
Handelsh0ysllolen Bl

GRA 19703 Master Thesis

Thesis Master of Science 100% - W

Predefinert informasjon

Startdato:

Sluttdato:

Ellsamensform:

Flowkode:

Intern sensor:

Delta�er

Navn:

09-01-2023 09:00 CET

03-07-2023 12:00 CEST

T

20231011111841 I INOOI IWI IT

(Anonymisert)

Adrian Nygård Nielsen og Herman Hansson

lnformasjon fra delta�er

Termin:

Vurderingsform:

202310

Norsk 6-trinns skala (A-F)

Tittel •:

Naun pli ueileder •:

The Power of Sentiment and Attention: Twitter and Google Trends as predictors of stock returns

Saluatore Miglietta

lnneholder besuarelsen Nei

konfidensielt

materiale7:

Gruppe

ljruppenaun:

ljruppenummer:

Andre medlemmer i

gruppen:

(Anonymisert)

159

Kan besuarelsen

offentliggj•res?:

Ja

WISEflow
� Europe/Oslo(CEST)

02 Jul 2023

Adrian Nielsen Herman Hansson

BI Norwegian Business School

The Power of Sentiment and Attention:

Twitter and Google Trends as predictors of

stock returns

Supervisor:

Salvatore Miglietta

Hand-in date:

 03.06.2022

Campus:

BI Oslo

Examination code and name:

GRA 19701 Master Thesis

Programme:

Master of Science in Finance

Page i

Abstract

This thesis examines the impact of Twitter sentiment and Google Trends-derived

investor attention on stock returns of Apple, Amazon, Microsoft, and Tesla.

Spanning from January 1, 2018, to February 1, 2023, we extracted 0.55 million

tweets, constructed a daily Google Trends Search Volume Index (SVI), and

gathered adjusted close prices. Sentiment classification is done through a dual

approach, integrating lexicon-based classification with machine-learning. By

setting up multiple VAR models on first differences, we compare them to a

random walk with drift and an AR model based solely on stock lags. We

consistently outperform the random walk, challenging the efficient market

hypothesis. Compared to the AR model, the results were mixed across the stocks,

suggesting that investor behaviour may contribute to market inefficiencies for

certain stocks. Our results suggest limited predicting power for Sentiment and

SVI. SVI shows slight superiority over sentiment in predictive power, although

its impact remains limited, with stock price fluctuations predominantly tied to

their historical performance.

Page ii

Acknowledgments

We would like to express our sincere gratitude to Salvatore Miglietta, our

supervisor from the Department of Finance at BI Norwegian Business School, for

his invaluable guidance and unwavering support throughout this master's thesis.

His expertise and attention have been instrumental in shaping this work. We are

truly fortunate to have had the opportunity to work under his mentorship.

We are also grateful to our friends, fellow students, and family for their support

and encouragement during this five-year journey. Their belief in us has been a

constant source of motivation.

Page iii

Table of Content

Abstract ... i

Introduction .. 1

Literature review ... 4

Hypothesis and Methodology... 7

Stationarity .. 7

Selecting the optimal number of lags .. 8

VAR framework.. 8

Forecasting .. 10

Comparing forecasting performance ... 10

Autocorrelation.. 11

Causality .. 12

Grange Causality ... 12

Impulse Response Analysis ... 13

Variance decomposition ... 13

Data ...14

Selection of companies .. 14

Juridical and moral concepts ... 14

Programming language & Data collection .. 14

Tweets... 15

Cleaning Tweets .. 15

Sentiment analysis ... 16

Google Trends .. 17

Figure 1 Constructed daily Google Trends SVI vs Weekly google trends SVI 18

Integration of Adjusted Closing Prices with Sentiment and SVI Data ... 18

Results ...19

Forecasting results ... 19

Figure 2 Forecasting performance. Setup (1) ... 21

Granger causality .. 21

Impulse responses ... 22

Variance decomposition .. 23

Robustness test .. 24

Discussion and Conclusion ..25

Limitations and Suggestions for Further Research ..27

file://///Users/hermanhansson/Documents/BI/Master/Master%20thesis/FInal/The%20Power%20of%20Sentiment%20and%20Attention-%20Twitter%20and%20Google%20Trends%20as%20predictors%20of%20stock%20returns.docx%23_Toc139211718
file://///Users/hermanhansson/Documents/BI/Master/Master%20thesis/FInal/The%20Power%20of%20Sentiment%20and%20Attention-%20Twitter%20and%20Google%20Trends%20as%20predictors%20of%20stock%20returns.docx%23_Toc139211722

Page iv

Bibliography ...29

Appendix ..34

Section A – Statistical tests and optimal lag ... 34

Table 1 Augmented Dickey Fuller (ADF) unit root test... 34

Table 2 Optimal lag length .. 35

Table 3 Durbin-Watson test for autocorrelation .. 36

Section B – Time series plot of Variables ... 37

Figure 3 Time Series Plot of Variables in actual values .. 37

Section C – Time series plot of variables in first differences.. 38

Figure 4 Time Series Plot of Variables in first differences .. 38

Table 4 Comparative Performance Metrics of the Forecasting Models for Apple, Amazon,

Microsoft, and Tesla ... 39

Section D – Forecasting performance.. 39

Section E – Forecasting plots ... 40

Figure 5 Setup (2): Adj. Close | Sentiment ... 40

Figure 6 Setup (3): Adj. Close | SVI ... 40

Section F - Granger Causality tests .. 41

Apple ... 41

Amazon ... 41

Microsoft .. 42

Tesla .. 42

Section G - Impulse responses ... 43

Figure 7 Impulse responses - Apple .. 43

Figure 8 Impulse responses - Amazon .. 43

Figure 9 Impulse responses - Microsoft ... 44

Figure 10 Impulse responses - Tesla ... 44

Section H - Variance decomposition .. 45

Figure 11 Variance decomposition - Apple .. 45

Figure 12 Variance Decomposition - Amazon .. 45

Figure 13 Variance decomposition - Microsoft .. 46

Figure 14 Variance Decomposition – Tesla .. 46

Section I – Reverse ordering Robustness tests .. 47

Figure 15 Reverse ordering Robustness test – Apple ... 47

Figure 16 Reverse ordering Robustness test - Amazon .. 47

Figure 17 Reverse ordering Robustness test – Microsoft .. 48

Figure 18 Reverse ordering Robustness test – Tesla .. 48

Section J – Packages, modules, and libraries .. 49

Table 5 List of Python packages, modules and libraries ... 49

Table 6 List of R packages, modules, and libraries ... 49

Codes ...53

Importing tweets ... 53

Apple... 53

file://///Users/hermanhansson/Documents/BI/Master/Master%20thesis/FInal/The%20Power%20of%20Sentiment%20and%20Attention-%20Twitter%20and%20Google%20Trends%20as%20predictors%20of%20stock%20returns.docx%23_Toc139211736
file://///Users/hermanhansson/Documents/BI/Master/Master%20thesis/FInal/The%20Power%20of%20Sentiment%20and%20Attention-%20Twitter%20and%20Google%20Trends%20as%20predictors%20of%20stock%20returns.docx%23_Toc139211738
file://///Users/hermanhansson/Documents/BI/Master/Master%20thesis/FInal/The%20Power%20of%20Sentiment%20and%20Attention-%20Twitter%20and%20Google%20Trends%20as%20predictors%20of%20stock%20returns.docx%23_Toc139211739
file://///Users/hermanhansson/Documents/BI/Master/Master%20thesis/FInal/The%20Power%20of%20Sentiment%20and%20Attention-%20Twitter%20and%20Google%20Trends%20as%20predictors%20of%20stock%20returns.docx%23_Toc139211739

Page v

Amazon ... 53

Microsoft .. 54

Tesla .. 54

Cleaning tweets ... 56

Sentiment analysis. A combination of the Loughran-McDonald dictionary and the Hugging Face

sentiment analysis pipeline ... 58

Importing the Loughran-McDonald_MasterDictionary_1993-2021 58

Sentiment Analysis Score Computation .. 58

Apple... 59

Amazon ... 60

Microsoft .. 60

Tesla .. 60

Collecting and creating the SVI.. 61

Creating formula for collecting Google Trends terms .. 61

AAPL.. 62

AMZN .. 62

MSFT ... 63

TSLA .. 63

Analysis .. 64

Page 1

Introduction

The predictability of stock market prices has been a subject of fervent discussion

in finance and economics, with the Efficient Market Hypothesis (EMH) proposed

by (Fama, 1965) asserting that price fluctuations are random, and forecasting is

fundamentally flawed, thus challenging the prospect of long-term abnormal

trading profits. However, the emergence of alternative data sources like social

media sentiment and search volume, which capture the collective mind – people’s

mood and attention is disputing this traditional theory, proposing that markets

may have a degree of predictability. This notion of predictability is grounded in

behavioural finance, a field connecting finance and social sciences to understand

the role of human psychology in financial markets, asserting that emotions and

attention play a significant role in investment decision-making (Hirshleifer &

Hong Teoh, 2003; Shiller, 2003).

Sentiment analysis, a subfield of natural language processing, has emerged as a

powerful technique for extracting and quantifying the underlying sentiment in

textual data, allowing for the exploration of the potential impact of social media

sentiment on financial markets (Tetlock, 2007). We have chosen to utilize Twitter

for sentiment analysis due to its real-time information dissemination, large user

base, and potential to quickly capture market-influencing sentiments, making it an

optimal data source for understanding and potentially predicting financial market

dynamics.

Parallel to sentiment analysis, Google Trends provides data on search term

frequency for particular keywords or phrases over time, gauging public attention

toward specific subjects such as corporations (Da et al., 2011). We utilize Google

Trends as it gauges current investor attention and offers potential predictive

insights into market movements, providing an additional quantitative perspective

to understand and analyse investor behaviour and interest through attention.

This paper investigates the relationship between Twitter sentiment, Google

Trends-derived investor attention, and stock returns for four prominent technology

companies: Apple, Amazon, Microsoft, and Tesla. Our research is motivated by

the growing interest in understanding the role of social media sentiment and

Page 2

investor attention in shaping stock market dynamics. We hypothesize that Twitter

sentiment and investor attention, as measured by the Google Trends Search

volume index, significantly impact stock returns in line with behavioural finance

theory (BFT), providing valuable insights for investors and financial analysts.

We employ a comprehensive analysis methodology that encompasses the

implementation of multiple vector autoregression (VAR) models to execute one-

step-ahead forecasts for an out-of-sample period of 30 days, along with

conducting various causality tests and variance decompositions. To assess the

performance of our VAR models, we compare them against two benchmark

models: random walk with drift (RW) and autoregressive (AR) models that

include only the lags of the stocks. We utilize a rich dataset of 0,55 million tweets,

daily Google Trends Search Volume Index (SVI), and adjusted closing prices for

the selected companies, collected over a five-year period from January 1, 2018, to

January 1, 2023. Twitter and SVI data are extracted during both trading and non-

trading hours. Our approach combines two sentiment analysis techniques, the

lexicon-based approach through the Loughran-McDonald dictionary and the

Hugging Face sentiment analysis pipeline, to provide a robust and accurate

measure of Twitter sentiment.

The VAR model consistently outperformed the RW models, challenging the

EMH. Compared to the AR model, the results were mixed across the stocks,

suggesting that investor behaviour may contribute to market inefficiencies for

certain stocks. Granger causality tests identified minimal causal relationships,

with exceptions at both 5% and 10% significance level implying the presence of

possible market inefficiencies. Impulse response analysis reveals small effects on

stock prices of shocks in sentiment and SVI, reinforcing the limited influence of

these variables on stock price movements in line with EMH. Furthermore, the

variance decomposition tests confirmed the limited power of sentiment and

attention variables in predicting stock price variance. Overall, our findings

indicate that while Google Trends Search Volume Index possesses marginally

more predictive power than sentiment, its influence remains limited, with the

lion's share of stock price variations primarily attributable to the stocks' own

historical performance. These findings align with aspects of both the EMH and

Page 3

BFT underscoring the importance of conducting further research to examine the

impact of psychological biases on market behaviour.

Our research enhances the existing body of knowledge by uniquely synthesizing

sentiment and attention variables into a comprehensive predictive model, thereby

offering an in-depth understanding of the interplay between social media

sentiment, investor attention, and stock market dynamics on company level. This

approach, which incorporates a broader timeline compared to most studies,

employs a novel dual sentiment analysis technique that merges lexicon-based

methods with advanced machine learning algorithms. By unveiling the potential

of these combined variables and methodologies, our study holds profound

implications for investors, financial analysts, and other stakeholders, promising to

redefine investment decisions and strategies, and paving the way for novel

financial forecasting paradigms.

Page 4

Literature review

This literature review explores the role of investor sentiment, as conveyed through

various media and data sources, in asset pricing and market predictions. It

examines research investigating the influence of diverse mediums, from financial

news to Twitter, on market volatility and stock returns. The review also considers

Google Trends, as a measure of investor attention and its potential predictive

value for stock market movements.

Various studies analysed diverse textual content such as media articles and

corporate disclosures, demonstrating the influential role of textual content and

investor sentiment in asset pricing. Online discussions on finance boards

(Antweiler & Frank, 2004), negative media tone (Ahmad et al., 2016) and

pessimistic sentiments in financial news, as in a prominent Wall Street Journal

column (Tetlock, 2007) can significantly predict market volatility and stock

returns. Moreover, mood-altering events like international soccer results have

been found to significantly affect stock returns (Edmans et al., 2007), further

suggesting that mood shifts may drive market behaviours. A similar predictive

capacity is also observable in the linguistic tone of Forward-Looking Statements

(FLS) in corporate filings (Li, 2010) and quarterly earnings conference calls

(Price et al., 2012). However, potential misclassification issues necessitate caution

with word classification schemes (Loughran & Mcdonald, 2011). The significant

influence of investor sentiment, especially in the context of securities with

subjective valuations and limited arbitrage opportunities, is apparent in stock

prices and returns (Baker & Wurgler, 2006). These studies question the Efficient

Market Hypothesis by highlighting sentiment-driven market anomalies, thus

aligning with behavioural finance theory's emphasis on the role of investor biases

in asset pricing.

Investigations into user-generated content reveal that Twitter and other stock

microblogs can provide a trove of valuable market information (Sprenger et al.,

2014). Pioneer studies by (Bollen et al., 2011) claimed that Twitter sentiment

analysis could forecast DJIA closing values with an accuracy of 87.6%, and

similar studies highlighted a significant correlation between tweet emotions and

U.S. stock indices (Zhang et al., 2011). However, the reliability and

Page 5

generalizability of these findings have been disputed due to issues of data

overfitting and potential limitations in the use of randomized subsamples

(Lachanski & Pav, 2017; Sprenger et al., 2014).

The use of social media sentiment analysis for predicting individual stock

movements has increasingly been explored, with research moving from aggregate

market indices to stock-specific predictions. Researchers have developed

sentiment indices for individual stocks (Oh & Sheng, 2011) and demonstrated that

Twitter sentiment can significantly impact stock returns, with a trading strategy

based on user sentiments potentially yielding annual returns between 11–15% (Sul

et al., 2017a). The importance of Twitter sentiment has been further recognized in

abnormal returns at Twitter volume peaks (Ranco et al., 2015) and in predicting

trade volume and price changes of specific stocks like Apple (Batra & Daudpota,

2018; Mao et al., 2012). However, not all stocks are affected equally, as (Renault,

2020) found social media sentiment extracted from StockTwits failed to predict

Apple, Amazon, Facebook, Google, and Microsoft’s daily returns.

The utility of Google Trends in reflecting investor attention was pioneered by (Da

et al., 2011), finding that increases in the search volume signalled higher prices

for Russell 3000 stocks over a two-week span, followed by a price reversal within

a year. This was complemented by (Joseph et al., 2011) who, through analysis of

S&P 500 firms from 2005–2008, discovered online search intensity could reliably

predict abnormal stock returns and trading volumes, especially for stocks that are

hard to arbitrage. Following up on these findings, (Huang et al., 2020) further

demonstrated the predictive power of Google Trends data. Their study concluded

that such data could be effectively used to construct a relatively simple linear

model that forecasts the directional movements of the S&P 500 index. This model

could potentially generate substantial excess returns in the back testing period,

although they also acknowledged certain caveats. In a similar vein, (Preis et al.,

2010) found a robust correlation between weekly search volumes for specific

companies and their transaction volumes in the S&P 500. (Chen & Lo, 2019)

extended this analysis to Taiwan's top 50 firms, revealing a significant positive

correlation between the logarithmic variation of SVI and trading volume, turnover

ratio, and stock return volatility. In sum, these studies establish a consistent

narrative: the intensity of searches for ticker symbols is a valid reflection of

Page 6

investor attention, serving as a potent forecasting tool for stock returns and

volumes.

The review reveals that various data sources, like media articles, corporate

disclosures, online chats, Twitter sentiment, and Google Trends, are gradually

gaining recognition as tools for predicting market volatility and stock returns.

These studies question established norms, including the EMH by pointing at

potential market inefficiencies aligning with the BFT. Although the potential of

Twitter sentiment and Google Trends for market forecasts has been recognized,

their combined use in predicting individual stock returns remains largely

unexplored. Despite the engaging narrative presented, this field is still nascent,

with a portion of the research appearing in less recognized journals and having

fewer citations. This presents an opportune moment for our forthcoming study,

aiming to delve deeper into this underexplored interplay between social media

sentiment, investor attention, and stock prices of leading tech companies, thereby

enriching the existing literature and enhancing our understanding of these

innovative market prediction methodologies.

Page 7

Hypothesis and Methodology

At the core of our study lies the behavioural hypothesis, which suggests that the

interaction between investor mood and attention, as measured by Twitter

sentiment and Google Trends search volume index (SVI) respectively, has a

significant impact on stock returns. With the existing literature yielding diverse

findings and the relative novelty of this field, we are captivated by the potential of

combining Twitter sentiment and SVI to enhance the prediction of stock price

movements. Our particular focus is on examining the intricate interplay between

these variables and their influence on the stock prices of four prominent

technology companies. Grounded in this context, our methodology sets to answer

a set of hypotheses. First, we propose the existence of a causal relationship

between Twitter sentiment and the stock price movements of the selected

technology companies. Second, we posit a causal relationship between SVI and

the stock price movements of the same companies. Lastly, we aim to evaluate the

extent to which combining Twitter sentiment and SVI improves the predictability

of stock price movements.

Stationarity

Commencing with our analysis, the execution of an Augmented Dickey-Fuller

(ADF) test is in order to evaluate the stationarity of the dataset. This is a crucial

component of our methodology, given our objective to establish multiple VAR

models, which inherently require all associated variables to exhibit stationarity

(Brooks, 2019). The primary function of the ADF test is to examine the time

series for the existence of a unit root. The null hypothesis propounded by the ADF

test posits that the time series incorporates a unit root (𝜙 = 1), signifying its non-

stationary nature. Conversely, the alternative hypothesis implies the stationarity of

the time series (𝜙 < 1).

To guarantee the stationarity of the time series data, we introduce the first

differences to each variable prior to conducting the test. As depicted in Table 1,

the stationarity of all variables is corroborated by a p-value that closely

approximates zero, reinforcing the graphical depiction of the first differences

presented in appendix Section C.

Page 8

Selecting the optimal number of lags

Selecting the optimal number of lags is a crucial step in building a VAR model for

time series analysis. Several information criteria methods have been proposed for

this purpose, including Akaike's Information Criterion (AIC) (Akaike, 1969),

Final Prediction Error (FPE) (Akaike, 1974), Hannan-Quinn Information Criterion

(HQIC) (Hannan & Quinn, 1979), and Schwarz Bayesian Information Criterion

(SBIC) (Schwarz, 1978) (Brooks, 2019).

The choice of which information criterion to use for determining the optimal lag

number depends on the specific characteristics of the data and the objective of the

analysis. The AIC and FPE tends to favour models with more lags, as it penalizes

model complexity less severely. This may lead to overfitting, where the model

may capture noise in the data rather than true underlying patterns. On the other

hand, the HQIC and SBIC tend to favour models with fewer lags, as they impose

a stronger penalty on model complexity, thereby mitigating the risk of overfitting.

Table 2 presents a summary of the results obtained calculating all four

information criteria to determine the optimal lag number for each model. For all

four stocks, we have chosen to use the Hannan-Quinn Information Criterion

(HQIC) for setup (1) involving all three variables, along with setup (2)

involving adjusted closing price and sentiment score. Additionally, for setup (3)

with adjusted closing price and SVI we have found the Akaike's Information

Criterion (AIC) to be the most appropriate information criterion. Specifically, all

models for Apple will use 9 lags. For Amazon, 6 lags will be used in the first

setup, while the latter two setups will use 8 lags. Microsoft's first setup will also

use 6 lags, and the following two will employ 9 lags. All Tesla models will

include 5 lags.

VAR framework

The VAR approach is useful for handling time-series data, and it allows for

multiple endogenous variables, giving us the ability to investigate dynamic effects

without rigid limitations and hence is a good fit for our dataset. Another

advantage of the VAR models is the allowance for a variable to be dependent on

more than just its own lags and combinations of white noise terms. Thus, VARs

Page 9

are more flexible than univariate AR models and can capture more features of the

data as a result of their more complex structure (Brooks, 2019).

For each stock, the first model (1) will include the first differences of; the adj.

closing price (S) for the stock, the net sentiment score (NSS), and SVI. In this

model, we aim to explore how fluctuations in NSS, and SVI collectively affect the

stock price movements. By considering all three variables, we can capture the

combined impact of market sentiment and online search behaviour on stock price

movements. This model allows us to examine the interconnected dynamics and

potential feedback effects between these variables.

The second model (2) will include the first differences of; adj. closing price (S)

for the stock and NSS as the endogenous variables. This model focuses on

investigating the influence of NSS alone on stock price movements. By isolating

the NSS as the primary predictor, we can assess the importance of market

sentiment in driving stock price movements. This model helps us understand the

extent to which changes in net positivity or negativity impact the stock return over

time.

The third model (3) will include the first differences of; adj. closing price and

the SVI. In this model, our objective is to examine the relationship between stock

returns and SVI. By considering the search behaviour captured by the SVI, we can

explore the extent to which online search activity reflects or predicts stock price

movements. This model provides insights into the impact of public interest and

information-seeking behaviour on stock returns.

Mathematically, the models can be written as follows in matrix form where 𝑆𝑡 is

the stock return, 𝑁𝑆𝑆𝑡 is the change in net sentiment score, 𝑆𝑉𝐼𝑡 is the change in

Google trends search volume index, 𝑡 is time, 𝛽𝑔,0 is the constant term, 𝛽𝑔,𝑘 is the

coefficient associated with the variables, 𝛼𝑔,𝑘 are the coefficients associated with

the contemporaneous values of the variables, and 𝑢 is the error terms.

Page 10

[

𝑆𝑡

𝑁𝑆𝑆𝑡

𝑆𝑉𝐼𝑡

] = [

𝛽10

𝛽20

𝛽30

] + ∑ [

𝛽11
𝑖 𝛼12

𝑖 𝛼13
𝑖

𝛼21
𝑖 𝛽22

𝑖 𝛼23
𝑖

𝛼31
𝑖 𝛼32

𝑖 𝛽33
𝑖

] [

𝑆𝑡−𝑖

𝑁𝑆𝑆𝑡−𝑖

𝑆𝑉𝐼𝑡−𝑖

] + [

𝑢𝑠𝑡

𝑢𝑁𝑆𝑆𝑡

𝑢𝑆𝑉𝐼𝑡

]
𝑘

𝑖=1

(1)

[
𝑆𝑡

𝑁𝑆𝑆𝑡
] = [

𝛽10

𝛽20
] + ∑ [

𝛽11
𝑖 𝛼12

𝑖

𝛼21
𝑖 𝛽21

𝑖] [
𝑆𝑡−𝑖

𝑁𝑆𝑆𝑡−𝑖
] + [

𝑢𝑆𝑡

𝑢𝑃𝑜𝑠𝑡
]

𝑘

𝑖=1

(2)

Forecasting

Our research aims to investigate the predictive relationship between the net

positivity of tweets and Google Trends scores, and their influence on stock price

movements. Utilizing our estimated VAR model, which was trained on historical

data spanning from 01.01.2018 to 01.01.2023, we conducted an out-of-sample

one-step-ahead forecast. This forecast allowed us to generate predictions within

the period from 01.01.2023 to 01.02.2023, representing the anticipated change in

stock return for the subsequent trading day. By examining the impact of Twitter

sentiment and Google Trends on stock price fluctuations, we gain valuable

insights into the forecasting potential of these factors in the specified time

horizon.

Comparing forecasting performance

To evaluate the predictive accuracy of our models, the out-of-sample forecast

enables us to derive the accuracy metrics Mean Squared Error (MSE), Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE).

By comparing our model's performance against random processes, we aim to

establish its validity, supported by previous research such as the findings of

(Dsouza & Mallikarjunappa, 2015), which suggest that stock prices do not follow

a random walk and instead exhibit non-random underlying structures in the

market. As the stock prices have increased in the sample period, we use a random

walk with drift to account for any underlying trends or systematic changes

observed in the stock prices. We employ the approach outlined by (Nau, 2014) to

estimate the random walk with drift (RW) which assumes that the model takes a

random step from its previous value in addition to a drift term.

[
𝑆𝑡

𝑆𝑉𝐼𝑡
] = [

𝛽10

𝛽20
] + ∑ [

𝛽11
𝑖 𝛼12

𝑖

𝛼21
𝑖 𝛽21

𝑖] [
𝑆𝑡−1

𝑆𝑉𝐼𝑡−𝑖
] + [

𝑢𝑆𝑡

𝑢𝑇𝑜𝑝𝑡
]

𝑘

𝑖=1

 (3)

Page 11

To estimate the drift term for each stock, we have computed the average

difference between the adjacent price changes over the sample period as outlined

by (Nau, 2014).

This average change serves as an approximation of the stock's drift, capturing the

average increase or decrease in price from one period to the next. By adding the

drift term to the most recent observed price, we can generate forecasts using the

random walk with drift model.

As a second benchmark an autoregressive model (AR) model was constructed

employing solely observations from prior time steps of changes in the adjusted

close price as inputs to a regression equation, forecasting the value at the

subsequent time step. This benchmark approach is driven by the EMH, allowing

for assessing the disparity in accuracy metrics resulting from the inclusion of NSS

and SVI variables in the VAR models compared to the AR model. The AIC was

applied to all stocks, with 9 lags chosen for Apple and Microsoft, and 1 for

Amazon and Tesla (Table 2). Mathematically, the change in adjusted closing price

at time t (𝑆𝑡) in the autoregressive model is a function of a constant term 𝜇, the

past (𝑆𝑡−𝑖) changes in adjusted closing prices each weighted by their respective

coefficients (𝜙𝑖) and the error term at time t (𝑢𝑡) which accounts for other

influences not captured by the past prices (Brooks, 2019).

Autocorrelation

Autocorrelation is a statistical measure used to assess the similarity between a

time series and its lagged version, revealing potential patterns or dependencies

within the data. The presence of autocorrelation in residuals suggests that the

model may not adequately capture the underlying data pattern. To evaluate

𝑌̂𝑛+𝑘 = 𝑌𝑛 + 𝑘𝑑̂

(4)

𝑑̂ =
𝑌𝑛 − 𝑌1

𝑛 − 1

(5)

𝑆𝑡 = 𝜇 + ∑ 𝜙𝑖𝑆𝑡−𝑖 + 𝑢𝑡

𝑝

𝑖=1

(6)

Page 12

autocorrelation, we conduct the Durbin-Watson test, as suggested by (Brooks,

2019). The null hypothesis, 𝐻0: 𝜌 = 0, states that there is no autocorrelation

present in the residuals, indicating that the model adequately captures the

underlying data pattern. The alternative hypothesis 𝐻1: 𝜌 ≠ 0, suggests the

presence of autocorrelation, indicating that the model fails to capture certain

dependencies within the data. The test statistic used in the Durbin-Watson test is

calculated as follows:

𝐷𝑊 =
∑ (𝑢̂𝑡 − 𝑢̂𝑡−1)2𝑇

𝑡=2

∑ 𝑢̂𝑡
2𝑇

𝑡=2

(7)

The Durbin-Watson analysis generates a test statistic that can range from 0 to 4.

The proximity of the test statistic to 2 suggests the non-rejection of the null

hypothesis, implying the absence of autocorrelation. Conversely, test statistic

nearing the extremities of 0 and 4 suggest the null hypothesis can be refuted,

indicating the existence of positive or negative autocorrelation within the residuals

(Brooks, 2019).

The Durbin-Watson test results, presented in Table 3, reveal test statistics

hovering around 2 for all considered models, thus suggesting the absence of

autocorrelation. The range of test statistics spans from 1.9871 (for "Adj. Close

Tesla | SVI Tesla") to 2.0244 (for "Adj. Close Tesla | Sentiment Tesla"), with the

latter exhibiting the highest deviation from the expected value of 2. However, in

this instance, we still don't find adequate evidence to dismiss the null hypothesis,

thus we cannot reject the assumption of no autocorrelation across all models.

Causality

Causality tests are employed in our research to examine the interactions between

different variables and how they affect each other. In this study, we will be

conducting Granger causality tests, impulse response analysis, and variance

decompositions. These tests will help us understand the direction, strength, and

responsiveness of the relationships between our variables of interest.

Grange Causality

The Granger causality test, as described by (Brooks, 2019), utilizes an F-test

framework to assess the direction and strength of causality between variables. By

performing this test on all possible combinations of our variables, we can identify

Page 13

which variables have a significant Granger-causal relationship and gain insights

into the potential drivers of stock prices, sentiment, and investor attention.

Impulse Response Analysis

In addition to Granger causality, impulse response analysis is conducted to further

explore the relationships between our variables. Impulse response functions

provide insights into the responsiveness of the dependent variable in the VAR

model to shocks in each of the variables. This analysis helps us understand the

potential impact of unanticipated changes in one variable on the others and how

the effects of these shocks may evolve over time (Brooks, 2019).

Variance decomposition

The variance decomposition is a method used to measure the contribution of each

variable in the VAR model to the forecast error variance of the system over a

specified period. The decomposition is carried out by calculating the percentage

of the forecast error variance that can be attributed to the innovations of each

variable in the system (Lütkepohl, 2005). The formula for the variance

decomposition of a variable 𝑖 at time 𝑡 is given by:

𝐹𝐸𝑉𝑖(𝑡) = ∑ ∑ 𝜙𝑖,𝑗,𝑘𝐹𝐸𝑉𝑗(𝑡 − 𝑘) + 𝜎𝑖
2(𝑡)

𝑝

𝑘=1

𝑝

𝑗=1

(8)

The results of variance decomposition provide valuable information regarding the

individual impact of variables on the forecast error variance observed within a

system. Analysing the percentage contribution of each variable to the overall

forecast error variance helps assess its significance in explaining temporal

variations within the system. Visualizing the variance decomposition results

through a plot facilitates the interpretation of how the contribution of each

variable evolves over time in relation to the forecast error variance of the system.

Page 14

Data

Selection of companies

This research focuses on Apple, Amazon, Microsoft, and Tesla due to their

substantial market value, high public visibility, and diverse industry

representation. This selection facilitates a nuanced study of Twitter sentiment and

investor attention's effects on stock prices across varying sectors (Zeitun et al.,

2023). These companies frequently garner media attention and possess robust

Twitter presences, enhancing their suitability for sentiment analysis research (Da

et al., 2011). Additionally, their wide data availability and consistent growth

patterns (Statman, 2010) enable a robust quantitative analysis of sentiment,

attention, and stock performance. Previous research (Batra & Daudpota, 2018;

Mao et al., 2012) has yielded promising results using some of these companies,

underscoring their relevance to this field. Thus, the chosen companies offer a

comprehensive exploration of social media sentiment, investor attention, and

stock price movements across different industries.

Juridical and moral concepts

The utilization of tweets from personal accounts raises some legal and ethical

considerations. Twitter grants users the option to designate their accounts as

private or public. The snscrape tool is specifically designed to retrieve tweets from

public accounts on Twitter, thereby making them accessible and readable to the

public. It can be assumed that the account owners are cognizant of the public

nature of their tweets and have not shared sensitive information through those

tweets. Moreover, Google Trends provides data that is aggregated and

anonymized to safeguard individual privacy. Consequently, the data is presented

in a manner that prevents the identification of specific users or their search

queries.

Programming language & Data collection

To perform the analysis three datasets for each stock are needed. A dataset

containing tweets that include either the company name or ticker, Google trends

score extracted using the company ticker, and a dataset containing the adjusted

closing price for the stocks. The rationale for employing both the company names

and ticker symbols is underpinned by the empirical results presented by (Batra &

Daudpota, 2018; Joseph et al., 2011; Preis et al., 2013; Renault, 2020; Sprenger et

Page 15

al., 2014). The data collection and pre-processing are done in Python, whilst the

statistical analysis is done in R. Comprehensive lists of the utilized packages are

presented in Table 5 and Table 6.

Tweets

We utilize the snscrape tool, a Python-based web scraping tool, to collect Twitter

data, including tweets and Twitter account information, circumventing Twitter's

API limitations (JustAnotherArchivist, 2018/2023). With snscrape, we can collect

data from the past five years, specifically from January 1, 2018, to February 1,

2023, with the last month as our out-of-sample period. All tweets collected

include either the ticker or the company name to ensure relevance to our study on

stocks. Additionally, we have set a limitation on the minimum number of

followers at 100, to ensure that the accounts we collect data from have some level

of influence, while still obtaining a sufficient amount of data for our analysis in

line with the findings of (Sul et al., 2017b).

Cleaning Tweets

A rigorous process was employed to clean the Twitter data. This process involved

a series of text pre-processing tasks. The tweets underwent a comprehensive

cleaning process that included the removal of URLs, user mentions, hashtags,

punctuation, numbers, and extra whitespaces. Furthermore, the tweets were

converted to lowercase and tokenized to facilitate subsequent analysis (Bird,

2009).

To refine the dataset, stopwords were removed using the Natural Language

Toolkit (NLTK) library (Bird, 2009). This step was essential in eliminating

common words that do not contribute to the overall sentiment of the text.

Moreover, a language detection library, Langdetect (Danilák, 2014/2023) was

employed to ensure that the analysis focused exclusively on English-language

content, thereby increasing the relevance and accuracy of the findings. Emojis,

which have become increasingly prevalent in online communication (Kralj Novak

et al., 2015), were also addressed by converting them to textual representations

using the Emoji library (Kim, 2014/2023). The inclusion of emojis is consistent

with the findings of (Renault, 2020) which found that adding emojis significantly

improved sentiment classification performance.

Page 16

The cleaning process applied in this study aimed to standardize the data, remove

irrelevant elements, and ensure the accuracy and reliability of the sentiment

analysis.

Sentiment analysis

In our sentiment analysis of the cleaned data, we adopted a hybrid approach

blending both lexicon-based methods and machine learning techniques. This

combination leverages the strengths of the well-known Loughran-McDonald

dictionary and the innovative Hugging Face sentiment analysis pipeline, a synergy

proven to enhance the precision of sentiment classifications (Kolchyna et al.,

2015).

The Loughran-McDonald dictionary, a lexicon specially crafted for financial and

business scenarios (Loughran & Mcdonald, 2011) houses an extensive assortment

of words tagged with positive and negative sentiment scores, thereby enabling

effective identification of sentiment-bearing words within our textual data. As a

lexicon-based approach, its implementation is straightforward and its

computational requirements are relatively light, making it an ideal tool for

handling large datasets. Its application allowed us to accurately capture sentiment

nuances associated with the four companies and their stock performance.

To supplement the Loughran-McDonald dictionary, we tapped into the Hugging

Face sentiment analysis pipeline, which utilizes the cutting-edge DistilBERT

model (Sanh et al., 2020). This machine learning model offers an advanced

understanding of language, taking into account intricate language patterns,

sarcasm, and context-dependent sentiment. Unlike the more straightforward

lexicon-based methods, the Hugging Face pipeline offers a nuanced sentiment

analysis that goes beyond simple keyword identification. This added dimension

allowed us to unearth sentiment subtleties potentially overlooked by the

Loughran-McDonald dictionary.

Sentiment scores were computed by first tokenizing the cleaned tweets, then

calculating the sentiment scores for each method separately. With the Loughran-

McDonald dictionary, the difference between the counts of positive and negative

tokens was calculated and normalized by the total number of tokens. For the

Hugging Face pipeline, the pre-trained model was applied to each tweet, and the

Page 17

sentiment score was extracted. This blending of two methodologies allowed us to

capitalize on the unique strengths of both approaches, enhancing the overall

accuracy and dependability of our sentiment analysis.

Google Trends

Given that Google Trends only provides daily data for time frames shorter than 90

days, and weekly data for longer time frames, we encountered limitations in

obtaining daily SVI directly for our five-year study period. Therefore, we utilized

an approach to create a daily SVI that closely matches the weekly SVI provided

by Google Trends. The rationale behind this approach is that higher frequency

data may capture nuances and effects that lower frequency data cannot. To

achieve this, we utilized the Pytrends library in Python to interact with the Google

Trends API. We defined our search term and collected daily data in 90-day

intervals throughout our set date range. Subsequently, we resampled the daily data

to a daily frequency and filled any missing values using a forward fill method.

To maintain consistency with the weekly data acquired from Google Trends, we

employed a scaling technique. This involved calculating scaling factors by

dividing the weekly data by the average of the daily data for that week.

Subsequently, these scaling factors were used to rescale the daily data by

multiplying each data point with its corresponding scaling factor. To ensure that

the rescaled daily data remained within the permissible range of the Google

Trends index (which has an upper limit of 100), we implemented a maximum

value cap of 100.

Upon this, we introduced a smoothing technique to further refine our daily data.

This technique comprised calculating a 7-day moving average, which involved

establishing a rolling window of 7 days centred on each date and calculating the

average for these windows. The outcome was a smoothed version of our daily

data, offering a clearer visualization of the overarching trends and patterns.

In addition, we obtained the weekly data for the entire time period of interest

using the Pytrends API and resampled it to a weekly frequency. Any missing

values in the weekly data were interpolated to ensure completeness. Plots were

Page 18

generated to visually inspect the trends and patterns in the data, including the

smoothed scaled daily data and the interpolated weekly data.

Integration of Adjusted Closing Prices with Sentiment and SVI Data

The adjusted closing prices employed in our analysis were directly obtained from

Yahoo Finance and imported into the R. These prices are widely recognized and

commonly utilized in financial analysis because they encompass adjustments for

various corporate actions, such as stock splits, dividends, and other factors that

may affect historical stock prices. By incorporating adjusted closing prices, our

objective was to capture the actual underlying price movements of the stocks,

while minimizing the impact of corporate actions on our analysis. This

methodology ensured the integrity and precision of our data, allowing us to

conduct rigorous analysis and draw reliable conclusions in our research.

Sentiment scores and SVI were synchronized with the adjusted closing prices of

the stocks by implementing an 'inner join' strategy during the merging process,

retaining only the common dates across all datasets. This strategy automatically

aligned the sentiment and SVI data with the adjusted closing price, consequently

excluding the weekend data.

Figure 1 Constructed daily Google Trends SVI vs Weekly google trends SVI

Page 19

Results

To capture the relevant information for the subsequent trading days' adjusted

closing price, we consider tweets posted until midnight. This approach allows us

to observe the impact over a full trading day after the tweet, ensuring a

comprehensive understanding of its effects. It is important to note that any tweets

posted while the market is still open may incorporate some of their effect into the

price on the same day. If this occurs, it potentially attenuates our results since part

of the reaction may have already been incorporated into the prices before our

measurement days. Additionally, the SVI is constructed on a day-by-day basis and

examined on the adjusted closing price the following trading days. However, we

find this to have a potential very limited impact on the results.

Forecasting results

To evaluate the forecasting performance of the VAR models and gain deeper

insights into the contribution of different variables, we conducted a

comprehensive analysis. In this evaluation, we compared the MSE, RMSE, and

MAE of the VAR models to that of a benchmark model, the RW. Additionally,

we introduced an autoregressive regression (AR) model that solely incorporates

the lags of the stock as a baseline. This AR model allows us to examine the

impact of including additional factors, such as Twitter sentiment and Google

Trends search volume index, in the forecasting process. The results of this

evaluation can be found in Table 6.

Across all stocks and the three VAR model setups, we consistently observed

superior performance by the VAR models in comparison to the RW model. This

pattern was evident across all accuracy metrics. In every instance, the VAR

models exhibited lower values compared to the RW model, underscoring the VAR

models consistent outperformance of the RW in terms of accuracy.

When comparing the performance of the VAR model against the AR model,

divergent trends emerge for different stocks. Specifically, the VAR model

showcased inferior forecasting accuracy for both Apple and Tesla, in contrast to

the AR model. The VAR models consistently exhibited higher accuracy metrics

compared to the AR model suggesting that the inclusion of Twitter sentiment and

Page 20

SVI variables diminishes the model's performance universally for these stocks.

Conversely, the VAR modes consistently outperformed the AR model for both

Microsoft and Amazon, exhibiting lower accuracy metrics. These consistent

findings across both stocks imply that incorporating Twitter sentiment and SVI

variables enhances the forecasting accuracy of the VAR model, positioning it as a

more effective approach than the AR model for Microsoft and Amazon. Thus, the

performance of the VAR model compared to the AR model is contingent upon the

specific stocks being analysed, indicating the importance of considering

individual stock dynamics when selecting the appropriate forecasting model.

However, upon evaluating the diverse setups within the VAR model for each of

the four stocks, we observe some discernible variations in forecasting accuracy.

Setup (1) consistently exhibits higher accuracy metrics when compared to both

setup (2) and (3). This consistent pattern suggests that the inclusion of both

Twitter sentiment and SVI variables, simultaneously, may not improve, but

instead might impede the model's performance for these specific stocks.

The visual representation of the VAR setup (1), is clearly outlined in Figure 2

Forecasting performance. Setup (1), alongside actual values, the RW model, and

the AR model for all stocks. As noted in tracking the actual values for Apple and

Tesla, the AR model manifested superior performance, whereas the VAR model

excelled for Amazon and Microsoft. However, it should be further noted that the

AR model captured the least volatility in the stock price movements. In

comparison, our VAR model demonstrated a marginally superior capability to

capture volatility than the AR model. On the other hand, the RW model performed

the worst in terms of overall forecasting accuracy but demonstrated the highest

capability in capturing volatility. These results indicate that while the AR model is

superior in terms of capturing the general trend, our VAR model provides a

valuable balance between accuracy and volatility capture. This finding highlights

the potential of our VAR model as a reliable forecasting tool for stock price

movements, offering insights for investors and decision-makers in the financial

industry. Forecast values for the models with setup (2) and (3) are presented in

appendix Section E.

Page 21

Granger causality

The results of the Granger causality tests conducted for Apple, Amazon,

Microsoft, and Tesla stocks provide insights into the relationships between

variables. The tests aim to determine whether one variable "Granger causes"

another, meaning it provides useful information for predicting the future values of

the other variable. The tests are conducted at a 5 percent significance level.

For Apple, the tests indicate that neither sentiment nor SVI significantly Granger

cause stock returns. Similarly, the stock returns do not significantly Granger cause

sentiment or SVI. These findings suggest that there is no significant causal

relationship between these variables for Apple.

For Amazon, the results show that sentiment and SVI do not significantly Granger

cause the stock returns, indicating a lack of predictive power in relation to future

stock price movements. However, the tests reveal that stock returns significantly

Comparative Forecasting Performance of VAR, AR, RW and actual values. Setup (1)

Figure 2 Forecasting performance. Setup (1)

Page 22

Granger causes sentiment in setup (2) with a p-value of 0.024, implying that

changes in stock price provide information that can help predict future sentiment

patterns.

In the case of Microsoft, the Granger causality tests demonstrate that sentiment

and SVI do not significantly Granger cause the stock returns. Similarly, stock

returns do not significantly Granger cause sentiment or SVI. These results suggest

a lack of significant causal relationships between these variables for Microsoft.

For Tesla, the findings reveal that sentiment and SVI do not significantly Granger

cause stock returns. Likewise, the stock returns do not significantly Granger cause

sentiment. The exception is in setup (3), where SVI significantly Granger causes

the adjusted closing price (p-value of 0.0138), leading to the rejection of the null

hypothesis. implying that search volume trends captured by SVI can provide

information for predicting future stock price movements.

By adopting a more lenient significance level of 10%, certain relationships

between variables begin to emerge. Notably, for Apple, it becomes apparent that

Google Trends SVI Granger causes the stock return (Setup 3). In the case of

Microsoft, both the stock return and Google Trends SVI exhibit a significant

influence on the sentiment score (Setup 1). Furthermore, in relation to Tesla, it is

observed that both sentiment and Google Trends SVI Granger cause the stock

return (Setup 1), and that the Adj. Closing price Granger cause Sentiment (Setup

2). These findings suggest that by relaxing the significance level, we gain insight

into noteworthy causal relationships among these variables for the respective

stocks.

Impulse responses

Impulse response function (IRF) analysis provides valuable insights into the

intricate relationships among variables within selected stocks. By applying a one

standard deviation shock to each variable and observing its effects on the others

over a specified period, we gain a comprehensive understanding of their dynamics

and interdependencies. This approach enhances our insights into complex

interactions, offering a comprehensive view of their interconnectedness.

Page 23

It is important to note that the response of a variable to its own shock is typically

intense and not of primary interest in this analysis. Therefore, we will primarily

focus on examining the effects of shocks transmitted between variables, shedding

light on how changes in one variable can influence the others within the selected

stocks. Nevertheless, to ensure transparency and completeness of our findings, we

also report the results of the variables' responses to their own shocks. These

results, along with the other impulse responses, are presented in appendix Section

G.

Based on the analysis conducted, it was observed that shocks in the adjusted

closing prices of stocks resulted in a subsequent change in sentiment and SVI over

a period of 3 to 6 days before gradually declining. The effects of this shock on

sentiment and SVI were consistent across all stocks, indicating similarity in their

responses.

In contrast, shocks in Twitter sentiment had minimal and negligible effects on the

stock returns. These small effects were zero after 7 to 10 days, suggesting that

Twitter sentiment has a limited impact on stock prices whilst for the SVI a bit

more volatility is observed before it goes to zero after 7 to 8 days.

Sending a shock into the SVI causes some more volatility than Twitter sentiment

to stock returns peaking at day 3 to 5, before fading towards the baseline levels.

To the same shock, the Twitter sentiment responds with small changes over the

next 5 days before exhibiting toward the baseline levels.

Variance decomposition

To explore the relationship between investor sentiment and attention, and the

future variance of the four selected stocks, we employ the Forecast Error Variance

Decomposition (FEVD) measure and track it for 20 days. FEVD allows us to

assess the extent to which exogenous shocks to each variable contribute to the

forecast error variance of the other variables. By utilizing the FEVD methodology,

we aim to determine the role of investor attention and sentiment in explaining the

volatility of the selected stocks (Brooks, 2019).

Page 24

The results, as presented in the appendix Section H, is very similar across the

stocks. Not surprisingly, the majority of the variation in stock prices is explained

by the stocks themselves. The lagged values of each stock consistently account for

a significant portion of the forecast error variance, reflecting the intrinsic

characteristics and market dynamics of the stocks.

When considering the external factors, their combined influence on stock price

variance is relatively limited. Collectively, these factors explain no more than 2

percent of the variance in stock prices. Notably, investor attention tends to have

slightly higher explanatory power compared to sentiment, albeit still within the

limited range.

Moreover, the explanatory power of both investor attention and sentiment tends to

increase gradually up to approximately day 10 before stabilizing. This observation

suggests that these factors have a modest but time-limited impact on stock price

variance.

Robustness test

The reverse ordering test was conducted to examine the impact of variable

ordering in the VAR model. The objective was to determine whether the

arrangement of variables has any notable effect on the results. The analysis

revealed that the ordering of variables had very little impact, and the outcomes

remained consistent with the previous findings. This is not surprising as the

correlation between variables was found to be low. The low correlation indicates

that the relationships between the variables are not strongly influenced by their

relative positions in the model. Consequently, the reverse ordering test

demonstrates the robustness of the results, confirming that the conclusions drawn

hold regardless of the variable ordering.

Page 25

Discussion and Conclusion

In this study, we conducted an extensive analysis to explore the relationship

between stock prices, Twitter sentiment, and investor attention. We collected and

cleaned a dataset comprising 0.55 million tweets and calculated a sentiment score

for each tweet. Additionally, we constructed a daily Google Trends search volume

index (SVI) to capture investor attention. With these data in hand, we aimed to

investigate the predictive capabilities and causal relationships among these

variables using several Vector Autoregression (VAR) models.

The VAR models' consistent outperformance over the RW models reveals that

stock prices do not strictly follow a random walk and that the market does not

instantaneously incorporate all available information, hinting at possible

inefficiencies. The fact that AR outperformed VAR for Apple and Tesla suggests

that the incorporation of sentiment and SVI data did not add significant predictive

power beyond historical prices, aligning more with the EMH. However, the

superior performance of VAR for Amazon and Microsoft, when sentiment and

attention were included, indicates that these additional factors do capture valuable

information not entirely reflected in historical prices alone. This supports BFT,

which posits that psychological factors and investor sentiment can influence stock

prices, suggesting that investor behaviour may contribute to market inefficiencies.

Across all stocks, the Granger causality results generally revealed weak causality

links, with Amazon and Tesla being notable exceptions. In Amazon's case, there

was a significant Granger causality from the adjusted closing price to sentiment.

This suggests a potential one-way causal relationship between fluctuations in the

stock price and the prevailing public sentiment. For Tesla, we discovered a

significant Granger causality from investor attention to stock return. This implies

that search volume trends could serve as a predictive indicator for Tesla's stock

price. Interestingly, we observed similar results for Apple, albeit at a lower

significance level of 10%. The Theory of Information Cascade lends support to

these findings, advocating that investors often imitate perceived trends, which, in

turn, further impact the stock return (Hirshleifer & Hong Teoh, 2003). Moreover,

sentiment and SVI were found to Granger cause the Tesla stock return at a 10%

significance level. On balance, the results related to Tesla suggest that sentiment

Page 26

plays a relatively subdued role in the model as compared to SVI. Collectively,

these findings underscore potential market inefficiencies, thereby questioning the

tenets of the Efficient Market Hypothesis.

The variance decomposition analysis showed limited explanatory power of

Twitter sentiment and SVI. The results consistently showed that the majority of

the variation in stock prices was explained by the stocks themselves, with lagged

values accounting for a significant portion of the forecast error variance. The

combined influence of Twitter sentiment and SVI on stock price variance was

relatively limited, collectively explaining no more than 2 percent of the variance.

Investor attention tended to have slightly higher explanatory power compared to

sentiment, albeit still within a limited range. This evidence is consistent with the

EMH's assumption of market efficiency.

The impulse response analysis shed light on the dynamics and interdependencies

among variables. A shock in the adjusted closing prices resulted in subsequent

changes in sentiment and SVI, albeit relatively small. A shock in sentiment or SVI

had a limited effect on the adjusted closing price. These findings further support

the limited influence of Twitter sentiment and SVI on stock price movements in

line with the efficient market theory.

The findings challenge the efficient market hypothesis, despite limited support for

sentiment and attention as predictors of stock returns. Specific significant findings

suggest market inefficiency and potential validity of the behavioural alternative

hypothesis. Ongoing research is needed for this complex interplay and tailored,

company-specific models. Continual exploration of these relationships using

emerging data sources and methodologies is crucial for understanding and

predicting market fluctuations.

Page 27

Limitations and Suggestions for Further Research

Our results suggest modest support for incorporating Twitter sentiment and

investor attention as predictors for stock returns. This finding prompts us to

critically assess the limitations of our study and highlights the need for further

investigation into alternative factors or methodologies to enhance stock price

prediction.

Firstly, our focus on Twitter limits the applicability of our results to this specific

platform. Twitter users may not fully represent the general investor population, as

social media users tend to be younger and potentially less experienced in

investment decision-making. Furthermore, the prevalence of bots, fake accounts,

and coordinated disinformation campaigns has the potential to skew the data.

Lastly, the rapid and often reactionary nature of tweets can create noise and

volatility that is not indicative of long-term financial trends. Hence, the sentiment

scores we derived may not wholly represent the true sentiment of the investors.

Secondly, the use of Google Trends as a proxy for investor attention also poses

limitations. While Google Trends provides a good estimation of general interest, it

may not perfectly capture the attention of investors due to its relative data

presentation, absence of user intent or background context, and susceptibility to

short-term search volume spikes. It does not provide actual search counts but

shows the popularity of search terms relative to total volume, complicating precise

measurements.

Lastly, we acknowledge the limitations of our sentiment analysis approach, which

combines the Loughran-McDonald dictionary with the Hugging Face pipeline.

While effective in our study context, the tool might overlook certain sentiment-

bearing words due to the dictionary's domain specificity, misconstrue context-

dependent phrases or sarcasm due to DistilBERT's limitations, incur

computational expenses for larger datasets, or face potential bias when averaging

sentiment scores from both methods. Moreover, the quality of text pre-processing

profoundly impacts the results, and while our tool capably captures basic

sentiment, it may not fully grasp the complexity and nuances of human emotions,

Page 28

indicating a need for future research to leverage advanced natural language

processing techniques for improved accuracy.

Given the limitations of our study, future research should aim to broaden the data

sources beyond Twitter, encompassing various media platforms for a more

comprehensive understanding of sentiment influences on stock prices.

Incorporating macroeconomic variables or market volatility indices may enhance

predictive capabilities, while extending the scope of analysis beyond four large-

cap US companies can reveal diverse patterns in different enterprise sizes, sectors,

or regions. It is worth noting that expanding geographical scope beyond the US

and China will necessitate financial lexicons in other languages, demanding

extensive machine learning or creation of new lexicons. Lastly, the adoption of

advanced machine learning methodologies such as Neural Networks, Support

Vector Machines, and Naive Bayesian algorithms can enrich sentiment

classification, facilitating a more complex understanding of investor sentiments.

By addressing these limitations and pursuing these avenues of future research, a

more comprehensive understanding of the power of sentiment and investor

attention on stock market dynamics can be achieved, leading to improved

decision-making for investors in various contexts.

Page 29

Bibliography

Ahmad, K., Han, J., Hutson, E., Kearney, C., & Liu, S. (2016). Media-expressed

negative tone and firm-level stock returns. Journal of Corporate Finance,

37, 152–172. https://doi.org/10.1016/j.jcorpfin.2015.12.014

Antweiler, W., & Frank, M. Z. (2004). Is All That Talk Just Noise? The

Information Content of Internet Stock Message Boards. The Journal of

Finance, 59(3), 1259–1294. https://doi.org/10.1111/j.1540-

6261.2004.00662.x

Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross-Section of

Stock Returns. The Journal of Finance, 61(4), 1645–1680.

https://doi.org/10.1111/j.1540-6261.2006.00885.x

Batra, R., & Daudpota, S. M. (2018). Integrating StockTwits with sentiment

analysis for better prediction of stock price movement. 2018 International

Conference on Computing, Mathematics and Engineering Technologies

(ICoMET), 1–5. https://doi.org/10.1109/ICOMET.2018.8346382

Bird, S. (2009). Natural Language Processing with Python.

Bollen, J., Mao, H., & Zeng, X.-J. (2011). Twitter mood predicts the stock market.

Journal of Computational Science, 2(1), 1–8.

https://doi.org/10.1016/j.jocs.2010.12.007

Brooks, C. (2019). Inroductory Econometrics for Finance (Vol. 1–4th Edition).

Cambridge University Press. www.cambridge.org/brooks4

Chen, H.-Y., & Lo, T.-C. (2019). Online search activities and investor attention

on financial markets. Asia Pacific Management Review, 24(1), 21–26.

https://doi.org/10.1016/j.apmrv.2018.11.001

Page 30

Da, Z., Engelberg, J., & Gao, P. (2011). In Search of Attention. The Journal of

Finance, 66(5), 1461–1499. https://doi.org/10.1111/j.1540-

6261.2011.01679.x

Danilák, M. (2023). Langdetect [Python].

https://github.com/Mimino666/langdetect (Original work published 2014)

Dsouza, J. J., & Mallikarjunappa, T. (2015). Do the Stock Market Indices Follow

Random Walk? Asia-Pacific Journal of Management Research and

Innovation, 11(4), 251–273. https://doi.org/10.1177/2319510X15602969

Edmans, A., Garcia, D., & Norli, Ø. (2007). Sports Sentiment and Stock Returns.

The Journal of Finance. https://doi.org/10.1111/j.1540-6261.2007.01262.x

Fama, E. F. (1965). The Behavior of Stock-Market Prices. The Journal of

Business, 38(1), 34–105. https://doi.org/10.1086/294743

Hirshleifer, D., & Hong Teoh, S. (2003). Herd Behaviour and Cascading in

Capital Markets: A Review and Synthesis. European Financial

Management, 9(1), 25–66. https://doi.org/10.1111/1468-036X.00207

Huang, M. Y., Rojas, R. R., & Convery, P. D. (2020). Forecasting stock market

movements using Google Trend searches. Empirical Economics, 59(6),

2821–2839. https://doi.org/10.1007/s00181-019-01725-1

Joseph, K., Babajide Wintoki, M., & Zhang, Z. (2011). Forecasting abnormal

stock returns and trading volume using investor sentiment: Evidence from

online search. International Journal of Forecasting, 27(4), 1116–1127.

https://doi.org/10.1016/j.ijforecast.2010.11.001

JustAnotherArchivist. (2023). Snscrape [Python].

https://github.com/JustAnotherArchivist/snscrape (Original work

published 2018)

Page 31

Kim, T. (2023). Emoji [Python]. https://github.com/carpedm20/emoji (Original

work published 2014)

Kolchyna, O., Souza, T. T. P., Treleaven, P., & Aste, T. (2015). Twitter Sentiment

Analysis: Lexicon Method, Machine Learning Method and Their

Combination (arXiv:1507.00955). arXiv. http://arxiv.org/abs/1507.00955

Kralj Novak, P., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of

Emojis. PLOS ONE, 10(12), e0144296.

https://doi.org/10.1371/journal.pone.0144296

Lachanski, M., & Pav, S. (2017). Shy of the character limit: “Twitter mood

predicts the stock market” revisited. Econ Journal Watch, 14, 302–345.

Li, F. (2010). The Information Content of Forward-Looking Statements in

Corporate Filings-A Naïve Bayesian Machine Learning Approach: The

information content of corporate filings. Journal of Accounting Research,

48(5), 1049–1102. https://doi.org/10.1111/j.1475-679X.2010.00382.x

Loughran, T., & Mcdonald, B. (2011). When Is a Liability Not a Liability?

Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance, 66(1),

35–65. https://doi.org/10.1111/j.1540-6261.2010.01625.x

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis.

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-27752-1

Mao, Y., Wei, W., Wang, B., & Liu, B. (2012). Correlating S&P 500 stocks with

Twitter data. Proceedings of the First ACM International Workshop on

Hot Topics on Interdisciplinary Social Networks Research, 69–72.

https://doi.org/10.1145/2392622.2392634

Nau, B. (2014). Notes on the random walk model.

Oh, C., & Sheng, O. (2011). Investigating Predictive Power of Stock Micro Blog

Sentiment in Forecasting Future Stock Price Directional Movement. 4.

Page 32

Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying Trading Behavior in

Financial Markets Using Google Trends. Scientific Reports, 3(1), Article

1. https://doi.org/10.1038/srep01684

Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic

life on different scales: Insights from search engine query data.

Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 368(1933), 5707–5719.

https://doi.org/10.1098/rsta.2010.0284

Price, S. M., Doran, J. S., Peterson, D. R., & Bliss, B. A. (2012). Earnings

conference calls and stock returns: The incremental informativeness of

textual tone. Journal of Banking & Finance, 36(4), 992–1011.

https://doi.org/10.1016/j.jbankfin.2011.10.013

Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M., & Mozetič, I. (2015). The

Effects of Twitter Sentiment on Stock Price Returns. PLOS ONE, 10(9),

e0138441. https://doi.org/10.1371/journal.pone.0138441

Renault, T. (2020). Sentiment analysis and machine learning in finance: A

comparison of methods and models on one million messages. Digital

Finance, 2(1), 1–13. https://doi.org/10.1007/s42521-019-00014-x

Shiller, R. J. (2003). From Efficient Markets Theory to Behavioral Finance.

Journal of Economic Perspectives, 17(1), 83–104.

https://doi.org/10.1257/089533003321164967

Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014). Tweets and

Trades: The Information Content of Stock Microblogs: Tweets and Trades.

European Financial Management, 20(5), 926–957.

https://doi.org/10.1111/j.1468-036X.2013.12007.x

Page 33

Statman, M. (2010). What Investors Really Want. Financial Analysts Journal,

66(2), 8–10. https://doi.org/10.2469/faj.v66.n2.5

Sul, H. K., Dennis, A. R., & Yuan, L. I. (2017a). Trading on Twitter: Using Social

Media Sentiment to Predict Stock Returns: Trading on Twitter. Decision

Sciences, 48(3), 454–488. https://doi.org/10.1111/deci.12229

Sul, H. K., Dennis, A. R., & Yuan, L. I. (2017b). Trading on Twitter: Using

Social Media Sentiment to Predict Stock Returns: Trading on Twitter.

Decision Sciences, 48(3), 454–488. https://doi.org/10.1111/deci.12229

Tetlock, P. C. (2007). Giving Content to Investor Sentiment: The Role of Media

in the Stock Market. The Journal of Finance, 62(3), 1139–1168.

https://doi.org/10.1111/j.1540-6261.2007.01232.x

Zeitun, R., Rehman, M. U., Ahmad, N., & Vo, X. V. (2023). The impact of

Twitter-based sentiment on US sectoral returns. The North American

Journal of Economics and Finance, 64, 101847.

https://doi.org/10.1016/j.najef.2022.101847

Zhang, X., Fuehres, H., & Gloor, P. A. (2011). Predicting Stock Market Indicators

Through Twitter “I hope it is not as bad as I fear.” Procedia - Social and

Behavioral Sciences, 26, 55–62.

https://doi.org/10.1016/j.sbspro.2011.10.562

Page 34

Appendix

Section A – Statistical tests and optimal lag

Table 1 Augmented Dickey Fuller (ADF) unit root test

Variable P-value Conclusion

Adj. Close Tesla < 0,01 Stationary

Sentiment Tesla < 0,01 Stationary

SVI Tesla < 0,01 Stationary

Adj. Close Apple < 0,01 Stationary

Sentiment Apple < 0,01 Stationary

SVI Apple < 0,01 Stationary

Adj. Close Microsoft < 0,01 Stationary

Sentiment Microsoft < 0,01 Stationary

SVI Microsoft < 0,01 Stationary

Adj. Close Amazon < 0,01 Stationary

Sentiment Amazon < 0,01 Stationary

SVI Amazon < 0,01 Stationary

Table 1 presents the results of the Augmented Dickey Fuller (ADF) unit root test conducted for all the

variables in this study. The ADF test is used to determine the stationarity of time series data. A variable is

considered stationary if its p-value is less than 0.01, indicating a rejection of the null hypothesis of a unit

root.

Page 35

Table 2 Optimal lag length

Model HQIC SBIC FPE AIC

Adj. Close Apple | Sentiment Apple | SVI Apple 9* 4 14 14

Adj. Close Apple | Sentiment Apple 9* 4 14 14

Adj. Close Apple | SVI Apple 1 1 9 9*

AR Apple 9 1 9 9*

Adj. Close Amazon | Sentiment Amazon | SVI

Amazon
6* 4 8 8

Adj. Close Amazon | Sentiment Amazon 8* 4 9 9

Adj. Close Amazon | SVI Amazon 5 1 8 8*

AR Amazon 1 1 1 1*

Adj. Close Microsoft | Sentiment Microsoft |

SVI Microsoft
6* 4 9 9

Adj. Close Microsoft | Sentiment Microsoft 9* 6 16 16

Adj. Close Microsoft | SVI Microsoft 1 1 9 9*

AR Microsoft 9 1 9 9*

Adj. Close Tesla | Sentiment Tesla | SVI Tesla 5* 5 14 14

Adj. Close Tesla | Sentiment Tesla 5* 5 14 14

Adj. Close Tesla | SVI Tesla 5 1 5 5*

AR Tesla 1 1 1 1*

Table 2 displays the results of the lag length selection using several information criteria, including the

Hannan-Quinn Information Criterion (HQIC), Schwarz Bayesian Information Criterion (SBIC), Final

Prediction Error (FPE), and Akaike Information Criterion (AIC). The optimal lag length is determined based

on minimizing these criteria. The selected number of lags is indicated by “*” for the different models.

Page 36

 Table 3 Durbin-Watson test for autocorrelation

Model
Test

statistic
Conclusion

Adj. Close Tesla | Sentiment Tesla | SVI Tesla 2.0113
No evidence of

autocorrelation

Adj. Close Tesla | Sentiment Tesla 2.0244
No evidence of

autocorrelation

Adj. Close Tesla | SVI Tesla 1.9871
No evidence of

autocorrelation

Adj. Close Apple | Sentiment Apple | SVI Apple 1.9927
No evidence of

autocorrelation

Adj. Close Apple | Sentiment Apple 1.9933
No evidence of

autocorrelation

Adj. Close Apple | SVI Apple 2.0004
No evidence of

autocorrelation

Adj. Close Microsoft | Sentiment Microsoft | SVI Microsoft 2.0184
No evidence of

autocorrelation

Adj. Close Microsoft | Sentiment Microsoft 2.0109
No evidence of

autocorrelation

Adj. Close Microsoft | SVI Microsoft 1.9968
No evidence of

autocorrelation

Adj. Close Amazon | Sentiment Amazon | SVI Amazon 2.0090
No evidence of

autocorrelation

Adj. Close Amazon | Sentiment Amazon 2.0047
No evidence of

autocorrelation

Adj. Close Amazon | SVI Amazon 1.9945
No evidence of

autocorrelation

Table 3 presents the results of the Durbin-Watson test for autocorrelation conducted on the models. A test

statistic value close to 2 indicates no evidence of autocorrelation, while values significantly below or above

2 suggest the presence of positive or negative autocorrelation, respectively.

Page 37

Section B – Time series plot of Variables

Figure 3 Time Series Plot of Variables in actual values

Page 38

Section C – Time series plot of variables in first differences

Figure 4 Time Series Plot of Variables in first differences

Page 39

Section D – Forecasting performance

 Model Variables MSE RMSE MAE
A

A
P

L

VAR Adj, Close|Sentiment| SVI

2,9323

1,7124

1,3872

VAR Adj, Close| Sentiment

2,8764

1,6960

1,3687

VAR Adj, Close| SVI

2,8764

1,6960

1,3687

RW RW w/drift

5,1338

2,2658

1,7712

AR Adj.Close

2,6300

1,6217

1,2765

A
M

Z
N

VAR Adj, Close|Sentiment| SVI

6,2093

2,4918

2,1104

VAR Adj, Close| Sentiment

5,9435

2,4379

2,0177

VAR Adj, Close| SVI

5,9435

2,4379

2,0177

RW RW w/drift

11,2116

3,3484

2,8522

AR Adj.Close

6,2512

2,5002

2,1202

M
S

F
T

VAR Adj, Close|Sentiment| SVI

4,2029

2,0501

1,6065

VAR Adj, Close| Sentiment

4,1091

2,0271

1,5667

VAR Adj, Close| SVI

4,1091

2,0271

1,5667

RW RW w/drift

6,7028

2,5890

2,0302

AR Adj.Close

4,3570

2,0873

1,6457

T
S

L
A

VAR Adj, Close|Sentiment| SVI

32,8331

5,7300

4,4225

VAR Adj, Close| Sentiment

32,5098

5,7017

4,4039

VAR Adj, Close| SVI

32,5098

5,7017

4,4039

RW RW w/drift

63,3531

7,9595

6,1883

AR Adj.Close

32,1939

5,6740

4,4162

 Table 4 Comparative Performance Metrics of the Forecasting Models for Apple, Amazon,

Microsoft, and Tesla

Table 4 provides comparative performance metrics for the forecasting models employed for Apple (AAPL), Amazon (AMZN),

Microsoft (MSFT), and Tesla (TSLA). The metrics evaluated include Mean Squared Error (MSE), Root Mean Squared Error

(RMSE), and Mean Absolute Error (MAE)

Page 40

Comparative Forecasting Performance of VAR, AR, RW, and actual values. Setup (3)

Section E – Forecasting plots

Figure 5 Setup (2): Adj. Close | Sentiment

Figure 6 Setup (3): Adj. Close | SVI

Comparative Forecasting Performance of VAR, AR, RW, and actual values. Setup (2)

Page 41

Section F - Granger Causality tests

Apple

Setup (1)

Null Hypothesis P-Value Conclusion

Sentiment & SVI do not Granger-cause Adj. Closing price 0,1266 Fail to reject H0

Adj. Closing price & SVI do not Granger cause Sentiment 0,4464 Fail to reject H0

Adj. Closing price & Sentiment do not Granger cause SVI 0,1432 Fail to reject H0

Setup (2)

Null Hypothesis P-Value Conclusion

Sentiment do not Granger-cause Adj. Closing price 0,3209 Fail to reject H0

Adj. Closing price do not Granger cause Sentiment 0,8394 Fail to reject H0

Setup (3)

Null Hypothesis P-Value Conclusion

SVI do not Granger-cause Adj. Closing price 0,093 Fail to reject H0

Adj. Closing price do not Granger cause SVI 0,8915 Fail to reject H0

Amazon

Setup (1)

Null Hypothesis P-Value Conclusion

Sentiment & SVI do not Granger-cause Adj. Closing price 0,7616 Fail to reject 𝐻0

Adj. Closing price & SVI do not Granger cause Sentiment 0,1060 Fail to reject 𝐻0

Adj. Closing price & Sentiment do not Granger cause SVI 0,4496 Fail to reject 𝐻0

Setup (2)

Null Hypothesis P-Value Conclusion

Sentiment do not Granger-cause Adj. Closing price 0,1451 Fail to reject 𝐻0

Adj. Closing price do not Granger cause Sentiment 0,0240 Reject 𝐻0

Setup (3)

Null Hypothesis P-Value Conclusion

SVI do not Granger-cause Adj. Closing price 0,6671 Fail to reject 𝐻0

Adj. Closing price do not Granger cause SVI 0,3935 Fail to reject 𝐻0

Page 42

Microsoft

Setup (1)

Null Hypothesis P-Value Conclusion

Sentiment & SVI do not Granger-cause Adj. Closing price 0,1392 Fail to reject 𝐻0

Adj. Closing price & SVI do not Granger cause Sentiment 0,0809 Fail to reject 𝐻0

Adj. Closing price & Sentiment do not Granger cause SVI 0,4089 Fail to reject 𝐻0

Setup (2)

Null Hypothesis P-Value Conclusion

Sentiment do not Granger-cause Adj. Closing price 0,5759 Fail to reject 𝐻0

Adj. Closing price do not Granger cause Sentiment 0,4536 Fail to reject 𝐻0

Setup (3)

Null Hypothesis P-Value Conclusion

SVI do not Granger-cause Adj. Closing price 0,2700 Fail to reject 𝐻0

Adj. Closing price do not Granger cause SVI 0,6180 Fail to reject 𝐻0

Tesla

Setup (1)

Null Hypothesis P-Value Conclusion

Sentiment & SVI do not Granger-cause Adj. Closing price 0,0792 Fail to reject 𝐻0

Adj. Closing price & SVI do not Granger cause Sentiment 0,2361 Fail to reject 𝐻0

Adj. Closing price & Sentiment do not Granger cause SVI 0,6010 Fail to reject 𝐻0

Setup (2)

Null Hypothesis P-Value Conclusion

Sentiment do not Granger-cause Adj. Closing price 0,6898 Fail to reject 𝐻0

Adj. Closing price do not Granger cause Sentiment 0,0587 Fail to reject 𝐻0

Setup (3)

Null Hypothesis P-Value Conclusion

SVI do not Granger-cause Adj. Closing price 0,0138 Reject 𝐻0

Adj. Closing price do not Granger cause SVI 0,5040 Fail to reject 𝐻0

Page 43

Section G - Impulse responses

The impulse response functions (IRFs) presented in the figures showcase the

dynamic interactions among variables within the system. Each line or curve

represents the reaction of a particular variable to a single shock or impulse in

another variable. Time, measured in days, is depicted on the horizontal axis, while

the magnitude of the response is shown on the vertical axis. Positive or negative

spikes indicate the direction and size of the response. The shaded regions or

confidence intervals surrounding the curves denote the level of uncertainty

associated with the estimated response.

Figure 7 Impulse responses - Apple

Figure 8 Impulse responses - Amazon

Page 44

Figure 9 Impulse responses - Microsoft

Figure 10 Impulse responses - Tesla

Page 45

Section H - Variance decomposition

The figures display the variance decomposition results, illustrating the proportion

of forecast error variance in each variable attributable to its own shocks

(autoregressive component) and the shocks from other variables in the system.

The horizontal axis represents time in days, while the vertical axis shows the

percentage of variance explained. The variance decomposition plot provides

insights into the relative importance and explanatory power of the shocks from

different variables, highlighting the main drivers of forecast error variance in the

system.

Figure 11 Variance decomposition - Apple

Figure 12 Variance Decomposition - Amazon

Page 46

Figure 13 Variance decomposition - Microsoft

Figure 14 Variance Decomposition – Tesla

Page 47

Section I – Reverse ordering Robustness tests

The reverse ordering robustness test was conducted to assess the sensitivity of the

variance decomposition results to the ordering of variables in the VAR model.

The test involved reversing the order of variables in the VAR model and re-

estimating the variance decompositions. The purpose was to examine if changing

the order of variables would lead to significant differences in the contribution of

shocks to forecast error variance. The results of the reverse ordering robustness

test indicated that the overall patterns and relative importance of the shocks

remained largely consistent, suggesting the robustness of the variance

decomposition results. This test provides additional evidence that the identified

shocks and their explanatory power are not highly dependent on the specific

ordering of variables in the VAR model.

Figure 15 Reverse ordering Robustness test – Apple

Figure 16 Reverse ordering Robustness test - Amazon

Page 48

Figure 17 Reverse ordering Robustness test – Microsoft

Figure 18 Reverse ordering Robustness test – Tesla

Page 49

Section J – Packages, modules, and libraries

Table 5 List of Python packages, modules and libraries

Name Operation

Emoji
Used for handling emojis in tweets

Langdetect
Used for language detection to identify non-

English tweets

Matplotlib
Used for data manipulation and array

manipulation

NLTK

Used for natural language processing (NLP)

tasks, such as tokenization and stopword

removal

Numpy
Used for numerical computing and array

manipulation

Pandas

Used for data manipulation and analysis,

particularly for handling and processing

tabular data

Pandarallel
Used for parallel processing with pandas

dataframes to optimize performance

Pytrends
Used for making requests to Google Trends

API to retrieve search interest data

Re
Used for regular expression operations, used

for pattern matching and text manipulation

Snscrape
Used to search, filter and extract date,

username, and tweets

String Used for string manipulation and processing

Transformers

Used for sentiment analysis using pre-trained

model from Hugging Face, specifically the

“sentiment-analysis” pipeline with “distilbert-

base-uncased-finetuned-sst-2-english” model

Table 6 List of R packages, modules, and libraries

Name Operation

car

Used for Companion to Applied Regression;

contains various utility functions for

regression analysis

Page 50

dplyr Used for data manupilation

forecast Used for time series forecasting

ggfortify
Used for unifying the plotting output for any

R object

ggplot2 Used for creating plots and visualizations

grid
Used for creating grid graphics, which is the

basis of the graphics in ggplot2

gridExtra
Used for arranging multiple grid-based plots

on a page

latex2exp
Used for converting LaTeX expressions to

plot labels in ggplot2

lmtest
Used for performing statistical tests on linear

regression models

Metrics Used for calculating various statistical metrics

Page 51

quantmod Used for financial quantitative modelling

readxl Used for reading Excel files (.xls, xlsx)

rmarkdown
Used for creating dynamic reports in R

markdown format

stats Used for statistical functions

tibble Used for data organization and manipulation

tidyverse
Used for data manipulation, visualization, and

data science

Tinytex
Used for managing LaTeX installations and

dependencies for creating PDF reports

tseries Used for time series analysis

urca
Used for performing unit root and

cointegration tests in time series analysis

Page 52

vars
Used for fitting Vector Autoregression (VAR)

models

xts
Used for handling time series data as xts

objects

zoo
Used for handling time series data as zoo

objects

Page 53

Codes

Importing tweets

Python code 1 utilizes the snscrape library to extract tweets related to Apple,

Amazon, Microsoft, and Tesla, for the purpose of sentiment analysis. The specific

search terms, official names, stock tickers, and related hashtags, are used to pull

relevant tweets in English from users with at least 100 followers, from January 1,

2018, to March 1, 2023. A limit of 1,500,000 tweets is set for each company. The

extracted tweets, including the date, username, and content, are stored in a pandas

Data Frame and the date is converted to a time zone-unaware format for

compatibility. Finally, the data is saved into separate Excel files for each company

for subsequent analysis.

Apple

In [1]:
import snscrape.modules.twitter as sntwitter

import pandas as pd

search_words = ["Apple","apple","AAPL","aapl", "#Apple","#apple"]

min_followers = 100

query = " OR ".join([f"({word})" for word in search_words]) + f"

lang:en min_faves:{min_followers} since:2018-01-01 until:2023-03-

01"

tweets_AAPL = []

limit = 1500000

for tweet in sntwitter.TwitterSearchScraper(query).get_items():

 if len(tweets_AAPL) == limit:

 break

 else:

 tweets_AAPL.append([tweet.date, tweet.user.username,

tweet.rawContent])

AAPL = pd.DataFrame(tweets_AAPL, columns=['Date', 'User',

'Tweet'])

In [2]:
Convert the datetime values to timezone-unaware datetime objects

AAPL['Date'] = AAPL['Date'].dt.tz_localize(None)

Save the dataframe as an Excel file

AAPL.to_excel('/Users/****/Desktop/Apple.xlsx', index=False)

Amazon
In [3]:

search_words = ["Amazon", "amazon", "AMZN", "amzn", "#Amazon",

"#amazon"]

min_followers = 100

Page 54

query = " OR ".join([f"({word})" for word in search_words]) + f"

lang:en min_faves:{min_followers} since:2018-01-01 until:2023-03-

01"

tweets_AMZN = []

limit = 1500000

for tweet in sntwitter.TwitterSearchScraper(query).get_items():

 if len(tweets_AMZN) == limit:

 break

 else:

 tweets_AMZN.append([tweet.date, tweet.user.username,

tweet.rawContent])

AMZN = pd.DataFrame(tweets_AMZN, columns=['Date', 'User',

'Tweet'])

In [4]:
Convert the datetime values to timezone-unaware datetime objects

AMZN['Date'] = AMZN['Date'].dt.tz_localize(None)

Save the dataframe as an Excel file

AMZN.to_excel('/Users/****/Desktop/Amazon.xlsx', index=False)

Microsoft
In [5]:

search_words = ["Microsoft","microsoft","MSFT","msft",

"#Microsoft","#microsoft"]

min_followers = 100

query = " OR ".join([f"({word})" for word in search_words]) + f"

lang:en min_faves:{min_followers} since:2018-01-01 until:2023-03-

01"

tweets_MSFT = []

limit = 1500000

for tweet in sntwitter.TwitterSearchScraper(query).get_items():

 if len(tweets_MSFT) == limit:

 break

 else:

 tweets_MSFT.append([tweet.date, tweet.user.username,

tweet.rawContent])

MSFT = pd.DataFrame(tweets_MSFT, columns=['Date', 'User',

'Tweet'])

In [6]:
Convert the datetime values to timezone-unaware datetime objects

MSFT['Date'] = MSFT['Date'].dt.tz_localize(None)

Save the dataframe as an Excel file

MSFT.to_excel('/Users/****/Desktop/Microsoft.xlsx', index=False)

Tesla

In [7]:

Page 55

search_words = ["Tesla", "tesla", "TSLA", "tsla", "#Tesla",

"#tesla"]

min_followers = 100

query = " OR ".join([f"({word})" for word in search_words]) + f"

lang:en min_faves:{min_followers} since:2018-01-01 until:2023-03-

01"

tweets_TSLA = []

limit = 1500000

for tweet in sntwitter.TwitterSearchScraper(query).get_items():

 if len(tweets_TSLA) == limit:

 break

 else:

 tweets_TSLA.append([tweet.date, tweet.user.username,

tweet.rawContent])

TSLA = pd.DataFrame(tweets_TSLA, columns=['Date', 'User',

'Tweet'])

In [8]:
Convert the datetime values to timezone-unaware datetime objects

TSLA['Date'] = TSLA['Date'].dt.tz_localize(None)

Save the dataframe as an Excel file

TSLA.to_excel('/Users/****/Desktop/Tesla.xlsx', index=False)

Page 56

Cleaning tweets

Python code 2 efficiently cleans the collected tweet data for sentiment analysis. It

removes URLs, user mentions, hashtags, punctuation, numbers, and stop words,

converts text to lowercase, and trims unnecessary spaces. Emojis replaced with

their corresponding word meanings for a more accurate interpretation. Empty

tweets are discarded post-cleaning. This cleaning process, expedited by the

Pandarallel library, is applied to the tweet data of Apple, Amazon, Microsoft, and

Tesla, resulting in structured and clean datasets ready sentiment analysis.

In [1]:
import pandas as pd

import re

import string

import nltk

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

from langdetect import detect

import emoji

from pandarallel import pandarallel

Initialize Pandarallel

pandarallel.initialize(progress_bar=True)

def clean_tweet(tweet):

 # Remove URLs

 tweet = re.sub(r'http\S+', '', tweet)

 # Remove user mentions

 tweet = re.sub(r'@\S+', '', tweet)

 # Remove hashtags

 tweet = re.sub(r'#\S+', '', tweet)

 # Remove punctuation

 tweet = re.sub(r'[^\w\s]', '', tweet)

 # Remove numbers

 tweet = re.sub(r'\d+', '', tweet)

 # Convert to lowercase

 tweet = tweet.lower()

 # Remove extra whitespaces

 tweet = re.sub(r'\s+', ' ', tweet).strip()

 # Remove stopwords

 stopwords_list = stopwords.words('english')

 tweet_tokens = word_tokenize(tweet)

 tweet_tokens = [word for word in tweet_tokens if not word in

stopwords_list]

 tweet = ' '.join(tweet_tokens)

 # Detect language and remove non-english tweets

 try:

 lang = detect(tweet)

 except:

 lang = 'unknown'

 if lang != 'en':

 tweet = ''

 # Remove emojis

 tweet = emoji.demojize(tweet)

 return tweet

companies = {

Page 57

 'Apple': '/Users/***/Desktop/Apple.xlsx',

 'AMZN': '/Users/***/Desktop/Amazon.xlsx',

 'Microsoft': '/Users/***/Desktop/Microsoft.xlsx',

 'Tesla': '/Users/***/Desktop/Tesla.xlsx',

}

for company, input_file in companies.items():

 # Read the input CSV file into a Pandas dataframe

 tweets_df = pd.read_excel(input_file)

 # Convert the date column to datetime format

 tweets_df['Date'] = pd.to_datetime(tweets_df['Date'])

 # Extract only the date part

 tweets_df['Date'] = tweets_df['Date'].dt.date

 # Apply the clean_tweet function to the 'Tweet' column of the

tweets_df dataframe in parallel

 tweets_df['Tweet'] =

tweets_df['Tweet'].parallel_apply(clean_tweet)

 # Drop rows with empty tweets

 tweets_df = tweets_df[tweets_df['Tweet'] != '']

 # Save the dataframe as a CSV file

 tweets_df.to_csv('/Users/***/Desktop/

{}_cleaned.csv'.format(company), index=False)

.

Page 58

Sentiment analysis. A combination of the Loughran-McDonald dictionary and

the Hugging Face sentiment analysis pipeline

Python code 3 represents the implementation of our sentiment analysis process. It

harnesses the robustness of the Loughran-McDonald dictionary and the Hugging

Face sentiment analysis pipeline. It initially preprocesses the Loughran-McDonald

dictionary, making it fit for our task. The code then defines key functions for

performing sentiment analysis with both the dictionary and the Hugging Face

pipeline, extracting positive and negative sentiments for each text. In the end, the

sentiment scores from these methods are averaged for each tweet in our dataset.

This hybrid approach is applied to the cleaned tweets of Apple, Amazon,

Microsoft, and Tesla, subsequently saving the resultant data frames, replete with

sentiment scores, to new CSV files.

Importing the Loughran-McDonald_MasterDictionary_1993-2021

In [1]:
import pandas as pd

Change the file path to the location of the file on your

computer

file_path = "/Users/***/Desktop/Loughran-

McDonald_MasterDictionary_1993-2021.csv"

Read the CSV file into a pandas dataframe

dictionary = pd.read_csv(file_path)

Sentiment Analysis Score Computation
In [2]:

Filtering and preprocessing sentiment dictionary

sentiment_dictionary = dictionary.loc[(dictionary['Negative'] !=

0) | (dictionary['Positive'] != 0), ['Word', 'Negative',

'Positive']]

sentiment_dictionary['Word'] =

sentiment_dictionary['Word'].str.lower()

sentiment_dictionary.loc[:, ['Negative', 'Positive']] =

sentiment_dictionary.loc[:, ['Negative', 'Positive']].apply(lambda

x: x.where(x == 0, 1))

import re

from transformers import pipeline

sentiment_pipeline = pipeline("sentiment-analysis",

model="distilbert-base-uncased-finetuned-sst-2-english")

def get_sentiment(text):

 result = sentiment_pipeline(text)[0]

 if result['label'] == 'POSITIVE':

 return result['score']

 elif result['label'] == 'NEGATIVE':

 return -result['score']

 else:

 return 0

def tokenize(text):

 return re.findall(r'\b\w+\b', text.lower())

Page 59

def get_sentiment_score(sentiment_counts, token_count):

 if token_count == 0:

 return 0

 sentiment_score = (sentiment_counts['Positive'] -

sentiment_counts['Negative']) / token_count

 return sentiment_score

def compute_sentiment_scores(df, text_column,

sentiment_dictionary):

 df['Tokenized'] = df[text_column].apply(tokenize)

 df['Token_Count'] = df['Tokenized'].apply(len)

 token_df = df.explode('Tokenized')[['Tokenized',

'Token_Count']]

 token_df = token_df.merge(sentiment_dictionary,

left_on='Tokenized', right_on='Word', how='left').fillna(0)

 sentiment_counts =

token_df.groupby(token_df.index).agg({'Negative': 'sum',

'Positive': 'sum', 'Token_Count': 'first'})

 sentiment_scores =

sentiment_counts.assign(Sentiment_Score=lambda x: (x['Positive'] -

x['Negative']) / x['Token_Count'])

 return sentiment_scores['Sentiment_Score']

def compute_combined_sentiment_scores(df, text_column,

sentiment_dictionary):

 # Compute sentiment scores using the Loughran-McDonald

dictionary

 loughran_mcdonald_scores = compute_sentiment_scores(df,

text_column, sentiment_dictionary)

 # Compute sentiment scores using the Hugging Face sentiment

analysis pipeline

 hugging_face_scores = df[text_column].apply(get_sentiment)

 # Combine the sentiment scores and average them

 combined_sentiment_scores = (loughran_mcdonald_scores +

hugging_face_scores) / 2

 return combined_sentiment_scores

Apple
In [3]:

Read the ticker_cleaned.csv file into a pandas dataframe

apple_tweets = pd.read_csv('/Users/***/Desktop/Apple_cleaned.csv')

Compute sentiment scores for each tweet in the 'Tweet' column

apple_tweets['Sentiment_Score'] =

compute_combined_sentiment_scores(apple_tweets, 'Tweet',

sentiment_dictionary)

Save the dataframe with sentiment scores to a new CSV file

apple_tweets.to_csv('/Users/***/Desktop/AAPL_LMC.csv',

index=False)

Page 60

Amazon
In [4]:

Read the ticker_cleaned.csv file into a pandas dataframe

amazon_tweets =

pd.read_csv('/Users/***/Desktop/Amazon_cleaned.csv')

Compute sentiment scores for each tweet in the 'Tweet' column

amazon_tweets['Sentiment_Score'] =

compute_combined_sentiment_scores(amazon_tweets, 'Tweet',

sentiment_dictionary)

Save the dataframe with sentiment scores to a new CSV file

amazon_tweets.to_csv('/Users/***/Desktop/AMZN_LMC.csv',

index=False)

Microsoft
In [5]:

Read the ticker_cleaned.csv file into a pandas dataframe

microsoft_tweets =

pd.read_csv('/Users/***/Desktop/Microsoft_cleaned.csv')

Compute sentiment scores for each tweet in the 'Tweet' column

microsoft_tweets['Sentiment_Score'] =

compute_combined_sentiment_scores(microsoft_tweets, 'Tweet',

sentiment_dictionary)

Save the dataframe with sentiment scores to a new CSV file

microsoft_tweets.to_csv('/Users/***/Desktop/MSFT_LMC.csv',

index=False)

Tesla
In [6]:

Read the ticker_cleaned.csv file into a pandas dataframe

tesla_tweets = pd.read_csv('/Users/***/Desktop/Tesla_cleaned.csv')

Compute sentiment scores for each tweet in the 'Tweet' column

tesla_tweets['Sentiment_Score'] =

compute_combined_sentiment_scores(tesla_tweets, 'Tweet',

sentiment_dictionary)

Save the dataframe with sentiment scores to a new CSV file

tesla_tweets.to_csv('/Users/***/Desktop/TSLA_LMC.csv',

index=False)

Page 61

Collecting and creating the SVI

Python code 4 illustrates our approach to harnessing Google Trends data for the

construction of a daily SVI. The Python library 'pytrends' enables us to obtain this

data, while we've crafted a custom function to collect and process the search term

data on both a daily and weekly basis. Our SVI creation process involves scaling

the daily data using weekly data to accommodate fluctuations in overall search

volume, followed by a smoothing operation to mitigate potential noise. This

procedure ensures a refined, reliable representation of public interest over time.

The scaled and smoothed daily SVI is subsequently visualized, comparing it

against the interpolated weekly data to validate our methodology. This process is

applied for the search terms corresponding to Apple, Amazon, Microsoft, and

Tesla, resulting in individual CSV files for each entity's SVI.

Creating formula for collecting Google Trends terms

In [1]:
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from pytrends.request import TrendReq

def get_scaled_trend_data(search_term):

 # Create Pytrends object

 pytrends = TrendReq(hl='en-US', tz=360)

 # Define search term and time period

 kw_list = [search_term]

 start_date = '2017-12-29' #Since rolling window

 end_date = '2023-03-5'

 # Collect daily data

 date_range = pd.date_range(start=start_date, end=end_date,

freq='90D')

 daily_df = pd.DataFrame()

 for date in date_range:

 date_str = date.strftime('%Y-%m-%d')

 end_date_str = (date +

pd.DateOffset(days=89)).strftime('%Y-%m-%d')

 pytrends.build_payload(kw_list, cat=0,

timeframe=f'{date_str} {end_date_str}', geo='', gprop='')

 df = pytrends.interest_over_time()

 df = df.resample('D').mean().ffill()

 daily_df = daily_df.append(df)

 daily_df =

daily_df.loc[~daily_df.index.duplicated(keep='first')]

 # Collect weekly data

 pytrends.build_payload(kw_list, cat=0,

timeframe=f'{start_date} {end_date}', geo='', gprop='')

 weekly_df= pytrends.interest_over_time()

 weekly_df = weekly_df.resample('W').mean().ffill()

Page 62

 weekly_df =

weekly_df.loc[~weekly_df.index.duplicated(keep='first')]

 # Resample weekly_df to daily frequency

 weekly_df_daily = weekly_df.resample('D').mean().interpolate()

 # Scale daily data

 scaling_factors = (weekly_df[search_term] /

daily_df.resample('W').mean()[search_term]).dropna()

 scaled_daily_data = daily_df.copy()

 scaled_daily_data.drop(columns=['isPartial'], inplace=True)

 for date, scaling_factor in scaling_factors.items():

 start_date = date - pd.DateOffset(days=6)

 end_date = date

 mask = (scaled_daily_data.index >= start_date) &

(scaled_daily_data.index <= end_date)

 scaled_daily_data.loc[mask, search_term] *= scaling_factor

 scaled_daily_data[search_term] =

scaled_daily_data[search_term].clip(upper=100)

 # Smooth the scaled_daily_data

 window_size = 7

 scaled_daily_data_smoothed =

scaled_daily_data.rolling(window=window_size, center=True).mean()

 # Plot the final comparison of smoothed scaled daily data and

weekly data

 plt.figure(figsize=(12, 6))

 plt.plot(scaled_daily_data_smoothed.index,

scaled_daily_data_smoothed[search_term], label=f'Scaled Daily Data

(Smoothed) {search_term}')

 plt.plot(weekly_df_daily.index,

weekly_df_daily[[search_term]], label=f'Weekly Data (Interpolated)

{search_term}')

 plt.xlabel('Date')

 plt.ylabel(f'{search_term} Search Interest')

 plt.title(f'Scaled Daily (Smoothed) {search_term} Search

Interest vs Weekly {search_term} Search Interest')

 plt.legend()

 plt.grid()

 plt.show()

 return scaled_daily_data_smoothed

AAPL
In [2]:

search_term = 'AAPL'

scaled_trend_data = get_scaled_trend_data(search_term)

output = "/Users/***/Desktop/{}_SVI.csv".format(search_term)

scaled_trend_data.to_csv(output, index=True)

AMZN
In [3]:

Page 63

search_term = 'AMZN'

scaled_trend_data = get_scaled_trend_data(search_term)

output = "/Users/***/Desktop/{}_SVI.csv".format(search_term)

scaled_trend_data.to_csv(output, index=True)

MSFT
In [4]:

search_term = 'MSFT'

scaled_trend_data = get_scaled_trend_data(search_term)

output = "/Users/***/Desktop/{}_SVI.csv".format(search_term)

scaled_trend_data.to_csv(output, index=True)

TSLA
In [5]:

search_term = 'TSLA'

scaled_trend_data = get_scaled_trend_data(search_term)

output = "/Users/***/Desktop/{}_SVI.csv".format(search_term)

scaled_trend_data.to_csv(output, index=True)

Page 64

Analysis

The R code is used to perform the data analysis workflow using statistical

techniques. The code begins with the importation and loading of the datasets,

followed by pre-processing steps such as handling missing values and

transforming variables. It then proceeds to perform exploratory data analysis,

including descriptive statistics and visualizations, to gain insights into the dataset's

characteristics ensuring the data is suitable for further analysis. Next, the code

employs statistical modelling techniques, such as setting up multiple VAR system,

to investigate relationships and make predictions based on the data. Finally, the

code evaluates the model's performance using appropriate metrics and presents the

results.

Loading libraries and preparing data

Load libraries
rm(list=ls())

library(car)

library(dplyr)

library(forecast)

library(ggfortify)

library(ggplot2)

library(grid)

library(gridExtra)

library(latex2exp)

library(lmtest)

library(Metrics)

library(quantmod)

library(readxl)

library(rmarkdown)

library(stats)

library(tibble)

library(tidyverse)

library(tinytex)

library(tseries)

library(urca)

library(vars)

library(xts)

Page 65

library(zoo)

Set Working directory
setwd("/Users/***/Desktop")

Set the ticker symbol you want to investigate
#Change the ticker name to AAPL, AMZN, MSFT or TSLA to perform the analy
sis on these companies

ticker <- "AAPL"

Import sentiment data
df <- read.csv(paste0(ticker, "_LMC.csv"), header = TRUE)

Remove unnecessary columns
df <- df[,c("Date", "Sentiment_Score")]

Calculate the mean sentiment score for each day
df <- df %>%
 group_by(Date) %>%
 summarize(Sentiment_Score = mean(Sentiment_Score))

Import Google Trends data
SVI <- read.csv(paste0(ticker, "_SVI.csv"), header = TRUE)

Remove the first 3 rows
SVI <- SVI[-(1:3),]

Remove the last 47 rows
SVI <- head(SVI, n = -47)

Define the date range of interest
start_date <- as.Date("2018-01-01")
end_date <- as.Date("2023-02-01")

Use getSymbols() function to download the stock data from Yahoo Financ
e
getSymbols(ticker, from = start_date, to = end_date)

[1] "AAPL"

Extract the Adj Close price
adj_close <- as.data.frame(Ad(get(ticker)))
adj_close <- rownames_to_column(adj_close, var = "Date")

Convert sentiment data to xts time series object
sentiment_xts <- xts(df$Sentiment_Score, order.by = as.Date(df$Date))

Convert Google Trends data to xts time series object
SVI_xts <- xts(SVI[ticker], order.by = as.Date(SVI$date))

Convert stock data to xts time series object, using the ticker
variable
stock_data_xts <- xts(adj_close[, paste0(ticker, ".Adjusted")], order.by
= as.Date(adj_close$Date))

Merge the sentiment scores with adj close data
merged_data <- merge(stock_data_xts, sentiment_xts, SVI_xts, all =
FALSE)

Change the column name in merged_data to use the ticker variable
colnames(merged_data) <- c(ticker, "Sentiment_Score", "SVI")

Page 66

Convert the merged_data back to a data frame
merged_data_df <- data.frame(Date=index(merged_data),
coredata(merged_data))

Make sure the data is numeric
merged_data_df[[ticker]] <- as.numeric(merged_data_df[[ticker]])
merged_data_df$Sentiment_Score <-
as.numeric(merged_data_df$Sentiment_Score)
merged_data_df$SVI <- as.numeric(merged_data_df$SVI)

Calculate percentage change of the stock's Adj Close, using the ticker
variable
merged_data_df$Adj_pct_change <- c(NA, diff(merged_data_df[[ticker]]) /
merged_data_df[[ticker]][-length(merged_data_df[[ticker]])]) * 100

Calculate percentage change of mean sentiment score
merged_data_df$Sentiment_pct_change <-c(NA,
diff(merged_data_df$Sentiment_Score))*100

Calculate percentage change of the SVI
merged_data_df$SVI_pct_change <- c(NA, diff(merged_data_df$SVI) /
merged_data_df$SVI[-length(merged_data_df$SVI)])*100

Remove the first row with NA in the Adj_pct_change and
Sentiment_pct_change and SVI_pct_change columns
merged_data_df <- merged_data_df[-1,]

Summary statistics
summary_stats <- summary(merged_data_df[c("Adj_pct_change",
"Sentiment_pct_change", "SVI_pct_change")])

Correlation analysis
correlation_matrix <- cor(merged_data_df[, c("Adj_pct_change",
"Sentiment_pct_change", "SVI_pct_change")], use="complete.obs")

Calculate VIF for each variable
vif_results <- vif(lm(Adj_pct_change ~ Sentiment_pct_change +
SVI_pct_change, data = merged_data_df))

Histograms
hist_plots <- lapply(names(merged_data_df[, c("Adj_pct_change", "Sentime
nt_pct_change", "SVI_pct_change")]), function(var_name) {
 ggplot(merged_data_df, aes_string(x = var_name)) +
 geom_histogram(bins = 30, fill = 'blue', color = 'black') +
 theme_minimal()
})

Display the histograms
grid.arrange(grobs = hist_plots, ncol = 3,
 top = grid::textGrob(label = paste("Distribution of values:
","(", ticker,")"),
 gp = grid::gpar(fontface = "bold"))
)

Page 67

Create scatterplot for Adj_pct_change vs Sentiment_pct_change
scatterplot_adj_sentiment <- ggplot(merged_data_df, aes(x = Adj_pct_chan
ge, y = Sentiment_pct_change)) +
 geom_point() +
 geom_smooth(method = 'lm', se = FALSE, color = 'red', linetype = 'dash
ed') +
 labs(x = "Adj_pct_change", y = "Sentiment_pct_change") +
 theme_minimal()

Create scatterplot for Adj_pct_change vs SVI_pct_change
scatterplot_adj_svi <- ggplot(merged_data_df, aes(x = Adj_pct_change, y
= SVI_pct_change)) +
 geom_point() +
 geom_smooth(method = 'lm', se = FALSE, color = 'red', linetype = 'dash
ed') +
 labs(x = "Adj_pct_change", y = "SVI_pct_change") +
 theme_minimal()

Create scatterplot for Sentiment_pct_change vs SVI_pct_change
scatterplot_sentiment_svi <- ggplot(merged_data_df, aes(x = Sentiment_pc
t_change, y = SVI_pct_change)) +
 geom_point() +
 geom_smooth(method = 'lm', se = FALSE, color = 'red', linetype = 'dash
ed') +
 labs(x = "Sentiment_pct_change", y = "SVI_pct_change") +
 theme_minimal()

Arrange the scatterplots in a grid
grid.arrange(scatterplot_adj_sentiment, scatterplot_adj_svi,
 scatterplot_sentiment_svi,
 nrow = 2, ncol = 2,
 top = grid::textGrob(label = paste("Scatterplot Relationshi
ps of Variables", "(", ticker, ")"),
 gp = grid::gpar(fontface = "bold"))
)

Plot the Adj Close, SCI and Sentiment Score
Create a long-format data frame for ggplot
long_data_df <- merged_data_df %>%
 gather(key = "Variable", value = "Value", ticker, Sentiment_Score, SVI
)

Create a plot with three panels, one for each variable
multi_panel_plot <- ggplot(long_data_df, aes(x = Date, y = Value)) +
 geom_line() +
 facet_wrap(~ Variable, scales = "free_y", ncol = 1) +
 labs(title = paste("Time Series Plot of Variables","(",ticker,")") , x
= "Date", y = "Values") +
 scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0.5, vjust = 1, size = 14, fac
e = "bold"))

Print the plot
print(multi_panel_plot)

Page 68

Plot the Adj pct change, pct change in sentiment and the pct change in
SVI

Create a long-format data frame for ggplot
suppressWarnings({
 long_data_df <- merged_data_df %>%
 gather(key = "Variable", value = "Value", Adj_pct_change, Sentiment_
pct_change, SVI_pct_change)
})

Create a plot with three panels, one for each variable
multi_panel_plot <- ggplot(long_data_df, aes(x = Date, y = Value)) +
 geom_line() +
 facet_wrap(~ Variable, scales = "free_y", ncol = 1) +
 labs(title = paste("Time Series Plot of Variables","(",ticker,")"), x
= "Date", y = "First differences") +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0.5, vjust = 1, size = 14, fac
e = "bold")) +
 scale_x_date(date_breaks = "1 year", date_labels = "%Y")

Print the plot
print(multi_panel_plot)

Analyze autocorrelation using ACF and PACF plots
plot_acf_pacf <- function(ts_data, title, lag_length) {
 acf_plot <- ggAcf(ts_data, lag.max = lag_length) + ggtitle(paste0("ACF
: ", title))
 pacf_plot <- ggPacf(ts_data, lag.max = lag_length) + ggtitle(paste0("P
ACF: ", title))
 return(list(acf_plot, pacf_plot))
}

Define the lag length
lag_length <- 20

Generate plots
stock_plots <- plot_acf_pacf(merged_data_df$Adj_pct_change, paste("Adj C
lose Percentage Change"), lag_length)
sentiment_plots <- plot_acf_pacf(merged_data_df$Sentiment_pct_change, "S
entiment Percentage Change", lag_length)
svi_plots <- plot_acf_pacf(merged_data_df$SVI_pct_change, "SVI Percentag
e Change", lag_length)

Combine all plots into one with a title
title_grob <- textGrob(paste("ACF and PACF for", ticker), gp = gpar(font
face = "bold"))
gridExtra::grid.arrange(grobs = c(stock_plots, sentiment_plots, svi_plot
s),
 ncol = 2,
 top = title_grob)

Split the data frame into the specified periods
in_sample_df <- merged_data_df[merged_data_df$Date >= "2018-01-01" & me
rged_data_df$Date < "2022-12-31",]
out_of_sample_df <- merged_data_df[merged_data_df$Date >= "2023-01-01"

Page 69

& merged_data_df$Date <= "2023-02-01",]

Check for stationarity

suppressWarnings({
 adf_adj <- adf.test(in_sample_df$Adj_pct_change)
 adf_sent <- adf.test(in_sample_df$Sentiment_pct_change)
 adf_SVI <- adf.test(in_sample_df$SVI_pct_change)
})

Print ADF test results
cat("ADF test for Adj_pct_change:", ticker, "\n")

######### AR model & RW model ##########

#Fiting and optimal lag selection of the ar model

Function to fit AR model with different information criteria
fit_AR_model <- function(in_sample_data, max_lag, ic_type) {

 # Create a dataframe to store ICs
 IC_df <- data.frame(lag = 1:max_lag, AIC = rep(0, max_lag), BIC = rep(
0, max_lag),
 HQIC = rep(0, max_lag), FPE = rep(0, max_lag))

 # Calculate ICs for each lag
 for (i in 1:max_lag) {
 model <- Arima(in_sample_data, order = c(i, 0, 0))
 IC_df$AIC[i] <- model$aic
 IC_df$BIC[i] <- BIC(model)
 IC_df$HQIC[i] <- log(model$sigma2) + 2*i*log(log(nrow(in_sample_df))
)/nrow(in_sample_df)
 }

 # Print all the criteria
 cat("AIC:", IC_df$AIC, "\n")
 cat("BIC:", IC_df$BIC, "\n")
 cat("HQIC:", IC_df$HQIC, "\n")

 # Determine the optimal lag based on the chosen criterion
 if(ic_type == "AIC") {
 optimal_lag <- which.min(IC_df$AIC)
 } else if(ic_type == "BIC") {
 optimal_lag <- which.min(IC_df$BIC)
 } else if(ic_type == "HQIC") {
 optimal_lag <- which.min(IC_df$HQIC)
 }

 # Fit the AR model using the optimal lag
 ar_model <- Arima(in_sample_data, order = c(optimal_lag, 0, 0))

 return(ar_model)
}

Choose the IC type
ic_type <- "AIC" # Change to "AIC", "BIC", "HQIC", or "FPE" as needed

Fit the AR model
ar_model <- fit_AR_model(in_sample_df$Adj_pct_change, 20, ic_type)

Page 70

print(ar_model)

Initialize variables to store the forecast values
ar_forecast_values <- numeric(length(out_of_sample_df$Adj_pct_change))
rw_forecast_values <- numeric(length(out_of_sample_df$Adj_pct_change))
Add this line

Perform AR and random walk with drift forecasts
drift_term <- mean(diff(in_sample_df$Adj_pct_change)) # Calculate the d
rift term
rw_forecast_values[1] <- out_of_sample_df$Adj_pct_change[1]

for (i in 2:length(out_of_sample_df$Adj_pct_change)) {
 # Combine in-sample and out-of-sample data up to the current point
 combined_data <- ts(c(in_sample_df$Adj_pct_change, out_of_sample_df$Ad
j_pct_change[1:(i - 1)]))

 # Fit the AR model to the combined data using auto.arima() function
 ar_model <- auto.arima(combined_data, ic = "aic", stationary = TRUE)

 # Generate a one-step-ahead AR forecast
 ar_forecast_values[i] <- forecast(ar_model, h = 1)$mean

 # Use the last observed value as the forecast for the random walk
 rw_forecast_values[i] <- out_of_sample_df$Adj_pct_change[i - 1] + drif
t_term
}

Combine the actual and forecast values in a data frame
comparison_df <- data.frame(Date = out_of_sample_df$Date, Actual = out_o
f_sample_df$Adj_pct_change, AR_Forecast = ar_forecast_values, RW_Forecas
t = rw_forecast_values)
comparison_df$Date <- as.Date(comparison_df$Date)

Plot the actual and forecast values
comparison_plot <- ggplot(comparison_df, aes(x = Date)) +
 geom_line(aes(y = Actual, color = "Actual")) +
 geom_line(aes(y = AR_Forecast, color = "AR Model")) +
 geom_line(aes(y = RW_Forecast, color = "Random Walk")) +
 labs(title = paste("Actual vs Forecast Return","(", ticker,")"), x = "
Date", y = "% change in Return", color = "Series") +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0.5, vjust = 1, size = 14, fac
e = "bold"))

print(comparison_plot)

######### Adj Close, Sentiment and SVI ###########

optimal lag selection and VAR-framework

Define y1,t as the logged values of Sentiment score
y1t <- in_sample_df$Adj_pct_change

Define y2,t as the logged values of pct change
y2t <- in_sample_df$Sentiment_pct_change

y3t <- in_sample_df$SVI_pct_change

Construct y matrix
y <- matrix(c(y1t, y2t, y3t), ncol=3)

Page 71

colnames(y) <- c("Adj_pct_change", "Sentiment_pct_change", "SVI_pct_chan
ge")

Optimal lags
opt_lag <- VARselect(y, lag.max=20)
cat("Optimal lag selection:", ticker, "\n")

Optimal lag selection: AAPL

print(opt_lag)

paste0("HQIC: VAR(", opt_lag$selection[2], ")")

Fit VAR model
model_fit <- VAR(y, p=opt_lag$selection[2])
cat("VAR estimation results:", ticker, "\n")

summary(model_fit)

Perform the Granger causality tests
granger_test1 <- causality(model_fit, cause = c("Sentiment_pct_change",
"SVI_pct_change"))$Granger
granger_test2 <- causality(model_fit, cause = c("Adj_pct_change", "SVI_p
ct_change"))$Granger
granger_test3 <- causality(model_fit, cause = c("Adj_pct_change", "Senti
ment_pct_change"))$Granger

Prepare data for the data frame
cause_vars <- c("Sentiment_pct_change & SVI_pct_change", "Adj_pct_change
& SVI_pct_change",
 "Adj_pct_change & Sentiment_pct_change")
effect_vars <- c("Adj_pct_change", "Sentiment_pct_change", "SVI_pct_chan
ge")
test_results <- list(granger_test1, granger_test2, granger_test3)

Function to extract p-values from the causality test results
get_test_info <- function(test_result) {
 p_value <- format(round(test_result$p.value, 4), nsmall = 4)
 return(p_value)
}

Function to assign significance based on p-value
assign_significance <- function(p) {
 p = as.numeric(p)
 if (p <= 0.01) {
 return("***")
 } else if (p <= 0.05) {
 return("**")
 } else if (p <= 0.1) {
 return("*")
 } else {
 return("")
 }
}

Gather the p-values
p_values <- sapply(test_results, get_test_info)

Assign significance levels based on p-values
significance <- sapply(p_values, assign_significance)

Create a data frame to store the p-values and significance

Page 72

result_df <- data.frame(
 Cause = cause_vars,
 Effect = effect_vars,
 P_Values = p_values,
 Significance = significance
)

Print the title
cat("\nGranger Causality Test Results:", ticker, "\n")

Print the results
print(result_df,row.names = FALSE)

Print the legend for significance levels
cat("\np <= 0.1: *, p <= 0.05: **, p <= 0.01: ***")

Test for serial correlation of residuals using the Durbin-Watson stati
stic

Calculate the residuals from the fitted VAR model
residuals <- residuals(model_fit)

Calculate the Durbin Watson statistic for each variable

dwt <- dwtest(lm(residuals ~ 1))$statistic

cat("Durbin-Watson statistic for", colnames(residuals), ":", dwt , "(",
ticker, ")", "\n") # A value of close to 2 indicate no serial correlatio
n

Impulse Response Function (IRF) for all combinations of variables
irf_steps <- 20 # Number of steps ahead for IRF

var_names <- colnames(y)

Run the irf function
imp_results <- irf(model_fit, n.ahead = irf_steps, ortho = FALSE)

round(imp_resultsirfSentiment_pct_change, 4)

Set up the plot parameters
par(mfrow = c(length(var_names),length(var_names)),
 pty = "s",
 las = 0,
 mgp = c(2.5, 1, 0),
 mar = c(2, 0, 2, 0),
 family = "serif")

Upper and lower bounds for confidence intervals (assuming 95%)
upper_bound_Adj <- imp_results$Upper$Adj_pct_change
lower_bound_Adj <- imp_results$Lower$Adj_pct_change

upper_bound_Sentiment <- imp_results$Upper$Sentiment_pct_change
lower_bound_Sentiment <- imp_results$Lower$Sentiment_pct_change

upper_bound_SVI <- imp_results$Upper$SVI_pct_change
lower_bound_SVI <- imp_results$Lower$SVI_pct_change

Page 73

Plot 1: Response of Adj close to Adj Close
plot(0:irf_steps, imp_resultsirfAdj_pct_change[,1], type = "l", col =
"red",
 xlab = "", ylab = "", main = "Response of Adj close to Adj Close",
 xlim = c(0, irf_steps), ylim = c(-0.1, 1),
 xaxp = c(0, irf_steps, 2), yaxp = c(0, 1, 2))
lines(0:irf_steps, upper_bound_Adj[,1], col = "blue",lty = "dotted")
lines(0:irf_steps, lower_bound_Adj[,1], col = "blue",lty = "dotted")

Plot 2: Response of Adj close to Sentiment Percentage change
plot(0:irf_steps, imp_resultsirfSentiment_pct_change[,1], type = "l",
col = "red",
 xlab = "", ylab = "", main = "Response of Adj close to Sentiment",
 xlim = c(0, irf_steps), ylim = c(-0.2, 0.2),
 xaxp = c(0, irf_steps, 2), yaxp = c(-0.1, 0.1, 2))
lines(0:irf_steps, upper_bound_Sentiment[,1], col = "blue",lty = "dotted
")
lines(0:irf_steps, lower_bound_Sentiment[,1], col = "blue",lty = "dotted
")

Plot 3: Response of Adj Close to SVI percentage change
plot(0:irf_steps, imp_resultsirfSVI_pct_change[,1], type = "l", col =
"red",
 xlab = "", ylab = "", main = "Response of Adj Close to SVI",
 xlim = c(0, irf_steps), ylim = c(-0.2, 0.2),
 xaxp = c(0, irf_steps, 2), yaxp = c(-0.1, 0.1, 2))
lines(0:irf_steps, upper_bound_SVI[,1], col = "blue",lty = "dotted")
lines(0:irf_steps, lower_bound_SVI[,1], col = "blue",lty = "dotted")

Plot 4: Response of Sentiment percentage change to Adj Close
plot(0:irf_steps, imp_resultsirfAdj_pct_change[,2], type = "l", col =
"red",
 xlab = "", ylab = "", main = "Response of Sentiment to Adj Close",
 xlim = c(0, irf_steps), ylim = c(-0.2, 0.2),
 xaxp = c(0, irf_steps, 2), yaxp = c(-0.1, 0.1, 2))
lines(0:irf_steps, upper_bound_Adj[,2], col = "blue",lty = "dotted")
lines(0:irf_steps, lower_bound_Adj[,2], col = "blue",lty = "dotted")

Plot 5: Response of Sentiment percentage change to Sentiment percentag
e change
plot(0:irf_steps, imp_resultsirfSentiment_pct_change[,2], type = "l",
col = "red",
 xlab = "", ylab = "", main = "Response of Sentiment to Sentiment",
 xlim = c(0, irf_steps), ylim = c(-0.1, 1),
 xaxp = c(0, irf_steps, 2), yaxp = c(0, 1, 2))
lines(0:irf_steps, upper_bound_Sentiment[,2], col = "blue",lty = "dotted
")
lines(0:irf_steps, lower_bound_Sentiment[,2], col = "blue",lty = "dotted
")

Plot 6: Response of Sentiment percentage change to SVI
plot(0:irf_steps, imp_resultsirfSVI_pct_change[,2], type = "l", col =
"red",
 xlab = "", ylab = "", main = "Response of Sentiment percentage to S
VI",
 xlim = c(0, irf_steps), ylim = c(-0.2, 0.2),
 xaxp = c(0, irf_steps, 2), yaxp = c(-0.1, 0.1, 2))
lines(0:irf_steps, upper_bound_SVI[,2], col = "blue",lty = "dotted")
lines(0:irf_steps, lower_bound_SVI[,2], col = "blue",lty = "dotted")

Plot 7: Response of SVI to Adj Close
plot(0:irf_steps, imp_resultsirfAdj_pct_change[,3], type = "l", col =

Page 74

"red",
 xlab = "", ylab = "", main = "Response of SVI to Adj Close",
 xlim = c(0, irf_steps), ylim = c(-0.2, 0.2),
 xaxp = c(0, irf_steps, 2), yaxp = c(-0.1, 0.1, 2))
lines(0:irf_steps, upper_bound_Adj[,3], col = "blue",lty = "dotted")
lines(0:irf_steps, lower_bound_Adj[,3], col = "blue",lty = "dotted")

Plot 8: Response of SVI to Sentiment Percentage change
plot(0:irf_steps, imp_resultsirfSentiment_pct_change[,3], type = "l",
col = "red",
 xlab = "", ylab = "", main = "Response of SVI to Sentiment",
 xlim = c(0, irf_steps), ylim = c(-0.2, 0.2),
 xaxp = c(0, irf_steps, 2), yaxp = c(-0.1, 0.1, 2))
lines(0:irf_steps, upper_bound_Sentiment[,3], col = "blue",lty = "dotted
")
lines(0:irf_steps, lower_bound_Sentiment[,3], col = "blue",lty = "dotted
")

Plot 9: Response of SVI to SVI
plot(0:irf_steps, imp_resultsirfSVI_pct_change[,3], type = "l", col =
"red",
 xlab = "", ylab = "", main = "Response of SVI to SVI",
 xlim = c(0, irf_steps), ylim = c(-0.1, 1),
 xaxp = c(0, irf_steps, 2), yaxp = c(0, 1, 2))
lines(0:irf_steps, upper_bound_SVI[,3], col = "blue",lty = "dotted")
lines(0:irf_steps, lower_bound_SVI[,3], col = "blue",lty = "dotted")

Variance decomposition

vd_steps <- 20 # Number of steps ahead for variance decomposition

var_dec <- fevd(model_fit, n.ahead=vd_steps)

round(matrix(c(var_dec$Adj_pct_change[,1],
 var_dec$Adj_pct_change[,2],
 var_dec$Adj_pct_change[,3],
 var_dec$Adj_pct_change[,1] + var_dec$Adj_pct_change[,2
] + var_dec$Adj_pct_change[,3]),
 ncol=4),
 4)

round(matrix(c(var_dec$Sentiment_pct_change[,1],
 var_dec$Sentiment_pct_change[,2],
 var_dec$Sentiment_pct_change[,3],
 var_dec$Sentiment_pct_change[,1] + var_dec$Sentiment_p
ct_change[,2] + var_dec$Sentiment_pct_change[,3]),
 ncol=4),
 4)

round(matrix(c(var_dec$SVI_pct_change[,1],
 var_dec$SVI_pct_chang[,2],
 var_dec$SVI_pct_chang[,3],
 var_dec$SVI_pct_chang[,1] + var_dec$SVI_pct_chang[,2]
+ var_dec$SVI_pct_chang[,3]),
 ncol=4),
 4)

Page 75

par(mfrow = c(3,3),
 pty = "s",
 las = 0,
 mgp = c(2.5, 1, 0),
 mar = c(2, 0, 2, 0),
 family ="serif")
plot(1:vd_steps, var_dec$Adj_pct_change[,1], type = "l",
col = "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Adj_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$Adj_pct_change[,2], type = "l",
col = "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Sentiment_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$Adj_pct_change[,3], type = "l",
col = "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to SVI_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$Sentiment_pct_change[,1], type
= "l", col = "red",
 xlab = "", ylab = "", main = "% of Sentiment_
pct_change variance due to Adj_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$Sentiment_pct_change[,2], type
= "l", col = "red",
 xlab = "", ylab = "", main = "% of Sentiment_
pct_change variance due to Sentiment_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$Sentiment_pct_change[,3], type
= "l", col = "red",
 xlab = "", ylab = "", main = "% of Sentiment_
pct_change variance due to SVI_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$SVI_pct_change[,1], type = "l",
col = "red",
 xlab = "", ylab = "", main = "% of SVI_pct_ch
ange variance due to Adj_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$SVI_pct_change[,2], type = "l",
col = "red",
 xlab = "", ylab = "", main = "% of SVI_pct_ch
ange variance due to Sentiment_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))
plot(1:vd_steps, var_dec$SVI_pct_change[,3], type = "l",
col = "red",
 xlab = "", ylab = "", main = "% of SVI_pct_ch
ange variance due to SVI_pct_change",
 xlim = c(0, vd_steps), ylim = c(0, 1),
 xaxp = c(0, vd_steps, 2), yaxp = c(0, 1, 2))

Page 76

Robustness check: Reverse ordering

tau = 20

y_robust <- matrix(c(y3t, y2t, y1t), ncol=3)
colnames(y_robust) <- c("SVI_pct_change", "Sentiment_pct_change", "Adj_p
ct_change")

Optimal lags
opt_lag_robust <- VARselect(y_robust, lag.max=20)
cat("Optimal lag selection:", ticker, "\n")

Optimal lag selection: AAPL

print(opt_lag_robust)

paste0("HQIC: VAR(", opt_lag_robust$selection[2], ")")

Fit VAR model
model_fit_robust <- VAR(y_robust, p=opt_lag_robust$selection[2])
cat("VAR estimation results:", ticker, "\n")

var_dec <- fevd(model_fit_robust, n.ahead=tau)

par(mfrow = c(3,3),
 pty = "s",
 las = 0,
 mgp = c(2.5, 1, 0),
 mar = c(2, 0, 2, 0),
 family ="serif")
plot(1:tau, var_dec$Adj_pct_change[,3], type = "l", col
= "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Adj_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$Adj_pct_change[,2], type = "l", col
= "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Sentiment_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$Adj_pct_change[,1], type = "l", col
= "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to SVI_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$Sentiment_pct_change[,3], type = "l"
, col = "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Adj_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$Sentiment_pct_change[,2], type = "l"
, col = "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Sentiment_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),

Page 77

 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$Sentiment_pct_change[,1], type = "l"
, col = "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to SVI_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$SVI_pct_change[,3], type = "l", col
= "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Adj_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$SVI_pct_change[,2], type = "l", col
= "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to Sentiment_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))
plot(1:tau, var_dec$SVI_pct_change[,1], type = "l", col
= "red",
 xlab = "", ylab = "", main = "% of Adj_pct_ch
ange variance due to SVI_pct_change",
 xlim = c(0, tau), ylim = c(0, 1),
 xaxp = c(0, tau, 2), yaxp = c(0, 1, 2))

VAR forecast
n_steps <- 1
y_t_plus_1_forecast <- predict(model_fit, n.ahead = n_steps, ci = 0.95)

Initialize variables to store the forecast values
forecast_values <- numeric(length(out_of_sample_df$Adj_pct_change))

for (i in 2:length(out_of_sample_df$Adj_pct_change)) {
 # Combine in-sample and out-of-sample data up to the current point
 combined_data <- rbind(in_sample_df[, c("Adj_pct_change", "Sentiment_p
ct_change", "SVI_pct_change")], out_of_sample_df[1:(i - 1), c("Adj_pct_c
hange", "Sentiment_pct_change", "SVI_pct_change")])

 # Fit the VAR model to the combined data
 var_model <- VAR(combined_data, p = opt_lag$selection[2])

 # Generate a one-step-ahead forecast
 forecast_result <- predict(var_model, n.ahead = n_steps)
 forecast_values[i] <- forecast_result$fcst[[1]][1]
}

Combine the actual and forecast values in a data frame
comparison_df <- data.frame(Date = out_of_sample_df$Date,
 Actual = out_of_sample_df$Adj_pct_change,
 VAR_Forecast = forecast_values,
 AR_Forecast = ar_forecast_values,
 RW_Forecast = rw_forecast_values)

comparison_df$Date <- as.Date(comparison_df$Date)

Page 78

Plot the actual and forecast values
comparison_plot <- ggplot(comparison_df, aes(x = Date)) +
 geom_line(aes(y = Actual, color = "Actual")) +
 geom_line(aes(y = VAR_Forecast, color = "VAR Forecast")) +
 geom_line(aes(y = AR_Forecast, color = "AR Forecast")) +
 geom_line(aes(y = RW_Forecast, color = "RW Forecast")) +
 labs(title = paste("Actual vs Forecast Return","(", ticker,")"),
 x = "Date", y = "% change in Return", color = "Series") +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0.5, vjust = 1, size = 14, fac
e = "bold"))

print(comparison_plot)

Calculate the mean squared error for VAR, AR, and random walk forecast
s
var_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$VAR_For
ecast)^2)
rw_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$RW_Forec
ast)^2)
ar_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$AR_Forec
ast)^2)

Calculate the Root Mean Squared Error (RMSE) for VAR, AR, and random w
alk forecasts
var_rmse <- sqrt(var_mse)
rw_rmse <- sqrt(rw_mse)
ar_rmse <- sqrt(ar_mse)

Calculate the Mean Absolute Error (MAE) for VAR, AR, and random walk f
orecasts
var_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$VAR_
Forecast))
rw_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$RW_Fo
recast))
ar_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$AR_Fo
recast))

Create a data frame to store the metrics
metrics_df <- data.frame(
 Model = c("VAR Model", "Random Walk", "AR Model"),
 MSE = c(var_mse, rw_mse, ar_mse),
 RMSE = c(var_rmse, rw_rmse, ar_rmse),
 MAE = c(var_mae, rw_mae, ar_mae)
)

Print the metrics data frame
cat("\nMetrics:", ticker, "For Adj Close, Sentiment and SVI", "\n")

######### Adj Close and Sentiment #########

optimal lag selection and VAR-framework

Define y1,t as the logged values of Sentiment score

Page 79

y1t <- in_sample_df$Adj_pct_change

Define y2,t as the logged values of pct change
y2t <- in_sample_df$Sentiment_pct_change

Construct y matrix
y <- matrix(c(y1t, y2t), ncol=2)
colnames(y) <- c("Adj_pct_change", "Sentiment_pct_change")

Optimal lags
opt_lag <- VARselect(y, lag.max=20)
print(opt_lag)

paste0("HQIC: VAR(", opt_lag$selection[2], ")")

Fit VAR model
model_fit <- VAR(y, p=opt_lag$selection[2])
summary(model_fit)

Perform the Granger causality tests

granger_test1 <- causality(model_fit, cause = c("Sentiment_pct_change"))
$Granger
granger_test2 <- causality(model_fit, cause = c("Adj_pct_change"))$Grang
er

Prepare data for the data frame
cause_vars <- c("Sentiment_pct_change", "Adj_pct_change")
effect_vars <- c("Adj_pct_change", "Sentiment_pct_change")
test_results <- list(granger_test1, granger_test2)

Function to extract p-values from the causality test results
get_test_info <- function(test_result) {
 p_value <- format(round(test_result$p.value, 4), nsmall = 4)
 return(p_value)
}

Function to assign significance based on p-value
assign_significance <- function(p) {
 p = as.numeric(p)
 if (p <= 0.01) {
 return("***")
 } else if (p <= 0.05) {
 return("**")
 } else if (p <= 0.1) {
 return("*")
 } else {
 return("")
 }
}

Gather the p-values
p_values <- sapply(test_results, get_test_info)

Assign significance levels based on p-values
significance <- sapply(p_values, assign_significance)

Create a data frame to store the p-values and significance
result_df <- data.frame(
 Cause = cause_vars,

Page 80

 Effect = effect_vars,
 P_Values = p_values,
 Significance = significance
)

Print the title
cat("\nGranger Causality Test Results for:", ticker, "\n")

Print the results
print(result_df,row.names = FALSE)

Print the legend for significance levels
cat("\np <= 0.1: *, p <= 0.05: **, p <= 0.01: ***")

Test for serial correlation of residuals using the Durbin-Watson stati
stic

Calculate the residuals from the fitted VAR model
residuals <- residuals(model_fit)

Calculate the Durbin Watson statistic for each variable

dwt <- dwtest(lm(residuals ~ 1))$statistic

cat("Durbin-Watson statistic for", colnames(residuals), ":", dwt , "(",
ticker, ")", "\n") # A value of close to 2 indicate no serial correlatio
n

VAR forecast
n_steps <- 1
y_t_plus_1_forecast <- predict(model_fit, n.ahead = n_steps, ci = 0.95)

Initialize variables to store the forecast values
forecast_values <- numeric(length(out_of_sample_df$Adj_pct_change))

for (i in 2:length(out_of_sample_df$Adj_pct_change)) {
 # Combine in-sample and out-of-sample data up to the current point
 combined_data <- rbind(in_sample_df[, c("Adj_pct_change",
"Sentiment_pct_change")], out_of_sample_df[1:(i - 1),c("Adj_pct_change",
"Sentiment_pct_change")])

 # Fit the VAR model to the combined data
 var_model <- VAR(combined_data, p = opt_lag$selection[2])

 # Generate a one-step-ahead forecast
 forecast_result <- predict(var_model, n.ahead = n_steps)
 forecast_values[i] <- forecast_result$fcst[[1]][1]
}

Combine the actual and forecast values in a data frame
comparison_df <- data.frame(Date = out_of_sample_df$Date,
 Actual = out_of_sample_df$Adj_pct_change,
 VAR_Forecast = forecast_values,
 AR_Forecast = ar_forecast_values,
 RW_Forecast = rw_forecast_values)

Page 81

comparison_df$Date <- as.Date(comparison_df$Date)

Plot the actual and forecast values
comparison_plot <- ggplot(comparison_df, aes(x = Date)) +
 geom_line(aes(y = Actual, color = "Actual")) +
 geom_line(aes(y = VAR_Forecast, color = "VAR Forecast")) +
 geom_line(aes(y = AR_Forecast, color = "AR Forecast")) +
 geom_line(aes(y = RW_Forecast, color = "RW Forecast")) +
 labs(title = paste("Actual vs Forecast Return","(", ticker,")"),
 x = "Date", y = "% change in Return", color = "Series") +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0.5, vjust = 1, size = 14,
face = "bold"))

print(comparison_plot)

Calculate the mean squared error for VAR, AR, and random walk forecast
s
var_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$VAR_For
ecast)^2)
rw_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$RW_Forec
ast)^2)
ar_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$AR_Forec
ast)^2)

Calculate the Root Mean Squared Error (RMSE) for VAR, AR, and random w
alk forecasts
var_rmse <- sqrt(var_mse)
rw_rmse <- sqrt(rw_mse)
ar_rmse <- sqrt(ar_mse)

Calculate the Mean Absolute Error (MAE) for VAR, AR, and random walk f
orecasts
var_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$VAR_
Forecast))
rw_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$RW_Fo
recast))
ar_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$AR_Fo
recast))

Create a data frame to store the metrics
metrics_df <- data.frame(
 Model = c("VAR Model", "Random Walk", "AR Model"),
 MSE = c(var_mse, rw_mse, ar_mse),
 RMSE = c(var_rmse, rw_rmse, ar_rmse),
 MAE = c(var_mae, rw_mae, ar_mae)
)

Print the metrics data frame
cat("\nMetrics:", ticker, "For Adj Close and Sentiment", "\n")

######### Adj Close and Google Trends #########

Define y1,t as the logged values of Adj_pct_change
y1t <- in_sample_df$Adj_pct_change

Page 82

Define y3,t as the logged values of SVI_pct_change
y3t <- in_sample_df$SVI_pct_change

Construct y matrix
y <- matrix(c(y1t, y3t), ncol=2)
colnames(y) <- c("Adj_pct_change", "SVI_pct_change")

Optimal lags
opt_lag <- VARselect(y, lag.max=20)
print(opt_lag)

paste0("AIC: VAR(", opt_lag$selection[1], ")")

Fit VAR model
model_fit <- VAR(y, p=opt_lag$selection[1])
summary(model_fit)

Perform the Granger causality tests
granger_test1 <- causality(model_fit, cause = c("SVI_pct_change"))$Grang
er
granger_test2 <- causality(model_fit, cause = c("Adj_pct_change"))$Grang
er

Prepare data for the data frame
cause_vars <- c("SVI_pct_change","Adj_pct_change")
effect_vars <- c("Adj_pct_change", "SVI_pct_change")
test_results <- list(granger_test1, granger_test2)

Function to extract p-values from the causality test results
get_test_info <- function(test_result) {
 p_value <- format(round(test_result$p.value, 4), nsmall = 4)
 return(p_value)
}

Function to assign significance based on p-value
assign_significance <- function(p) {
 p = as.numeric(p)
 if (p <= 0.01) {
 return("***")
 } else if (p <= 0.05) {
 return("**")
 } else if (p <= 0.1) {
 return("*")
 } else {
 return("")
 }
}

Gather the p-values
p_values <- sapply(test_results, get_test_info)

Assign significance levels based on p-values
significance <- sapply(p_values, assign_significance)

Create a data frame to store the p-values and significance
result_df <- data.frame(
 Cause = cause_vars,
 Effect = effect_vars,
 P_Values = p_values,
 Significance = significance

Page 83

)

Print the title
cat("\nGranger Causality Test Results for:", ticker, "\n")

Granger Causality Test Results for: AAPL

Print the results
print(result_df,row.names = FALSE)

Cause Effect P_Values Significance
SVI_pct_change Adj_pct_change 0.0931 *
Adj_pct_change SVI_pct_change 0.8915

Test for serial correlation of residuals using the Durbin-Watson stati
stic

Calculate the residuals from the fitted VAR model
residuals <- residuals(model_fit)

Calculate the Durbin Watson statistic for each variable

dwt <- dwtest(lm(residuals ~ 1))$statistic

cat("Durbin-Watson statistic for", colnames(residuals), ":", dwt , "\n")
A value of close to 2 indicate no serial correlation

VAR forecast
n_steps <- 1
y_t_plus_1_forecast <- predict(model_fit, n.ahead = n_steps, ci = 0.95)

Initialize variables to store the forecast values
forecast_values <- numeric(length(out_of_sample_df$Adj_pct_change))

for (i in 2:length(out_of_sample_df$Adj_pct_change)) {
 # Combine in-sample and out-of-sample data up to the current point
 combined_data <- rbind(in_sample_df[, c("Adj_pct_change", "SVI_pct_cha
nge")], out_of_sample_df[1:(i - 1), c("Adj_pct_change", "SVI_pct_change"
)])

 # Fit the VAR model to the combined data
 var_model <- VAR(combined_data, p = opt_lag$selection[1])

 # Generate a one-step-ahead forecast
 forecast_result <- predict(var_model, n.ahead = n_steps)
 forecast_values[i] <- forecast_result$fcst[[1]][1]
}

Combine the actual and forecast values in a data frame
comparison_df <- data.frame(Date = out_of_sample_df$Date,
 Actual = out_of_sample_df$Adj_pct_change,
 VAR_Forecast = forecast_values,
 AR_Forecast = ar_forecast_values,
 RW_Forecast = rw_forecast_values)

comparison_df$Date <- as.Date(comparison_df$Date)

Plot the actual and forecast values

Page 84

comparison_plot <- ggplot(comparison_df, aes(x = Date)) +
 geom_line(aes(y = Actual, color = "Actual")) +
 geom_line(aes(y = VAR_Forecast, color = "VAR Forecast")) +
 geom_line(aes(y = AR_Forecast, color = "AR Forecast")) +
 geom_line(aes(y = RW_Forecast, color = "RW Forecast")) +
 labs(title = paste("Actual vs Forecast Return","(", ticker,")"),
 x = "Date", y = "% change in Return", color = "Series") +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0.5, vjust = 1, size = 14, fac
e = "bold"))

print(comparison_plot)

Calculate the mean squared error for VAR, AR, and random walk forecast
s
var_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$VAR_For
ecast)^2)
rw_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$RW_Forec
ast)^2)
ar_mse <- mean((out_of_sample_df$Adj_pct_change - comparison_df$AR_Forec
ast)^2)

Calculate the Root Mean Squared Error (RMSE) for VAR, AR, and random w
alk forecasts
var_rmse <- sqrt(var_mse)
rw_rmse <- sqrt(rw_mse)
ar_rmse <- sqrt(ar_mse)

Calculate the Mean Absolute Error (MAE) for VAR, AR, and random walk f
orecasts
var_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$VAR_
Forecast))
rw_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$RW_Fo
recast))
ar_mae <- mean(abs(out_of_sample_df$Adj_pct_change - comparison_df$AR_Fo
recast))

Create a data frame to store the metrics
metrics_df <- data.frame(
 Model = c("VAR Model", "Random Walk", "AR Model"),
 MSE = c(var_mse, rw_mse, ar_mse),
 RMSE = c(var_rmse, rw_rmse, ar_rmse),
 MAE = c(var_mae, rw_mae, ar_mae)
)

Print the metrics data frame
cat("\nMetrics:", ticker, "For Adj Close and SVI", "\n")

	GRA 19701 Master Thesis
	Abstract
	Introduction
	Literature review
	Hypothesis and Methodology
	Stationarity
	Selecting the optimal number of lags
	VAR framework
	Forecasting
	Comparing forecasting performance

	Autocorrelation
	Causality
	Grange Causality
	Impulse Response Analysis
	Variance decomposition

	Data
	Selection of companies
	Juridical and moral concepts
	Programming language & Data collection
	Tweets
	Cleaning Tweets

	Sentiment analysis
	Google Trends
	Integration of Adjusted Closing Prices with Sentiment and SVI Data

	Figure 1 Constructed daily Google Trends SVI vs Weekly google trends SVI
	Results
	Forecasting results
	Granger causality
	Impulse responses
	Variance decomposition
	Robustness test

	Figure 2 Forecasting performance. Setup (1)
	Discussion and Conclusion
	Limitations and Suggestions for Further Research
	Bibliography
	Appendix
	Section A – Statistical tests and optimal lag
	Table 1 Augmented Dickey Fuller (ADF) unit root test
	Table 2 Optimal lag length
	Table 3 Durbin-Watson test for autocorrelation

	Section B – Time series plot of Variables
	Section C – Time series plot of variables in first differences
	Section D – Forecasting performance
	Section E – Forecasting plots
	Figure 5 Setup (2): Adj. Close | Sentiment
	Figure 6 Setup (3): Adj. Close | SVI

	Section F - Granger Causality tests
	Apple
	Setup (1)
	Setup (2)
	Setup (3)

	Amazon
	Setup (1)
	Setup (2)
	Setup (3)

	Microsoft
	Setup (1)
	Setup (2)
	Setup (3)

	Tesla
	Setup (1)
	Setup (2)
	Setup (3)

	Section G - Impulse responses
	Figure 7 Impulse responses - Apple
	Figure 8 Impulse responses - Amazon
	Figure 9 Impulse responses - Microsoft
	Figure 10 Impulse responses - Tesla

	Section H - Variance decomposition
	Figure 11 Variance decomposition - Apple
	Figure 12 Variance Decomposition - Amazon
	Figure 13 Variance decomposition - Microsoft
	Figure 14 Variance Decomposition – Tesla

	Section I – Reverse ordering Robustness tests
	Figure 15 Reverse ordering Robustness test – Apple
	Figure 16 Reverse ordering Robustness test - Amazon
	Figure 17 Reverse ordering Robustness test – Microsoft
	Figure 18 Reverse ordering Robustness test – Tesla

	Section J – Packages, modules, and libraries
	Table 5 List of Python packages, modules and libraries
	Table 6 List of R packages, modules, and libraries

	Figure 3 Time Series Plot of Variables in actual values
	Figure 4 Time Series Plot of Variables in first differences
	Table 4 Comparative Performance Metrics of the Forecasting Models for Apple, Amazon, Microsoft, and Tesla
	Codes
	Importing tweets
	Apple
	Amazon
	Microsoft
	Tesla

	Cleaning tweets
	Sentiment analysis. A combination of the Loughran-McDonald dictionary and the Hugging Face sentiment analysis pipeline
	Importing the Loughran-McDonald_MasterDictionary_1993-2021
	Sentiment Analysis Score Computation
	Apple
	Amazon
	Microsoft
	Tesla

	Collecting and creating the SVI
	Creating formula for collecting Google Trends terms
	AAPL
	AMZN
	MSFT
	TSLA

	Analysis

