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Summary 

This predictive analytics project explores how machine learning can contribute to 

increased customer usage of NTB’s foreign news articles. The result of this 

research is the Predicted Usage Model (PUM) – a regression model that forecasts 

the number of NTB customers that will run any given syndicated international 

news story. The idea is that PUM can help the foreign duty editors select the 

stories that have the greatest potential usage. The current baseline process does 

not involve the use of analytical tools but is mainly based on editors’ individual 

skills and experience. Thus, it is person-dependent and prone to variability. The 

proposed model outperformed a simple baseline model that uses the mean as a 

constant value for all the predictions. The paper describes how the model can be 

further improved in subsequent iterations, outlines how it can be operationalized 

within the existing system architecture, and lays out a way forward. 
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Introduction 

At the core of NTB’s business is the news service – a traditional wire service 

consisting of news articles divided into three main categories: Domestic, Foreign 

and Sports. While most of the domestic news is original content created by NTB’s 

own journalists, the foreign news service consists mainly of syndicated stories 

from other agencies: The Associated Press (AP), Reuters, Agence France-Presse 

(AFP), Deutsche Presse-Agentur (DPA), TT Nyhetsbyrån and Ritzau.  

The overarching business model of NTB is to sell the same product or service to 

many clients, or – as in the case of the news service – produce content that will 

get picked up and published by multiple customers. With a limited capacity – on 

average NTB produces 48 foreign news articles daily – and more than 200 

disparate news outlets on the client list, it’s imperative that NTB is able to select 

the syndicated stories with the greatest potential usage. 

The baseline process: The role of the foreign duty editor 

The foreign duty editor is responsible for choosing the international news articles 

that eventually will be offered to NTB customers. The syndicated stories – 

totaling approximately 2000 on a daily basis – are ingested directly into the NTB 

content management system (CMS). As the news comes in, the foreign duty editor 

is tasked with assessing the relative newsworthiness of each of these stories and 

their relevance to a diverse range of NTB clients. During the busiest periods, 

incoming stories may amount to 10-20 per minute. If a story gets selected, the 

foreign duty editor either assigns it to a reporter or processes it herself. Processing 

entails translating the story to Norwegian, adding information from other articles 

or sources if relevant, and choosing the appropriate tags with the assistance of a 

cloud-based auto-tagging tool (iMatrics). The article is then distributed to clients 

via the NTB news portal, or through the News API.  
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Figure 1. Sketch of the baseline process. 

 

There is a tendency among news media managers to characterize every decision 

that doesn’t involve the direct use of analytics tools as being based on “gut 

feeling” (Lilleby, 2019; Simonsen, 2023). Such characteristics don’t acknowledge 

the value of experience, knowledge that might have been accumulated over 

decades of service, nor the great problem solving capabilities of the human brain. 

That being said, there are several potential drawbacks of the current process: it’s 

susceptible to the duty editors’ personal preferences, likes and dislikes, habits, 

lack of experience, disregard of – or unfamiliarity with – the business goals, and 

activism. 

 

The solution: PUM 
 

The Predicted Usage Model (PUM) forecasts the number of clients that will pick 

up each individual syndicated article. The model is trained on the semi-structured 

metadata that follows every news article, combined with historical data on article 

usage from Retriever. PUM is a regression model, where usage – the number of 

clients – is the target variable (also called the dependent variable), and the article 

metadata are the features (or the independent variables) whose values are used to 

predict the value of the target variable. By integrating a non-disruptive ML 

prediction into the current workflow, PUM can guide and assist the foreign duty 

editor in the decision making. 

 



Term Paper in MAN 51001 03.05.2023 
 

Page 3 

 

 
Figure 2. Sketch of process flow with integrated PUM. 

 

 

Data preparation 
 

Note: This paper is primarily aimed at stakeholders who don’t necessarily have 

detailed knowledge about data science. Those technically inclined can dive into 

the full code listing in the appendix. 

 

The data was sourced from two separate APIs: the NTB News API (production 

data) and the Retriever API (usage data). Python scripts were written to  

1. extract the data by calling the APIs and uploading the articles to the 

Google Cloud 

2. convert the date format 

3. transform from single JSON object to a collection of JSONL (newline-

delimited JSON), a format supported by Google BigQuery ML (BQML) 

See appendix 2.1 for details. The BigQuery Python Client Library was then used 

to load the data into BigQuery tables (appendix 2.2). Since the two datasets lacked 

a common key, merging them required a solid mix of data science skills, domain 

expertise and creativity (appendix 2.3). In light of the challenges we had matching 

the two IDs, we suggest that the Retriever API should also include the original 

NTB article ID in the future. This improvement would be useful not only in this 

particular context, but also for other machine learning projects, as well as 

descriptive analytics tasks. 

 

After preparing the data and converting it to tabular form, we ended up with 20 

features and 10,815 unique instances, or articles (figure 3). 
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Figure 3. Illustration of model dataset. 

 

 

 

Modeling 
 

Google BigQuery ML (BQML) was used for the modeling as it supports training 

on dataset with nested columns that were challenging to flatten out. In addition, 

BQML does automatic feature preprocessing during training – missing value 

imputation and feature transformations. Numeric features are standardized 

automatically, while non-numerical columns are auto-encoded. The SQL syntax 

made working with the feature set, updating the view, and retraining the model, 

fairly straightforward. As with similar out-of-the-box machine learning platforms, 

BQML automatically splits the input data into training, validation and holdout sets 

to avoid overfitting. 

 

In line with the fail-fast philosophy, we started out with a very simple linear 

regression model (figure 4). 

 



Term Paper in MAN 51001 03.05.2023 
 

Page 5 

 

 
Figure 4. Evaluation metrics for the first linear regression model. 

 

This approach allowed us to quickly detect failures, iterate and improve. The first 

few runs produced poor-performing models, but by adding features and tuning the 

hyperparameters, we were able to improve the model performance substantially 

from iteration to iteration (figure 5). 

 

 
Figure 5. Evaluation metrics for boosted tree regressor. 

 

To avoid time-dependent data leakage – in simple terms you don't want to use 

data from the present to predict past events – we chose to split the data 

sequentially. In addition, we made the decision to optimize the model for mean 

absolute error (MAE) instead of R-squared. Before we get into the rationale 

behind this choice, we will briefly introduce the two metrics. A basic 

understanding of MAE and R-squared is necessary, not only to understand the 

reasoning behind the hyperparameter tuning, but also the analysis of the model’s 

performance in the evaluation chapter. 

 

The coefficient of determination, also known as R-squared or R2, represents the 

proportion of the variation in the dependent variable that is predictable from the 
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independent variables in the model. R-squared ranges from negative infinity to 1, 

but is normally between 0 and 1. For example, an R-squared of 0.70 indicates that 

approximately 70% of the observed variation can be explained by the model’s 

features. A negative R-squared indicates that the model’s performance is worse 

than a horizontal line which predicts the mean value every time. It’s impossible, if 

not meaningless, to define an acceptable R-squared value. What can be judged as 

a good value depends on the use case, but overall, the higher the R-squared, the 

better the model fits the data. Though R-squared is the default hyperparameter 

objective in BQML, the metric has a few drawbacks. First of all, R-squared 

increases as the number of features in the model is increased, even when the 

features added to the model don’t have predictive quality. Secondly, while a high 

R-squared is necessary for precise predictions, it is not adequate by itself. We 

should add that R-squared can be hard to grasp for non-technical stakeholders, 

which in turn may make them reluctant to support model deployment. 

 

Mean absolute error (MAE) on the other hand, is easy to interpret and explain. 

MAE is simply the average absolute error between the actual and the predicted 

values. In figure 6, the blue line represents the predictions, while the data points 

represent the actual values. The error is the distance between the two.  

 
Figure 6. Illustration of prediction errors. 
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MAE is a satisfyingly intuitive metric because it returns the error in the units we 

care about – the units of the output variable – which in our case is “number of 

customers”. The closer MAE is to zero, the better the model. By experimenting 

with more complex model types and tuning the hyperparameters, we were able to 

push the MAE lower and lower until the project deadline. 

 

 

Evaluation 
 

To the big question: How good is the final model? By themselves, the evaluation 

metrics give cause for optimism (figure 7).  

 

 
Figure 7. Metrics for the final model. Boosted tree regressor. 

 

A MAE of about 1.86 tells us that the model’s predictions of usage are off by less 

than two customers on average. At first glance a relatively low number, but bear 

in mind that the actual average usage in the dataset is just 5.77. An R-squared of 

0.2024 indicates that about 20% of the variance in usage is explained by the 

features. As stated above, there is no general rule for determining if an R-squared 

is adequate or too low. Some areas of study are simply more inherently 

unpredictable than others, and sometimes there is considerable value in explaining 

20% of the variation. 

 

To establish whether the model can add value to NTB, we need a basis for 

comparison. For regression problems, the average can serve as a simple yet 

effective baseline model. We can calculate the baseline by predicting the mean for 
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every observation in the dataset using Python, and we can use the MAE as a 

comparison metric (figure 8). 

 

 
Figure 8. 

 

As figures 7 and 8 show, our model with a MAE of 1.8648 was able to beat the 

baseline error rate of 2.2386. Thus, we can conclude that PUM has more 

predictive power than a model that only guesses the average for every article. That 

might not sound very impressive, but if the model can help increase article usage 

even by a few decimals, it could have substantial business impact. 

 

Compared to the earlier models trained on the same data set, the final version also 

showed a considerably lower mean squared error (MSE). MSE is widely regarded 

as one of the most useful evaluation metrics for regression models. As with other 

loss functions that squares the errors, it gives more weight to large errors and is 

sensitive to outliers. 

 

The feature importance list, when sorted by importance gain, shows that 

“districts” and “subject_names” are the features with the most predictive quality 

(figure 9). “Districts” is a geographical tag (city, country or continent), while 

“subject_names” are the main topics of the individual articles. The number of 

topics per article in our dataset ranges from zero to 17. 
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Figure 9. 

 

From a domain expert’s perspective, it makes sense that geography and topics are 

the most useful variables for predicting usage. In the media business, geographical 

and cultural proximity has always been considered important criteria when 

determining a story’s newsworthiness. Now we may have the data to support it. 
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Improving the model 
 

Although the model outperformed the simple baseline model, it is by no means 

the finished product. As Provost and Fawcett states in Data Science For Business, 

“iteration is the rule rather than the exception” (2013, p. 27). Judging from our 

experience, the model’s performance can be further improved through feature 

engineering, hyperparameter tuning and experimentation with different model 

types. Platforms like BQML may enable people with limited machine learning 

experience to train high-quality models, but they can’t fully substitute the nous 

and experience of professionals. Experts in the fields of data science and statistics 

will no doubt be able to find imperfections in the current model. This should not 

be taken as proof of model inadequacy, but rather as a testament to its potential. 

Most of the available input data was ingested in its purest form; only the most 

necessary transformation of the data was performed. Therefore, it’s quite likely 

that model performance can be improved substantially through feature 

engineering, like creating new features and removing irrelevant ones. Manual 

encoding of categorical variables should also be considered, as well as 

standardization of numerical features. BQML does automatic one-hot encoding 

and standardization for all available model types except random forest and 

boosted tree models, the latter of which was the type of our final and best 

performing model. 

 

Another issue, though not directly related, is that of selection bias. The articles in 

our dataset are only the articles that – for whatever reason – were picked for 

translation. In other words, they are just a subset of the population of possible 

articles. There are all these other instances – stories that never got picked up and 

translated in the first place – that the model never gets to see. Thus, the data we’re 

basing our predictions on might already be biased by the baseline selection 

routine. There are a couple of ways we can correct for this. One is through the use 

of importance weighting techniques, the other is to start investing in unbiased data 

by picking a share of the syndicated stories at random for processing. 
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The observant reader will notice that there is no mention of the article text. In this 

project we sacrificed the text data for manageability. Mining the document text 

would perhaps make the model perform better, but it would also make it far more 

complicated. At a later stage, a more sophisticated model can make use of the 

unstructured text data through text mining techniques like bag-of-words and 

sentiment analysis. 

 

 

Operationalization: fitting the model in the existing pipeline 
 

For a predictive model to be adopted by the editorial staff, it should be integrated 

into the technical architecture of the business’ existing production software, and 

blend seamlessly into the newsroom workflow. A tool that would slow down the 

current process, or create friction in any other way, no matter how ingenious or 

valuable, will be rejected. By focusing on these preconditions, we were able to 

narrow down and find the most viable solution. As shown in figure 10, today the 

auto-tagging is only implemented after selection: 

 

 
Figure 10. Existing pipeline. 

 

By introducing auto-tagging further upstream, all the syndicated articles can be 

automatically run through PUM pre-selection, thus providing the foreign duty 

editor with a powerful new tool (figure 11.) 

 

 
Figure 11. 

 

The iMatrics auto-tagging feature is language independent (Solutions | IMatrics, 

n.d.), and it is already integrated in the CMS, increasing the possibility of a viable 

implementation. In operation, PUM assigns a usage number to each syndicated 
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article. Figure 12 shows what the ML integration might look like when deployed 

in production. 

 

 
Figure 12. Illustration of NTB’s CMS with ML integration. 

 

One of the strengths of this approach, is that it requires no end user training or 

action. PUM operates independently of such factors. 

 

 

Deployment considerations 
 

Obviously, the model must go through a more rigorous evaluation process before 

NTB can take the risk of deployment. The code needs to be cleaned, and the 

model must be tested in a real-life environment. The latter can probably be done 

semi-manually, cost-efficient and in parallel with the existing pipeline. Both 

Sourcefabric, the CMS supplier, and iMatrics, the developer of the auto-tagging 

integration, must be consulted about the viability of the proposed solution. Does 

the system scale, or will auto-tagging cause latency when applied to a greater 

volume of articles? 

 

Model deployment is the process of integrating a model into an existing 

production environment to make practical business decisions based on data. If and 
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when NTB decides to deploy, a comprehensive framework for model governance 

should be in place. Complete and thorough documentation of all systems and 

processes is crucial. On the technical side, the predictions must be made available 

for the production system through an API-layer. In addition, we need to monitor 

the data quality and the model for skew and drifts as well as build pipelines for 

deployment and versioning. Both AWS and Google Cloud have managed services 

to handle ML ops (Sage Maker and Vertex AI), including managing ML Ops in 

one place and deploying the model for inferences in another. The decision 

concerning what platform to use should be taken by top management together 

with the data science and developer teams who will manage the operations when 

in production.  

 

The world around us is constantly changing, and so is the news. The ideal model 

would therefore be dynamic, meaning continuously updated, or at least 

automatically retrained with fresh data in fixed periodic intervals. Data that goes 

far back in time will probably not be very useful for predicting future usage. If the 

model is not fed fresh data, its performance will most probably quickly degrade. 

 

 
Figure 13. ML process flow. 
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Conclusion 
 

This research has demonstrated how a machine learning model can use existing 

data to predict the number of NTB customers that will publish any given foreign 

news story, thus equipping the duty editor with a powerful new tool. Much of the 

raw data is already available to the duty editors, but extracting insight from it is 

difficult and time-consuming, if not impossible. In a streamlined, non-intrusive 

way, the Predicted Usage Model manifests the business’ strategy of becoming 

more data-driven. Processing data yields information, which in turn can give 

relevant insight that should lead to meaningful actions with measurable impact. 

PUM encompasses it all. 

 

The paper outlines how the model can be operationalized within the existing 

system architecture. The implementation of PUM into the workflow would entail 

a significant shift from a purely people-dependent process to a more robust and 

consistent, system-dependent process. 

 

Furthermore, we have suggested how the model can be improved through future 

iterations. Since our project team of non-experts were able to beat the benchmark 

model using predominantly the automatic features of BQML, it’s fair to assume 

that a proper data scientist will find ways to squeeze more predictive juice out of 

the data. 

 

Due to the intrinsically unpredictable nature of the news, the media ecosystem and 

the people in it, no model predicting article usage will ever be 100% correct. Or 

even 80 %. But if our model can pick up only small signals in the data, and the 

duty editors can act upon them, the benefits to NTB can be substantial: greater 

service consistency, increased article usage, higher customer satisfaction and 

greater customer retention. 

 

As noted earlier, the model is vulnerable to biases that might already exist in the 

data. This is an issue that needs to be addressed. On the upside, machine-based 
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systems can be tested and improved, whereas “it is a lot harder to get humans to 

acknowledge their biases (…) let alone do the hard work required to overcome 

them” (McAfee, 2017, p. 53). The ability to learn, to capture dynamic changes 

over time, is one of the model’s core strengths. It takes all the available data as 

input, and its outputs – the predictions – are pure products of math. 

 

Based on the model’s performance, its potential business impact, and the 

seemingly natural path towards production, we recommend that NTB as a first 

step assemble a cross-functional team to 

 

1. Evaluate the model 

2. Define metrics for success 

3. Estimate the financial benefits 

4. Assess the cost of integrating PUM in the existing workflow 

 

The endgame is not to replace the foreign duty editors, but to augment their 

capabilities.  
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Appendix 
 

1. Data sources 
 

The dataset has been built by joining raw data from two data sources. Metadata 
from NTB as API in xml and json format and usage data from Retriever API 
available as json.  
 

NTB: 
/ntbWeb/api/x1/search/full?search.service=news&search.subcategory=
Nyheter 
Limitations: can fetch 10.000 rows max per call, 30-50.000 total  
 

Retriever: 
/retriever/api/?from=2022-09-01&to=2022-09-25&summary=true 
 

 

2. Analytics steps/Data analytics minutes 
 

2.1  Data_extraction 
 

2.1.1 Install_requirements.sh 
 

 
 

2.1.2 Ntb_extracter.py 
 

import os 
import requests 
import json 
 
import datetime 
from datetime import timedelta 
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from google.cloud import storage 
 
BUCKET_NAME = 'ntb-usage' 
NTB_ENCODING = 'utf8' 
SHOWNUMRESULTS = 5000 # server will crash at around 10.000 
 
 
def fetch_to_gcs(url, payload, filename): 
    filename, content_str = getContentFromURL(url, payload, 
filename) 
    upload_blob_from_memory(BUCKET_NAME, 
                            content_str, 
                            destination_blob_name=f"ntb/{filena
me}") 
 
 
def getContentFromURL(url, payload, filename, 
url_get=requests.get): 
    # TODO for NTB: better authentisering than Basic htpp 
    response = url_get(url, 
                       params=payload, 
                       auth=(os.getenv('NTB_USR'), 
os.getenv('NTB_PWD'))) 
 
    # want to stop here, expect 401 if env not setup 
    response.raise_for_status() 
    print( 
        f"http status code: {response.status_code}, encoding: 
{response.encoding}" 
    ) 
 
    decoded_content = response.content.decode(NTB_ENCODING) 
    content_str = fromJsonToJsonl(decoded_content) 
    filename += 'l' 
    return filename, content_str 
 
 
def fromJsonToJsonl(data): 
    docs = extractJsonDocs(data) 
 
    return '\n'.join([json_dump(doc) for doc in docs]) 
 
def extractJsonDocs(data): 
    records = json.loads(data) 
    numResults = records['result']['numResults'] 
    docs = records['result']['documents'] 
 
    # Checking if number of results is not larger than the 
requested number 
    # default appears to be quite low 
    if numResults > len(docs): 
        raise Exception('More results than fetched, you are 
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missing data',  
        ' Max: '+ len(docs), ' actual: '+numResults) 
     
    print(f'Number of news: {numResults}') 
 
    # fix date format and nested arrays 
    for doc in docs: 
        # format in = "2022-02-28T23:55:59.000+0100" 
        # weak management of date not adjusting to UTC, will be 
UTC in BQ 
        time_s = doc["time"] 
        doc["time"] = time_s.replace('T', ' ')[:-9] 
       
        keys = ['regions', 'districts', 'subjects', 
'mediaList'] 
        for key in keys: 
            if key in doc: doc[key] = doc[key][0] 
 
    return docs 
 
 
def json_dump(record): 
    return json.dumps( 
        record, 
ensure_ascii=False).encode(NTB_ENCODING).decode(NTB_ENCODING) 
 
 
# Right out from the doc, should check 
# reasumable upload: 
https://cloud.google.com/storage/docs/performing-resumable-
uploads 
# and streaming: 
https://cloud.google.com/storage/docs/streaming#storage-stream-
upload-object-python 
def upload_blob_from_memory(bucket_name, contents, 
destination_blob_name): 
 
    storage_client = storage.Client( 
    )  #Alt: storage.Client(project="my-project-id") 
    bucket = storage_client.bucket(bucket_name) 
    blob = bucket.blob(destination_blob_name) 
 
    try: 
        blob.content_encoding = NTB_ENCODING 
        blob.upload_from_string(contents) 
    except Exception as e: 
        print(f"Failed to upload to GCS, exception is {e}") 
 
    print(f"{destination_blob_name} uploaded to 
{bucket_name}.") 
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fetch = fetch_to_gcs 
 
 
# Split from_date to to_date into reasonable number of days 
defined by batch size 
def extract_ntb(from_d, to_d, days_per_batch=10): 
    # More than Batch size 
    if (to_d - from_d > timedelta(days=days_per_batch)): 
        do_fetch(from_d, from_d + 
timedelta(days=days_per_batch)) 
        return extract_ntb(from_d + 
timedelta(days=(days_per_batch + 1)), to_d, 
                           days_per_batch) 
    # Less than or Equal Batch size 
    return do_fetch(from_d, to_d) 
 
 
def do_fetch(from_date, to_date): 
    url, payload = build_url(from_date.replace(hour=0, 
minute=0, second=0), 
                             to_date.replace(hour=23, 
minute=59, second=59)) 
    filename = 
f"ntb_{from_date.date().isoformat()}_{to_date.date().isoformat(
)}.json" 
    fetch(url, payload, filename) 
 
 
def build_url(f_datetime, t_datetime): 
    payload = { 
        'search.service': 'news', 
        'search.subcategory': 'Nyheter', 
        'search.startDate': 
f_datetime.replace(microsecond=0).isoformat(), 
        'search.endDate': 
t_datetime.replace(microsecond=0).isoformat(), 
        'search.showNumResults': SHOWNUMRESULTS 
    } 
 
    return "https://nyheter.ntb.no/ntbWeb/api/j1/search/full", 
payload 
 
 
if __name__ == "__main__": 
    f_d = datetime.datetime.fromisoformat("2022-12-01") 
    t_d = datetime.datetime.fromisoformat("2022-12-02") 
    #fetch = fetch_printer 
    extract_ntb(f_d, t_d, days_per_batch=3) 
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2.1.3 Retriever_extract.py 
 

import urllib.parse 
from urllib.parse import urlunparse 
from urllib.parse import urlencode 
import datetime 
from datetime import timedelta 
 
from google.cloud import storage 
import requests 
import json 
 
# Google Cloud config: check 
https://cloud.google.com/python/docs/reference/google-cloud-
core/latest/config 
# short version for now: run from a terminal where 
# you are logged in, typically  `gcloud auth login` 
# Must run (maybe enough) gcloud beta auth application-default 
login 
# set the right project `gcloud config set project PROJECT_ID` 
BUCKET_NAME = 'ntb-usage' 
RETRIEVER_ENCODING = 'iso-8859-1' 
 
 
# just print the URL it would use (for testing) 
def fetch_printer(url, filename): 
    print("url: ", url) 
    print("filename: ", filename) 
 
 
def fetch_to_gcs(url, filename): 
    filename, content_str = getContentFromURL(url, filename) 
    upload_blob_from_memory(BUCKET_NAME, 
                            content_str, 
                            destination_blob_name=f"retriever/{
filename}") 
 
 
def getContentFromURL(url, filename, url_get=requests.get): 
    # should have send the param as a dictionary, from the doc 
    #payload = {'key1': 'value1', 'key2': 'value2'} 
    #r = requests.get('https://httpbin.org/get', 
params=payload) 
    response = url_get(url) 
    decoded_content = 
response.content.decode(RETRIEVER_ENCODING) 
    content_str = make_json_newLineDelimited(decoded_content) 
    filename += 'l' 
    return filename, content_str 
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def make_json_newLineDelimited(data): 
    records = json.loads(data) 
    return '\n'.join([json_dump(record) for record in records]) 
 
 
def json_dump(record): 
    return json.dumps(record, ensure_ascii=False).encode( 
        RETRIEVER_ENCODING).decode(RETRIEVER_ENCODING) 
 
 
# Right out from the doc, should check 
# reasumable upload: 
https://cloud.google.com/storage/docs/performing-resumable-
uploads 
# and streaming: 
https://cloud.google.com/storage/docs/streaming#storage-stream-
upload-object-python 
def upload_blob_from_memory(bucket_name, contents, 
destination_blob_name): 
 
    storage_client = storage.Client( 
    )  #Alt: storage.Client(project="my-project-id") 
    bucket = storage_client.bucket(bucket_name) 
    blob = bucket.blob(destination_blob_name) 
 
    try: 
        blob.content_encoding = RETRIEVER_ENCODING 
        blob.upload_from_string(contents) 
    except Exception as e: 
        print('Failed to upload to GCS, exception is {e}') 
 
    print(f"{destination_blob_name} uploaded to 
{bucket_name}.") 
 
 
fetch = fetch_to_gcs 
 
 
# Split from_date to to_date into reasonable number of days 
defined by batch size 
def extract_retriever(from_d, to_d, days_per_batch=10): 
    # More than Batch size 
    if (to_d - from_d > timedelta(days=days_per_batch)): 
        do_fetch(from_d, from_d + 
timedelta(days=days_per_batch)) 
        return extract_retriever(from_d + 
timedelta(days=(days_per_batch + 1)), 
                                 to_d, days_per_batch) 
    # Less than or Equal Batch size 
    return do_fetch(from_d, to_d) 
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def do_fetch(from_date, to_date): 
    url = build_url(from_date.replace(hour=0, minute=0, 
second=0), 
                    to_date.replace(hour=23, minute=59, 
second=59)) 
    filename = 
f"retriever_{from_date.date().isoformat()}_{to_date.date().isof
ormat()}.json" 
    fetch(url, filename) 
 
 
def build_url(f_datetime, t_datetime): 
    q = urlencode({ 
        'source': 'ntb', 
        'from': f_datetime.replace(microsecond=0).isoformat(), 
        'to': t_datetime.replace(microsecond=0).isoformat() 
    }) 
 
    return urlunparse( 
        ('https', 'retriever-info.com', 'external/ntb/api', '', 
q, '')) 
 
 
if __name__ == "__main__": 
    f_d = datetime.datetime.fromisoformat("2022-08-15") 
    t_d = datetime.datetime.fromisoformat("2022-08-31") 
 
    #f_d = datetime.datetime.fromisoformat("2022-08-01") 
    #t_d = datetime.datetime.fromisoformat("2022-08-14") 
    #fetch = fetch_printer 
    extract_retriever(f_d, t_d, days_per_batch=10) 
  

 

2.2 Data_load 
 

2.2.1 Ntb_loader.py 
 

from google.cloud import bigquery 
 
# Construct a BigQuery client object. 
client = bigquery.Client() 
 
table_id = 'emm-ntb-dom.ntb_news_usage.import_ntb' 
schema_path = "../infra/schema_import_ntb.json" 
schema = client.schema_from_json(schema_path) 
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# beware of inserting duplicate - should be explicit about 
write strategy 
job_config = bigquery.LoadJobConfig( 
    schema=schema, 
    source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON 
) 
 
uri = "gs://ntb-usage/ntb/ntb_2023-*.jsonl" 
 
load_job = client.load_table_from_uri( 
    uri, 
    table_id, 
    location="europe-north1",  # Must match the destination 
dataset location. 
    job_config=job_config, 
 
)  # Make an API request. 
 
load_job.result()  # Waits for the job to complete. 
 
destination_table = client.get_table(table_id) 
 
print("Loaded {} rows.".format(destination_table.num_rows)) 
  

 

2.2.2 Retriever_loader.py 
 
from google.cloud import bigquery 
 
# Construct a BigQuery client object. 
client = bigquery.Client() 
 
table_id = 'emm-ntb-dom.ntb_news_usage.import_retriever' 
schema_path = "../infra/schema_import_retriever.json" 
schema = client.schema_from_json(schema_path) 
job_config = bigquery.LoadJobConfig( 
    schema=schema, 
    source_format=bigquery.SourceFormat.NEWLINE_DELIMITED_JSON 
) 
 
uri = "gs://ntb-usage/retriever/retriever_2023-*.jsonl" 
 
load_job = client.load_table_from_uri( 
    uri, 
    table_id, 
    location="europe-north1",  # Must match the destination 
dataset location. 
    job_config=job_config, 
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)  # Make an API request. 
 
 
load_job.result()  # Waits for the job to complete. 
 
 
destination_table = client.get_table(table_id) 
 
print("Loaded {} rows.".format(destination_table.num_rows)) 
 

2.3 Data_transformation 

2.3.1 Ntb_matchers.py 
 
def match_ids(retriever_id: str, ntb_id: str) -> bool: 
    """Return True if the shortened retriever ID matches the 
shortened NTB ID. 
    Arguments: 
    retriever_id -- the retriever ID to match 
    ntb_id -- the NTB ID to match 
    """ 
    if not retriever_id or not ntb_id: 
        raise ValueError("Both inputs must be non-empty 
strings.") 
    shorten_retriever_id = 
remove_trailing_zeroes(keep_after_TB(retriever_id)) 
    shorten_NTB_id = remove_hyphen(keep_after_NTB(ntb_id)) 
    return shorten_retriever_id == shorten_NTB_id 
 
 
def remove_hyphen(a_string: str) -> str: 
    """Return the input string with all hyphens removed.""" 
    return a_string.replace(HYPHEN, "") 
 
 
def keep_after_NTB(a_ntb_id: str) -> str: 
    """Return the substring of the input string after the first 
occurrence of 'NTB'.""" 
    return a_ntb_id.split(NTB_PREFIX, 1)[1] 
 
 
def remove_trailing_zeroes(retriever_id: str) -> str: 
    """Return the input string with the last two characters 
removed.""" 
    return retriever_id[:-RETRIEVER_ID_SUFFIX_LENGTH] 
 
 
def keep_after_TB(a_retriever_id: str) -> str: 
    """Return the substring of the input string after the first 
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occurrence of 'TB'.""" 
    return a_retriever_id.split(TB_PREFIX, 1)[1] 
 

 

2.4 Data_xplore 
 

2.4.1 NTB_notebook.ipynb 
 

Reference SQL syntax from the original job 
Use the jobs.query method to return the SQL syntax from the job. This can be 
copied from the output cell below to edit the query now or in the future. Alternatively, 
you can use this link back to BigQuery to edit the query within the BigQuery user 
interface. 
 

# Running this code will display the query used to generate 
your previous job 
 
job = client.get_job('bquxjob_7be5430b_185016f356c') # Job ID 
inserted based on the query results selected to explore 
print(job.query) 
      
select distinct(district) from `emm-ntb-
dom.ntb_news_usage.import_ntb` 

Result set loaded from BigQuery job as a DataFrame 
Query results are referenced from the Job ID ran from BigQuery and the query does 
not need to be re-run to explore results. The to_dataframe method downloads the 
results to a Pandas DataFrame by using the BigQuery Storage API. 
To edit query syntax, you can do so from the BigQuery SQL editor or in the 
Optional: sections below. 

# Running this code will read results from your previous job 
  
query_job = client.query("select * from `emm-ntb-
dom.ntb_news_usage.feature_ntb`") 
df = query_job.to_dataframe() 
df.head() 

 

Show descriptive statistics using describe() 
Use the pandas DataFrame.describe() method to generate descriptive 
statistics. Descriptive statistics include those that summarize the central tendency, 
dispersion and shape of a dataset’s distribution, excluding NaN values. You may also 
use other Python methods to interact with your data. 
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query_job = client.query("select * from `emm-ntb-
dom.ntb_news_usage.feature_ntb_take1`") 
df_1 = query_job.to_dataframe() 
 
#print('All - mean usage {0}, MAE {1}'.format(df.usage.mean(), 
df.usage.mad()))  
print('uriks - mean usage {0}, MAE 
{1}'.format(df_1.usage.mean(), df_1.usage.mad()))  

uriks - mean usage 5.7711691680563275, MAE 2.238605887630529 
 
<ipython-input-9-a87b3ee79db7>:5: FutureWarning: The 'mad' method 
is deprecated and will be removed in a future version. To compute 
the same result, you may do `(df - df.mean()).abs().mean()`. 
  print('uriks - mean usage {0}, MAE {1}'.format(df_1.usage.mean(), 
df_1.usage.mad())) 

 

2.5 Infra 
 

2.5.1 Gitignore at main 
 

# from 
https://github.com/github/gitignore/blob/main/Terraform.gitignore 
# Local .terraform directories 
**/.terraform/* 
 
# .tfstate files 
*.tfstate 
*.tfstate.* 
 
# Crash log files 
crash.log 
crash.*.log 
 
# Exclude all .tfvars files, which are likely to contain 
sensitive data, such as 
# password, private keys, and other secrets. These should not be 
part of version  
# control as they are data points which are potentially sensitive 
and subject  
# to change depending on the environment. 
*.tfvars 
*.tfvars.json 
 
# Ignore override files as they are usually used to override 
resources locally and so 
# are not checked in 
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override.tf 
override.tf.json 
*_override.tf 
*_override.tf.json 
 
# Include override files you do wish to add to version control 
using negated pattern 
# !example_override.tf 
 
# Include tfplan files to ignore the plan output of command: 
terraform plan -out=tfplan 
# example: *tfplan* 
 
# Ignore CLI configuration files 
.terraformrc 
terraform.rc 
 
# Ignore .terraform.lock.hcl  
.terraform.* 
 

 

2.5.2 Bq.tf 
 

resource "google_bigquery_dataset" "ntb_news_usage" { 
  project       = local.project_id 
  dataset_id    = "ntb_news_usage" 
  friendly_name = "Dataset for the NTB news usage" 
  description   = "Todo: add description" 
  location      = local.project_default_region 
  #location          = "EU" # for multi region in EU 
  default_table_expiration_ms = 75 * 24 * 3600 * 1000 # 
testing: everything is wipped after one month 
} 
 
resource "google_bigquery_table" "import_ntb" { 
  project    = local.project_id 
  dataset_id = 
google_bigquery_dataset.ntb_news_usage.dataset_id 
  table_id   = "import_ntb" 
  deletion_protection=false 
   
  time_partitioning { 
    type = "DAY" 
  } 
 
  labels = { 
    env = "default" 
  } 
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  schema = file("./schema_import_ntb.json") 
} 
 
resource "google_bigquery_table" "import_retriever" { 
  project    = local.project_id 
  dataset_id = 
google_bigquery_dataset.ntb_news_usage.dataset_id 
  table_id   = "import_retriever" 
  deletion_protection=false 
 
  time_partitioning { 
    type = "DAY" 
  } 
 
  labels = { 
    env = "default" 
  } 
 
  schema = file("./schema_import_retriever.json") 
} 
 
resource "google_bigquery_table" "imported_ntb" { 
  project             = local.project_id 
  dataset_id          = 
google_bigquery_dataset.ntb_news_usage.dataset_id 
  table_id            = "imported_ntb" 
  description         = "View aggregating NTB-id with details 
from the latest version and with normalized NTBid" 
  deletion_protection = false 
  view { 
    query          = templatefile("./imported_ntb_view.sql", { 
pj = local.project_id, ds = 
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl = 
google_bigquery_table.import_ntb.table_id }) 
    use_legacy_sql = false 
  } 
} 
 
resource "google_bigquery_table" "imported_retriever" { 
  project             = local.project_id 
  dataset_id          = 
google_bigquery_dataset.ntb_news_usage.dataset_id 
  table_id            = "imported_retriever" 
  description         = "View exposing feature usable for usage 
prediction and with normalized NTBid" 
  deletion_protection = false 
  view { 
    query          = 
templatefile("./imported_retriever_view.sql", { pj = 
local.project_id, ds = 
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl = 
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google_bigquery_table.import_retriever.table_id }) 
    use_legacy_sql = false 
  } 
} 
 
resource "google_bigquery_table" "feature_usage" { 
  project             = local.project_id 
  dataset_id          = 
google_bigquery_dataset.ntb_news_usage.dataset_id 
  table_id            = "feature_ntb" 
  description         = "View exposing features and usage 
target" 
  deletion_protection = false 
 
  view { 
    query          = templatefile("./feature_usage_view.sql", { 
pj = local.project_id, ds = 
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl = 
google_bigquery_table.import_retriever.table_id }) 
    use_legacy_sql = false 
  } 
} 
 
resource "google_bigquery_table" "feature_usage_take1" { 
  project             = local.project_id 
  dataset_id          = 
google_bigquery_dataset.ntb_news_usage.dataset_id 
  table_id            = "feature_ntb_take1" 
  description         = "trying ML" 
  deletion_protection = false 
 
  view { 
    query          = 
templatefile("./feature_usage_take1_view.sql", { pj = 
local.project_id, ds = 
google_bigquery_dataset.ntb_news_usage.dataset_id, tbl = 
google_bigquery_table.import_retriever.table_id }) 
    use_legacy_sql = false 
  } 
} 

 

 

2.5.3 Bucket.tf 
 
resource "google_storage_bucket" "ntb_usage" { 
     provider      = google-beta 
     project       = local.project_id 
     name          = "ntb-usage" 
     location      = local.project_default_region 
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     # Remove with prod data if you don't want to loose data when 
destroy 
     force_destroy = true 
      
     public_access_prevention = "enforced" 
} 
 

 

2.5.4 Config.tf 
 

locals { 
  project_id             = "emm-ntb-dom" 
  project_number         = 1055482349569 
  project_default_region = "europe-north1" 
  project_default_zone = "europe-north1-a" 
  gcp_service_list = [ 
 #  todo: list "XXX.googleapis.com", 
   ] 
} 
 
resource "google_project_service" "gcp_services" { 
  count              = length(local.gcp_service_list) 
  project            = local.project_id 
  service            = local.gcp_service_list[count.index] 
  disable_on_destroy = false 
} 
 
# Backend config:  
# 
https://developer.hashicorp.com/terraform/language/settings/bac
kends/gcs 
resource "google_storage_bucket" "tf_state" { 
     provider      = google-beta 
     project       = local.project_id 
     name          = "ntb-usage-tf-state" 
     location      = local.project_default_region 
      
     # prevent accidental destroy of terraform state 
     lifecycle { 
       prevent_destroy = true 
     } 
     public_access_prevention = "enforced" 
 
     ## as recommanded in the doc to ease rollback 
     #versioning { 
     #  enabled = true 
     #} 
 
     #encryption is enabled by default in Google Cloud 
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     # must be configured in AWS 
     # Check doc for CMEK, EKM etc 
} 
 
terraform { 
  required_version = ">= 1.3.2" 
  
  backend "gcs" { 
    bucket  = "ntb-usage-tf-state" 
    # maybe use per env prefix ntb-usage/dev osv 
    prefix  = "ntb-usage" 
  } 
 
  required_providers { 
    archive = { 
      source  = "hashicorp/archive" 
      version = "= 2.0.0" 
    } 
 
    google = { 
      source  = "hashicorp/google" 
      version = "= 4.41.0" 
    } 
 
    google-beta = { 
      source  = "hashicorp/google-beta" 
      version = "= 4.41.0" 
    } 
  } 
} 

 

2.5.5 Feature_usage_take1_view.sql 
 
select n.*, r.docdate, r.wc, r.headline, r.usage   
from `emm-ntb-dom.ntb_news_usage.imported_ntb` n  
left outer join `emm-ntb-dom.ntb_news_usage.imported_retriever` r 
on n.NTB_normalized = r.NTB_normalized 
where n.category in ("Utenriks") 
 

2.5.6 Feature_usage_view.sql 
 
select n.*, r.docdate, r.wc, r.headline, r.usage   
from `emm-ntb-dom.ntb_news_usage.imported_ntb` n  
left outer join `emm-ntb-dom.ntb_news_usage.imported_retriever` r 
on n.NTB_normalized = r.NTB_normalized 
where n.category in ("Utenriks", "Innenriks", "Sport") 
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2.5.7 Imported_ntb_view.sql 

select agg.*, details.ntbVersion, details.keywords, 
details.title, details.district, details.content, 
details.writerEmail, ARRAY_LENGTH(details.subjects) as 
subjects_count, details.category, details.subcategory, 
details.districts, 
details.priority,  ARRAY_LENGTH(details.mediaList) as 
medialist_count, Array(select name from 
unnest(details.subjects)) as subject_names 
 
from ( 
        SELECT max(id) as latest_id, substring(replace(ntbId, 
'-', ''), 4) as NTB_normalized, ntbId  
        FROM `emm-ntb-dom.ntb_news_usage.import_ntb` 
        group by NTB_normalized, ntbId) as agg  
     inner join `emm-ntb-dom.ntb_news_usage.import_ntb` as 
details  
     on agg.latest_id = details.id 
 
order by latest_id 

 

2.5.8 Imported_retriever_view.sql 
 
SELECT  doc_id, substr(doc_id, strpos(doc_id, 'TB')+2, 32) as 
NTB_normalized, docdate, wc, (lookalike_print+lookalike_web) as 
usage, headline  
FROM `emm-ntb-dom.ntb_news_usage.import_retriever` 
 

 

2.5.9 Schema_import_ntb.json 
 

[ 
  { 
    "mode": "required", 
    "name": "id", 
    "type": "STRING" 
  }, 
  { 
    "mode": "required", 
    "name": "ntbId", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
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    "name": "ntbVersion", 
    "type": "INTEGER" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "time", 
    "type": "TIMESTAMP" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "messageType", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "title", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "keywords", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "category", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "byline", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "service", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "priority", 
    "type": "INTEGER" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "district", 
    "type": "STRING" 
  }, 
  { 
    "mode": "REPEATED", 
    "name": "districts", 
    "type": "STRING" 
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  }, 
  { 
    "mode": "NULLABLE", 
    "name": "editorialInfo", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "writerEmail", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "subcategory", 
    "type": "STRING" 
  }, 
  { 
    "mode": "REPEATED", 
    "name": "regions", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "content", 
    "type": "STRING" 
  }, 
  { 
    "mode": "REPEATED", 
    "name": "subjects", 
    "type": "RECORD", 
    "fields": [ 
      { 
        "mode": "NULLABLE", 
        "name": "name", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "reference", 
        "type": "STRING" 
      } 
    ] 
  }, 
  { 
    "mode": "REPEATED", 
    "name": "mediaList", 
    "type": "RECORD", 
    "fields": [ 
      { 
        "mode": "NULLABLE", 
        "name": "url", 
        "type": "STRING" 
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      }, 
      { 
        "mode": "NULLABLE", 
        "name": "mediaType", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "scanpixPicture", 
        "type": "BOOLEAN" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "mimeType", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "caption", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "id", 
        "type": "STRING" 
      } 
    ] 
  } 
] 

 

 

2.5.10 Schema_import_teriever.json 
 

[ 
  { 
    "mode": "required", 
    "name": "doc_id", 
    "type": "STRING", 
    "description": "Match an article from NTB, id includes part 
of NTB-id" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "docdate", 
    "type": "TIMESTAMP", 
    "description": "Unclear witch date it is (retrieval or 
NTB)" 
  }, 
  { 
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    "mode": "NULLABLE", 
    "name": "lookalike_print", 
    "type": "INTEGER" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "lookalike_web", 
    "type": "INTEGER" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "wc", 
    "type": "INTEGER" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "imgtext", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "headline", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "intro", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "category", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "story", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "preintro", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "author", 
    "type": "STRING" 
  }, 
  { 
    "mode": "NULLABLE", 
    "name": "subheadline", 
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    "type": "STRING" 
  }, 
  { 
    "fields": [ 
      { 
        "mode": "NULLABLE", 
        "name": "url", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "story", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "preintro", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "imgtext", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "mediatype", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "headline", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "intro", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "docdate", 
        "type": "TIMESTAMP" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "source_name", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "subheadline", 
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        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "doc_id", 
        "type": "STRING" 
      }, 
      { 
        "mode": "NULLABLE", 
        "name": "ntb_story", 
        "type": "STRING" 
      } 
    ], 
    "mode": "REPEATED", 
    "name": "lookalikes", 
    "type": "RECORD" 
  } 
] 
  

 

2.6 Tests 
 

2.6.1 Test_ntb_extract.py 
 
import unittest 
import json 
import datetime 
import data_extraction.ntb_extracter 
 
class TestNtbExtract(unittest.TestCase): 
    f = datetime.datetime(2022, 12, 5, 21, 10, 36, 1234) 
    t = datetime.datetime(2022, 12, 5, 21, 15, 36, 1234) 
 
    def test_payload_for_url(self): 
      url, payload = 
data_extraction.ntb_extracter.build_url(self.f, self.t) 
       
      self.assertDictEqual(payload, {'search.service': 'news', 
'search.subcategory': 'Nyheter', 'search.startDate': '2022-12-
05T21:10:36', 'search.endDate': '2022-12-05T21:15:36'}) 
    
    def test_nested_array_to_jsonl(self): 
        input = ''' 
          [ 
               {"foo":"bar", "answer":42, "subs":[[{"süb":1}, 
{"sub":2}]], "sabs":[[{"süb":1}, {"sub":2}]] }, 
               {"foo":"ball", "answer":66,"subs":[[{"sub":1}, 
{"sub":2}]]} 
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          ]''' 
        data = json.loads(input) 
        for item in data: 
            if 'subs' in item: item['subs'] = item['subs'][0] 
            if 'sabs' in item: item['sabs'] = item['sabs'][0] 
       # print(json.dumps(data, indent=2)) 
        
       
    input_1_doc_json = '''{ 
    "result": { 
        "numResults": 15033, 
        "documents": [ { 
                "id": 17859418, 
                "ntbId": "NTB12ca9da6-0020-4dea-b10d-
84dd2dc0a610", 
                "service": "news", 
                "title": "Zelenskyj vil ha globalt forbud mot 
russiske fly og skip", 
                "priority": 4, 
                "time": "2022-02-28T23:55:59.000+0100", 
                "messageType": null, 
                "byline": "NTB-AFP", 
                "ntbVersion": "00", 
                "content": "what ever", 
                "keywords": "ukr zelenskyj forbud", 
                "regions": [ 
                    [ 
                        "Europa" 
                    ] 
                ], 
                "district": "Europa", 
                "districts": [ 
                    [ 
                        "Ukraina", 
                        "Russland", 
                        "Europa" 
                    ] 
                ], 
                "category": "Utenriks", 
                "subcategory": "Nyheter", 
                "writerEmail": "uvakt@ntb.no", 
                "subjects": [ 
                    [ 
                        { 
                            "reference": "16000000", 
                            "name": "Krig/Konflikter" 
                        }, 
                        { 
                            "reference": "11000000", 
                            "name": "Politikk" 
                        } 
                    ] 
                ] 
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            }] 
          } 
      } 
'''    
    def test_extract_json_fixes_time(self): 
      output = 
data_extraction.ntb_extracter.extractJsonDocs(self.input_1_doc_js
on) 
      # time_s = "2022-02-28T23:55:59.000+0100" 
      time_s = output[0]["time"] 
       
      self.assertEqual("2022-02-28 23:55:59", time_s) 
 
 
    def test_time_iso_jsonl(self): 
       
      output = 
data_extraction.ntb_extracter.fromJsonToJsonl(self.input_1_doc_js
on) 
      expected = '''{"id": 17859418, "ntbId": "NTB12ca9da6-0020-
4dea-b10d-84dd2dc0a610", "service": "news", "title": "Zelenskyj 
vil ha globalt forbud mot russiske fly og skip", "priority": 4, 
"time": "2022-02-28 23:55:59", "messageType": null, "byline": 
"NTB-AFP", "ntbVersion": "00", "content": "what ever", 
"keywords": "ukr zelenskyj forbud", "regions": ["Europa"], 
"district": "Europa", "districts": ["Ukraina", "Russland", 
"Europa"], "category": "Utenriks", "subcategory": "Nyheter", 
"writerEmail": "uvakt@ntb.no", "subjects": [{"reference": 
"16000000", "name": "Krig/Konflikter"}, {"reference": "11000000", 
"name": "Politikk"}]}''' 
    
      self.assertEqual(expected, output) 
 
 
 

 

2.6.2 Test_ntb_matchers.py 
 

import unittest 
 
import data_tranformation.ntb_matchers as ntb_matchers 
 
NTB_ID = "NTB-match-123" 
RETRIEVER_MATCH = "startTBmatch12300" 
RETRIEVER_NO_MATCH = "startTBnot00" 
 
 
class TestNTB_Matchers(unittest.TestCase): 
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    def test_match(self): 
        isMatch = ntb_matchers.match_ids(RETRIEVER_MATCH, 
NTB_ID) 
        self.assertTrue(isMatch) 
 
    def test_not_match(self): 
        isMatch = ntb_matchers.match_ids(RETRIEVER_NO_MATCH, 
NTB_ID) 
        self.assertFalse(isMatch) 
 
 
if __name__ == "__main__": 
    print("imported ntb matchers. Test ID is ", NTB_ID) 
    unittest.main() 

 

 

2.6.3 Test_retriever_extract.py 
 

import unittest 
import urllib.parse 
from urllib.parse import urlparse 
import datetime 
import data_extraction.retriever_extract as rf 
 
 
class TestRetriever_fetcher(unittest.TestCase): 
    f = datetime.datetime(2022, 12, 5, 21, 10, 36, 1234) 
    t = datetime.datetime(2022, 12, 5, 21, 15, 36, 1234) 
 
    def test_usage_of_fixed_base_URL(self): 
        url = rf.build_url(self.f, self.t) 
        components = urlparse(url) 
        # Willingly hard coded since only one URL as far as I 
know 
        self.assertEqual('https', components.scheme) 
        self.assertEqual('retriever-info.com', 
components.hostname) 
        self.assertEqual("/external/ntb/api", components.path) 
 
    def test_query_source_is_ntb(self): 
        qs = self.extract_query_from_build_url() 
        self.assertEqual('ntb', qs['source'][0]) 
 
    def test_query_has_from_date_isoformat(self): 
        qs = self.extract_query_from_build_url() 
        f = qs['from'][0] 
        self.assertIsNotNone(f) 
        self.assertIsInstance(datetime.datetime.fromisoformat(f
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), 
                              datetime.datetime) 
 
    def test_query_has_to_date_isoformat(self): 
        qs = self.extract_query_from_build_url() 
        t = qs['to'][0] 
        self.assertIsNotNone(t) 
        self.assertIsInstance(datetime.datetime.fromisoformat(t
), 
                              datetime.datetime) 
 
    # must rewrite to have  f < t and f > t 
    def test_query_from_lt_to(self): 
        qs = self.extract_query_from_build_url() 
        f = qs['from'][0] 
        t = qs['to'][0] 
        self.assertLess(f, t) 
 
    def extract_query_from_build_url(self): 
        url = rf.build_url(self.f, self.t) 
        qs = urllib.parse.parse_qs(urlparse(url).query) 
        return qs 
 
 
class TestFromURLtoString(unittest.TestCase): 
 
    class FakeHttpRespnse: 
 
        def __init__(self): 
            self.content = bytes('[{"the content": "åøæ"}]', 
"iso-8859-1") 
            self.encoding = "iso-18859-1" 
 
    def test_iso8859_1(self): 
        #a 
        fake = self.FakeHttpRespnse() 
        #a 
        filename, output = rf.getContentFromURL("url", 
                                                "file.name", 
                                                url_get=lambda 
enc: fake) 
        #a 
        self.assertEqual('{"the content": "åøæ"}', output) 
 
 
# Testing with some Norwegian letters... but I actually trust 
Python string to work :-) 
class TestJsonToJsonl(unittest.TestCase): 
 
    def test_empty_array(self): 
        input = "[]" 
        output = rf.make_json_newLineDelimited(input) 
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        self.assertEqual("", output) 
 
    def test_one_simple_object(self): 
        input = '[{"foo":"bår", "answer":42}]' 
        output = rf.make_json_newLineDelimited(input) 
        self.assertEqual('{"foo": "bår", "answer": 42}', 
output) 
 
    def test_two_simple_objects(self): 
        input = '[{"foo":"bar","answer":42},{"foo":"tball", 
"answer":66}]' 
        output = rf.make_json_newLineDelimited(input) 
        self.assertEqual( 
            '{"foo": "bar", "answer": 42}\n{"foo": "tball", 
"answer": 66}', 
            output) 
 
    def test_two_simple_objects_withNewLine(self): 
        input = '[\n{"foo":"bar",\n "answer":42},\n\t 
{"foo":"tball", "answer":66}]' 
        output = rf.make_json_newLineDelimited(input) 
        self.assertEqual( 
            '{"foo": "bar", "answer": 42}\n{"foo": "tball", 
"answer": 66}', 
            output) 
 
    def test_one_object_nested(self): 
        input = '[{"foo":"bar", "answer":42, "subs":[{"sub":1}, 
{"sub":2}]}]' 
        output = rf.make_json_newLineDelimited(input) 
        self.assertEqual( 
            '{"foo": "bar", "answer": 42, "subs": [{"sub": 1}, 
{"sub": 2}]}', 
            output) 
 
    def test_two_object_nested(self): 
        input = ''' 
          [ 
               {"foo":"bar", "answer":42, "subs":[{"süb":1}, 
{"sub":2}]}, 
               {"foo":"tball", "answer":66,"subs":[{"sub":1}, 
{"sub":2}]}, 
     {"foo":"fighter", "answer":82} 
          ]''' 
 
        output = rf.make_json_newLineDelimited(input) 
 
        expected = '''{"foo": "bar", "answer": 42, "subs": 
[{"süb": 1}, {"sub": 2}]} 
{"foo": "tball", "answer": 66, "subs": [{"sub": 1}, {"sub": 
2}]} 
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{"foo": "fighter", "answer": 82}''' 
        self.assertEqual(expected, output) 

 


