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1 Introduction

In recent years, empirical research on the economic impacts of climate change
has witnessed a significant surge. The pressing issues of global warming and
climate change have garnered substantial attention due to their profound im-
plications for the planet, ecosystems, and the global economy. Human-induced
carbon emissions resulting from economic activities have been identified as the
primary drivers of these phenomena, with varying regional and local economic
impacts. (NASA, 2023)

Our study draws inspiration from the work of Cruz and Rossi-Hansberg
(2022), titled "The Economic Geography of Global Warming," published as a
working paper by the University of Chicago’s Becker Friedman Institute for
Economics. Building upon their research, we aim to replicate and further
investigate their model by translating their codes from Matlab into Python.
This endeavor enables us to delve deeper into their analysis, explore alternative
scenarios, and contribute to the understanding of climate change dynamics and
policy implications.

Global warming refers to the sustained increase in Earth’s surface tem-
perature observed since the pre-industrial era. The combustion of fossil fuels is
primarily responsible for this phenomenon, resulting in an estimated average
global temperature rise from pre-industrial times of approximately 1.01 degrees
Celsius. Alarmingly, the pace of temperature increase is currently accelerating
at a rate exceeding 0.2 degrees Celsius per decade. (NASA, 2023)

Climate change includes long-term alterations in weather patterns, influ-
encing local, regional, and global climates. The significant increase in green-
house gas emissions, particularly from extensive fossil fuel consumption since
the mid-20th century, has elevated heat-trapping gas levels and subsequently
raised the Earth’s average surface temperature. The consequences of climate
change pose substantial risks to the global economy. (NASA, 2023)

Elevated temperatures and its consequences have the potential to cause
extensive damage to infrastructure and property, negatively affect human health
and productivity, and disrupt crucial sectors such as agriculture. Developing
countries, often characterized by weaker infrastructure, limited technological
advancements, and fewer resources for climate adaptation and mitigation, face
heightened vulnerability to these impacts. (WHO, 2021) Furthermore, climate
change exacerbates migration patterns, particularly in regions that are more
vulnerable and less developed, such as Asia and Africa.

Our research focuses on exploring scenarios that prioritize avoiding cli-
mate overshoot, wherein global temperatures surpass the 2-degree Celsius
threshold before moving back and stabilizing below the 2-degree treshold. Cli-
mate overshoot poses severe risks, including irreversible environmental dam-
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age, intensified extreme weather events, and disruptions to ecosystems and
biodiversity. By identifying pathways that remain below this critical thresh-
old, our aim is to contribute to the formulation of sustainable and resilient
strategies that mitigate the most severe consequences of climate change. (Cli-
mate Overshoot Comission, 2022)

Through comprehensive analysis and modeling, we investigate alterna-
tive pathways and policies that offer potential solutions to the challenges posed
by climate change. By understanding the complexities associated with climate
change risks, including the implications of climate overshoot, we aspire to guide
policymakers and stakeholders in making informed decisions that promote cli-
mate stability and sustainability.

By unraveling the details of climate change dynamics and exploring
strategies to mitigate associated risks, we believe our research can play a role
in shaping a more sustainable and resilient future for our planet and its inhab-
itants.

2 Objective

The objective of this study is to investigate and analyze strategies aimed at
preventing the global average temperature from surpassing a 2-degree Celsius
increase above pre-industrial levels, in line with the goals set forth by the Paris
Agreement. By examining the existing literature and utilizing a Python-based
model based on the framework proposed by Cruz & Rossi-Hansberg (2022),
we will explore various parameters and their effects on key variables such as
temperature, CO2 emissions, clean energy utilization, GDP, and population
density.

Through our research, we aim to contribute to the understanding of the
actions and policies necessary to fulfill the commitments of the Paris Agree-
ment. The findings of this study will provide valuable insights for policymak-
ers, researchers, and stakeholders, aiding them in the development of effec-
tive strategies for climate change mitigation and adaptation. By integrating
climate considerations into decision-making processes, businesses and organi-
zations can play a crucial role in working towards a sustainable and resilient
future. Ultimately, this research supports global efforts to combat climate
change and foster a better world for current and future generations.

3 Literature review

By using Cruz and Rossi-Hansberg (2022) as a starting point and replicating
their model, which was implemented using MATLAB, we can dive deeper into
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the topic of climate change and its effects on the economy at both local and
global levels. The model served as a tool to study various aspects, including
abatement technologies, the impact of carbon taxes, and clean energy subsidies.
Replicating their model allows us to build upon their research and conduct
further analysis, exploring numerous issues related to climate change in greater
depth.

By quantifying the model, Cruz and Rossi-Hansberg (2022) were able
to simulate the economy forward over several centuries in order to evaluate
the consequences that global warming has on the economy. The phenomenon
is expected to have heterogeneous effects over space according to their study,
where colder regions such as Alaska, Northern Canada and Siberia can expect
welfare gains up to 11%, while the hotter regions such as South America, India
and Australia are expected to experience welfare losses up to 20%. Their
findings show that the world on average will face a welfare loss of 6%, with
implications of poorer and less developed regions in the world facing the highest
warming losses.

Deschênes and Greenstone (2007) are some of the pioneers of the empir-
ical papers on the topic of climate change and its consequences on economic
and social outcomes. Their paper investigated the economic impact of cli-
mate change on agricultural land in the U.S. by estimating the impact of
presumably random year-to-year variations in weather and temperature on
agricultural profits. The study showed quite different effects depending on the
states being studied. While California was estimated to have an impact of
approximately -50% of state agricultural profits, other states were estimated
to have an increase in their agricultural profits. This methodology has been
used to study various weather effects, including the effects on morality, crime
and conflict, migration, and GDP and GDP growth.

In recent years, estimates have been incorporated in economic models
of global warming, known as Integrated Assessment Models (IAM). Several
papers have been using these core models to study topics such as the role of
clean technology investments and innovations in mitigating climate damages,
migration, and capacity to meet food demand for different changes in climate
conditions. Cruz and Rossi-Hansberg (2022) tries to contribute to the devel-
opment of IAMs by incorporating recent development in spatial quantitative
models.

In Desmet et al. (2018), they develop a spatial growth theory at a fine
level of geographical resolution which is used to analyse the evolution of the
economy over several centuries. Some of their findings includes that relax-
ing migration restrictions can lead to large welfare gains but also that the
world economy will concentrate in very different sets of regions and nations
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depending on migratory frictions. Cruz and Rossi-Hansberg (2022) builds on
this framework, but they also incorporate local fertility and population dy-
namics, energy use, fossil fuels extraction costs, and effects of temperature on
productivity and amenities.

Environmental questions have been addressed through the lens of spatial
dynamic models in the incipient literature of spatial IAMs. One paper by
Balboni (2019) looks at the costs of road investment at the coast of Vietnam
in the event of a rise in the sea level. This is also the subject matter in
Desmet et al. (2021), where they measure the spatial shifts in population
and economic activity due to sea level rise and coastal flooding. They used
a spatially disaggregated model of the world economy, estimating that by the
year 2200, a projected 1.46 percent of the global population will be displaced.
The model also estimates a loss in real GDP by up to as much as 4.5 percent
in 2200.

A variety of different papers have evaluated the impact that global warm-
ing has across different economic sectors, something that Cruz and Rossi-
Hansberg (2022) does not incorporate in their model or paper. The author
uses a dynamic economic model to study global warming and labour market
reallocation. Some of the findings concludes that agricultural workers face
welfare losses three times as large as the average worker. They do this by
quantifying the model they use for 6 sectors and 287 countries and subna-
tional units.

The Intergovernmental Panel on Climate Change (IPCC) plays a crucial
role in assessing scientific information related to climate change. Its compre-
hensive reports provide valuable insights into the current state of the climate
system, the impacts of human activities, and projected future scenarios. The
IPCC report highlights the undeniable influence of human activities on the
climate system, leading to widespread and rapid consequences for the atmo-
sphere, oceans, cryosphere, and biosphere. The last four decades have suc-
cessively been the warmest since 1850, with human-induced CO2 emissions
identified as the primary cause. Concentrations of CO2, CH4, and N2O have
reached unprecedented levels, affecting the open ocean’s acidification and caus-
ing global retreat of glaciers and Arctic sea ice. Moreover, climate change
is already impacting various weather and climate extremes globally, includ-
ing heatwaves, heavy precipitation, droughts, and tropical cyclones. Under
all emission scenarios considered, global surface temperature is projected to
continue rising until at least the mid-21st century. Without substantial re-
ductions in CO2 and greenhouse gas emissions, global warming is expected
to surpass the 1.5°C and 2°C thresholds. The projected temperature increase
by the end of the century ranges from 1.0°C to 1.8°C with very low emis-
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sions, 2.1°C to 3.5°C with medium emissions, and around 3.3°C to 5.7°C with
high emissions. Limiting global warming to a specific level requires achieving
net zero CO2 emissions and significant reductions in other greenhouse gases.
(Schulz, 2022) The IPCC report relies on the the representative concentration
pathways (RCP) scenarios, which depict a range of greenhouse gas emissions
pathways, as inputs for assessing future climate change. These scenarios, in-
cluding RCP2.6 (low emissions), RCP4.5 and RCP6 (medium emissions), and
RCP8.5 (high emissions), explore different trajectories of greenhouse gas con-
centrations. (Van Vuuren, D.P, 2011) By utilizing these scenarios, the IPCC
assesses and projects the potential impacts of climate change under various
emissions pathways, enabling policymakers to understand the consequences of
different policy choices and the urgency of climate action.

The Paris Agreement, adopted in 2015 under the United Nations Frame-
work Convention on Climate Change (UNFCCC), represents a landmark inter-
national effort to combat climate change and mitigate its impacts. At its core,
the agreement aims to limit global warming well below 2 degrees Celsius above
pre-industrial levels and pursue efforts to limit the temperature increase to 1.5
degrees Celsius. This temperature threshold has been identified as critical for
avoiding catastrophic consequences and safeguarding the planet’s ecological
systems, vulnerable communities, and future generations. The commitment
to preventing global average temperature from surpassing a 2-degree Celsius
increase is rooted in extensive scientific research and assessment reports, such
as those by the Intergovernmental Panel on Climate Change (IPCC). These re-
ports have unequivocally demonstrated the severe risks associated with higher
temperature increases, including more frequent and intense extreme weather
events, rising sea levels, biodiversity loss, and disruptions to ecosystems and
human livelihoods. (United Nations Climate Change, 2023).

4 Methodology: The Model

The model we are going to replicate by Cruz & Rossi-Hansberg (2022) is an
extended version of what Desmet et al. (2018) did by incorporating several
dimensions in the economic component. Firstly, an endogenous law of motion
for global population have been included. Secondly, the model accounts for
the use of labour, land, and energy as necessary inputs for production, with
energy being derived from either fossil fuels or clean sources. The use of
fossil fuels results in CO2 emissions, while clean sources do not. Thirdly,
we have accounted for the spatial heterogeneity of fundamental amenities,
productivities, and natality rates due to local climate conditions. To achieve
this, we have utilized reduced-form models from IPCC (2013) for the carbon
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cycle and global temperature models and have projected from global to local
temperature using the statistical down-scaling approach by Mitchell (2003).

Subsections 4.1 to 4.5 of this study draw inspiration from Cruz and Rossi-
Hansberg (2022), specifically pages 7 to 14, where they provide insightful anal-
ysis on various aspects of the model. These subsections delve into the intricate
details of the model’s components, examining topics such as the dynamics of
population, the role of labor, land, and energy in production, and the spatial
variations driven by local climate conditions. The findings and insights pre-
sented in these subsections contribute to our understanding of the economic
implications of climate change mitigation strategies.

Additionally, subsection 4.6 is based on Cruz and Rossi-Hansberg (2022)
from the Supplementary Materials section, specifically pages 1 to 8. This
subsection explores specific details and results related to our analysis, build-
ing upon the supplementary materials provided by Cruz and Rossi-Hansberg
(2022).

Moreover, it is worth noting that the translation of this model from
MATLAB to Python required a significant amount of time and effort. We
invested considerable resources in adapting and implementing the model in
Python to ensure its compatibility and accessibility. This translation process
involved precisely converting the mathematical equations and computational
algorithms from the original MATLAB codebase into Python syntax. The
effort invested in this translation was necessary to harness the capabilities of
the Python-based model and derive meaningful insights based on our research
objectives.

In the appendix section of this study, we provide the Python codes that
correspond to the model implementation. These codes serve as a valuable
resource for readers interested in replicating or further exploring our analysis.
The availability of the Python codes enhances transparency, reproducibility,
and the opportunity for researchers to build upon our work.

4.1 Endowment and Preferences

The global economy can be mapped onto a two-dimensional surface S, where
each location is defined as a point r2 S with corresponding land densityH(r).
In each period t, the world economy comprises Lt agents, and global population
changes over time due to endogenous natality rates. Agents derive utility
every period from consuming a set of differentiated varieties c!t (r), which are
aggregated according to a CES utility function, as well as from local amenities
bt(r), and their idiosyncratic preference for their location of residence, ✏it(r).
Should agents choose to move from r to s at time t, they incur mobility costs
m(r, s), which act as a permanent flow cost from that time onwards. The
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period utility of agent i residing in location r at time t and with a location
history r� = (r0, ..., rt�1) is determined by:

ui
t(r—,r) = [

ˆ 1

0

c!t (r)
⇢d!]

�
⇢ bt(r)✏

i
t(r)

tY

s=1

m(rs�1, rs)
�1 (1)

Labor gives the agents income, which they supply inelastically at a rate
of one unit, and for which they receive a wage wt(r). Additionally, they re-
ceive a share of land rents, H(r)Rt(r), which is uniformly distributed among
all residents of the location. Hence, the per capita real income yt(r) can be
expressed as (wt(r) +Rt(r)/Lt(r)/Pt(r), where Lt(r) represents the local pop-
ulation density (population per unit of land) and Pt(r) is the local ideal CES
price index. The parameter � governs the curvature in the utility function,
thereby determining the elasticity of utility to real income. Local ameni-
ties, bt(r), are impacted by congestion in a way that can be characterized
as bt(r) = b̄t(r)Lt(r)��, where ¯bt(r) denotes the fundamental amenities of a
location and � is the congestion elasticity of amenities to population density.
Local climate conditions can affect fundamental amenities through the use of
the damage function ⇤b(.), which indicates the percentage change in funda-
mental amenities when local temperatures rises from Tt�1(r) in period t� 1 to

¯Tt(r) = �Tt(r) + Tt�1(r) in period t. This is given by

bt(r) = (1 + ⇤b(�Tt(r), Tt�1(r)))bt�1(r). (2)

From this equation, we get that if ⇤b(�Tt(r), Tt�1(r)) is negative, the
amenities in location r will experience damage as a result of local temperature
increases. On the contrary, if it is positive, the amenities in the location will
experience improvement. The damage function’s sensitivity to temperature
levels, rather than just temperature changes, accounts for the diverse spatial
impacts that are anticipated to result from global warming. For example,
amenities in hot regions such as African countries are expected to decline as
temperature rise further, while those in cold areas such as Siberia are expected
to benefit from a warmer climate.

Additionally, households are subject to idiosyncratic taste shocks, ✏ir(r),
which are assumed to be independent and identically distributed across house-
holds, locations, and time, following a Fréchet distribution with a scale pa-
rameter of 1 and a shape parameter of 1/⌦. The degree of dispersion in agent
preferences across location is determined by the value of ⌦, which acts as a
second congestion force.

The cost of moving from location r to s is modeled as the product of
an origin-specific cost, m1(r), and a destination-specific cost, m2(s), such that
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m(r, s) = m1(r)m2(s). Since remaining in the same location has no cost,
m(r, r) = 1, and the origin costs are simply the inverse of the destination costs,
i.e., m1(r) = 1/m2(r). Thus, the permanent utility cost of entering a location
is offset by a permanent utility benefit when leaving, and agents only incur
the flow cost while residing there. This method of modeling migration costs
implies that migration decisions are reversible, and as a result, agents’ location
choices are solely determined by current variables rather than past or future
ones. As is typical in discrete choice models with idiosyncratic preferences, the
proportion of households residing in location r at period t is given by:

Lt(r)H(r)

Lt
=

ut(r)
1/⌦m2(r)

�1/⌦´
S ut(v)

1/⌦m2(v)
�1/⌦dv

(3)

The term ut(r) refers to the portion of local utility that is not specific to
an individual’s preferences, i.e., it is independent of idiosyncratic taste shocks.
This is given by:

ut(r) = bt(r)yt(r)
� = bt(r)

ˆ 1

0

c!t (r)
⇢dw

��/⇢
(4)

At the end of each period t, households have a net offspring count of
nt(r), which influences local natality rates. These rates, denoted by nt(r) =

⌘(yt(r), Tt(r)), are exogeneous to the individual, but endogenous to the loca-
tion’s real income and temperature. Therefore, before migration decisions are
made in the next period t+ 1, local population density L0

t+1(r) is determined
by the equation L0

t+1(r)H(r) = (1 + nt(r))Lt(r)H(r). It is important to note
that global population not only depends on the distribution of natality rates
across space and time, but also on the spatial distribution of population in the
previous period.

4.2 Technology

In this model, each cell contains a continuous spectrum of firms that produce
distinct product varieties represented by ! 2 [0, 1]. The firms utilize a tech-
nology with constant returns to scale that involves labor, land, and energy.
The output produced per unit of land for a particular for a particular prod-
uct variety, !, is a function of the production workers, Lw

t (r), and the energy
used, e!t (r), both per unit of land. It is important to note that since land is
fixed factor with a share of 1 � µ, agglomerating labor and energy in a given
location will lead to decreasing returns, which acts as a third congestion force.
The output per unit of land of variety w is then given by

q!t (r) = �!
t (r)

�1z!t (r)(L
!
t (r)

�e!t (r)
1��)µ, (5)
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The productivity of a firm is determined by two factors: its innovation
decision, �!

t (r) � 1, and an idiosyncratic location-variety productivity shifter,
z!t (r). Investing in innovation incurs a cost of v�!

t (r)
⇠ per unit of land, ex-

pressed in units of labor. The exogeneous productivity shifter is a random
variable that follows a Fréchet distribution, with a cumulative distribution
function F (z, a) = e�at(r)z�✓ , and is independently and identically distributed
across varieties and time. The scale parameter at(r) determines the level of
productivity in a location and is influenced by agglomeration externalities aris-
ing from high population density and past innovations. Specifically, we set
at(r) = āt(r)Lt(r)↵, where ↵ determines the strength of the first agglomer-
ation force. In turn, the endogenous dynamic process that determines the
fundamental productivity, āt(r), is given by the following equation:

āt(r) = (1+⇤↵(�Tt(r), Tt�1(r)))

✓
�t�1(r)

✓�1 [

ˆ
S

D(v, r)āt�1(v)dv]
1��2 āt�1(r)

�2

◆
,

(6)
Equation (6) comprises four distinct elements. Firstly, the term �t�1(r)✓�1

stands for the shift in the local distribution of shocks due to previous innova-
tion decisions of firms, which are now assumed to be integrated into the local
technology. The second element,

⇥´
S D(v, r)āt�1(v)dv

⇤1��2 āt�1(r)�2 , captures
the impact of past technology on the current production function, including
both the location’s own technology level āt�1(r) and the diffusion of technology
from other locations. This component is based on Desmet et al. (2018) and
generates a spatial endogenous growth model. The third component, ⇤a(·),
reflects the effect of temperature on local productivity in cell r at time t. Fi-
nally, since ⇤a(·) depends on temperature levels, it can account for the diverse
spatial impacts of global warming on productivity.

In contrast to Desmet et al. (2018), this model incorporates energy as
a factor of production, in addition to land and labor. Golosov et al. (2014),
Hassler et al. (2019), and Popp (2006), among others, propose that energy and
other factors should be combined using a Cobb-Douglas production function,
where (1� �)µ represents the share of energy in the production process. Fur-
thermore, energy is a CES composite of clean soruces, ec,!t (r), and fossil fuels,
ef,!t (r), with the elasticity of substitution being ✏. The use of fossil fuels leads
to CO2 emissions, which contribute to the greenhouse effect by accumulating
in the atmosphere. However, the use of clean energy does not lead to these
negative externalities. Specifically, the model assumes the following:

e!t (r) =
⇣
ef,!t (r)

✏�1
✏ + (1� )ec,!t (r)

✏�1
✏

⌘ ✏
✏�1

, (7)

The relative productivity of both technologies in producing energy is
determined by . It is necessary to make the assumption of competitive local
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energy markets where the price of each energy type is equivalent to its marginal
production cost. To produce one unit of energy of type j, where j is either f

for fossil fuels or c for clean sources, Qj
t(r) units of labor is required. The cost

of energy differs depending on the source, location, and time, a following the
next equation:

Qf
t (r)O =

f(CumCO2t�1)

⇣ft (r)
andQc

t(r) =
1

⇣ct (r)
. (8)

The cost of fossil fuel extraction, Qf
t (r), is determined by two factors.

The first factor, in the numerator, is the cost of extracting fossil fuels from
the ground, which is assumed to convex and increasing in the total cumulative
CO2 emissions in the world, as suggested by Nordhaus and Boyer (2002). This
is denoted by the term CumCO2t�1. As the world’s cumulative emissions
increase, carbon reserves shrink, which in turn increases the cost of fossil fuel
extraction. Cumulative emissions are calculated as the sum of cumulative
emissions in the previous period and the global CO2 emissions released in the
current period, denoted by Ef

t . Namely, we have the equation:

CumCO2t = CumCO2t�1 + Ef
t = CumCO2t�1 +

ˆ
S

ˆ 1

0

ef,!t (v)H(v)d!dv.

(9)
It is assumed that the pace at which technology advances over time in the

fossil fuel and clean energy sectors are linked to global real GDP, ywt , which
is an endogeneous variable in this model and depends on firms’ investment
decisions. Specifically, it is assumed that a one percent increase in global
real GDP leads to a log-productivity increase in energy generation of type
j, denoted by ⇣jt (r), by vj. This elasticity is allowed to vary across different
types of energy. Therefore, the denominator of the energy price is related
to the energy generation productivity, ⇣jt (r). Therefore, the magnitude of the
externality on energy productivity investments generated by firms’ innovations
depends on the evolution of real GDP. This is shown by the following equation:

⇣jt (r) =

✓
ywt
ywt�1

◆vj

⇣jt�1(r), wherey
w
t =

ˆ
S

✓
Lt(v)H(v)

Lt

◆
yt(v)dv. (10)

In this model it is assumed that land markets are competitive, where firms
compete to secure the right to produce in a parcel of land through a bidding
process. This is important because past innovations, which are embedded
in the local idiosyncratic distributions of productivities, benefit all potential
entrants. This implies that the optimal solution for firms’ dynamic innovation
problem is to choose the level of innovation that maximizes their current profits
(or their bid for land) as all future gains from current innovation will accrue to
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the fixed factor, which is land. Since future firms’ profits are zero, they do not
affect a firm’s decisions. As there is a continuum of potential entrants, firms
bid all of their profits after covering innovation costs, resulting in zero profits
for firms. Therefore, in this economy, the maximum bid for land is the local
land price, Rt(r), every period. This is proven in Desmet and Rossi-Hansberg
(2014). In summary, firms in r maximize according to:

max
q,L,�,ef ,ec

p!t (r, r)q
!
t (r)� wt(r)L

!
t (r)� wt(r)v�

!
t (r)

⇠ � wt(r)Q
f
t (r)e

f,!
t (r)

�wt(r)Q
c
t(r)e

c,!
t (r)�Rt(r) (11)

We can obtain the total energy cost in labor units by using the first-order
conditions with respect to fossil fuel and clean energy. This expression can be
rewritten as the energy composite, e!t (r), times its ideal price index, Qf

t (r).
Specifically, Qt(r)e!t (r) = Qf

t (r)e
f,!
t (r) + Qc

t(r)e
c,!
t (r), where Qt(r) is defined

as Qt(r) =
⇣
✏Qf

t (r)
1�✏ + (1� )✏Qf

c (r)
1�✏
⌘ 1

1�✏ . Because the technology is
Cobb-Douglas, the firm’s energy costs are proportional to labor costs. Thus,
we can express Qt(r)e!t (r) =

1��
� L!

t (r). This simplifies the firm’s problem to a
form like the one presented in Desmet et al. (2018), and thus all their finding
are applicable.

4.3 Prices, Export Shares, and Trade Balance

The market for goods is characterized by competition, and therefore firms sell
their products at the marginal cost, which includes transportation costs. The
trade cost of shipping a good from location r to s is represented by the iceberg
cost function, denoted by &(s, r) � 1. Thus, the price of the good at location
s and time t, p!t (s, r), is equal to the product of the iceberg cost, marginal
input cost at location r, and the inverse of the productivity level of energy
source at location r, i.e., p!t (s, r) = &(s, r)mct(r)/z!t (r). Since all firms face
the same input prices, the marginal input cost is identical across firms, and is
given by mct(r) = MQt(r)1��)µwt(r)1�µ+�1/⇠Rt(r)1�µ��1/⇠ , where M is a constant
of proportionality that is determined by the production parameters.

Following the standard trade structures based on Eaton and Kortum
(2002), we can express the probability, denoted as ⇡t(s, r), that a good pro-
duced in location r is consumed in location s as a gravity equation, which can
be represented as:

⇡t(s, r) =
at(r) [mct(r)&(r, s)]

�✓´
S at(v) [mct(v)&(v, s)�✓dv]

. (12)

11



The price index of a location, denoted by Pt(r), is given by the Gamma
function as shown in equation (13):

Pt(r) = �

✓
�⇢

(1� ⇢)✓ + 1

◆� 1�⇢
⇢
ˆ

S

at(v) [mct(v)&(r, v)]
�✓ dv

��1/✓

(13)

To ensure the trade balance in each cell over the long run, they impose
that total income, which is the sum of labor income and land rents, at location
r equals the total expenditure on goods from r, which is given by:

wt(r)Lt(r)H(r) =

ˆ
S

⇡t(v, r)wt(v)Lt(v)H(v)dv. (14)

4.4 Climate and the Carbon Cycle

The combustion of fossil fuels and other activities, such as deforestation, re-
sults in the emissions of carbon dioxide into the atmosphere. The carbon cycle
outlines how carbon accumulates in the atmosphere. The IPCC (2013) pro-
poses the dynamics that dictate the evolution of atmospheric CO2, where the
atmospheric carbon stock, St, changes over time according to the following
equation:

St+1 = Spre�ind +
1X

l=1

(1� �`)
⇣
Ef

t+1�` + Ex
t+1�`

⌘
. (15)

As shown in equation (9), Ef
t represents the CO2 emissions from fos-

sil fuel combustion that arise endogenously. Additionally, Ex
t accounts for

exogeneous CO2 emissions from non-fuel combustion based on the IPCC sce-
nario RCP 8.5 or 6.0. The parameter Spre�ind indicates the CO2 stock in the
pre-industrial era (year 1800), while (1 � �`) represents the fraction of CO2

emissions that remain the atmosphere after l period. Greater concentrations
of carbon dioxide increase the global radiative forcing, Ft+1, which measures
the net inflow of energy and is approximated using the method of Myhre et al.
(1998):

Ft+1 = 'log2(St+1/Spre�ind) + F x
t+1, (16)

The parameter ' in the equation above represents the forcing sensitiv-
ity, which is the increase in the radiative force when the carbon stock dou-
bles compared to its pre-industrial level. The radiative forcing from non-CO2
greenhouse gases, such as methane and nitrous oxide, is denoted as F x

t and
is obtained from the RCP 8.5 or 6.0 scenarios. The global temperature rises
when the inflow of energy from the sun exceeds the outflow of energy exiting
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the planet, according to a process defined by the following equation:

Tt+1 = Tpre�ind +
1X

`=0

⇣`Ft+1�l, (17)

The worldwide temperature over land in the pre-industrial era is denoted
by Tpre�ind in the equation above, while ⇣` represents the current temperature
response to radiative force increase that occurred ` periods ago. Since carbon
emissions affect global temperature and not local temperatures directly, they
constitute a global externality. Nevertheless, to quantify the model at a fine
geographical resolution, it is necessary to assume a relationship between global
and local temperatures. Following Mitchell (2003), a linear down-scaling rela-
tionship is adopted, which provides accurate results. Specifically, we get the
following relationship:

Tt(r)� Tt�1(r) = g(r) · (Tt � Tt�1), (18)

The temperature in cell r changes by g(r) °{ when global temperature
changes by one °{, where g(r) is a coefficient that depends on the local physical
characteristics of the location. To quantify the model at a fine geographical
resolution, it is assumed that g(r) remains fixed over time.

4.5 Competitive Equilibrium and Balanced Growth Path

A dynamic competitive equilibrium can be defined by the conditions presented
in previous sections. It makes it possible to simplify the system of equations
that defines a spatial equilibrium in a given period to a system of equations
for population and wages in each location. Using these equations, it is possible
to directly compute all other variables, including firm investments. A unique
solution to the system of equations exists if two conditions are met. First,
either the elasticity of substitution between fossil fuels and clean energy is
one (Cobb-Douglas) or the innovation elasticity with respect to global real
income growth is the same across energy types (✏ = 1or vf = vc). These
assumptions maintain the log-linear structure of the model. Second, the static
agglomeration economies associated with local production externalities (↵/✓)

and the degree of returns to innovation (�1/⇠) must not dominate the three
congestion forces. These congestion forces are governed by the value of the
negative elasticity of amenities to density adjusted by the elasticity of utility
to real income (�/�), the share of land in production which determines the
degree of local decreasing returns (1 � µ), and the variance of taste shocks
adjusted by the elasticity of utility to real income (⌦/�). The second condition
generalizes the condition in Desmet et al. (2018).
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In the model, a spatial equilibrium in a given period determines firm
innovation, energy use, and carbon emissions. The resulting temperatures and
next period’s amenities and productivities are then computed using equations
(2), (6), and the climate and carbon cycle model. This allows to compute the
dynamic equilibrium forward, period by period, for as many years as needed.
Eventually, the distribution of population across space and the world real
output growth rate converge to a Balanced Growth Path (BGP) if certain
conditions are met. These conditions include: (i) total natality rates (1 +

nt(r)) converge to one as income per capita grows; (ii) the stock of carbon
is finite and certain variables, such as (1 � �`), ⇣`, Ex

` and F x
` converge to

constant values, eventually stabilizing temperatures; (iii) (✏ = 1or vf = vc);
and (iv) ↵/✓ + �1/⇠ + �1/⇠(1 � �2))  �/� + (1 � µ) + ⌦/�. This states
that the agglomeration forces, including dynamic agglomeration forces through
innovation, �1/⇠(1��2), are weaker than the three congestion forces. Although
the dynamics of the model are protracted, convergence to a Balanced Growth
Path is not fully achieved for the two-century horizon considered in analysis.

4.6 Forward Solution

In this section we reverse-engineer the model solution by tracing back in time
the system of equations that determine the levels of essential resources, pro-
ductivity, and migration expenses. The subsection Forward Solution focuses
on computing the forward solution of the model when ad-valorem carbon taxes,
⌧t(r), and clean energy subsidies, st(r), are present. These taxes are levied on
the firm and are uniformly rebated to the households living in region r through
a lump-sum transfer, �t(r). The firm’s optimization problem, which involves
minimizing costs with respect to fossil fuels and clean energy, can be expressed
as follows:

wt(r)Qt(r)e
w
t (r) = min

ef ,ec
wt(r)(1 + ⌧t(r))Q

f
t (r) + wt(r)(1� st(r))Q

c
t(r)e

c,w
t (r)

(19)

st
⇣
ef,wt (r)

✏�1
✏ + (1� )ec,wt (r)

✏�1
✏

⌘ ✏
✏�1

= ewt (r)

If we take the first order condition with respect to ef,wt (r)and ec,wt (r) yield
the following relationships:

ec,wt (r)

ef,wt (r)
=

 
1� 



1 + ⌧t(r)

1� st(r)

Qf
t (r)

Qc
t(r)

!✏

(20)
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Qt(r) =
⇣
✏(1 + ⌧t(r)

1�✏Qf
t (r)

1�✏ + (1� )✏(1� st(r))
1�✏Qc

t(r)
1�✏
⌘ 1

1�✏

(21)

The lump-sum transfer per unit of land can be defined following the
derivation below:

�!
t (r) =

⇣
⌧t(r)Q

f
t (r)e

f,!
t (r)� st(r)Q

c
t(r)e

c,!
t (r)

⌘
(22)

= Qt(r)e
!
t (r)�

⇣
Qf

t (r)e
f,!
t (r) +Qc

t(r)e
f,!
t (r)

⌘

= Qt(r)e
!
t (r)� Q̃t(r)

1�✏Qt(r)
✏e!t (r),

Q̃t(r) =
⇣
✏(1 + ⌧t(r))

�✏Qf
t (r)

1�✏ + (1� )✏(1� st(r))
�✏Qc

t(r)
1�✏
⌘ 1

1�✏
. (23)

By using equation (21), it is possible to reduce the firm’s problem to the
following maximization problem

max
q,L,�,e

p!t (r, r)�
!
t (r)

�1z!t (r)
�
L!
t (r)

�e!t (r)
1��
�µ

�wt(r)
⇥
L!
t (r) + v�!

t (r)
⇠ +Qt(r)e

!
t (r)

⇤
�Rt(r), (24)

By taking the first order conditions of this problem with respect to e!t (r)

and L!
t (r), it is possible to derive the following equation:

Qt(r)e
!
t (r) =

✓
1� �

�

◆
L!
t (r). (25)

The previous equations makes it possible to collapse the maximization
problem of the firm to the following problem:

max
L,�

p!t (r, r)

✓
1� �

�

1

Qt(r)

◆(1��)µ

�!
t (r)

�1z!t (r)L
!
t (r)

µ � wt(r)L!
t (r)

�

�wt(r)v�
!
t (r)

⇠ �Rt(r), (26)

By taking the first order conditions of the maximization problem above
with respect to �!

t (r) and L!
t (r), we get:

wt(r)L
!
t (r) = µ�(p!t (r, r)q

!
t (r)), (27)

�µv�!
t (r)

⇠ = (�1/⇠)L
!
t (r). (28)

Fossil fuel use is calculated by using the following equation, where ef,wt (r)

15



denotes fossil fuel use:

ef,wt (r) =

✓
(1� �)µ

µ+ �1/⇠

◆✓
L̄w
t (r)

't(r)Qt(r)

◆✓
Qt(r)

(1 + ⌧t(r))Q
f
t (r)

◆✏

(29)

Clean energy use:

ec,wt (r) =

✓
(1� �)µ

µ+ �1/⇠

◆✓
L̄w
t (r)

't(r)Qt(r)

◆✓
(1� )Qt(r)

(1 + st(r))Qc
t(r)

◆✏

(30)

The forward simulations uses equation (31) in order to retrieve ut(·) from
equation (32):

FL
t (r)ût(r)

1
�

⇣
[L
⌦/�+

✓(1+✓)
1+2✓

⌘

= 

ˆ
S

FR
t (v)ût(v)

1
�

⇣
[R
⌦/��

✓2

1+2✓

⌘

&(r, v)�✓dv, (31)

Ut =

✓
Lt´

S[ut(v)/m2(v)]1/⌦dv

◆ 1
1

⌦/�
� ✓

[R�[L =

✓
Lt´

S[ût(v)/m2(v)]1/⌦dv

◆� [R�[L
✓

;

(32)
The law of motion is rewritten in order to simplify the evolution of carbon

stock. This gives the following equations, that are being used to compute St+1:

St+1 = S0,t+1 +
3X

i=1

Si,t+1, withS0,t+1 = S0,t + a0(E
f
t + Ex

t ), (33)

Si,t+1 = (e�1/bi)Si,t + ai(E
f
t + Ex

t ), i 2 {1, 2, 3}. (34)

The global temperature module can be rewritten analogously to the car-
bon circulation, given by the next equation. The values of Tt+1 is calculated
by:

Tt+1 = T1,t+1 + T2,t+1, withTj,t+1 = (e�1/dj)Tj,t +
cj
dj
Ft+1, j 2 {1, 2}. (35)

The forward_climate function continues to compute the damage func-
tions, ⇤a(·) and ⇤b(·), by setting the damage function level by confidence
interval and setting the sources of the damage functions. Next, the damages
on amenities, āt+1(·),and on productivities, b̄t+1, are being updated. These are
computed from equations (2) and (6) described ealier on. The function finishes
off by computing and updating the global population, Lt+1.

5 Analysis

Our research is driven by the urgent need to address climate change and pre-
vent global temperatures from surpassing a critical threshold. The Paris Agree-
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ment sets the objective of limiting global warming to within 2 degrees Celsius
above pre-industrial levels. This temperature goal is crucial in mitigating the
severe consequences of climate change, including irreversible environmental
damage, extreme weather events, and disruptions to ecosystems. (United Na-
tions Climate Change, 2023).

In this study, we aim to investigate the implications of the 2-degree Cel-
sius temperature goal and analyze the strategies required to achieve it. By
utilizing a Python-based model built upon the framework proposed by Cruz &
Rossi-Hansberg (2022), we will examine various parameters and their impacts
on key variables such as temperature, CO2 emissions, clean energy utilization,
the evolution of GDP, and population density.

Through our analysis, we seek to deepen the understanding of the time
required to achieve the 2-degree Celsius goal and the specific parameters that
influence its attainment. By identifying the factors that contribute to climate
overshoot and the pathways that allow us to remain below the critical thresh-
old, we can contribute to the formulation of effective and sustainable strategies
for climate change mitigation and adaptation.

The findings of this study will have significant implications for policy-
makers, researchers, and stakeholders involved in climate change mitigation ef-
forts. By integrating these insights into decision-making processes, businesses
and organizations can play a vital role in driving the transition to a sustainable
and resilient future. Our research aligns with global efforts to combat climate
change and fosters the hope of creating a better world for present and future
generations.

5.1 The Baseline Scenario

In this section, our analysis begins by adopting the baseline scenario proposed
by Cruz & Rossi-Hansberg (2022) as our starting point. They set the following
parameters to specific values in their baseline scenario: e = 1.6, maxCO2 =
19,500, and RCP = 8.5. The RCP 8.5 scenario represents a future trajectory
characterized by high challenges for mitigation, with a reliance on fossil fuel-
intensive practices, and low adaptation measures due to rapid development.
(Van Vuuren, D.P, 2011) By utilizing this parametrization, we provide a com-
prehensive framework to examine the long-term effects on the global economy
over a span of 200 years, from the year 2000 to 2200. Our primary focus is
to investigate key factors such as temperature trends at both global and local
scales, emissions patterns, the utilization of clean energy sources, and popula-
tion density. Using the baseline scenario as a reference, we can compare and
contrast the outcomes with alternative scenarios where we manipulate various
parameters to ensure adherence to the temperature target established by the
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United Nations. Through this analysis, we aim to gain valuable insights into
the potential pathways and policies required to mitigate the risks associated
with climate change while promoting sustainable development.

5.1.1 Global CO2 emissions

Figure 1: CO2 Emissions - Baseline scenario

Figure 1 illustrates CO2 emissions from year 2000 to 2250 and provides
a visual representation of the projected CO2 emission path, comparing it with
the pessimistic scenarios, RCP 8.5 and 6.0, outlined in the IPCC (2013) report.
Our model indicates that carbon dioxide emissions from fossil fuel combustion
are expected to grow during the current century, which can result from eco-
nomic growth and advancements in fossil fuel technology. However, emissions
are anticipated to decline towards zero after reaching a peak in 2110, as ex-
traction costs increase sharply with the depletion of fossil fuel resources. The
bell-shaped emission trajectory observed in the model aligns with the exoge-
nous abatement process outlined by the IPCC (2013), which ultimately leads
to declining emission projections.

5.1.2 Global Temperature

The rise in the concentration of greenhouse gases increases global temperatures,
as depicted in Figure 2, which represents the global temperature relative to the
pre-industrial level. To highlight the temperature goal set by the Paris agree-
ment, a red line has been added to the figure at the 2-degree target. According
to our model, the projected trajectory indicates that the global temperature
is expected to reach the 2-degree line by the year 2039. This alignment with
the central objective of the agreement underscores the significance of adher-
ing to the temperature limit to mitigate the potentially severe consequences
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Figure 2: Global Temperature - Baseline scenario

associated with surpassing the 2-degree Celsius threshold.
Looking further into the future, by the end of this century, the global

temperature is estimated to rise by approximately 5◦C compared to the pre-
industrial level, according to our model. By the year 2200, the projected
increase in global temperatures reaches roughly 7◦C. As the consumption
of carbon dioxide declines towards zero, the global temperature gradually ap-
proaches a long-run equilibrium between 6◦C and 7◦C above the pre-industrial
level. It is worth noting that our model’s parametrization of the carbon cycle
and its close alignment with the emission trajectory depicted in the RCP 8.5
scenario results in an almost exact match between our temperature evolution
and that of the RCP 8.5 scenario.

The projected rise in global temperatures, as depicted by our model, has
significant consequences across various dimensions. This alarming trajectory
has implications such as an increased risk of extreme weather events, disrup-
tion of ecosystems and biodiversity, sea-level rise and coastal flooding, impacts
on human health, and substantial economic implications. These consequences
highlight the urgency of taking effective measures to reduce greenhouse gas
emissions and address climate change to avoid the potentially devastating ef-
fects on the environment, societies, and the global economy.

5.1.3 Log CO2 emissions

Two color-coded maps presented in Figure 3 provide insightful visual repre-
sentations of the relative changes in CO2 emissions over time. The first map
depicts the relative change between the years 2000 and 2110, as we were par-
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ticularly interested in observing the changes in 2110 since the emissions are
reaching a peak. Additionally, the second map represents the relative change
between the years 2000 and 2200, providing insights into the extended time
period and its implications for CO2 emissions and climate change. These maps
offer valuable insights into the spatial distribution of CO2 emissions based on
the simulated dataset generated by our model. The color scale utilized in the
maps ranges from red, indicating regions with high emissions, to blue, rep-
resenting areas with low emissions. Notably, the analysis takes into account
emissions per land area, measured in GtCO2 per land, allowing for a compre-
hensive understanding of distribution patterns. Examining these maps pro-
vides a clearer understanding of the geographical disparities in CO2 emissions
and their potential implications for climate change mitigation and adaptation
strategies.

Figure 3: Relative change: CO2 emissions

Analyzing the map representing the relative change between 2000 and
2110, we observe that certain regions in South America, Africa, and Asia are
depicted in red, indicating increased CO2 emissions compared to the year
2000. Conversely, North America, Europe, and Oceania are displayed in blue,
signifying a reduction in emissions. Several factors may contribute to this
pattern. Firstly, regions that have implemented and enforced strict environ-
mental regulations and policies, along with investments in renewable energy
sources and energy-efficient technologies, may have successfully curbed their
CO2 emissions. Additionally, favorable geographical characteristics, such as
the abundance of renewable energy resources, may have facilitated the transi-
tion to cleaner energy sources in these regions. However, a detailed analysis is
required to validate these explanations and understand the specific dynamics
influencing emission reductions in these areas.

Turning our attention to the map representing the change between 2000
and 2200, we observe an overall positive change characterized by a predomi-
nantly blue color scheme, indicating a decrease in CO2 emissions. However,
certain regions, such as parts of Central Africa and East Asia, still exhibit
higher emissions. Several factors could contribute to this discrepancy. In Cen-
tral Africa, challenges related to economic development, limited access to clean
energy technologies, and dependence on carbon-intensive industries may im-

20



pede significant emission reductions. (Gujba, H., et al, 2012) In East Asia,
rapid industrialization and a growing population might result in increased
energy demand and associated CO2 emissions. Addressing these challenges
would require a combination of factors, including the implementation of sus-
tainable development policies, increased access to clean energy technologies,
and supportive international collaborations. (Liu, X., & Bae, J. (2018)

It is important to note that these are potential explanations based on the
observed patterns and require further research and analysis to establish causal
relationships and fully understand the dynamics influencing CO2 emissions in
these regions. Nonetheless, these visual representations highlight the spatial
variations in emissions and emphasize the importance of targeted strategies to
mitigate emissions and promote sustainable practices on a global scale.

5.1.4 Log clean energy

The two maps presented in Figure 4 provide a visual representation of global
clean energy adoption in the years 2000 and 2200. The color scale ranges from
red to blue, indicating high and low usage of clean energy, respectively. In the
year 2000, regions such as Europe, parts of America, and East Asia demon-
strate significant clean energy adoption, represented by red areas. However,
Algeria shows lower utilization of clean energy, depicted by predominantly blue
areas. This discrepancy may be attributed to factors such as limited access to
renewable resources or a greater reliance on traditional energy sources.

Figure 4: Comparison of Log clean energy

Comparing the map for the year 2200 to that of 2000, a notable global
shift towards increased clean energy adoption is evident. The majority of the
world is depicted in red, indicating higher utilization of clean energy sources.
This shift can be attributed to advancements in renewable energy technologies,
supportive policy frameworks, and a growing recognition of the importance
of sustainable energy practices. These findings highlight the significance of
ongoing efforts to promote and expedite the global transition to clean energy
sources, ensuring a sustainable and low-carbon future.

21



5.1.5 January-July temperature

Understanding and monitoring temperature patterns is crucial for assessing
the impact of climate change. Figure 5 aims to visually analyze and compare
the relative change at local levels between Janyary and July around the world
between the years 2000 and 2200 using a color-coded map. The map repre-
sents the relative change in temperatures. Dark red indicates a positive relative
change, suggesting an increase in temperatures. Green indicates a near-zero
relative change, while dark blue represents a negative relative change, indicat-
ing a decrease in temperatures.

Figure 5: January-July Temperature - Relative change

Several notable observations can be made from the map. Firstly, regions
such as Europe, the Middle East, the United States, parts of China, and the
west coast of South America are prominently displayed in dark red hues. This
indicates a substantial relative change in temperatures, nearing or exceeding
100%. These regions are expected to experience a significant increase in tem-
peratures compared to the baseline year of 2000.

Conversely, a large portion of Africa and the rest of South America ap-
pears in shades of yellow, representing a positive relative change in temper-
atures of approximately 25%. While not as pronounced as the regions men-
tioned above, these areas are still expected to undergo a noticeable increase in
temperatures during the January-July period.

In contrast, regions such as Russia, Australia, and Canada exhibit a
combination of yellow and orange shades on the map. This suggests a positive
relative change in temperatures ranging from 25% to 50%. These areas are
projected to experience a moderate increase in temperatures compared to the
year 2000.

The observed variations in temperature increases across different regions
can be attributed to a multitude of factors. Geographical location, local cli-
mate dynamics, and regional differences in climate change impacts all con-
tribute to the diverse distribution of temperature changes seen on the map.
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The maps depicting the relative change of CO2 emissions (Figure 3) and
the relative change in temperatures (Figure 5) reveal intriguing and seemingly
contradictory results. Figure 3 illustrates that the regions with the highest
relative change in CO2 emissions are primarily observed in Africa, Asia, and
South America, suggesting an increase in greenhouse gas emissions in these
areas over the simulated 200-year period. Conversely, Figure 5 displays the
relative change in temperatures, indicating that the regions experiencing the
most significant temperature variations are predominantly located in Europe,
the Middle East, the United States, parts of China, and the west coast of
South America.

This apparent contradiction can be attributed to the complex interplay
of numerous factors influencing climate change. The relative change in CO2
emissions can reflect alterations in the release of greenhouse gases into the
atmosphere, influenced by factors such as population growth, economic de-
velopment, energy consumption patterns, and policy interventions. Therefore,
while regions with the highest relative change in CO2 emissions may experience
increased greenhouse gas emissions, the resulting temperature changes may be
influenced by other factors, such as regional climatic characteristics and inter-
actions between various components of the climate system. Thus, the observed
disparity between the maps underscores the complexity of climate change and
the need for a comprehensive understanding of the underlying mechanisms
driving both CO2 emissions and temperature variations.

5.1.6 Population density

Understanding population density patterns is essential for studying human ge-
ography and exploring the interplay between population distribution, environ-
mental factors, and socio-economic dynamics. This subsection aims to analyze
the observed changes in population density between the year 2000 and year
2200 as visualized in Figure 6. The maps employed a color scale, where warmer
colors represented higher population density and colder colors indicated lower
density. The change in population density was derived by comparing the two
datasets.

In the initial year of 2000, the global population density map depicted a
predominantly green color, indicating no changes in population distribution.
Figure 6 provides insights into the projected changes in population density
over a 200-year period. Notably, as we move away from the equator, the map
exhibits a progressively warmer color scheme, suggesting an increase in popula-
tion density. Several factors could contribute to this observed pattern. Firstly,
regions located farther from the equator often offer more favorable environ-
mental conditions, such as milder climates and abundant natural resources,
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Figure 6: Population Density - Baseline Scenario

making them attractive for human settlement and economic activities, when
the temperature increases. Additionally, the availability of land and the po-
tential for economic development might encourage migration and population
concentration in these areas. Moreover, factors such as access to amenities, and
employment opportunities may also influence population distribution patterns.
Nevertheless, further research and analysis are necessary to comprehensively
understand the underlying dynamics driving the observed increase in popula-
tion density away from the equator.

5.2 Adjusting the elasticity of substitution between fossil
fuel and clean energy sources

In this subsection, we focus on examining the elasticity of substitution (e) be-
tween fossil fuels and clean energy sources in the context of the baseline model.
By adjusting the value of e, specifically increasing it to 2.6 and decreasing it
to 0.6, we aim to assess the potential changes and impacts on the baseline
model’s dynamics.

5.2.1 Global CO2 emissions

Figure 7 provides a visual representation of the relationship between CO2
emissions and different values of epsilon (e). The green line corresponds to the
baseline value of epsilon, set at 1.6, while the red line represents a decreased
epsilon of 0.6, and the blue line represents an increased epsilon of 2.6. The plot
clearly demonstrates that CO2 emissions are influenced by the value of epsilon.
When epsilon is decreased to 0.6, as depicted by the red line, CO2 emissions
increase. This can be attributed to the lower elasticity of substitution between
fossil fuels and clean energy sources associated with a lower epsilon value.
With a limited ability to substitute fossil fuels with cleaner alternatives, the
baseline model exhibits higher CO2 emissions. Conversely, when epsilon is in-
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Figure 7: CO2 Emissions - Different values for epsilon

creased to 2.6, as shown by the blue line, CO2 emissions decrease. This is due
to the higher elasticity of substitution, indicating a greater ease in transition-
ing to cleaner energy technologies. The increased substitution of fossil fuels
with cleaner alternatives results in a reduction in CO2 emissions. Therefore,
the observed relationship between epsilon and CO2 emissions underscores the
importance of promoting a higher elasticity of substitution to facilitate the
transition to cleaner energy sources and mitigate climate change effectively.

5.2.2 Global Temperature

Figure 8: CO2 Emissions - Different values for epsilon

Moving on to Figure 8, which illustrates the global temperature relative
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to the pre-industrial level from 2000 to 2250, we can observe the impacts of
varying e on the temperature trajectory. Despite the different e values, all
three lines in the plot reach the 2-degree threshold around the same year as
the baseline model (green line). This suggests that changes in the value of e
have a delayed effect on global temperature changes. The delayed effect can
be attributed to several factors. Firstly, the inertia in the climate system,
along with the cumulative nature of CO2 emissions, means that temperature
responses to changes in e take time to manifest. Secondly, other influential
factors, such as CO2 sinks, feedback mechanisms, and external forcings, can
contribute to the overall temperature trajectory, potentially mitigating or de-
laying the effects of changes in e.

5.2.3 Fossil Fuel and Clean Energy Usage

Figure 9: Fossil fuels and clean energy usage - Different values of Epsilon

Figure 9, which illustrates the effect of e on the aggregate demand per-
centage points of clean energy and fossil fuel usage, provides valuable insights
into the dynamics of energy consumption and the role of e in driving the tran-
sition towards cleaner energy sources. The solid line represents clean energy
usage, while the dashed line represents fossil fuel usage, with the curves de-
picting the movement in percentage points from the year 2000 to 2250. The
observed trend of the clean energy curve increasing and the fossil fuel curve de-
creasing indicates a shift in aggregate demand towards cleaner energy sources
over the specified time period. This trend aligns with global efforts to reduce
greenhouse gas emissions, mitigate climate change, and foster sustainable en-
ergy practices. The contrasting movement of the two curves underscores the
substitution effect between clean energy and fossil fuels, highlighting the chang-
ing preferences and choices of consumers and policymakers. A notable pattern
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emerging from Figure 9 is the relationship between the magnitude of e and the
steepness of the curves. It is evident that as the value of e increases, the clean
energy curve exhibits a steeper slope, indicating a more significant increase
in aggregate demand for clean energy. Conversely, as e decreases, the clean
energy curve becomes less steep, indicating a slower rate of growth in clean
energy usage. This relationship between e and the steepness of the curves can
be attributed to the concept of substitutability between clean energy and fossil
fuels. When e is larger, it implies a higher degree of substitutability, meaning
that clean energy sources are considered more effective substitutes for fossil
fuels. This perception may stem from advancements in clean energy technolo-
gies, improved cost competitiveness, supportive policies, and growing public
awareness of environmental concerns. The greater substitutability encourages
consumers to shift their demand towards clean energy sources, resulting in a
steeper curve that reflects a more substantial increase in aggregate demand
for clean energy. Conversely, when e is smaller, it suggests a lower degree
of substitutability between clean energy and fossil fuels. In such cases, clean
energy sources may be perceived as less viable substitutes, possibly due to lim-
itations in technology, higher costs, or inadequate infrastructure. The lower
substitutability hinders the rate of transition towards clean energy, resulting
in a less pronounced movement in aggregate demand for clean energy over the
specified time period. Consequently, the curve representing clean energy usage
exhibits a gentler slope.

In conclusion, the examination of e in our model reveals its significant
impact on various aspects of energy consumption and transition to cleaner
energy sources. The findings demonstrate that the value of e influences CO2
emissions, global temperature, and aggregate demand for clean energy and fos-
sil fuels. A higher value of e indicates a greater substitutability between clean
energy and fossil fuels, leading to reduced CO2 emissions, a more pronounced
shift towards clean energy, and a steeper increase in aggregate demand for
clean energy. Conversely, a lower value of e signifies lower substitutability
and results in slower changes in CO2 emissions, less pronounced shifts towards
clean energy, and gentler movements in aggregate demand. However, it is
worth noting that while e plays a significant role in energy dynamics, it did
not have a substantial influence on the ability to stay below the two-degree
threshold for global temperature increase. Regardless of the specific value of e,
the modeled scenarios still reached the two-degree threshold within a similar
timeframe. This suggests that achieving climate targets relies on other factors
such as renewable energy deployment, energy efficiency measures, and decar-
bonization policies. Thus, while e impacts energy consumption and transition,
its direct effect on temperature outcomes appears relatively limited compared
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to other critical determinants in the energy system.
However, it is important to acknowledge the challenge of determining the

an optimum elasticity that would effectively facilitate reaching the temperature
target. This observation suggests that solely increasing the elasticity of substi-
tution between fossil fuels and clean energy, through means such as technolog-
ical advancements, removing market barriers, policy support for clean energy,
and addressing vested interests, may have limited direct impact. Therefore, it
becomes imperative to explore and evaluate other mitigation measures, which
is done in sections 5.3 and 5.4 of our study.

5.3 Adjusting the total stock of carbon dioxide available
for energy production on the planet

In this subsection, we explore the parameter maxCO2, which represents the
total stock of carbon dioxide available for energy production on the planet. In
this section, the value of ✏ has been reset to its initial value of 1.6. The baseline
model initially set maxCO2 at 19,500 GtCO2.2, based on the IPCC’s most
pessimistic scenario with RCP level of 8.5 (Cruz & Rossi-Hansberg, 2022). To
investigate its implications, we examined the effects of significantly increasing
it to 50,000 and decreasing it to 2,650, aligning with the target set by the
Paris Agreement to limit global warming to below 2 degrees Celsius. It is
important to note that reducing the value to 2,650 represents a substantial
decline and may be viewed as an extreme scenario in practice. However, this
analysis highlights the magnitude of the measures required to achieve the 2-
degree target, emphasizing the need for ambitious and transformative actions
to effectively address climate change.

While adjusting the actual total stock of carbon dioxide available for en-
ergy production may not be possible, there are indirect ways to influence this
parameter through policy interventions and measures. One such approach is
the implementation of stringent regulations and policies that limit the extrac-
tion and usage of fossil fuels, such as prohibiting the pumping of oil or placing
strict restrictions on coal mining. By reducing the reliance on carbon-intensive
energy sources and promoting the adoption of cleaner alternatives, such poli-
cies can effectively limit the total stock of carbon dioxide available for energy
production over time.

Additionally, investments in research and development of carbon cap-
ture and storage (CCS) technologies can also indirectly impact the total stock
of carbon dioxide. CCS technologies aim to capture and store carbon diox-
ide emissions from industrial processes, preventing them from being released
into the atmosphere. By advancing these technologies and their widespread
deployment, it becomes possible to remove carbon dioxide from the energy
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production process and reduce the overall stock of carbon dioxide available for
emissions.

Furthermore, encouraging international cooperation and collaboration on
climate change mitigation efforts can lead to collective actions that indirectly
influence the total stock of carbon dioxide. Cooperation between countries
in adopting renewable energy sources, sharing clean energy technologies, and
implementing emission reduction targets can collectively contribute to limiting
the overall carbon dioxide emissions and effectively adjust the available stock
for energy production.

While these approaches may not directly manipulate the total stock of
carbon dioxide available for energy production, they serve as viable strategies
for reducing carbon dioxide emissions and mitigating the adverse effects of
climate change. By implementing policies that discourage the use of fossil
fuels, promoting the development and adoption of clean energy technologies,
and fostering global cooperation, we can effectively work towards achieving the
temperature targets set by the Paris Agreement and ensure a more sustainable
and resilient future.

5.3.1 Global CO2 emissions

Figure 10: CO2 Emissions - Different values for MaxCO2

Figure 10, depicting CO2 emissions over time, showcases distinct patterns
for the different maxCO2 values. The red line, representing the increased
maxCO2 of 50,000, exhibits a concave shape with significantly higher CO2
emissions. This occurs because with a larger available carbon dioxide stock,
there is less incentive to limit emissions, resulting in higher levels of CO2
released into the atmosphere. The concave shape suggests that the rate of
CO2 emissions increases at an accelerating pace over time, potentially leading
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to a more severe climate impact. On the other hand, the blue line, reflecting the
decreased maxCO2 of 2,650, demonstrates a declining trend in CO2 emissions.
When the total stock of carbon dioxide available for energy production is
limited, there is a heightened focus on reducing emissions and transitioning to
cleaner energy sources.

5.3.2 Global Temperature

Figure 11: Global temperature - Different values for MaxCO2

Moving to Figure 11, which illustrates global temperature relative to
pre-industrial levels, we can observe the consequences of different maxCO2
values on temperature outcomes. The high maxCO2 value of 50,000 results in
a steep temperature increase of over 12 degrees. This is due to the significant
amount of CO2 emissions associated with a larger available carbon dioxide
stock, leading to a higher concentration of greenhouse gases in the atmosphere
and consequently driving up global temperatures. Both the baseline model
(green line) and the red line cross the critical 2-degree threshold by 2039,
indicating that even with the baseline scenario or an increased maxCO2, the
temperature target is surpassed relatively early. In contrast, the blue line
exhibits a concave curve, peaking at 2 degrees in 2088 and then declining.
This suggests that reducing the maxCO2 value to 2,650 allows for a slower
temperature increase and potentially enables a better chance of achieving the
temperature target.

Overall, the behavior of the figures can be attributed to the interplay be-
tween the available carbon dioxide stock, CO2 emissions, and their impact on
global temperatures. Higher maxCO2 values lead to concave-shaped emissions
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curves with higher CO2 levels and more pronounced temperature increases,
while lower maxCO2 values result in declining emissions curves and slower
temperature trajectories. These insights emphasize the importance of manag-
ing and reducing carbon dioxide stocks to mitigate climate change and work
towards a sustainable future.

5.4 Adjusting Carbon Taxes

In our quest to limit global temperature rise to below 2 degrees Celsius, as
mandated by the Paris Agreement, it is imperative to examine the efficacy
of different carbon tax values. This subsection delves into the implications of
various carbon tax schemes on CO2 emissions and global temperatures within
the context of our overarching goal. In this section, the value of ✏ and maxCO2
have been reset to its initial value. The baseline model, represented by the
green line, does not incorporate any taxes. Additionally, we investigate the
effects of ad-valorem carbon taxes set at a constant rate of 200% (red line) and a
carbon tax scheme set at 50%, with an annual growth rate of 3.63% (blue line),
specifically designed to align with the 2-degree Celsius temperature target. It
is important to note that achieving the 2-degree threshold requires significant
adjustments to carbon tax levels, which would likely entail a substantial shock
to current economic systems and policy frameworks.

5.4.1 Global CO2 emissions

Figure 12: CO2 emissions - Different values for taxes

Figure 12 depicts the evolution of CO2 emissions from 2000 to 2250. In-
creasing taxes by 200% (red line) demonstrates that carbon taxes effectively
reduce the present consumption of fossil fuels, resulting in a significant ini-
tial decrease in carbon emissions. However, over time, the red line exhibits
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a counterintuitive pattern where it surpasses the emissions of the baseline
model, utilizing more CO2 emissions than when no taxes were imposed. This
suggests that carbon taxes primarily delay the use of carbon resources rather
than diminishing their overall utilization. Several reasons may account for
this rebound effect, including increased efficiency in carbon extraction or a
delayed transition to cleaner energy sources. Contrasting the baseline and red
lines, the blue line representing excise carbon taxes with a gradually increasing
rate over time showcases a distinct trajectory in Figure 12. Commencing at
a higher value than the red line due to a 50% tax rate increase (instead of
200% in the case of the red line), the blue line steadily declines over time. By
employing a tax mechanism that grows consistently, the carbon tax policy de-
picted by the blue line achieves long-term emission reductions. The continuous
escalation in the tax rate ensures that the cost of fossil fuels relative to clean
energy alternatives rises progressively, incentivizing a transition to cleaner op-
tions. Consequently, CO2 emissions exhibit a persistent decline, offering a
more favorable trajectory for mitigating climate change.

5.4.2 Global Temperature

Figure 13: Global temperature - Different values for taxes

Figure 13 illustrates the global temperature relative to pre-industrial lev-
els from 2000 to 2250. In the absence of taxes, the baseline model shows the
highest temperature rise, reaching 2 degrees Celsius by 2039. Introducing a
200% carbon tax (red line) delays the temperature increase, but eventually
aligns with the green line by 2250, yielding a comparable outcome. This de-
lay in temperature rise implies that carbon taxes alone merely postpone the
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inevitable without providing a long-term solution. In contrast, the blue line
presents a more promising outcome, with the highest temperature point re-
maining within the desired 2-degree Celsius target. This achievement is fa-
cilitated by implementing a gradually increasing carbon tax that incentivizes
the adoption of clean energy alternatives, promotes long-term planning, and
stimulates investment. This tax policy drives economic restructuring, com-
pelling industries to embrace energy-efficient technologies and transition to
low-carbon practices.

Carbon taxes play a vital role in our journey towards achieving the tem-
perature target set by the Paris Agreement. While the 200% ad-valorem carbon
tax delays emissions but eventually leads to a rebound effect, the gradually in-
creasing excise tax (blue line) presents a more favorable trajectory with persis-
tent emission reductions. However, it is crucial to recognize that carbon taxes
alone are insufficient for comprehensively addressing climate change. They
must be complemented with incentives to foster technological advancements
and encourage sustainable practices.

5.5 Visualizing Climate Success

This subsection delves into the vision of a world that successfully avoids sur-
passing the critical 2-degree Celsius temperature threshold set by the Paris
Agreement. By adjusting the total stock of carbon dioxide available for en-
ergy production on the planet to 2650 GtCO2 and implementing a carbon
tax scheme set at 50% with an annual growth rate of 3.63%, two scenarios
were created. Surprisingly, these scenarios yielded identical results 200 years
later, prompting a merging of their analyses. This subsection examines the
implications of this convergence and discusses the findings in detail.

Upon analyzing the results of the adjusted carbon stock and carbon tax
scenarios, it became evident that both scenarios led to the same outcomes after
a span of 200 years. This unexpected convergence raises intriguing questions
regarding the underlying dynamics and assumptions of the models. The likeli-
hood of two distinct scenarios yielding identical results over a long time period
calls for further investigation and critical evaluation of the models employed.

5.5.1 Log CO2 emissions in year 2200

In Appendix 8.1.1, titled "Local CO2 Emissions," two maps are presented to
examine the log CO2 emissions in the year 2200. Figure 15 represents the
baseline model, while Figure 16 visualizes the scenario under climate success.
Despite making adjustments to the total stock of carbon dioxide available for
energy production (set at 2650 GtCO2) and implementing a carbon tax scheme
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(with a rate of 50% and an annual growth rate of 3.63%), the maps exhibit a
surprising lack of noticeable differences.

The absence of discernible disparities between the two maps raises in-
triguing questions and prompts further analysis. It is possible that the adjust-
ments made, although intended to address CO2 emissions and promote climate
success, were not significant enough or comprehensive in nature to result in
observable variations in the log CO2 emissions map. Climate change is a com-
plex issue that requires the consideration of multiple interconnected factors,
and achieving substantial changes may necessitate a more holistic approach.

Furthermore, the efficacy of interventions such as carbon taxation and
adjustments to carbon dioxide stocks can be influenced by various contextual
factors and their interactions within the model. Complex dynamics involving
economic considerations, technological advancements, and behavioral patterns
could have contributed to the lack of visible disparities in the log CO2 emissions
map.

These findings underscore the intricate nature of addressing climate change
and highlight the importance of adopting a comprehensive approach that en-
compasses a range of strategies and policies beyond singular interventions.
While carbon taxation and carbon dioxide stock adjustments are vital elements
in climate mitigation, their effectiveness may be contingent upon complemen-
tary actions that address various aspects of the climate challenge.

5.5.2 Log clean energy in year 2200

Figure 18 in appendix depicts the distribution of logarithmic clean energy
adoption in the year 2200 in the case of climate success. Upon closer examina-
tion, the map reveals striking similarities to the corresponding baseline model
at the same time period, figure 17 in appendix, indicating a lack of substantial
progress in clean energy adoption despite successfully avoiding the 2-degree
Celsius threshold. This observation raises important questions about the ef-
fectiveness of the adjustments made, specifically in relation to the parameter
"maxCO2" and the implementation of spatially uniform excise carbon taxes.

The map shows that the adoption does not exhibit significant differences.
This indicates that adjusting the "maxCO2" parameter to 2,650 might not
have effectively encouraged the transition to clean energy sources. Although
the intention was to restrict the total amount of carbon dioxide available for
energy generation, it seems that this adjustment did not result in a noteworthy
increase in the adoption of clean energy technologies. Therefore, it is necessary
to carefully examine the assumptions and mechanisms used in the model and
investigate potential obstacles that prevented the desired shift towards cleaner
alternatives.
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The absence of notable variations in the map of log clean energy adoption
also raises questions about the impact of implementing spatially uniform excise
carbon taxes. While these taxes were intended to incentivize regions globally
to transition to cleaner energy sources, the lack of significant progress suggests
that additional factors may be at play. It is possible that the uniform tax
distribution failed to account for regional variations in resource availability,
technological capabilities, or policy frameworks, which could have hindered
the widespread adoption of clean energy technologies.

Despite successfully avoiding the 2-degree threshold, the analysis of Fig-
ure 18 reveals a concerning lack of substantial progress in clean energy adop-
tion. Both the adjustment of the "maxCO2" parameter and the implementa-
tion of spatially uniform excise carbon taxes did not appear to have signifi-
cantly influenced the transition to clean energy sources.

5.5.3 January-July Temperature in year 2200

Figure 20 in appendix portrays the distribution of local temperature anomalies
during the months of January to July in the year 2200 in the case of climate
success. Notably, the map exhibits a striking similarity to the corresponding
baseline model at the year 2000, figure 19 in appendix, indicating that the
implemented adjustments in the model have successfully mitigated significant
temperature rise.

The similarity between the map of local temperatures in 2200 and the
results from the baseline model suggests that the adjustment of the "maxCO2"
parameter to 2,650 has effectively curtailed the temperature rise. By limiting
the total stock of carbon dioxide available for energy production, the adjust-
ment has prevented excessive emissions and minimized the associated warming
effect. This highlights the importance of proactive measures in controlling car-
bon dioxide emissions and their subsequent impact on global temperatures.

The similarity in the distribution of local temperatures to the baseline
model also reflects the role of implementing spatially uniform excise carbon
taxes. The uniform tax distribution incentivizes regions worldwide to transi-
tion to cleaner energy sources, thereby reducing greenhouse gas emissions and
mitigating temperature rise. The absence of significant temperature anoma-
lies in the map suggests that the carbon tax scheme has been successful in
promoting the adoption of low-carbon practices globally. This underscores the
collective effort and shared responsibility required to address climate change
effectively.

Figure 20 demonstrates that the adjustments made in the model, includ-
ing the "maxCO2" parameter adjustment and the implementation of spatially
uniform excise carbon taxes, have effectively prevented a significant rise in lo-
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cal temperatures by the year 2200. The similarity between the map and the
baseline model at the year 2000 indicates that the implemented measures have
successfully mitigated the warming effect. This underscores the importance of
proactive policies and international cooperation in achieving climate goals.

5.5.4 Population density in year 2200

Figure 21 in appendix, depicting a constant population density in the year
2200 after implementing the adjustments to the model, provides an optimistic
outlook in terms of climate success. The absence of significant changes in
population density compared to the baseline model indicates a level of stability
and equilibrium in human settlements, reflecting a scenario where the world
successfully manages to limit global temperature rise to within the 2-degree
threshold set by the Paris Agreement.

This outcome suggests that the measures taken, including adjusting the
"maxCO2" parameter and implementing spatially uniform excise carbon taxes,
have effectively stabilized the adverse impacts of climate change on population
distribution, since it looks just like it did in year 2000. The stability in pop-
ulation density across different regions implies a balanced and sustainable de-
velopment trajectory, where people are able to maintain their livelihoods and
well-being without facing significant disruptions due to climate-related factors.
In this scenario, the model showcases the successful coexistence of a habitable
environment and a thriving human population. By effectively mitigating cli-
mate change and reducing carbon emissions, the world has managed to avoid
the more severe consequences of global warming, such as displacement, resource
scarcity, and environmental degradation. This achievement reflects a collective
effort to preserve the Earth’s ecosystems, protect vulnerable communities, and
ensure a sustainable future for generations to come.

However, it is important to note that the model’s representation of con-
stant population density in Figure 21 should be interpreted within the con-
text of the specific factors considered in the model. While it demonstrates
the potential outcome if climate success is achieved, it might not capture all
the complexities and intricacies of real-world population dynamics. Other
socio-economic, political, and demographic factors that influence population
distribution may not be fully captured in the model, resulting in a simpli-
fied representation of the relationship between climate success and population
density.

Nevertheless, Figure 21 provides a visual representation of the desirable
outcome when climate success is realized and the 2-degree threshold is not
exceeded. It highlights the importance of proactive and effective climate miti-
gation strategies, emphasizing the need for global cooperation, policy interven-
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tions, and sustainable practices to ensure a world where human populations
can thrive in harmony with a stable and resilient environment.

5.5.5 Real Gross Domestic Product

Figure 14: Real GDP: relative to baseline scenario

Figure 14 provides valuable insights into the economic repercussions of
the adjustment made in the model to mitigate climate change. The aim was to
understand the long-term implications of this adjustment on real GDP (Gross
Domestic Product), which serves as a key indicator of economic performance.

The red line in the figure represents the scenario where the total stock
of carbon dioxide available for energy production is adjusted to 2,650 GtCO2.
Interestingly, the red line starts at the baseline level (1.00) in the year 2000,
suggesting that the adjustment does not immediately impede economic growth.
This initial observation indicates that the chosen adjustment in the model
does not have an immediate adverse impact on the overall GDP trajectory. In
contrast, the blue line represents the scenario where a carbon tax scheme is
implemented, with a tax rate set at 50% and an annual growth rate of 3.63%.
The blue line starts at a slightly lower value of 0.97 in the year 2000, indicating
a minor deviation from the baseline GDP level due to the introduction of
carbon taxes. This initial decrease in GDP can be seen as a reflection of the
economic adjustments and transition costs associated with implementing the
carbon tax scheme.

As we observe the movement of the lines over time, their convex shape
captures the complex relationship between climate change mitigation measures
and economic growth. This curvature suggests that, despite the challenges
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and adjustments faced in transitioning to a low-carbon economy, both the
adjusted carbon stock and carbon tax scenarios ultimately lead to economic
growth. This finding indicates that efforts to mitigate climate change do not
necessarily impede long-term economic prosperity. The convergence of the
red and blue lines, intersecting at a value of 1 between the years 2150 and
2200, highlights an important observation. It implies that, in the long run, the
economic impact of the adjustment in the model and the implementation of
the carbon tax scheme can be comparable, resulting in a similar level of real
GDP. This suggests that the chosen adjustment and the carbon tax scheme can
effectively balance climate change mitigation with economic growth objectives.
However, the steeper curve of the blue line in the later years, particularly
noticeable towards the year 2250, indicates that the carbon tax scheme leads
to a higher value of real GDP compared to the adjusted carbon stock scenario.
This finding suggests that the carbon tax scheme, with its increasing tax rate
over time, not only supports climate change mitigation but also promotes
greater economic growth. It underscores the potential economic benefits of
aligning environmental objectives with market-based mechanisms.

In summary, Figure 14 provides valuable insights into the economic reper-
cussions of the adjustment made in the model to mitigate climate change. It
demonstrates that the chosen adjustment and the implementation of a car-
bon tax scheme can yield positive economic outcomes while addressing envi-
ronmental concerns. These findings emphasize the importance of considering
both economic and environmental factors when formulating climate change
mitigation strategies.

6 Conclusion

In conclusion, this study aimed to investigate and analyze strategies to pre-
vent the global average temperature from surpassing a 2-degree Celsius increase
above pre-industrial levels, in alignment with the objectives of the Paris Agree-
ment. By examining existing literature and utilizing a Python-based model
based on the framework proposed by Cruz & Rossi-Hansberg (2022), we ex-
plored various parameters and their effects on key variables such as tempera-
ture, CO2 emissions, clean energy utilization, GDP, and population density.

Through our research, we aimed to contribute to the understanding of the
actions and policies necessary to fulfill the commitments of the Paris Agree-
ment. The findings of this study provide valuable insights for policymak-
ers, researchers, and stakeholders, aiding them in the development of effective
strategies for climate change mitigation and adaptation. Integrating climate
considerations into decision-making processes is crucial for businesses and or-
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ganizations to play a vital role in working towards a sustainable and resilient
future.

Our baseline model provides a perspective on the potential trajectory of
global climate change if no significant actions are taken to mitigate greenhouse
gas emissions and limit temperature rise. Based on the model’s findings, there
is a notable risk of surpassing the critical 2-degree Celsius temperature thresh-
old. The limited progress in emissions reduction observed in certain regions,
along with the intensification of warmth at the equator, suggests that without
effective intervention, the world may exceed the desired temperature targets
outlined in the Paris Agreement. These results emphasize the urgent need for
decisive and comprehensive strategies to address climate change and prevent
the potential consequences associated with surpassing the 2-degree threshold.
It is imperative for policymakers, researchers, and stakeholders to collaborate
and take swift action to reduce emissions, transition to clean energy sources,
and implement sustainable practices to ensure a sustainable and resilient future
for generations to come.

Our analysis examined the impact of several adjusted parameters on the
transition to cleaner energy sources and the mitigation of climate change. The
elasticity of substitution (e) between fossil fuels and clean energy, investigated
through our model, revealed its significant influence on energy consumption
patterns and the shift towards clean energy. Higher values of e indicated a
greater substitutability between the two types of energy, leading to reduced
CO2 emissions, a more prominent adoption of clean energy, and increased
demand for sustainable alternatives. However, our model indicated that the
value of e did not have a substantial impact on the ability to remain below the
2-degree threshold for global temperature increase.

Our investigation into the total stock of carbon dioxide available for en-
ergy production demonstrated its significant role in shaping emissions and
temperature trajectories. Modifying this parameter in our model revealed dis-
tinct patterns. Higher maximum cumulative CO2 values resulted in emissions
curves with a concave shape, characterized by higher CO2 levels and more
pronounced temperature increases. Conversely, lower values yielded declining
emissions curves and slower temperature trajectories. This highlights the crit-
ical importance of managing and reducing carbon dioxide stocks to effectively
mitigate climate change. Moreover, it is worth noting that the substantial
decline to a maximum cumulative CO2 value of 2,650, as observed in our
model, represents a significant reduction that may be challenging to achieve
in practice, considering its potential unrealistic nature.

The implementation of a carbon tax scheme emerged as a vital compo-
nent in achieving the temperature target of the Paris Agreement. Our findings
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suggest that a carbon tax with a gradually increasing rate over time proved
more effective in achieving long-term emission reductions, compared to a fixed
200% ad-valorem carbon tax that led to a rebound effect. However, it is im-
portant to note that carbon taxes alone are insufficient and should be comple-
mented by incentives for technological advancements and sustainable practices.
Furthermore, it is crucial to acknowledge that the significant difference between
the proposed carbon tax schemes and the current policy landscape represents
a considerable challenge in terms of transitioning to such approaches.

In our baseline model, we chose the RCP 8.5 scenario, considered the
most challenging in terms of mitigation efforts and adaptation requirements.
Despite the severity of this scenario, our analysis demonstrates the effectiveness
of the selected mitigation policies, namely the adjustment of the total stock
of carbon dioxide available for energy production and the implementation of a
carbon tax scheme. While it is true that substantial adjustments were required
to achieve the 2-degree target within the context of RCP 8.5, it is important to
consider that a lower RCP scenario may have necessitated less drastic changes
in these policies. Nevertheless, the results highlight the crucial role of proactive
and ambitious actions in reducing emissions, managing carbon dioxide stocks,
and implementing effective economic incentives to steer the trajectory towards
climate stabilization, even in the face of the most challenging scenarios.

In conclusion, this study highlights the urgency and complexity of ad-
dressing climate change to prevent the adverse impacts of exceeding the 2-
degree Celsius threshold. It emphasizes the need for immediate and collabo-
rative actions by stakeholders to reduce emissions, transition to clean energy
sources, and implement comprehensive policies that consider the interplay of
various parameters. By pursuing these strategies and promoting sustainable
practices, we can strive for a resilient and sustainable future for generations to
come.
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8 Appendix

8.1 Maps

8.1.1 Local CO2 emissions

Baseline in year 2200

Figure 15: Local CO2 emissions: Baseline

Climate success in year 2200

Figure 16: Local Log CO2 emissions: Climate Success
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8.1.2 Local clean energy use

Baseline in year 2200

Figure 17: Local clean energy: Baseline

Climate success in year 2200

Figure 18: Local clean energy: Climate Success
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8.1.3 January-July temperature

Baseline in year 2000

Figure 19: Local temperature January-July: Baseline

Climate success in year 2200

Figure 20: Local temperature January-July: Climate success
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8.1.4 Population density

Clinate success in year 2200

Figure 21: Population density: Climate Success
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8.2 Python Code

1 # Initializing - Function that loads the data and
2 # generates the global variables of the model. import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd
5 import math
6 import h5py
7 import scipy.io
8 import csv
9 import scipy.optimize as optimize

10 from scipy.optimize import root
11 #datapath = "/Users/jonebo/Documents/BI/Masteroppgave/Code/Data"
12 def initialize(ind_RCP , maxCO2 , eps ,datapath =
13 "/Users/jonebo/Documents/BI/Masteroppgave/Code/Data"):
14
15 max_cumCO2 = maxCO2 = 19500
16 ind_RCP = 8.5
17 eps = 0.6
18 lbar = 5.9174e+09 # total population
19 lambda1 = 0.32 # congestion externalities
20 gamma1 = 0.319 # elasticity of tomorrow ’s productivity relative to today ’s innovation
21 gamma2 = 0.99246 # elasticity of tomorrow ’s productivity relative to today’s productivity
22 eta = 1 # parameter driving scale of technology diffusion
23 mu = 0.8 # labor share in production
24 nu = 0.15 # intercept parameter in innovation cost function
25 ksi = 125 # elasticity of innovation costs relative to innovation
26 psi_util = 0.045 # wellbeing parameter
27 beta = 0.965 # discount factor for present discounted values
28 alpha = 0.06 # agglomeration externalities
29 theta = 6.5 # variance productivity shocks
30 Omega = 0.5 # variance taste shocks
31 tCO2_toe = 2.8466 # conversion factor: GtCO2 per Gtoe
32 price_fossil0_world = 72.99*1000000000 # price of fossil fuels in usd/GtCO2
33 price_clean0_world = 1.15*76.34*10**9/ tCO2_toe # price of clean energy in usd/GtCO2
34
35 H0_d5py = h5py.File(datapath+’H0_areal.mat’,’r’)
36 data=H0_d5py.get(’H0’)
37 H0=np.array(data).T
38 H=H0.T[np.nonzero(H0.T)]
39 n = len(H) #Numbers of cells with positive land
40
41 # The ratio of amenities to utility.
42 amen_util_H0_d5py = h5py.File(datapath+’Derived/amen_util.mat’,’r’)
43 data = amen_util_H0_d5py.get(’amen_util_H0 ’)
44 amen_util_H0=np.array(data).T
45 amen_util0 = amen_util_H0[ :,2] #Data from year 2000
46
47 # Productivities in 2000
48 prod_H0_d5py = h5py.File(datapath+’Derived/prod.mat’,’r’)
49 data = prod_H0_d5py.get(’prod_H0 ’)
50 prod_H0 = np.array(data).T
51 prod0 = prod_H0[ :,2] #Data from year 2000
52
53 #Population
54 data_pop_d5py= h5py.File(datapath+’pop_Gecon.mat’,’r’)
55 data_pop=data_pop_d5py.get(’pop’)
56 pop_aux=np.array(data_pop ).T
57 pop0=pop_aux [:,:,2] #Population in 2000
58 pop0_dens = pop0.T[H0.T>0]/H0.T[H0.T>0]
59 pop5=pop_aux [:,:,3] #Population in 2005
60 pop5_dens = pop5.T[H0.T>0]/H0.T[H0.T>0]
61 pop1_dens= (4/5) * pop0_dens + (4/5) * pop5_dens
62
63 #Wages
64 data_wage_d5py = h5py.File(datapath+’wage_Gecon.mat’,’r’)
65 data_wage=data_wage_d5py.get(’wage’)
66 wage_aux=np.array(data_wage ).T
67 W0 = wage_aux [:,:,2] #Wage in 2000
68 w0 = W0.T[H0.T>0]
69
70 #Agriculture index
71 share_agri_grid = pd.read_csv(datapath+’share_agri_grid.csv’, header=None)
72 s_array = np.array(share_agri_grid)
73 share_agri= s_array.T[np.nonzero(H0.T)]
74 agri_index = 10 * np.round(share_agri , 1) + 1
75
76 #HDI in 2000
77 data_HDI_GDPpc = pd.read_csv(datapath+’HDI_GDPpc.csv’, sep=’,’)
78 data_HDI0 = data_HDI_GDPpc.loc[:n-1,"HDI_17048"]
79
80 HDI0 = np.empty ((180 , 360)) #Human Development Index in 2000
81 HDI0.T[H0.T>0] = data_HDI0
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82 u0 = np.exp( HDI0.T[H0.T >0]**3 / psi_util ) #Utility in 2000
83 a_norm = amen_util0*u0 #Amenities in 2000
84
85 #Bilateral trade cost on Earth cells at t=0 only
86 trmult_reduced = np.array(h5py.File(datapath+’trmult_reduced.mat’)[’trmult_reduced ’]).T
87
88 # National demarcations
89 C = pd.read_csv(datapath+’C.csv’, sep=’,’,header=None)
90 arr_c_vect = C.to_numpy ()
91 C_vect = arr_c_vect.T[H0.T>0]
92 uni_c = np.unique(C_vect)
93 length_C_vect = len (uni_c)
94
95 # Developed and developing world
96 D = pd.read_csv(datapath+’D.csv’, sep=’,’,header=None)
97 arr_d_vect = D.to_numpy ()
98 D_vect = arr_d_vect.T[H0.T>0]
99 uni_d = np.unique(D_vect)

100 length_D_vect = len (uni_d)
101
102 #Africa and rest of the world
103 Africa = pd.read_csv(datapath+’Africa_map.csv’,header=None)
104 arr_africa_vect = Africa.to_numpy ()
105 Africa_vect = arr_africa_vect.T[H0.T>0]
106 uni_africa_vect = np.unique(Africa_vect)
107 length_Africa_vect = len (uni_africa_vect)
108
109 # Global CO2 emissions from fossil fuels from 2000 to 2600, by IPCC
110 emi_ff_RCP = pd.read_csv(datapath+’CO2_ff.csv’,header=None)
111 emi_ff = emi_ff_RCP [5-int(np.floor(ind_RCP /2)) -1]
112 emi0_ff = emi_ff [0]
113
114 # Global CO2 emissions from NON fossil fuels from 2000 to 2600, by IPCC
115 emi_no_ff_RCP = pd.read_csv(datapath+’CO2_noff_smooth.csv’,header=None)
116 emi_no_ff = emi_no_ff_RCP [5-int(np.floor(ind_RCP /2)) -1]
117 emi0_no_ff = emi_no_ff [0] emi_no_ff = emi_no_ff [1:]
118
119 #Total CO2 emissions for 2000
120 emi0 = emi0_no_ff + emi0_ff #Total CO2 emissions for 2000
121
122 #CO2 emissions at cell level for 2000
123 data_emi_d5py = scipy.io.loadmat(datapath+’CO2_EDGAR.mat’)
124 data_emi_d5py.keys()
125 emi_cell = data_emi_d5py["CO2_EDGAR"]
126 emi_cell_two = emi_cell [:,:,2]
127 emi0_cell = emi_cell_two.T[H0.T>0]
128
129 # Match CO2 emissions and clean energy at the country level for 2000
130 for i in range(1, length_C_vect +1):
131 emi0_ff_cell[C_vect ==i] = emi0_cell[C_vect ==i]* emi0_ff_country[i-1]/ \
132 np.sum(emi0_cell[C_vect ==i])
133 clean0_cell[C_vect ==i] = emi0_cell[C_vect ==i]* clean0_country[i-1] / \
134 np.sum(emi0_cell[C_vect ==i])
135
136 emi0_ff_cell = emi0_ff_cell*emi0_ff/np.sum(emi0_ff_cell)
137 emi0_ff_cell = emi0_ff_cell/H clean0_cell = clean0_cell/H
138 #Define global use of fossil fuels and clean energy
139 clean0 = (clean0_cell * H).sum()
140 fossil0 = emi0_ff.copy() #global use of of fossil fuels
141
142 #Construct share of fossil fuels in energy composite
143 fossil_share = (1+( price_clean0_world/price_fossil0_world )*( clean0/fossil0 )**(1/ eps ))**( -1)
144
145 #Construct share of energy in production , equations (7) and (25)
146 price_energy0_world = (( fossil_share **eps) * (price_fossil0_world **(1-eps)) + \
147 (1- fossil_share )**eps*price_clean0_world **(1-eps ))**(1/(1 - eps))
148 energy0 = (fossil_share*fossil0 **((eps -1)/ eps) + \
149 (1- fossil_share )* clean0 **((eps -1)/ eps )**( eps/(eps -1))
150
151 GDP0 = (H * pop0_dens* w0).sum()
152 energy_share = price_energy0_world * energy0 * (mu + (gamma1/ksi))/ GDP0
153 chi = 1 - energy_share/mu
154 #Read cost extraction data
155 cost_CO2_data=pd.read_csv(datapath+’CO2_cost.csv’, header=None)
156
157 #Define cost extraction function
158 def costCO2_fct_aux(cumCO2 ,* cost_emi_param_aux ):
159 f = (cost_emi_param_aux [0])/( cost_emi_param_aux [1] + \
160 np.exp(- cost_emi_param_aux [2]*( cumCO2 -cost_emi_param_aux [3]))) - \
161 (cost_emi_param_aux [4]*19500/( cumCO2 -19500))**3
162 return f
163
164 #Find parameters that better fit the data
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165 cost_emi_param_i = np.array ([2.0 , 1, 1e-4 ,5000 ,1]) # intial guess
166 xdata = cost_CO2_data [1]
167 ydata = cost_CO2_data [0]
168 lb = [1, 0, 0, 0, 0]
169 ub = [np.inf , np.inf , 5*1e-4, np.inf , np.inf]
170 tol = 1e-12
171
172 res = optimize.curve_fit(costCO2_fct_aux , xdata , ydata , p0=cost_emi_param_i , \
173 bounds =(lb ,ub),method=’trf’,xtol=tol ,ftol = tol , gtol=tol ,verbose =1)
174
175 #Redefine extraction
176 cost_emi_param_f = res[0]
177 cost_emi_param_f [4] = cost_emi_param_f [4]**3
178 cost_emi_param = np.concatenate (( cost_emi_param_f , [maxCO2 , 3]))
179
180 #Define normalization relative to Princeton wage
181 GDPpc0 = GDP0 / (w0 [3198] * lbar)
182 cost_emi_param [0] = cost_emi_param [0] / GDPpc0
183 cost_emi_param [4] = cost_emi_param [4] / GDPpc0
184 price_clean0_world = price_clean0_world / GDPpc0
185 conv_usd = 1 / GDPpc0
186
187 def costCO2_fct(cumCO2 ):
188 f = cost_emi_param [0] / (cost_emi_param [1] + np.exp(-cost_emi_param [2] * \
189 (cumCO2 - cost_emi_param [3]))) - cost_emi_param [4] * \
190 (cost_emi_param [5] / (cumCO2 - cost_emi_param [5])) ** cost_emi_param [6]
191 return f
192
193 # Construct energy use at the cell level , equation (7)
194 fossil0_cell = emi0_ff_cell.copy()
195 energy0_cell = (fossil_share * (fossil0_cell ** ((eps -1) / eps)) + (1- fossil_share) * \
196 (clean0_cell ** ((eps -1) / eps))) ** (eps / (eps -1))
197
198 # Construct energy price at the cell level by source , equations (29), (30) and (25)
199 const_energy = (1-chi) * mu / (mu + gamma1/ksi)
200 price_clean0 = const_energy * (1- fossil_share) * \
201 (pop0_dens / energy0_cell) * (( energy0_cell / clean0_cell) ** (1/eps))
202 price_fossil0 = const_energy * fossil_share * \
203 (pop0_dens / energy0_cell) * (energy0_cell / fossil0_cell) ** (1/eps)
204 price_energy0 = (( fossil_share ** eps * price_fossil0 ** (1-eps)) + \
205 ((1- fossil_share) ** eps * price_clean0 ** (1-eps ))) ** (1/(1 -eps))
206 price_fossil0_avg = sum(price_fossil0 * fossil0_cell * H) / sum(fossil0_cell * H)
207 price_fossil0_adj = price_fossil0_world / (1e9 * price_fossil0_avg)
208
209 # Construct initial energy productivities
210 zeta_clean0 = price_clean0_world / price_clean0
211 zeta_fossil0 = costCO2_fct (0) / price_fossil0
212
213 #Set parameters regarding depreciation of CO2 in the atmosphere
214 a0 = 0.2173 #share of CO2 emissions remaining in the atmosphere forever
215 a1 = 0.2240 #share of CO2 emissions associated with the timescale b1
216 a2 = 0.2824
217 a3 = 0.2763
218 b1 = 394.4
219 b2 = 36.54
220 b3 = 4.304
221 S_preind = 2200 #CO2 stock in pre -industrial era
222
223 #Read total CO2 emissions from 1999 to 1945
224 emiCO2_data_mat = pd.read_csv(datapath+’CO2_hist.csv’,sep=’\t’,header=None).iloc [0:25]
225
226 emiCO2_data = np.flipud(emiCO2_data_mat.to_numpy (). flatten ())
227 length_emi_data = len (emiCO2_data)
228 sum_emiCO2_data = emiCO2_data.sum()
229 vec=np.arange(start=0, stop=length_emi_data ,step =1)
230 S0= a0 * sum_emiCO2_data + S_preind
231 S1= a1 * np.sum(np.exp(-(vec) / b1) * emiCO2_data)
232 S2= a2 * np.sum(np.exp(-(vec) / b2) * emiCO2_data)
233 S3= a3 * np.sum(np.exp(-(vec) / b3) * emiCO2_data)
234
235 # Set forcing parameters
236 forc_sens = 5.35
237
238 # Read non CO2 radiative forcing
239 forc_noCO2_RCP = np.genfromtxt(datapath+’Forcing_noCO2_smooth.csv’, delimiter=",")
240 if ind_RCP != 7.25:
241 forc_noCO2 = forc_noCO2_RCP [:, 4 - int(np.floor(ind_RCP /2))]
242 else:
243 forc_noCO2 = 0.5*( forc_noCO2_RCP [:, 4 - int(np.floor (8.5/2))] + \
244 forc_noCO2_RCP [:, 4 - int (6/2)])
245
246 # Set global temperature parameters
247 c1 = 0.631
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248 c2 = 0.429
249 d1 = 8.4
250 d2 = 409.5
251 temp_preind = 8.1 # temperature in pre -industrial era
252
253 # Read forcing from 2000 to 1825
254 forc_data = np.flipud(np.genfromtxt(datapath+’Forcing_hist.csv’, delimiter=","))
255 length_forc_data = len(forc_data)
256
257 # Initialize temperature layers , equation (35)
258 temp1 = (c1/d1)*np.sum(np.exp(-(np.arange(0,length_forc_data ,1))/ d1)* forc_data)
259 temp2 = (c2/d2)*np.sum(np.exp(-(np.arange(0,length_forc_data ,1))/ d2)* forc_data) + \
260 temp_preind
261 temp0_global = temp1 + temp2
262
263 data_temp = scipy.io.loadmat(datapath+’temp.mat’)
264 temp0_local_long = data_temp[’temp0_local_10y ’]
265 temp0_local = data_temp[’temp0_local_10y_mean ’]
266 Delta_temp1 = data_temp[’Delta_temp1 ’]
267 temp_past = data_temp[’temp_10y_past ’]
268 Delta_temp = data_temp[’Delta_temp ’]
269
270 # Read temperature scaler computed in temp_downscaling.do
271 scaler_table = pd.read_csv(datapath+’/Derived/scaler_temp.csv’)
272 lat_scaler = scaler_table.iloc[:, 0]. values
273 lon_scaler = scaler_table.iloc[:, 1]. values
274 scaler_data = scaler_table.iloc[:, 4]. values
275 length_scaler = len(lon_scaler)
276
277 # Arrange temperature scaler in a grid
278 scaler_grid = np.full ((180 , 360), np.nan)
279 for i in range(0, length_scaler ):
280 lat_index = int (90.5 - lat_scaler[i]-1)
281 lon_index = int(lon_scaler[i] + 180.5 -1)
282 scaler_grid[lat_index , lon_index] = scaler_data[i]
283 scaler_grid[H0 == 0] = np.nan
284
285 scaler_grid_long = np.hstack (( scaler_grid [:, 340:360] , scaler_grid , scaler_grid [:, 0:20]))
286 H0_long = np.hstack ((H0[:, 340:360] , H0, H0[:, 0:20]))
287
288 #for i in range (1 ,12):
289 # for k in range (5):
290 i=1
291 k=0
292 indi_scaler = (H0_long > 0) & np.isnan(scaler_grid_long)
293 lat_scaler , lon_scaler =np.where(indi_scaler == True)
294 cent_scaler = (lon_scaler > 20-1) & (lon_scaler < 381-1)
295 lat_scaler = lat_scaler[cent_scaler]
296 lon_scaler = lon_scaler[cent_scaler]
297 length_scaler = len(lat_scaler)
298
299 for j in range(length_scaler ): #length_scaler
300 slice_vec = scaler_grid_long[lat_scaler[j]-i:lat_scaler[j]+i+1,\
301 lon_scaler[j]-i:lon_scaler[j]+i+1]
302 if np.count_nonzero (~np.isnan(slice_vec )) > 0:
303 scaler_grid_long[lat_scaler[j], lon_scaler[j]] = np.nanmean(slice_vec)
304 scaler_grid_long = np.hstack (( scaler_grid [:, 340:360] , scaler_grid , scaler_grid [:, 0:20]))
305 H0_long = np.hstack ((H0[:, 340:360] , H0, H0[:, 0:20]))
306
307 for i in range (1 ,12):
308 for k in range (5):
309 indi_scaler = (H0_long > 0) & np.isnan(scaler_grid_long)
310 lat_scaler , lon_scaler = np.where(indi_scaler == True)
311 cent_scaler = (lon_scaler > 20-1) & (lon_scaler < 381-1)
312 lat_scaler = lat_scaler[cent_scaler]
313 lon_scaler = lon_scaler[cent_scaler]
314 length_scaler = len(lat_scaler)
315
316 for j in range(length_scaler ):
317
318 slice_vec = scaler_grid_long[lat_scaler[j]-i:lat_scaler[j]+i+1, lon_scaler[j]-i:lon_scaler[j]+i+1]
319
320 if np.count_nonzero (~np.isnan(slice_vec )) > 0:
321 scaler_grid_long[lat_scaler[j], lon_scaler[j]] = np.nanmean(slice_vec)
322 total_sum2 = np.nansum(scaler_grid_long)
323 scaler_temp2 = scaler_grid_long [:, 20:380]
324 scaler_temp = scaler_temp2.T[H0.T>0]
325
326 # Read coefficients from damage function estimated in damage_function.do
327 theta_amen_logi_vect = pd.read_csv(datapath+’Derived/amen_coeff_10y_1h_20b_550d.csv’)
328 theta_amen_logi_vect = theta_amen_logi_vect.to_numpy ()
329 theta_prod_logi_vect = pd.read_csv(datapath+’Derived/prod_coeff_10y_1h_20b_550d.csv’)
330 theta_prod_logi_vect = theta_prod_logi_vect.to_numpy ()
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331 theta_amen_scen = theta_amen_logi_vect [:, :9]
332 theta_prod_scen = theta_prod_logi_vect [:, :9]
333 theta_amen_min = theta_amen_scen [0, 8]
334 theta_amen_max = theta_amen_scen [1, 8]
335 theta_amen_center = theta_amen_scen [2, 8]
336 theta_amen_steep = theta_amen_scen [3, 8]
337
338 def theta_amen_temp(temp):
339 return theta_amen_min + (theta_amen_max - theta_amen_min) /(1 + \
340 np.exp(theta_amen_steep * (temp - theta_amen_center )))
341
342 theta_prod_min = theta_prod_scen [0, 8]
343 theta_prod_max = theta_prod_scen [1, 8]
344 theta_prod_center = theta_prod_scen [2, 8]
345 theta_prod_steep = theta_prod_scen [3, 8]
346
347 def theta_prod_temp(temp):
348 return theta_prod_min + (theta_prod_max - theta_prod_min) /(1 + \
349 np.exp(theta_prod_steep * (temp - theta_prod_center )))
350
351 # Display results for damage function estimates
352 temp_cold = -37.79
353 temp_hot = 25.77
354 sol_amen = root(theta_amen_temp , 0)
355 sol_prod = root(theta_prod_temp , 0)
356
357 theta_amen_logi_vect_agri =
358 pd.read_csv(datapath+’derived/amen_coeff_full_agri_10y_1h_20b_550d.csv’)
359 theta_amen_scen_agri = theta_amen_logi_vect_agri.values
360
361 theta_prod_logi_vect_agri =
362 pd.read_csv(datapath+’derived/prod_coeff_full_agri_10y_1h_20b_550d.csv’)
363 theta_prod_scen_agri = theta_prod_logi_vect_agri.values
364
365 # Read net birth historical data
366 birth_death = np.genfromtxt(datapath+’birth_death_pop.csv’, delimiter=’,’)
367 country_data = birth_death [:,0]
368 year_data = birth_death [:,1]
369 natal_data = birth_death [:,2]
370 pop_data = birth_death [:,3]
371
372 # Define natality rates of 2000 and 2020
373 natal0 = sum(natal_data[year_data ==2000] * pop_data[year_data ==2000]) /sum(pop_data[year_data ==2000])
374 natal20 = sum(natal_data[year_data ==2020] * pop_data[year_data ==2020]) / sum(pop_data[year_data ==2020])
375
376 # Keep data for years < 2001
377 natal_data = natal_data[year_data < 2001]
378 country_data = country_data[year_data < 2001]
379 pop_data = pop_data[year_data < 2001]
380 year_data = year_data[year_data < 2001]
381
382 # Read UN population projections
383 pop_hist = np.genfromtxt(datapath+’pop_uncert.csv’, delimiter=’,’)
384 pop_low95 = pop_hist[0, 50:]
385 pop_low80 = pop_hist[1, 50:]
386 pop_med = pop_hist[2, 50:]
387 pop_high80 = pop_hist[3, 50:]
388 pop_high95 = pop_hist[4, 50:]
389 pop_low95_hist = pop_hist[0, :]
390 pop_low80_hist = pop_hist[1, :]
391 pop_med_hist = pop_hist[2, :]
392 pop_high80_hist = pop_hist[3, :]
393 pop_high95_hist = pop_hist[4, :]
394 emi_ff_RCP = np.genfromtxt(datapath+’CO2_ff.csv’, delimiter=’,’)
395 emi_no_ff_RCP = np.genfromtxt(datapath+’CO2_noff_smooth.csv’, delimiter=’,’)
396 emiCO2_RCP = emi_ff_RCP + emi_no_ff_RCP
397 stockCO2_layers_RCP = np.zeros ((4, 600, 4))
398 forc_RCP = np.zeros ((600, 4))
399 temp_layers_RCP = np.zeros((2, 600, 4))
400
401 # Construct CO2 stock , forcing and temperature , using data on CO2 emissions and non -CO2

# forcing , equations (16) and (33) -(35)
402 for i in range (4):
403 #i=0
404 stockCO2_layers_RCP [0, 0, i] = S0 + a0 * emiCO2_RCP [0, i]
405 stockCO2_layers_RCP [1, 0, i] = (np.exp(-1 / b1)) * S1 + a1 * emiCO2_RCP [0, i]
406 stockCO2_layers_RCP [2, 0, i] = (np.exp(-1 / b2)) * S2 + a2 * emiCO2_RCP [0, i]
407 stockCO2_layers_RCP [3, 0, i] = (np.exp(-1 / b3)) * S3 + a3 * emiCO2_RCP [0, i]
408
409 forc_RCP[0, i] = forc_sens * np.log(np.sum(stockCO2_layers_RCP [:, 0, i]) / S_preind) \
410 + forc_noCO2_RCP [0, i]
411
412 temp_layers_RCP [0, 0, i] = (np.exp(-1 / d1)) * temp1 + (c1 / d1) * forc_RCP[0, i]
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413 temp_layers_RCP [1, 0, i] = (np.exp(-1 / d2)) * temp2 + (c2 / d2) * forc_RCP[0, i]
414
415
416 for t in range (599):
417 stockCO2_layers_RCP [0, t + 1, i] = stockCO2_layers_RCP [0, t, i] + \
418 a0 * emiCO2_RCP[t + 1, i]
419 stockCO2_layers_RCP [1, t + 1, i] = (np.exp(-1 / b1)) * \
420 stockCO2_layers_RCP [1, t, i] + a1 * emiCO2_RCP[t + 1, i]
421 stockCO2_layers_RCP [2, t + 1, i] = (np.exp(-1 / b2)) * \
422 stockCO2_layers_RCP [2, t, i] + a2 * emiCO2_RCP[t + 1, i]
423 stockCO2_layers_RCP [3, t + 1, i] = (np.exp(-1 / b3)) * \
424 stockCO2_layers_RCP [3, t, i] + a3 * emiCO2_RCP[t + 1, i]
425 forc_RCP[t+1, i] = forc_sens * np.log(np.sum(stockCO2_layers_RCP [:, t+1, i]) \
426 / S_preind )/np.log(2) + forc_noCO2_RCP[t+1, i]
427
428
429 temp_layers_RCP [0, t+1, i] = (np.exp(-1 / d1)) * temp_layers_RCP [0, t, i] + \
430 (c1 / d1) * forc_RCP[t+1, i]
431 temp_layers_RCP [1, t+1, i] = (np.exp(-1 / d2)) * temp_layers_RCP [1, t, i] + \
432 (c2 / d2) * forc_RCP[t+1, i]
433
434 stockCO2_RCP = np.sum(stockCO2_layers_RCP , axis =0)
435 temp_global_RCP = np.sum(temp_layers_RCP , axis =0) # Historical clean energy use
436 clean_energy_data = pd.read_csv(datapath+’clean_energy_hist.csv’)
437 clean_energy_data = clean_energy_data.iloc [:-1,:] # from 1965 to 1999
438
439 # Historical fossil fuel CO2 emission and its trend
440 emi_ff_all = np.genfromtxt(datapath+’CO2_hist_ff.csv’, delimiter=’,’)
441 emi_ff_data = emi_ff_all [:, 0]
442 emi_ff_data_tend = emi_ff_all [:,1]
443 map_data = scipy.io.loadmat(datapath+’map_grid.mat’)
444 map0 = map_data[’map’] # map of size 2700 x5400 for a better resolution of plots
445 map_lat , map_lon = map0.shape
446 aux_lon = np.linspace (-180,180, map_lon +1)
447 aux_lon = (aux_lon [:-1]+ aux_lon [1:])/2
448 aux_lat = np.linspace (-90,90, map_lat +1)
449 aux_lat = (aux_lat [:-1]+ aux_lat [1:])/2
450 aux_kron = np.ones(( map_lat //180, map_lat //180))
451 b0y_max = 0.045
452 b1y_min = 0.01
453 b1y_max = 0.03
454 b2y_min = -0.00090
455 b2y_max = -0.00050
456 b2T_max = 0.015
457 bsy_min = 0
458 bsy_max = 8
459 bsT_min = 14
460 bsT_max = 22
461 natal_param = [b0y_max , b1y_min , b1y_max , b2y_min , b2y_max , b2T_max , bsy_min , \
462 bsy_max , bsT_min , bsT_max]
463
464 color_olive = [128/255 , 128/255 , 0/255]
465 color_darkgreen = [0/255 , 100/255 , 0/255]
466 color_darkcyan = [0/255 , 139/255 , 139/255]
467 color_yellowgreen = [154/255 , 205/255 , 50/255]
468 color_greenyellow = [173/255 , 255/255 , 47/255]
469 color_darkseagreen = [143/255 , 188/255 , 143/255]
470 color_limegreen = [50/255 , 205/255 , 50/255]
471
472 name_type_vect = [’Warm’, ’WarmAm ’, ’WarmPr ’, ’WarmRCP6 ’, ’WarmRCP7 .25’, ’WarmAg ’]
473 name_long_type_vect = [’’, ’onlyAm_ ’, ’onlyPr_ ’, ’RCP6’, ’RCP7 .25’, ’agri’]
474 name_maps_type_vect = [’’, ’effect�only�on�amenities ’, ’effect�only�on�productivity ’, \
475 ’RCP�6.0’, ’RCP�7.25’, ’effects�by�industry ’]
476
477
478 name_dam_vect = [’low95’, ’high95 ’, ’low90’, ’high90 ’, ’low80’, ’high80 ’, ’low60 ’, ’high60 ’, ’med’]
479
480 name_dam_long_vect = [’Low�95%’, ’High�95%’, ’Low�90%’, ’High�90%’, ’Low�80%’, \
481 ’High80%’, ’Low�60%’, ’High�60%’, ’Baseline ’]
482
483 table_prop = [’�’, ’BGP�Real�GDP’, ’PDV�Real�GDP’, ’BGP�Welfare ’, ’PDV�Welfare ’]
484
485 return {’H’:H, ’amen_util0 ’:amen_util0 , ’a_norm ’:a_norm , ’prod0 ’:prod0 , ’n’:n,
486 ’lbar’:lbar , ’lambda1 ’:lambda1 ,’gamma2 ’:gamma2 , ’eta’:eta , ’mu:mu ,�’ksi’:ksi ,�’alpha’:alpha ,
487 ’theta’:theta ,��’omega’:omega ,�’trmult_reduced ’:trmult_reduced ,
488 ’gamma1 ’:gamma1 ,�’eta’:eta ,�’emi0_ff ’:emi0_ff ,�’emi_no_ff ’:emi_no_ff ,�’emi0’:emi0 ,�’chi’:chi ,
489 ’cost_emi_param ’:cost_emi_param ,�’a0’:a0,�’a1’:a1,�’a2’:a2 ,�’a3’:a3 ,�’b1’:b1,�’b2’:b2,�’b3’:b3,
490 ’S0’:S0,�’S1’:S1,�’S2’:S2,�’S3’:S3 ,��’S_preind ’:S_preind ,�’forc_sens ’:forc_sens ,
491 ’forc_noCO2 ’:forc_noCO2 ,�’c1’:c1,�’c2’:c2,�’d1’:d1 ,�’d2’:d2 ,�’temp1’:temp1 ,�’temp2’:temp2 ,
492 ’temp0_global ’:temp0_global ,�’temp0_local ’:temp0_local ,�’scaler_temp ’:scaler_temp ,
493 ’theta_amen_scen ’:theta_amen_scen ,�’theta_prod_scen ’:theta_prod_scen ,
494 ’theta_amen_scen_agri ’:theta_amen_scen_agri ,�’theta_prod_scen_agri ’:theta_prod_scen_agri ,
495 ’name_dam_vect ’:name_dam_vect ,�’price_clean0_world ’:price_clean0_world ,
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496 ’zeta_clean0 ’:zeta_clean0 ,�’zeta_fossil0 ’:zeta_fossil0 ,�’fossil_share ’:fossil_share ,
497 ’D_vect ’:D_vect ,�’Africa_vect ’:Africa_vect ,�’length_D_vect ’:length_D_vect ,
498 ’length_Africa_vect ’:length_Africa_vect ,�’agri_index ’:agri_index ,’natal_param ’:natal_param ,
499 ’natal0 ’:natal0 ,�’natal20 ’:natal20 ,�’name_type_vect ’:name_type_vect ,
500 ’name_long_type_vect ’:name_long_type_vect ,�’name_maps_type_vect ’:name_maps_type_vect ,
501 ’H0’:H0,�’pop0_dens ’:pop0_dens ,�’C_vect ’:C_vect ,�’tCO2_toe ’:�tCO2_toe ,
502 ’fossil0_cell ’:fossil0_cell ,�’clean0_cell ’:clean0_cell ,�’aux_lon ’:aux_lon ,�’aux_lat ’:aux_lat ,
503 ’aux_kron ’:aux_kron ,�’emiCO2_RCP ’:emiCO2_RCP ,�’stockCO2_RCP ’:stockCO2_RCP ,
504 ’temp_preind ’:temp_preind ,�’temp_global_RCP ’:temp_global_RCP ,�’pop_low95 ’:pop_low95 ,
505 ’pop_low80 ’:pop_low80 ,�’pop_med ’:pop_med ,�’pop_low95 ’:pop_low95 ,�’pop_high95 ’:pop_high95 ,
506 ’pop_high80 ’:pop_high80 ,�’map0’:map0 ,�’color_darkcyan ’:color_darkcyan ,
507 ’color_olive ’:color_olive ,�’color_darkgreen ’:color_darkgreen ,
508 ’color_yellowgreen ’:color_yellowgreen ,�’conv_usd ’:conv_usd ,�’price_fossil0 ’:price_fossil0 ,
509 ’price_clean0 ’:price_clean0 ,�’emiCO2_RCP ’:emiCO2_RCP ,�’eps’:eps ,�’maxCO2 ’:maxCO2 ,
510 ’ind_RCP ’:ind_RCP}

Listing 1: Python code: Initialize Function

1 # Forward Climate Function: Simulation
2
3 # Importing needed libaries
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import pandas as pd
7 import math
8 import h5py
9 import scipy.io import csv

10 import scipy.optimize as optimize from scipy.optimize
11 import root
12 import quantecon as qe from numba
13 import jit from numba.typed
14 import Dict
15 from initializer34 import initialize # Importing the initialize function - previous code
16 datapath = "/Users/jonebo/Documents/BI/Masteroppgave/Code_EGGW/Data/"
17
18 init_re=initialize (8.5 ,19500 ,0.6 , datapath=datapath) #Callin the initialize function
19 init_re.keys()
20 # Loading values in init_re H, amen_util0 , a_norm , prod0 , n, lbar , lambda1 , gamma2 , eta , mu , \
21 ksi , alpha , theta , Omega , trmult_reduced , gamma1 , nu , emi0_ff , emi_no_ff , emi0 , chi , \
22 cost_emi_param , a0 , a1 , a2, a3, b1, b2, b3, S0, S1, S2, S3 , S_preind , forc_sens , \
23 forc_noCO2 , c1, c2, d1, d2, temp1 , temp2 , temp0_global , temp0_local , scaler_temp , \
24 theta_amen_scen , theta_prod_scen , theta_amen_scen_agri , theta_prod_scen_agri , \
25 name_dam_vect , price_clean0_world , zeta_clean0 , zeta_fossil0 , fossil_share , D_vect , \
26 Africa_vect , length_D_vect , length_Africa_vect , agri_index , natal_param , natal0 , natal20 , \
27 name_type_vect , name_long_type_vect , name_maps_type_vect , H0, pop0_dens , C_vect , \
28 tCO2_toe , fossil0_cell , clean0_cell , aux_lon , aux_lat , aux_kron , emiCO2_RCP , \
29 stockCO2_RCP , temp_preind , temp_global_RCP , pop_low95 , pop_low80 , pop_med , \
30 pop_high95 , pop_high80 , map0 , color_darkcyan , color_olive , color_darkgreen , \
31 color_yellowgreen , conv_usd , price_fossil0 , price_clean0 , eps , maxCO2 , ind_RCP =
32 init_re.values ()
33
34
35 # Loading results from the estimates for natality function , migration costs ,
36 # and energy productivities
37 results20_d5py = h5py.File(datapath+’Derived/results20_med.mat’,’r’)
38 l0_model = results20_d5py.get(’l0_model ’)
39 arr_l0_model=np.array(l0_model ).T
40 l20 = results20_d5py.get(’l20’) arr_l20=np.array(l0_model ).T
41 realgdp0_model = results20_d5py.get(’realgdp0_model ’) arr_realgdp0_model=np.array(realgdp0_model ).T
42 realgdp20 = results20_d5py.get(’realgdp20 ’) arr_realgdp20=np.array(realgdp20 ).T
43 temp20 = results20_d5py.get(’temp20 ’) arr_temp20=np.array(temp20 ).T
44 natal_d5py = h5py.File(datapath+’Derived/natal_migr_Warm_med.mat’,’r’)
45 coeff_pop_i = natal_d5py.get(’coeff_pop_i ’)
46 arr_coeff_pop_i=np.array(coeff_pop_i ).T
47 m2_i = natal_d5py.get(’m2_i’)
48 arr_m2_i=np.array(m2_i).T
49 upsilon_clean_i = natal_d5py.get(’upsilon_clean_i ’) arr_upsilon_clean_i=np.array(upsilon_clean_i ).T
50 upsilon_fossil_i = natal_d5py.get(’upsilon_fossil_i ’) arr_upsilon_fossil_i=np.array(upsilon_fossil_i ).T
51
52 # Loading results from the backward simulation
53 backward_d5py = h5py.File(datapath+’Derived/results_backward_Warm_med.mat’,’r’)
54 amen_Warm_b = backward_d5py.get(’amen_Warm_b ’) arr_amen_Warm_b=np.array(amen_Warm_b ).T
55 clean_Warm_b = backward_d5py.get(’clean_Warm_b ’)
56 arr_clean_Warm_b=np.array(clean_Warm_b ).T
57 emiCO2_ff_Warm_b = backward_d5py.get(’emiCO2_ff_Warm_b ’)
58 arr_emiCO2_ff_Warm_b=np.array(emiCO2_ff_Warm_b ).T
59 l_Warm_b = backward_d5py.get(’l_Warm_b ’)
60 arr_l_Warm_b=np.array(l_Warm_b ).T
61 net_births_Warm_b = backward_d5py.get(’net_births_Warm_b ’)
62 arr_net_births_Warm_b=np.array(net_births_Warm_b ).T
63 price_clean_Warm_b = backward_d5py.get(’price_clean_Warm_b ’)
64 arr_price_clean_Warm_b=np.array(price_clean_Warm_b ).T
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65 price_emi_Warm_b = backward_d5py.get(’price_emi_Warm_b ’)
66 arr_price_emi_Warm_b=np.array(price_emi_Warm_b ).T
67 prod_Warm_b = backward_d5py.get(’prod_Warm_b ’)
68 arr_prod_Warm_b=np.array(prod_Warm_b ).T
69 realgdp_Warm_b = backward_d5py.get(’realgdp_Warm_b ’)
70 arr_realgdp_Warm_b=np.array(realgdp_Warm_b ).T
71 temp_local_Warm_b = backward_d5py.get(’temp_local_Warm_b ’)
72 arr_temp_local_Warm_b=np.array(temp_local_Warm_b ).T
73 u_Warm_b = backward_d5py.get(’u_Warm_b ’)
74 arr_u_Warm_b=np.array(u_Warm_b ).T
75
76 # Runs model forward -- baseline estimation
77 # Set features of the simulation
78 T = 250 # number of periods - we chose 250
79 ind_dam = 8 # damage function level: baseline
80 name_dam = name_dam_vect[ind_dam] # name of damage function level
81 ind_exo = 0 # exogenous temperature and population path
82 taxCO2 = np.zeros((n,T)) # No taxes
83 #taxCO2 = 0.5*( np.ones((n,T))) # Path for carbon taxes
84 #taxCO2_growth = 1.0363 # Growth rate of taxes for each year.
85 #taxCO2 = taxCO2* np.tile(taxCO2_growth **np.arange(T), (n, 1)) # Updating taxCO2.
86 subclean = np.zeros((n,T)) # path for clean energy subsidies
87 abat = np.zeros ((n,T)) # path for abatement
88 val_adap = np.ones ((4 ,1)) # degree of adaptation: baseline
89 migr_exp = np.ones ((2 ,1)) # border frictions
90 ind_agri = 0 # sectoral decomposition
91 ind_clim = 1 # source of damages , so that a value of 0 indicates no damages , 1 damages \
92 # on both amenities and productivities , 2 damages only on amenities , and \
93 # 3 damages only on productivity (= 1 in baseline ).
94
95 # Initialize Output Variables
96 # Creating matrixes for relevant output and variables.
97 l = np.zeros ((n, T))
98 u = np.zeros ((n, T))
99 prod = np.zeros ((n, T))

100 phi = np.zeros ((n, T))
101 realgdp = np.zeros((n, T))
102 realincome = np.zeros ((n, T))
103 realgdp_w = np.zeros((T, 1))
104 price_fossil = np.zeros ((n, T))
105 price_clean = np.zeros((n, T))
106 price_energy = np.zeros ((n, T))
107 price_energy_tilde = np.zeros ((n, T)) v
108 arphi = np.zeros ((n, T))
109 zeta_fossil = np.zeros((n, T))
110 zeta_clean = np.zeros ((n, T))
111 clean = np.zeros ((n, T))
112 cumCO2_ff = np.zeros((T, 1))
113 emiCO2_ff_abat = np.zeros((n, T))
114 emiCO2_total = np.zeros ((T, 1))
115 stockCO2_layers = np.zeros ((4, T))
116 forc = np.zeros ((T, 1))
117 temp_layers = np.zeros((2, T))
118 temp_local = np.zeros ((n, T))
119 amen = np.zeros ((n, T))
120 net_births = np.zeros ((n, T))
121
122 if ind_exo == 0: # endogenous CO2 emissions , temperature and population
123 emiCO2_ff = np.zeros((n, T))
124 temp_global = np.zeros((T, 1))
125 lbar_time = np.zeros((T+1, 1))
126 elif ind_exo == 1: # exogenous CO2 emissions , temperature and population
127 if ind_clim == 1:
128 data_Warm = np.load(datapath+’derived/results_forward_Warm_ ’ + \
129 name_dam_vect[ind_dam] + ’.npz’)
130 emiCO2_ff = data_Warm[’emiCO2_ff_Warm ’]
131 temp_global = data_Warm[’temp_global_Warm ’]
132 l_Warm = data_Warm[’l_Warm ’]
133 lbar_time = np.sum(l_Warm * np.tile(H, (T, 1)), axis =0)
134 else:
135 data_noWarm = np.load(datapath+’derived/results_forward_noWarm.npz’)
136 emiCO2_ff = data_noWarm[’emiCO2_ff_noWarm ’]
137 temp_global = data_noWarm[’temp_global_noWarm ’]
138 l_noWarm = data_noWarm[’l_noWarm ’]
139 lbar_time = np.sum(l_noWarm * np.tile(H, (T, 1)), axis =0)
140 elif ind_exo == 2:
141 lbar_time = np.tile(lbar , (T+1, 1)).T
142 elif ind_exo == 3:
143 lbar_time = np.tile(lbar , (T+1, 1)).T
144 if ind_clim == 1:
145 data_Warm = np.load(datapath+’derived/results_forward_Warm_ ’ + \
146 name_dam_vect[ind_dam] + ’.npz’)
147 emiCO2_ff = data_Warm[’emiCO2_ff_Warm ’]
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148 temp_global = data_Warm[’temp_global_Warm ’]
149 else:
150 data_noWarm = np.load(datapath+’derived/results_forward_noWarm.npz’)
151 emiCO2_ff = data_noWarm[’emiCO2_ff_noWarm ’]
152 temp_global = data_noWarm[’temp_global_noWarm ’]
153
154 # Initialize Parameters and variables of initial period
155 # Read parameters
156 data_natal = h5py.File(datapath+’derived/results20_med.mat’,’r’)
157 m2 = np.array(data_natal.get(’m2_i’)).T
158 m2 = m2.reshape (-1)
159 coeff_pop = np.array(data_natal.get(’coeff_pop_i ’)).T
160 coeff_pop = coeff_pop.reshape (-1)
161 upsilon_fossil = data_natal[’upsilon_fossil_i ’][0, 0]
162 upsilon_clean = data_natal[’upsilon_clean_i ’][0, 0]
163 data_20 = h5py.File(datapath+’derived/results20_med.mat’,’r’)
164 l0_model = data_20[’l0_model ’][:].T
165 l0_model = l0_model.reshape (-1)
166 realgdp0 = data_20[’realgdp0_model ’][:].T
167 realgdp0 = realgdp0.reshape (-1)
168 realgdp0_w = np.sum(realgdp0 * l0_model * H) / lbar
169
170 # Adjust migration costs
171 if migr_exp [0] != 1:
172 length_border_vect = length_D_vect
173 border_vect = D_vect
174 border_migr_exp = migr_exp [0]
175 elif migr_exp [1] != 1:
176 length_border_vect = length_Africa_vect
177 border_vect = Africa_vect
178 border_migr_exp = migr_exp [1]
179 if np.sum(np.abs(migr_exp - 1)) != 0:
180 n2 = np.zeros(n)
181 for i in range(length_border_vect ):
182 n2_aux = np.sum(m2[border_vect ==i] * l0_model[border_vect ==i] * H[border_vect ==i]) / \
183 np.sum(l0_model[border_vect ==i] * H[border_vect ==i])
184 n2[border_vect ==i] = n2_aux
185 m2 = (m2 / n2)
186 m2 = m2 / np.min(m2)
187 n2 = n2 / np.min(n2)
188 m2 = m2 * (n2** border_migr_exp)
189
190 # Update adaptation parameters
191 trmult_reduced_aux = trmult_reduced ** val_adap [0]
192 m2_aux = m2 ** val_adap [1]
193 gamma1_aux = gamma1 * val_adap [2]
194 Omega_aux = Omega * val_adap [3]
195
196 # Update productivity and amenities
197 avgprod = np.mean(prod0)
198 const_phi = (( gamma1_aux / ksi) / (nu * (mu + gamma1_aux / ksi )))**(1/ ksi)
199 const_energy = (1 - chi) * mu / (mu + gamma1_aux / ksi)
200 phi0 = const_phi * l0_model **(1/ ksi)
201 prod [:,0] = eta * prod0** gamma2 * avgprod **(1- gamma2) * phi0 **( gamma1_aux*theta)
202 amen [:,0] = a_norm
203
204 # Set CO2 stock , forcing and temperature
205 if ind_exo == 0 or ind_exo == 2:
206 stockCO2_layers [0,0] = S0 + a0*emi0
207 stockCO2_layers [1,0] = (np.exp(-1/b1))*S1 + a1*emi0
208 stockCO2_layers [2,0] = (np.exp(-1/b2))*S2 + a2*emi0
209 stockCO2_layers [3,0] = (np.exp(-1/b3))*S3 + a3*emi0
210 forc [0] = forc_sens*np.log(np.sum(stockCO2_layers [: ,0])/ S_preind )/np.log (2) + forc_noCO2 [0]
211 temp_layers [0,0] = (np.exp(-1/d1))* temp1 + (c1/d1)*forc [0]
212 temp_layers [1,0] = (np.exp(-1/d2))* temp2 + (c2/d2)*forc [0]
213 temp_global [0] = np.sum(temp_layers [:,0])
214
215 temp_local [:,0] = temp0_local.flatten () + scaler_temp.squeeze ()*( temp_global [0]- temp0_global)
216 temp_local_aux = temp_local [:,0]
217 Delta_temp = temp_local [:,0] - temp0_local.flatten ()
218
219 # Set damage function level by confidence interval
220 if ind_clim != 0:
221 if ind_agri == 0:
222 theta_amen_min = theta_amen_scen [0, ind_dam]
223 theta_amen_max = theta_amen_scen [1, ind_dam]
224 theta_amen_center = theta_amen_scen [2, ind_dam]
225 theta_amen_steep = theta_amen_scen [3, ind_dam]
226 theta_amen_temp = lambda temp: theta_amen_min + (theta_amen_max - \
227 theta_amen_min) / (1 + np.exp(theta_amen_steep * (temp - theta_amen_center )))
228
229 theta_prod_min = theta_prod_scen [0, ind_dam]
230 theta_prod_max = theta_prod_scen [1, ind_dam]
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231 theta_prod_center = theta_prod_scen [2, ind_dam]
232 theta_prod_steep = theta_prod_scen [3, ind_dam]
233 theta_prod_temp = lambda temp: theta_prod_min + (theta_prod_max - theta_prod_min) / \
234 (1 + np.exp(theta_prod_steep * (temp - theta_prod_center )))
235
236 else:
237 theta_amen_min = theta_amen_scen_agri [0, :]
238 theta_amen_max = theta_amen_scen_agri [1, :]
239 theta_amen_center = theta_amen_scen_agri [2, :]
240 theta_amen_steep = theta_amen_scen_agri [3, :]
241 theta_amen_temp = lambda temp , agri_index: theta_amen_min[agri_index] + \
242 (theta_amen_max[agri_index] - theta_amen_min[agri_index ]) / (1 + \
243 np.exp(theta_amen_steep[agri_index] * (temp - theta_amen_center[agri_index ])))
244
245 theta_prod_min = theta_prod_scen_agri [0, :]
246 theta_prod_max = theta_prod_scen_agri [1, :]
247 theta_prod_center = theta_prod_scen_agri [2, :]
248 theta_prod_steep = theta_prod_scen_agri [3, :]
249 theta_prod_temp = lambda temp , agri_index: theta_prod_min[agri_index] + \
250 (theta_prod_max[agri_index] - theta_prod_min[agri_index ]) / (1 + \
251 np.exp(theta_prod_steep[agri_index] * (temp - theta_prod_center[agri_index ])))
252
253 # Set damage function sources: amenities or productivities
254 if ind_clim == 1: # damages on both amenities and productivities
255 if ind_agri == 0:
256 amen [:,0] = (1 + theta_amen_temp(temp_local_aux) * Delta_temp) * amen [:,0]
257 prod [:,0] = (1 + theta_prod_temp(temp_local_aux) * Delta_temp) * prod [:,0]
258 else:
259 amen [:,0] = (1 + theta_amen_temp(temp_local_aux ,agri_index) * Delta_temp) * amen [:,0]
260 prod [:,0] = (1 + theta_prod_temp(temp_local_aux ,agri_index) * Delta_temp) * prod [:,0]
261 elif ind_clim == 2: # damages only on amenities
262 if ind_agri == 0:
263 amen [:,0] = (1 + theta_amen_temp(temp_local_aux) * Delta_temp) * amen [:,0]
264 else:
265 amen [:,0] = (1 + theta_amen_temp(temp_local_aux ,agri_index) * Delta_temp) * amen [:,0]
266 elif ind_clim == 3: # damages only on productivities
267 if ind_agri == 0:
268 prod [:,0] = (1 + theta_prod_temp(temp_local_aux) * Delta_temp) * prod [:,0]
269 else:
270 prod [:,0] = (1 + theta_prod_temp(temp_local_aux ,agri_index) * Delta_temp) * prod [:,0]
271
272 # Defining the natality function
273 def natal_fct(logrealgdp , temp , logrealgdp_w , coeff_pop_d ):
274 data_20 = h5py.File(datapath+’derived/results20_med.mat’,’r’)
275 l0_model = data_20[’l0_model ’][:].T
276 l0_model = l0_model.reshape (-1)
277 realgdp0 = data_20[’realgdp0_model ’][:].T
278 realgdp0 = realgdp0.reshape (-1)
279 l20 = data_20[’l20’][:].T
280 l20 = l20.reshape (-1)
281 realgdp20 = data_20[’realgdp20 ’][:].T
282 realgdp20 = realgdp20.reshape (-1)
283 temp20 = data_20[’temp20 ’][:].T
284 temp20 = temp20.reshape (-1)
285 logrealgdp0 = np.log(realgdp0)
286 realgdp0_w = np.sum(realgdp0 * l0_model * H) / lbar
287 logrealgdp0_w = np.log(realgdp0_w)
288 logrealgdp20 = np.log(realgdp20)
289 logrealgdp20_w = np.log(np.sum(realgdp20 * l20 * H) / np.sum(l20 * H))
290 pop0_sh = l0_model * H / lbar pop20_sh = l20 * H / np.sum(l20 * H)
291 # Read numerical restrictions on natality functions
292 b0y_max , b1y_min , b1y_max , b2y_min , b2y_max , b2T_max , bsy_min , bsy_max , bsT_min , \
293 bsT_max = natal_param
294 logi_b2T_fct = lambda x: b2T_max / (1 + np.exp(-x))
295 logi_b0y_fct = lambda x: b0y_max / (1 + np.exp(-x))
296 logi_b1y_fct = lambda x: b1y_min + (b1y_max - b1y_min) / (1 + np.exp(-x))
297 logi_b2y_fct = lambda x: b2y_min + (b2y_max - b2y_min) / (1 + np.exp(-x))
298 logi_bsy_fct = lambda x: bsy_min + (bsy_max - bsy_min) / (1 + np.exp(-x))
299 logi_bsT_fct = lambda x: bsT_min + (bsT_max - bsT_min) / (1 + np.exp(-x))
300 natal_fct_logrealgdp = lambda logrealgdp , coeff_pop: (logi_b0y_fct(coeff_pop_d [0]) + \
301 (logi_b2y_fct(coeff_pop_d [3])- logi_b0y_fct(coeff_pop_d [0])) * np.exp(- \
302 logi_b1y_fct(coeff_pop_d [1]) * np.square(logrealgdp - logi_bsy_fct(coeff_pop_d [4]))) * \
303 (logrealgdp < logi_bsy_fct(coeff_pop [4]))) + (0 + (logi_b2y_fct(coeff_pop_d [3]) -0) * \
304 np.exp(-np.exp(coeff_pop_d [2]) * np.square(logrealgdp - logi_bsy_fct(coeff_pop_d [4]))) * \
305 (logrealgdp >= logi_bsy_fct(coeff_pop_d [4])))
306
307
308 # Call the function
309 result = natal_fct_logrealgdp(logrealgdp , coeff_pop_d)
310
311 # Define b0T
312 b0T = 2 * natal0 - logi_b2T_fct(coeff_pop_d [6]) * np.sum(np.exp(-np.exp(coeff_pop_d [5]) \
313 *( temp0_local - logi_bsT_fct(coeff_pop_d [7])) ** 2) * pop0_sh) - 2 \
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314 * np.sum(natal_fct_logrealgdp(logrealgdp0 , coeff_pop_d) * pop0_sh)
315
316 # Construct bw
317 term1 = b0T + np.sum(logi_b2T_fct(coeff_pop_d [6]) * np.exp(-np.exp(coeff_pop_d [5]) * \
318 (temp20 - logi_bsT_fct(coeff_pop_d [7])) ** 2) * pop20_sh)
319 term2 = natal20 - np.sum(natal_fct_logrealgdp(logrealgdp20 , coeff_pop_d) * pop20_sh)
320 term3 = logrealgdp20_w - logrealgdp0_w
321 bw = np.log(-1 + (term1 * np.ones_like(term2)) / term2) / term3
322
323 # Construct numerator of temperature component of natality rate function.
324 natal_fct_temp_num = b0T + logi_b2T_fct(coeff_pop [6]) * np.exp(-np.exp(coeff_pop [5]) \
325 * (temp_local_aux - logi_bsT_fct(coeff_pop [7])) ** 2)
326
327 # Construct denominator of temperature component of natality rate function.
328 natal_fct_temp_denom = (1 + np.exp(bw * (logrealgdp_w - logrealgdp0_w )))
329
330
331 # Construct natality functions
332 natal_fct_val = np.real(natal_fct_temp_num / natal_fct_temp_denom + \
333 natal_fct_logrealgdp(logrealgdp , coeff_pop_d ))
334
335 return natal_fct_val
336
337
338 # Calling the natality function
339 logrealgdp0 = np.log(realgdp0)
340 logrealgdp0_w = np.log(realgdp0_w)
341 if ind_exo == 0:
342 net_births0 = natal_fct(logrealgdp0 , temp0_local , logrealgdp0_w , coeff_pop)
343 pop_prev = H * l0_model * (1 + net_births0)
344 lbar_time [0] = round(sum(pop_prev ))
345
346 # Define function for extraction cost function
347 def costCO2_fct(cumCO2 ):
348 return cost_emi_param [0]/( cost_emi_param [1] + np.exp(-cost_emi_param [2]*( cumCO2 - \
349 cost_emi_param [3]))) - cost_emi_param [4]*( cost_emi_param [5]/( cumCO2 - \
350 cost_emi_param [5]))** cost_emi_param [6]
351
352 # Precomputing auxiliary variables
353 denom = 1 + 2 * theta
354 squ = (alpha - 1 + (lambda1 + gamma1_aux / ksi - (1 - mu)) * theta) # term in square brackets \
355 # of flat_R and flat_L
356
357 flatL = lambda1 - squ / denom
358 flatR = 1 - lambda1 * theta + (1 + theta) * squ / denom
359 flat = flatR - theta * flatL
360 exp_uhatL = flatL / Omega_aux + (1 + theta) / denom
361 exp_uhatR = flatR / Omega_aux - theta **2 / denom
362
363 FL_H_m2 = (np.power(H, (flatL -1/ denom)/ exp_uhatL) * np.power(m2_aux , \
364 flatL /( Omega_aux*exp_uhatL )))
365 FR_H_m2 = (np.power(H, -flatR+theta/denom) * np.power(m2_aux , -flatR/Omega_aux ))
366
367 # Set guesses for the simulation.
368 uhat_i = np.ones(n) # guess for uhat
369 if ind_exo == 0 or ind_exo == 2:
370 emi_ff_i = emi0_ff # guess for global CO2 emissions
371 realgdp_growth_i = 1.017 # guess for global realgdp growth
372 uhat_i = uhat_i
373
374 # Set numerical parameters
375 updatee = 1 # speed of update when iterating over CO2 emissions
376 updater = 1
377 tol = 1e-2 # tolerance for error when iterating over uhat
378 tol_e = 1e-2 # tolerance for error when iterating over CO2 emissions
379 tol_realgdp = 1e-2
380
381 # Simulating the model
382 i_1st = 0
383 i_2nd = 0
384 i_3rd = 0
385
386 # Creating dictionary of input variables for the simulation
387 my_dict = {
388 ’zeta_fossil0 ’: zeta_fossil0 ,
389 ’zeta_clean0 ’: zeta_clean0 ,
390 ’realgdp0_w ’: realgdp0_w ,
391 ’emi0_ff ’: emi0_ff ,
392 ’zeta_fossil ’: zeta_fossil ,
393 ’zeta_clean ’: zeta_clean ,
394 ’realgdp_w_prev ’: realgdp_w ,
395 ’cumCO2_ff ’: cumCO2_ff ,
396 ’H’: H,
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397 ’cost_emi_param ’: cost_emi_param ,
398 ’costCO2_fct ’: costCO2_fct ,
399 ’amen’: amen ,
400 ’theta’: theta ,
401 ’denom’: denom ,
402 ’exp_uhatL ’: exp_uhatL ,
403 ’prod’: prod ,
404 ’FL_H_m2 ’: FL_H_m2 ,
405 ’FR_H_m2 ’: FR_H_m2 ,
406 ’tol_realgdp ’: tol_realgdp ,
407 ’i_1st’: i_1st ,
408 ’i_2nd’: i_2nd ,
409 ’i_3rd’: i_3rd ,
410 ’tol_e’: tol_e ,
411 ’price_clean0_world ’: price_clean0_world ,
412 ’fossil_share ’: fossil_share ,
413 ’taxCO2 ’: taxCO2 ,
414 ’eps’: eps ,
415 ’subclean ’: subclean ,
416 ’mu’: mu,
417 ’chi’: chi ,
418 ’gamma1_aux ’: gamma1_aux ,
419 ’ksi’: ksi ,
420 ’uhat_i ’: uhat_i ,
421 ’exp_uhatR ’: exp_uhatR ,
422 ’trmult_reduced_aux ’: trmult_reduced_aux ,
423 ’Omega_aux ’: Omega_aux ,
424 ’m2_aux ’: m2_aux ,
425 ’lbar_time ’: lbar_time ,
426 ’const_phi ’: const_phi ,
427 ’flat’: flat ,
428 ’u’: u,
429 ’lambda1 ’: lambda1 ,
430 ’eta’: eta ,
431 ’gamma2 ’: gamma2 ,
432 ’avgprod ’: avgprod ,
433 ’const_energy ’: const_energy ,
434 ’ind_exo ’: ind_exo ,
435 ’T’: T,
436 ’abat’: abat ,
437 ’emiCO2_ff ’: emiCO2_ff ,
438 ’emi_no_ff ’: emi_no_ff ,
439 ’updatee ’: updatee ,
440 ’emi_ff_i ’: emi_ff_i ,
441 ’realgdp_growth_i ’: realgdp_growth_i ,
442 ’updater ’: updater ,
443 ’stockCO2_layers ’: stockCO2_layers ,
444 ’a0’: a0,
445 ’b1’: b1,
446 ’a1’: a1,
447 ’a2’: a2,
448 ’a3’: a3,
449 ’b2’: b2,
450 ’b3’: b3,
451 ’forc_sens ’: forc_sens ,
452 ’S_preind ’: S_preind ,
453 ’forc_noCO2 ’: forc_noCO2 ,
454 ’temp_layers ’: temp_layers ,
455 ’c1’: c1,
456 ’c2’: c2,
457 ’d1’: d1,
458 ’d2’: d2,
459 ’temp0_global ’: temp0_global ,
460 ’temp0_local ’: temp0_local ,
461 ’scaler_temp ’: scaler_temp ,
462 ’ind_clim ’: ind_clim ,
463 ’ind_agri ’: ind_agri ,
464 ’theta_amen_temp ’: theta_amen_temp ,
465 ’temp_local_aux ’: temp_local_aux ,
466 ’theta_prod_temp ’: theta_prod_temp ,
467 ’agri_index ’: agri_index ,
468 ’natal_fct ’: natal_fct ,
469 ’coeff_pop ’: coeff_pop ,
470 }
471
472 # Defining the function for the simulation
473 def my_function(my_dict ):
474 zeta_fossil0 = my_dict[’zeta_fossil0 ’]
475 zeta_clean0 = my_dict[’zeta_clean0 ’]
476 realgdp0_w = my_dict[’realgdp0_w ’]
477 emi0_ff = my_dict[’emi0_ff ’]
478 zeta_fossil = my_dict[’zeta_fossil ’]
479 zeta_clean = my_dict[’zeta_clean ’]
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480 realgdp_w_prev = my_dict[’realgdp_w_prev ’]
481 cumCO2_ff = my_dict[’cumCO2_ff ’]
482 H = my_dict[’H’]
483 cost_emi_param = my_dict[’cost_emi_param ’]
484 costCO2_fct = my_dict[’costCO2_fct ’]
485 amen = my_dict[’amen’]
486 theta = my_dict[’theta’]
487 denom = my_dict[’denom’]
488 exp_uhatL = my_dict[’exp_uhatL ’]
489 prod = my_dict[’prod’]
490 FL_H_m2 = my_dict[’FL_H_m2 ’]
491 FR_H_m2 = my_dict[’FR_H_m2 ’]
492 tol_realgdp = my_dict[’tol_realgdp ’]
493 i_1st = my_dict[’i_1st’]
494 i_2nd = my_dict[’i_2nd’]
495 i_3rd = my_dict[’i_3rd’]
496 tol_e = my_dict[’tol_e’]
497 price_clean0_world = my_dict[’price_clean0_world ’]
498 fossil_share = my_dict[’fossil_share ’]
499 taxCO2 = my_dict[’taxCO2 ’]
500 eps = my_dict[’eps’]
501 subclean = my_dict[’subclean ’]
502 mu = my_dict[’my’]
503 chi = my_dict[’chi’]
504 gamma1_aux = my_dict[’gamma1_aux ’]
505 ksi = my_dict[’ksi’]
506 uhat_i = my_dict[’uhat_i ’]
507 exp_uhatR = my_dict[’exp_uhatR ’]
508 trmult_reduced_aux = my_dict[’trmult_reduced_aux ’]
509 Omega_aux = my_dict[’Omega_aux ’]
510 m2_aux = my_dict[’m2_aux ’]
511 lbar_time = my_dict[’lbar_time ’]
512 const_phi = my_dict[’const_phi ’]
513 flat = my_dict[’flat’]
514 u = my_dict[’u’]
515 lambda1 = my_dict[’lambda1 ’]
516 eta = my_dict[’eta’]
517 gamma2 = my_dict[’gamma2 ’]
518 avgprod = my_dict[’avgprod ’]
519 const_energy = my_dict[’const_energy ’]
520 ind_exo = my_dict[’ind_exo ’]
521 T = my_dict[’T’]
522 abat = my_dict[’abat’]
523 emiCO2_ff = my_dict[’emiCO2_ff ’]
524 emi_no_ff = my_dict[’emi_no_ff ’]
525 updatee = my_dict[’updatee ’]
526 emi_ff_i = my_dict[’emi_ff_i ’]
527 realgdp_growth_i = my_dict[’realgdp_growth_i ’]
528 updater = my_dict[’updater ’]
529 stockCO2_layers = my_dict[’stockCO2_layers ’]
530 a0 = my_dict[’a0’]
531 b1 = my_dict[’b1’]
532 a1 = my_dict[’a1’]
533 a2 = my_dict[’a2’]
534 a3 = my_dict[’a3’]
535 b2 = my_dict[’b2’]
536 b3 = my_dict[’b3’]
537 forc_sens = my_dict[’forc_sens ’]
538 S_preind = my_dict[’S_preind ’]
539 forc_noCO2 = my_dict[’forc_noCO2 ’]
540 temp_layers = my_dict[’temp_layers ’]
541 c1 = my_dict[’c1’]
542 c2 = my_dict[’c2’]
543 d1 = my_dict[’d1’]
544 d2 = my_dict[’d2’]
545 temp0_local = my_dict[’temp0_local ’]
546 temp0_global = my_dict[’temp0_global ’]
547 scaler_temp = my_dict[’scaler_temp ’]
548 ind_clim = my_dict[’ind_clim ’]
549 ind_agri = my_dict[’ind_agri ’]
550 theta_amen_temp = my_dict[’theta_amen_temp ’]
551 temp_local_aux = my_dict[’temp_local_aux ’]
552 theta_prod_temp = my_dict[’theta_prod_temp ’]
553 agri_index = my_dict[’agri_index ’]
554 natal_fct = my_dict[’natal_fct ’]
555 coeff_pop = my_dict[’coeff_pop ’]
556
557 for t in range(T):
558 if t == 0:
559 zeta_fossil_prev = zeta_fossil0
560 zeta_clean_prev = zeta_clean0
561 realgdp_w_prev = realgdp0_w
562 cumCO2_ff[t] = emi0_ff
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563 else:
564 zeta_fossil_prev = zeta_fossil [:, t-1]
565 zeta_clean_prev = zeta_clean [:, t-1]
566 realgdp_w_prev = realgdp_w[t-1]
567 cumCO2_ff_aux = cumCO2_ff[t-1] + sum(emiCO2_ff[:, t-1] * H)
568 ind_cumCO2 = (cumCO2_ff_aux >= cost_emi_param [5] - 0.5)
569 if ind_cumCO2:
570 cumCO2_ff_aux = cost_emi_param [5] - 0.5
571 cumCO2_ff[t] = cumCO2_ff_aux
572
573 # Compute extraction cost
574 costCO2_avg_i = costCO2_fct(cumCO2_ff[t])
575
576
577 # Pre -compute auxiliary variables to equation (31)
578 FL_aux = amen[:,t]**((1+ theta )/( denom*exp_uhatL )) * prod[:,t]**(1/( denom*exp_uhatL )) * \
579 FL_H_m2 # outside the integral
580
581 FR_aux = amen[:,t]**( theta **2/ denom) * prod[:,t]**((1+ theta )/ denom) * FR_H_m2 \
582 # inside the integral
583
584 error_realgdp = 1 + tol_realgdp
585 i_1st = 0
586 while error_realgdp > tol_realgdp:
587 i_1st += 1
588 # Update energy productivity , equation (10)
589 zeta_fossil [:,t] = zeta_fossil_prev *( realgdp_growth_i )**( upsilon_fossil)
590 zeta_clean [:,t] = zeta_clean_prev *( realgdp_growth_i )**( upsilon_clean)
591
592 error_e = 1 + tol_e
593 i_2nd = 0
594 while error_e > tol_e:
595 i_2nd += 1
596
597 # Construct energy price , equations (8), (21), (23)
598 price_fossil [:,t] = costCO2_avg_i/zeta_fossil [:,t]
599 price_clean [:,t] = price_clean0_world/zeta_clean [:,t]
600 price_energy [:,t] = (fossil_share **eps *(1+ taxCO2[:,t])**(1 - eps) \
601 *price_fossil [:,t]**(1-eps)+ (1- fossil_share )**eps*(1- subclean[:,t]) \
602 **(1-eps)* price_clean [:,t]**(1- eps ))**(1/(1 - eps))
603 price_energy_tilde [:,t] = (fossil_share **eps *(1+ taxCO2[:,t])**( -eps) \
604 *price_fossil [:,t]**(1-eps) + (1- fossil_share )** eps*(1- subclean[:,t])** \
605 (-eps)* price_clean [:,t]**(1-eps ))**(1/(1 - eps))
606 varphi[:,t] = (mu*chi + gamma1_aux/ksi + mu*(1-chi )*( price_energy_tilde [:,t] \
607 /price_energy [:,t])**(1 - eps ))/\( mu+gamma1_aux/ksi)
608
609 # Precompute auxiliary variables to equation (31)
610 FL = FL_aux * price_energy [:,t]**(- theta*mu*(1-chi )/( denom*exp_uhatL )) * \
611 varphi[:,t]**( theta*(mu+gamma1_aux/ksi)/( denom*exp_uhatL ))
612 # outside the integral
613
614 FR = FR_aux * price_energy [:,t]**(- theta *(1+ theta)*mu*(1-chi)/denom) * \
615 varphi[:,t]**( theta *(1+ theta )*(mu+gamma1_aux/ksi)/ denom)
616 # inside the integral
617
618 # Iterate uhat , equation (31)
619 error = tol + 1
620 i_3rd = 0
621 while error >= tol:
622 i_3rd += 1
623 integral = FR * np.power(uhat_i , exp_uhatR)
624 rhs = np.matmul(trmult_reduced_aux , integral)
625 uhat_f = FL * rhs **(1/( theta*exp_uhatL ))
626 error = np.sum(( uhat_i - uhat_f )**2)
627 uhat_i = uhat_f.copy()
628
629 # Solve for population , equation (3), and scale it to add up to lbar_time(t)
630 l[:,t] = H**(-1) * uhat_i **(1/ Omega_aux) * m2_aux **(-1/ Omega_aux)
631 l[:,t] = l[:,t] / np.sum(H*l[:,t]) * lbar_time[t]
632
633 # Calculate innovation
634 phi[:,t] = const_phi * (l[:,t]/ varphi[:,t])**(1/ ksi)
635
636 # Retrieve utility , equation (71)
637 u[:,t] = uhat_i * (lbar_time[t]/np.sum(uhat_i **(1/ Omega_aux )* m2_aux ** \
638 (-1/ Omega_aux )))**( flat/theta)
639
640 # Calculate real income and real GDP per capita , equation (4)
641 realincome [:,t] = u[:,t] / amen[:,t] * l[:,t]** lambda1
642 realgdp[:,t] = (1 + (mu+gamma1_aux/ksi)*( varphi[:,t]-1)) * realincome [:,t]
643
644 realgdp_w[t] = sum(realgdp[:,t] * H * l[:,t]) / sum(H * l[:,t])
645

60



646 # Update productivity , equation (6)
647 if t < T-1:
648 avgprod = np.mean(prod[:,t])
649 prod[:,t+1] = eta * prod[:,t]** gamma2 * avgprod **(1- gamma2) * \
650 phi[:,t]**( gamma1_aux*theta)
651
652 # Calculate clean energy use , equation (30)
653 clean[:,t] = const_energy * (1 / varphi[:,t]) * (l[:,t] / price_energy [:,t]) * \
654 ((1- fossil_share) * price_energy [:,t] / ((1- subclean[:,t]) * price_clean [:,t]))** eps
655
656 # Calculate CO2 emissions , equation (29)
657 if ind_exo == 0 or ind_exo == 2:
658 emiCO2_ff[:,t] = const_energy * (1 / varphi[:,t]) * (l[:,t] / price_energy [:,t]) * \
659 fossil_share * price_energy [:,t] / ((1+ taxCO2[:,t]) * price_fossil [:,t]))** eps
660
661 # Update CO2 emissions by abatement
662 emiCO2_ff_abat [:,t] = (1 - abat[:,t]) * emiCO2_ff[:,t]
663 emi_ff_f = np.sum(emiCO2_ff[:,t] * H)
664 emi_ff_f_abat = np.sum(emiCO2_ff_abat [:,t] * H)
665 emiCO2_total[t] = emi_ff_f_abat + emi_no_ff[t]
666
667 # Compare global CO2 emissions
668 if ind_exo == 0 or ind_exo == 2:
669 error_e = np.abs(emi_ff_f - emi_ff_i)
670 emi_ff_i = updatee * emi_ff_f + (1 - updatee) * emi_ff_i
671 costCO2_avg_i = np.mean(costCO2_fct(cumCO2_ff[t] + \
672 np.linspace(0,emi_ff_i ,100)))
673 else:
674 error_e = 0
675
676 # Compare growth rate realgdp
677 realgdp_growth_f = realgdp_w[t] / realgdp_w_prev
678 error_realgdp = abs(realgdp_growth_f - realgdp_growth_i)
679 realgdp_growth_i = updater * realgdp_growth_f + (1 - updater) * realgdp_growth_i
680
681 # Set growth rate of previous period
682 realgdp_growth_i = realgdp_growth_f
683
684 if t<T-1:
685 # Update CO2 stock , forcing and temperature , equations (9), (18) and (35)
686 if ind_exo == 0 or ind_exo == 2:
687 stockCO2_layers [0,t+1] = stockCO2_layers [0,t] + a0*emiCO2_total[t]
688 stockCO2_layers [1,t+1] = np.exp(-1/b1)* stockCO2_layers [1,t] + a1*emiCO2_total[t]
689 stockCO2_layers [2,t+1] = np.exp(-1/b2)* stockCO2_layers [2,t] + a2*emiCO2_total[t]
690 stockCO2_layers [3,t+1] = np.exp(-1/b3)* stockCO2_layers [3,t] + a3*emiCO2_total[t]
691 forc[t+1] = forc_sens*np.log(np.sum(stockCO2_layers [:,t+1])/ S_preind )/np.log (2) + \
692 forc_noCO2[t+1]
693
694 temp_layers [0,t+1] = np.exp(-1/d1)* temp_layers [0,t] + (c1/d1)*forc[t+1]
695 temp_layers [1,t+1] = np.exp(-1/d2)* temp_layers [1,t] + (c2/d2)*forc[t+1]
696
697 temp_global[t+1] = np.sum(temp_layers [:,t+1])
698 temp_local [:,t+1] = temp0_local + scaler_temp *( temp_global[t+1]- temp0_global)
699
700 # Update local temperature
701 if ind_clim != 0:
702 temp_local_aux = temp_local [:,t+1]
703 Delta_temp = temp_local [:,t+1] - temp_local [:,t]
704
705 # Update damages on amenities and productivities , equations (2) and (6)
706 if ind_clim == 1: # damages on both amenities and productivities
707 if ind_agri == 0:
708 amen[:,t+1] = (1+ theta_amen_temp(temp_local_aux )* Delta_temp )*amen[:,t]
709 prod[:,t+1] = (1+ theta_prod_temp(temp_local_aux )* Delta_temp )*prod[:,t+1]
710 else:
711 amen[:,t+1] = \
712 (1+ theta_amen_temp(temp_local_aux ,agri_index )* Delta_temp )*amen[:,t]
713 prod[:,t+1] = \
714 (1+ theta_prod_temp(temp_local_aux ,agri_index )* Delta_temp )*prod[:,t+1]
715 elif ind_clim == 2: # damages only on amenities
716 if ind_agri == 0:
717 amen[:,t+1] = (1+ theta_amen_temp(temp_local_aux )* Delta_temp )*amen[:,t]
718 else:
719 amen[:,t+1] = \
720 (1+ theta_amen_temp(temp_local_aux ,agri_index )* Delta_temp )*amen[:,t]
721 elif ind_clim == 3: # damages only on productivities
722 if ind_agri == 0:
723 prod[:,t+1] = (1+ theta_prod_temp(temp_local_aux )* Delta_temp )*prod[:,t+1]
724 else:
725 prod[:,t+1] = \
726 (1+ theta_prod_temp(temp_local_aux ,agri_index )* Delta_temp )*prod[:,t+1]
727 amen[:,t+1] = amen[:,t]
728 elif ind_clim == 0: # No damages
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729 amen[:,t+1] = amen[:,t]
730
731 # Update global population
732 log_realgdp = np.log(realgdp[:,t])
733 log_realgdp_w = np.log(realgdp_w[t])
734 if ind_exo == 0:
735 net_births [:,t] = natal_fct(log_realgdp , temp_local_aux , log_realgdp_w , coeff_pop)
736 pop_prev = (1+ net_births [:,t]) * l[:,t] * H
737 lbar_time[t+1] = round(np.sum(pop_prev ))
738
739 # Sum CO2 stock layers , equation (34)
740 stockCO2 = np.sum(stockCO2_layers , axis =0)
741
742 # Assign values to the variables
743 l_Warm = l
744 u_Warm = u
745 prod_Warm = prod
746 realgdp_Warm = realgdp
747 amen_Warm = amen
748 emiCO2_ff_Warm = emiCO2_ff
749 emiCO2_total_Warm = emiCO2_total
750 stockCO2_Warm = stockCO2
751 temp_global_Warm = temp_global
752 temp_local_Warm = temp_local
753 price_emi_Warm = price_fossil
754 clean_Warm = clean
755 price_clean_Warm = price_clean
756 net_births_Warm = net_births
757
758 return (l_Warm , u_Warm , prod_Warm , realgdp_Warm , amen_Warm , emiCO2_ff_Warm ,
759 emiCO2_total_Warm , stockCO2_Warm , temp_global_Warm , temp_local_Warm ,
760 price_emi_Warm , clean_Warm , price_clean_Warm , net_births_Warm)
761
762 # Call the function and run the simulation
763 l_Warm , u_Warm , prod_Warm , realgdp_Warm , amen_Warm , emiCO2_ff_Warm ,
764 emiCO2_total_Warm , stockCO2_Warm , temp_global_Warm , temp_local_Warm ,
765 price_emi_Warm , clean_Warm , price_clean_Warm , net_births_Warm = my_function(my_dict)
766
767 # Saving the output of the simulation
768 # Create a dictionary with desired variable names
769 data = {
770 ’l_Warm ’: l_Warm ,
771 ’u_Warm ’: u_Warm ,
772 ’prod_Warm ’: prod_Warm ,
773 ’realgdp_Warm ’: realgdp_Warm ,
774 ’amen_Warm ’: amen_Warm ,
775 ’emiCO2_ff_Warm ’: emiCO2_ff_Warm ,
776 ’emiCO2_total_Warm ’: emiCO2_total_Warm ,
777 ’stockCO2_Warm ’: stockCO2_Warm ,
778 ’temp_global_Warm ’: temp_global_Warm ,
779 ’temp_local_Warm ’: temp_local_Warm ,
780 ’price_emi_Warm ’: price_emi_Warm ,
781 ’clean_Warm ’: clean_Warm ,
782 ’price_clean_Warm ’: price_clean_Warm ,
783 ’net_births_Warm ’: net_births_Warm ,
784 }
785
786 # Save the variables
787 save_path = ’/Users/jonebo/Documents/BI/Masteroppgave/Code_EGGW/Data/Derived/’
788 np.savez(save_path + ’results_forward_Warm_EPS06.npz’, **data)

Listing 2: Python code: Forward Climate Function

8.3 Forward Iteration

8.3.1 Input to the code

The following variables are required as inputs for the forward climate fucntion,
in order to set the parameters of the simulation and provide the necessary data
for the calculations.

- T: is the number of time periods for which the economy will be simu-
lated.
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- ind_clim: the source of damages, which can take on values from 0
to 3. A value of 0 indicates no damages, while a value of 1 indicates damages
to both amenities and productivities. A value of 2 indicates damages only to
amenities, and a value of 3 indicates damages only to productivity.

- ind_dam: the level of the damage function, which can take on values
from 1 to 9. Values of 1 and 2 correspond to the lower and upper curves of
the 95% confidence interval, respectively. Values of 3 and 4 correspond to the
lower and upper curves of the 90% confidence interval, respectively. Values
of 5 and 6 correspond to the lower and upper curves of the 80% confidence
interval, respectively. Values of 7 and 8 correspond to the lower and upper
curves of the 60% confidence interval, respectively. A value of 9 corresponds
to the baseline estimate.

- ind_exo: an indicator variable that can take on values of 0 or 1.
A value of 0 denotes that CO2 emissions, temperature, and population are
endogenously computed, while a value of 1 denotes that these variables are
exogenously taken from the baseline scenario.

- taxCO2: the path of carbon taxes for each cell and time period.
- subclean: the path of clean energy subsidies for each cell and time

period.
- abat: the share of CO2 emissions abated in each cell and time period.
- val adap: a 4x1 vector which determines the cost of trade, migration,

innovation, and the inverse of migration elasticity.
- migr exp: a 2x1 vector which sets the border costs.
- ind agri: an indicator variable that takes on either 1 or 0. When ind

agri equals 1, the damage function accounts for the share of value added in
agriculture. When ind agri is 0, the damage function ignores agriculture.

In the next sections, a brief explanation of what is being done in the
different parts of the code is being explained. The headlines corresponds to
the headlines in the code marked with “#”.

8.3.2 Initialize parameters and variables

Adjust migration costs

Function m(r, r0),

m2(r) = m̃2(r)/n2(D(r))

Update adaptation parameters

⌦: A greater value of ⌦ implies more dispersion in agent’s preferences
across regions, so that mobility responses are mostly driven by idiosyncratic
motives, rather than spatial differences in utility adjusted for the migration
cost of entering the region.
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Update productivity and amenities

The world’s average relative expenditure in fossil fuels and clean energy,
and the ratio of energy expenditures to the wage bill, are given by equation
19 at page 16. We believe the second one could correspond to the variable
“conts_energy”:  

Qf
0

Qc
0

! 
Ef

0

Ec
0

! 1
✏

=


1� 
,

and
w0Q0E0

w0L0
=

µ(1� �)

µ+ �1/⇠

Set CO2 stock, forcing and temperature

Rewriting the law of motion:

St+1 = S0,t+1 +
3X

i=1

Si,t+1, withS0,t+1 = S0,t + a0(E
f
t + Ex

t ),

Si,t+1 = (e�1/bi)Si,t + ai(E
f
t + Ex

t ), i 2 {1, 2, 3}.

Measures the net inflow of energy:

Ft+1 = 'log2(St+1/Spre�ind) + F x
t+1,

The global temperature module:

Tt+1 = T1,t+1 + T2,t+1, withTj,t+1 = (e�1/dj)Tj,t +
cj
dj
Ft+1, j 2 {1, 2}.

Set damage function level by confidence interval

Building initial value for ⇤b and ⇤a use in amenities and productivities:

⇤a
t (r) = ⇤a(�Tt(r), Tt(r))

⇤b
t(r) = ⇤b(�Tt(r), Tt(r))

Set damage function sources: amenities or productivities

Start with a0 = anorm and b0 = ⌘prod�20 aprod(1��2)��aux✓
0 ?

bt(r) = (1 + ⇤b(�Tt(r), Tt�1(r)))b0(r).

āt(r) = (1 + ⇤↵(�Tt(r), Tt�1(r)))ā0(r),

Update population size
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Relation between natality rates, real GDP, and temperature:

nt(r) = ⌘(yt(r), Lt(r)

From the the natality function, the following equations are being used:

⌘y(log(yt(r))) = B(log(yt(r)); b
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Define function for extraction cost function
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Precompute auxiliary variables

Defining “denom” and “squ” which are just parts of the equations for
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Precompute auxiliary variables to equation

Precomputing some of the parts of the following equations in this section.
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8.3.3 Simulating the Model

First while loop Then extractions costs and auxiliary variables are being
computed. Then the initial energy productivities is given by equation the
equation below. These are used to update energy productivity in the first
while loop in the simulation.
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Second while loop Right after, in the second while loop in the simulation,
the energy price is constructed. These equations corresponds to the vari-
ables “price_fossil” and “price_clean”, “price_energy”, “price_energy_tilde”
and “varphi”.
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Some of the parameters used for these equation include � = 0.96, which
is the share of labor in labor-energy composite; ✏ = 1.6, which is the elasticity
of substitution between energy sources;  = 0.89, which is the share of fossil
fuels in energy composite; f(·), which is extraction costs; ⇣c0(·) and ⇣f0 (·), which
is initial energy productivities based on current energy use; vf = 1.16, which is
the elasticity of fossil fuel productivity growth to global real GDP per capita
growth; and vc = 1.16, which is the elasticity of clean energy productivity
growth to global real GDP per capita growth.

Third while loop Next in the second while loop, they precompute some
of the auxiliary variables, before they iterate ût(·). This is done in the third
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while loop, where the following equation is being used.
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This concludes the third while loop. Continuing, still being inside the sec-
ond while loop, they solve for population. This is then scaled up to lbar_time(t).
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The next step is calculating innovation. These equations are equalled to:
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The next step is to retrieve utility, which is given by:
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After this, real income and real GDP per capita is being calculated, which
is done by using:
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Next, productivities are being updated using:
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After this, they calculate clean energy use and CO2 emissions, which are
done by using:
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Next, they update CO2 emissions by abatement. The variable vt(r) is
the share of CO2 emissions abated in region r at period t, the evolution of
atmospheric CO2:
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Lastly in the second while loop, they update CO2 emissions and compare
global CO2 emissions. This is followed by the last part of the first while loop,
which includes comparing the growth rate of real GDP.

After the loops, different variables are being updated. CO2 stock, forcing
and temperature are being updated using:
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Ft+1 = 'log2(St+1/Spre�ind) + F x
t+1,

Tt+1 = Tpre�ind +
1X

`=0

⇣`Ft+1�l,

Amenities and Productivity. The following equations allow to update
ameneties and produtivity.

bt(r) = (1 + ⇤b(�Tt(r), Tt�1(r)))bt�1(r). (36)

āt(r) = (1+⇤↵(�Tt(r), Tt�1(r)))
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,

(37)
Some of the parameters for productivity evolution is that �2 = 0.993,

which is the relation between population and growth; ⇠ = 125, which is the
elasticity of bid rents to investments in technology; and v = 0.15, which is
the level of innovation costs that yields an initial growth rate of real GDP of
1.75%.
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