input)

 expected = '''{"foo": "bar", "answer": 42, "subs":
[{"süb": 1}, {"sub": 2}]}
{"foo": "tball", "answer": 66, "subs": [{"sub": 1}, {"sub":
2}]}

Term Paper in MAN 51001 03.05.2023

Page 45

{"foo": "fighter", "answer": 82}'''
 self.assertEqual(expected, output)

