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Summary 
 

Given the recent volatility of electricity prices, this thesis aims to determine if the 

findings on electricity price hedging using futures are consistent with previous 

research. This paper will study the effectiveness of futures contracts in the Nordic 

electricity market in reducing variance and compare the in-sample and out-of-

sample hedging ability of the minimum variance hedge computed using naïve, 

ordinary least squares regression (OLS) and rolling OLS hedge ratios.	The 

empirical results in this paper suggest significant differences between hedging 

performance, volatility characteristics, and optimal hedge ratios in the Nordic 

electricity market. Hedging effectiveness varies over time due to unstable 

correlations between changes in spot and future prices. The out-of-sample hedging 

effectiveness is limited compared to the in-sample performance; this may be 

attributed to the high volatility of electricity prices in 2021 and 2022, which 

resulted in low correlations between spot and future prices. In contrast with 

previous literature in various other energy markets, we found that static hedge 

approaches were more effective than a dynamic hedge. 
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1.0 Introduction 

Research topic and background 

The free electricity market refers to a system in which electricity is bought and sold 

on an open market rather than provided by a government-owned utility. This type 

of market encourages competition among electricity producers and gives consumers 

a choice of electricity providers. Although electricity is considered a commodity, it 

inhibits distinct characteristics that differentiate it from other commodities. 

Electricity is entirely interchangeable. One megawatt hour of electricity produced 

from coal or natural gas contains the same amount of energy. Electricity must also 

be created and used simultaneously. The storage of electricity is still costly; supply 

must meet demand precisely in the power grid (CME Group Inc, 2023); these 

characteristics also contribute to higher volatility than other commodities. The 

Nordic electricity market is divided into a physical and financial market, where 

trade occurs on separate exchanges (Norwegian Ministry of Petroleum and Energy, 

2023). Financial trading occurs on Nasdaq commodities, while physical electricity 

trading happens mostly through Nord Pool. The financial power market enables 

buyers and sellers to manage the risks associated with physical market prices; 

however, technical conditions such as grid congestion and access to capacity are 

not considered when entering these financial contracts. 

 

The continuous development of the electricity market, combined with its unique 

characteristics, makes further research on the effectiveness of various hedging 

strategies in this market a vital topic. Much like the rest of Europe, the Nordics are 

currently grappling with a severe energy crisis resulting in recent exaggerated price 

fluctuations; it is an appropriate time to examine potential ways to reduce the risk 

for producers. In addition, climate policy and regulation mean that an increasing 

share of the total energy production comes from renewable sources; therefore, price 

risk management will be increasingly important as this evolves. While much of the 

existing research on hedging in the electricity market dates to the early 2000s, this 

thesis aims to examine the changes in the market and determine if the findings on 

electricity price hedging using futures are consistent with previous research. The 

primary contribution of this thesis is the examination of the evolving electricity 

market and the use of futures for hedging purposes.  
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Research question, aims, and approach 

The scope of our thesis is to analyze if hedging with futures contracts at Nasdaq 

Commodities results in reducing the volatility that electricity producers face when 

selling electricity in the spot market. Following the recent increased volatility in the 

electricity spot market due to the energy crisis, we can observe if the results from 

earlier studies differ from those under a stressed environment, for example, whether 

we observe more tail protection than earlier anticipated. We also want to observe 

how hedging effectiveness with futures has changed over time and how the market 

has developed. We apply three methods, naïve one-to-one, static OLS, and rolling 

OLS hedging approaches. We also analyze the effects of different contracts with 

various holding periods. We use the hedge effectiveness metric (Ederington, 1979) 

to compare the different hedging approaches and the minimum variance method to 

estimate the optimal hedge ratios. 

 

We expect that the volatility of returns in the Nordic electricity market will be 

reduced by hedging with electricity futures; however, the effectiveness will vary 

depending on the hedging strategy applied, the type of contract, and the duration of 

the hedge. Testing for ARCH effects may help us determine whether dynamic 

hedge ratios are more efficient than static hedge ratios, and we will test the 

hypothesis that longer hedging durations drive superior performance. The 

persistence of strong volatility in electricity prices may result in a stronger incentive 

to manage the risk. 

 

The following section of this paper will first address the history and essential 

background information about the Nordic electricity market, characteristics of 

electricity prices, and risk factors of the electricity market. Section 3 provides a 

review of the relevant literature. Section 4 explains the empirical methods and 

models, including statistical tests, the minimum variance method, the various 

hedging strategies, the measurement for hedge effectiveness, and backtesting. 

Section 5 is an overview of how the data is collected and transformed, and we 

perform a preliminary analysis of the data and discuss the expected results. In 

section 6, we discuss the results. Lastly, section 7 concludes with the performance 

of the various hedging strategies, the impact of contracts with different maturity 

and holding periods, and the development of the market. 
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2.0 Background 

History  

In 1991, following the Law of Energy Act the previous year, the Norwegian 

parliament deregulated the market for trading electrical energy (Nord Pool group, 

2023). The power price was set centrally before, causing inefficient production due 

to a lack of incentives for power producers to be cost-efficient (Bye, 2005). Price 

regions with oversupply created lower prices for local customers by charging higher 

prices in regions with undersupply, and the creation of a spot market in which 

anyone could purchase power rectified these problems. Nord Pool was established 

in 1992 following the liberalization of electricity markets in the Nordic countries. 

Prior to this, the electricity sectors were mostly government controlled. Nord Pool 

is a wholesale electricity market that covers much of the Nordic region, including 

Denmark, Finland, Sweden, and Norway. Electricity producers sell their electricity 

directly to consumers on an open market rather than being limited to selling to a 

government-owned utility. It is one of the world's oldest and largest electricity 

markets, and it is known for its high levels of transparency and efficiency.  

 

The shift in price determination naturally led to increased price volatility. 

Electricity producers in the new market face volatile spot prices, which can leave 

them at risk if these prices do not cover their production costs. As a result, all market 

participants have an incentive to manage the risk of price uncertainty, spurring 

interest in electricity derivatives as a risk management tool. The liberalization of 

the electricity market has created this need for risk management among all market 

participants.  

 

Risk Management 

Risk management involves identifying risks, assessing future uncertainty, and 

controlling threats to a firm's capital and earnings to improve decision-making 

value. Risk cannot be eliminated, but understanding how it may affect a firm and 

managing it can help to minimize losses and volatility, exploit opportunities, and 

maximize gains.  
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Derivatives manage risk either through hedging or speculating. Hedging is 

combined with derivatives to reduce differing price risks. Power suppliers and 

energy-intensive industries share a common price risk due to fluctuations in the 

power market. An energy-intensive firm may manage risk by using derivatives to 

hedge its expenses, thereby securing a fixed price at which it purchases power. 

Alternatively, the firm could speculate on the movement of electricity prices and 

use derivatives to capitalize on expectations about the movement.  

 

Volatility is a statistical measure of the dispersion of returns for a given security 

and is a signal of risk; the higher the volatility of an asset, the higher the risk 

associated with that particular asset (Corporate Finance Institute, 2023). High 

volatility means that the price is spread over a large range and may change quickly 

over a short time. Factors that drive the volatility of electricity prices include the 

price of other commodities, macroeconomic climate, weather, and supply. 

 

Risk Factors in The Electricity Market  

Participants in the electricity market face both quantity and price risks hourly, 

primarily due to the inherent characteristics of electricity (Souhir, Heni, & Lotfi, 

2019). Electricity prices exhibit seasonal variations, with higher prices typically 

observed during winter than summer (Ek & Thorbjørnsen, 2014). Moreover, the 

limited storage capacity for electricity leads to price spikes caused by extreme 

weather conditions and other factors contributing to price volatility (Geman, 2008). 

Consequently, electricity prices are significantly more volatile than other 

commodities (Souhir, Heni, & Lotfi, 2019). Physical restrictions in the transmission 

grid, affecting the transfer of electricity, also contribute to price fluctuations and 

supply disturbances (Saakvitne & Bjønnes, 2015). However, due to the limited 

storage abilities of electricity, electricity producers relies more on derivatives to 

hedge against price volatility and secure future prices. 

 

The Nordic electricity market relies heavily on renewable energy sources, 

particularly hydropower and wind, which account for a significant portion of 

electricity production (Veie, et al., 2019). Hydropower alone generates over half of 

the electricity production in the region  (Nordic Energy Regulators, 2019). This 

dependence on renewables introduces a substantial quantity risk, as variations in 
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water inflow to storage reservoirs and wind strength near turbines impact the 

electricity supply. Higher inflows increase supply and lower prices, while lower 

inflows lead to rising prices. Electricity production capacity is categorized into 

flexible and intermittent sources (Norwegian Ministry of Petroleum and Energy, 

2021). Flexible production allows plants to adjust production based on market 

conditions, whereas intermittent production is limited to the availability of energy 

sources. Hydropower producers benefit from storing electricity using storage 

reservoirs, allowing them to scale down production during periods of low prices 

and up when prices are higher. 

 

Given the ongoing global climate challenge, significant uncertainty surrounds the 

future development of the electricity market. More electricity production must 

come from renewable sources to meet climate policies and achieve climate goals. 

While hydropower will remain dominant in the Nordic electricity market in the 

coming years, there will be an increase in highly variable and intermittent sources 

such as solar and wind power (Veie, et al., 2019). Consequently, during periods of 

abundant sunshine and wind, production may exceed consumption, leading to lower 

prices due to the non-storability of electricity. This anticipated increase will likely 

amplify price volatility, making price risk management even more crucial.  

 

Hedging Electricity Price Risk 

From spring 2022, there was a significant withdrawal of fixed-price tariffs due to 

extreme volatility in the price of financial contracts used to hedge power price risk. 

Price volatility was so significant that retailers could not assemble a portfolio of 

customers before prices changed; many retailers stopped offering them altogether 

rather than risk losing money on fixed-price tariffs.  

 

Power Purchase Agreements, or 'PPAs' are renewable energy supply contracts for 

plant operators, project developers, and investors. In addition to matching 

individual procurement strategies, PPAs are excellent hedging instruments and can 

mitigate portfolio risk (Statkraft, 2023). PPAs help reduce the challenge of the 

energy market where owners of renewable energy plants and power consumers do 

not have the same needs, offering predictability and security of supply to consumers 
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and financial predictability and security for plant owners through the ability to 

generate stable, predictable revenues. 

 

The Nordic Electricity Market 

The Nordic electricity market operates with 15 bidding areas at Nord Pool, each 

with its own area price. These prices vary due to differences in transmission 

capacity, leading to congestion between areas and higher prices in areas with 

supply deficits. Area price determination considers orders on the day-ahead 

market and available transmission capacity. Market participants pay or receive the 

area price when trading on Nord Pool, while the day-ahead market balances 

supply and demand. The intraday market corrects discrepancies between 

consumption, production, and day-ahead positions. Nordic Transmission System 

Operators employ balancing markets to regulate consumption or production 

during external disruptions. 

 

The system price, which represents the theoretical equilibrium price for the entire 

system, is the reference price for financial contracts in the Nordic electricity 

market. Grid congestions, capacity access, and area price risk are not considered 

in financial contracts. Nordic financial electricity trading takes place at Nasdaq 

Commodities through the Nasdaq Oslo ASA Exchange. Contracts are priced in 

euros per MWh and can have various durations. Trading these contracts without 

physical electricity delivery is a form of speculation. 

 

Financial products in the market include futures, forwards, options, and electricity 

price area differential (EPAD) contracts. These products serve as contingent 

claims or forward commitments, providing the right to purchase or sell at a 

predefined price or a locked-in price in the future (CFA Institute, 2023). The 

system price is the reference for most financial contracts, while EPADs hedge 

against price area risk caused by transmission grid constraints (Nasdaq, 2023). 

 

Power supplied to the grid follows the path of least resistance and cannot be 

differentiated by source or distance. Grid companies monitor power production 

and consumption for settlement purposes. The power market consists of wholesale 

and end-user markets, with the day-ahead market being the primary market for 
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power trading in the Nordic region. The intraday market allows continuous 

trading to balance supply and demand, while the balancing market regulates 

production or consumption to maintain balance together with reserves.  

 

The power exchange calculates the system price, which serves as the reference 

price. Bids from producers and end users determine the equilibrium price. Market-

based price formation ensures cost efficiency and area prices reflect grid 

congestion. Areas with power deficits have higher prices, while areas with 

surpluses have lower prices. Power flows from low-price to high-price areas to 

meet demand. Area prices inform generation and consumption adjustments while 

bidding zones indicate the need for long-term measures in the power system. 

 

Following the Ukraine conflict, Russia's energy weaponization was a significant 

awakening regarding the security of the energy supply and the need to address 

dependencies. Companies have suffered significant damage to their 

competitiveness due to soaring energy prices and disruptions in various supply 

chains, especially energy-intensive industries. In response to the high energy costs 

and the desire to replace costly fuels with more affordable renewables, the EU has 

taken significant measures aligned with the REPowerEU plan. In 2022, the EU 

witnessed a 25% growth in wind and solar renewable energy production capacity 

from 2020, surpassing 400 GW. The goal is to consolidate gas demand, coordinate 

infrastructure utilization, negotiate with international partners, achieve savings, 

enhance storage capabilities, and establish a cap on short-term markets. The EU 

Commission will present a reform of the electricity market design, including an 

increasing role of long-term price contracts to ensure predictable and more 

affordable renewable power costs for electricity consumers. Industrial 

competitiveness will need to improve through transforming industrial processes, 

accelerating, and expanding renewable energy deployment, intensifying efforts 

towards energy efficiency and demand reduction, and providing workforce 

reskilling and upskilling initiatives (European Commission, 2023). A Green 

Alliance was established between Norway and the EU; it is not a legally binding 

agreement, but it represents a common understanding of the priority areas for the 

green transition moving forward and enhances cooperation (Office of the Prime 

Minister of Norway, 2023). 
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3.0 Literature Review 
(Modigliani & H. Miller, 1958) stated that in the absence of market imperfections, 

financial policy, including hedging, does not increase firm value. However, (Smith 

& Stulz, 1985) argue that firms may use hedging to ease risk exposure, and the 

insurance theory by (Keynes) proposes that producers use commodity futures 

markets for insurance by locking in prices and making revenues more predictable. 

The naïve (or one-to-one) hedge assumes that futures and cash prices are closely 

together, where the hedging position in equal numbers of futures contracts as the 

position in the underlying asset, meaning the hedge ratio is always one. However, 

an impartial correlation between spot and future prices led to proposing a minimum 

variance hedge ratio (Johnson, 1960).  

 

The Hedging Performance of New Futures Markets (Ederington, 1979) addresses 

the economic rationale for futures markets, which is to facilitate the transfer of risk 

of price changes in the underlying commodity to speculators willing to bear such 

risks. Ederington formalized the approach to estimating the optimal hedge ratio by 

using Ordinary Least Squares (OLS) to regress spot on future prices and proposed 

a measure of the risk reduction effect of the OLS hedge ratio. (Byström)'s widely 

cited study of the Nordic electricity market finds that the OLS hedging strategy 

reduces the variance of the hedged portfolio. (Madaleno & Pinho)'s paper on 

optimal hedge ratios and hedging effectiveness for the German electricity market 

finds that the OLS hedge outperforms the naïve hedge. (Torro) finds that the 

characteristics of electricity prices generate ineffective performance. 

 

Despite previous success hedging with OLS, it has limitations as the hedge ratio 

assumes that the variance-covariance matrix of returns is constant over time, which 

is unlikely in a volatile electricity market. Time-varying hedge ratios may have a 

better result; the conditional Heteroskedastic AutoRegressive Specification 

(ARCH) was presented by Engle (1982) and further extended by Bollerslev (1986) 

to the Generalized AutoRegressive Conditional Heteroskedastic specification 

(GARCH). According to research from Baillie & Myers (1991) and Kroner & 

Sultan (1993), bivariate GARCH models result in improved hedge performance 

compared to the OLS approach, mainly using a bivariate Constant Conditional 

Correlation GARCH (CCC-GARCH) model proposed by Bollerslev. This research 

was further improved to consider how correlations change over time by introducing 
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the multivariate Dynamic Conditional Correlations GARCH (DCC-GARCH) 

model (Engle, 2001). 

 

The choice of a multivariate volatility model can lead to varying conclusions in an 

application involving estimating the optimal hedge ratio (Kroner & Ng, 1998). In 

contrast, other research (Malo & Kanto, 2005) found few differences in hedging 

performance when implementing different GARCH specifications. Bystrom’s 

paper (2003) demonstrates that GARCH approaches do not perform better than the 

original OLS approach in reducing portfolio variance despite reducing the volatility 

of returns. GARCH models obtain the maximum hedging effectiveness when 

volatility is relatively high in the Nordic electricity market (Zanotti, Gabbi, & 

Geranio, 2010); the results are dependent on the estimation data being kept up-to-

date for the re-estimation of the hedge ratios. The OLS hedge ratio performs better 

than the VGARCH hedge ratio due to the variability of the VGARCH models (Lien, 

Tse, & Tsui, 2002).  

 

One of the most recent papers published on the hedging effectiveness of future 

contracts (Peña, 2023), finds that unstable correlations between spot price changes 

and future price changes are the reason for the variance in hedging effectiveness 

over time. 

 

4.0 Theory and Methodology 

Required Data 

To test the strategies, we need both spot and future prices on electricity. We 

obtained the ENWSSPAV Index's prices from Nasdaq and its corresponding 

monthly and quarterly traded futures prices. 

 

Statistical Tests 

We run the Jarque-Bera test for normality, where the null hypothesis states that 

skewness and excess kurtosis are jointly zero to determine whether the data shows 

a normal distribution. The Ljung Box test checks for linear dependence in time 

series and tests the joint hypothesis that all the maximum length lags of 

autocorrelation are simultaneously equal to zero to test for autocorrelation. To 
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check for ARCH effects (heteroscedasticity), we use Engles' ARCH test and the 

Ljung Box test with squared residuals. If we find significant evidence for 

heteroscedasticity, the standard errors could be wrong, and it may be appropriate 

for us to use a model that does not assume constant variance. Lastly, we perform an 

ADF unit root test for stationarity and a KPSS stationarity test to confirm the results 

of the ADF test. 

 

Minimum Variance Hedge 

In this paper, the minimum variance approach determines the most effective hedge 

ratio for an electricity producer who holds a long position in an asset and hedges 

their position by selling futures contracts (Brooks, 2019). This approach seeks to 

minimize the variance of the value of the hedged position for the producer. The 

return on the portfolio, consisting of a long position in the spot market and a short 

position in the futures market at the following time period, is represented as follows: 

𝑅!"# = 𝛥𝑆!"# − 𝛽∆𝐹!"# 

 

Rt+1 is the return between t and t+1, ΔSt+1 And ΔFt+1 Are the log spot and futures 

returns between t and t+1, and βt is the optimal hedge ratio. The conditional 

variance of this portfolio is computed as follows: 

𝑉𝑎𝑟(𝑅!"#) = 𝑉𝑎𝑟(𝛥𝑆!"#) + 𝛽!$𝑉𝑎𝑟(∆𝐹!"#) − 2𝛽!𝐶𝑜𝑣(𝛥𝑆!"#, ∆𝐹!"#) 

 

The hedge ratio shows how many futures contracts must be sold to hedge the 

underlying position to minimize the portfolio variance. To obtain the conditional 

minimum variance hedge ratio, we minimize the variance of the hedged portfolio 

with respect to βt: 

𝛽!,&'(,)*+ =
𝐶𝑜𝑣(𝛥𝑆!"#, ∆𝐹!"#)

𝑉𝑎𝑟(∆𝐹!"#)
 

 

Hedging Strategies 

Naïve one to one 

The 'naive' hedge is a strategy that takes one short futures contract for every spot 

unit but does not allow the hedge to vary with time (Brooks, 2019). This strategy 
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assumes that the covariance between futures and spot returns equals the variance of 

futures returns. 

Static OLS 

The static ordinary least squares (OLS) estimated hedge ratio was popularized by 

Ederington (1979). This hedge ratio is also referred to as the minimum-variance 

hedge ratio as it minimizes the variance of a spot futures portfolio (Hull, 2012) and 

is the single hedge ratio that, on average, reduces the most variance over the sample 

when considering in-sample analysis. This strategy assumes that the R2 represents 

the proportion of the sample variance in a spot portfolio that can be eliminated by 

hedging with futures. A higher R2 implies a greater potential variance reduction. 

Rolling OLS 

The rolling OLS method estimates the hedge ratio over time, allowing for changes 

in the relationship between the two assets. It involves fitting a linear regression 

model to a rolling window of historical data, where the dependent variable is the 

returns of one asset, and the independent variable is the returns of the other asset. 

The hedge ratio is re-estimated at each step by sliding the window over the data, 

capturing the evolving relationship between the assets. One of the pioneering 

studies that introduced the concept of rolling OLS for hedging purposes is a paper 

focused on foreign exchange rates by (Engle & Granger, 1987) which laid the 

foundation for applying rolling OLS in the context of estimating hedge ratios.  

 

Hedging Effectiveness  

To compare the performance of the different hedging strategies, we implement the 

hedge effectiveness (HE) metric (Ederington, 1979). This metric measures the 

percentage of variance reduction of the hedged position compared to the unhedged 

position. 

𝐻𝐸 = 1 −
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒,-./-.
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒0(1-./-.

 

 

If the HE is positive, this indicates that the hedge is effective, and the hedging 

strategy that gives the highest percentage variance reduction is considered the best. 

If the HE is zero or negative, the hedging is considered inefficient since it can 

increase variance in the worst case. 
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Backtesting 

Backtesting is performed to analyze how effective a hedging strategy performs ex-

post and to analyze its viability by discovering how it performs using historical data 

and potential changes that can optimize the strategy (Chen, 2021). In-sample testing 

is the testing of a strategy on the data set used to develop and optimize the strategy. 

In contrast, the out-of-sample testing enables us to test how the model performs 

using a different time period, a more realistic measure of hedging effectiveness. 

 

5.0 Data 

Data Description 

We take the point of view of an electricity producer and assume one spot per 

timeframe and that they sell at the end of the timeframe. We use Nord Pool Day-

ahead and Nord Pool Intraday market data, volumes, capacities, and flow. Futures 

prices will be collected from Bloomberg as traded at Nasdaq Commodities. We 

observe monthly spot and futures prices for monthly futures contracts and monthly 

and quarterly spot and futures prices for quarterly contracts. These are denoted 

EUR/MWh, and the spot price refers to the Nordic system price. 

 

It is essential to consider that when we are hedging with Nordic electricity futures, 

a perfect hedge is only possible when there are no transmission grid congestions in 

the market area; otherwise, additional basis risk is implied. The hedge is not against 

area price risk as we do not divide the spot prices in the different geographical 

systems but just take the Nordic system price, leaving us with a basis risk equal to 

the difference between the area price and the producer's physical location and the 

system price, due to possible transmission grid congestions in the market area. 

 

In some of the hedging strategies, we apply a hedge ratio that will not add up to a 

round number of contracts. We assume that the futures contract can be partly 

shorted or that the results can be scaled to a volume that is possible to purchase 

from the marketplace. The results would be more challenging to replicate in the real 

world due to this problem. 

 

We use a significant enough sample period to get generalized and valid results, 

especially given that we want to observe how the effectiveness of hedging with 
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futures has changed over time and how the market has developed. We were able to 

access 5 years of data for the in-sample period (01.01.2017 – 31.12.2021) and a 

one-year out-of-sample period (01.01.2022 – 31.12.2022). It may have been 

beneficial to test our hedge strategies on weekly futures contracts to get a larger 

amount of observations; however, this data was not available at Bloomberg.  

 

Data Transformation 

We transform the spot and future prices into log returns. Since log returns can be 

interpreted as continuously compounded returns, the frequency of compounding is 

not a factor affecting the returns. Therefore we can compare returns across different 

assets. In addition, logarithmic returns are symmetric, meaning logarithmic returns 

of equal magnitude but opposite signs will cancel each other out. Taking logarithms 

of the prices may result in a more constant variance, a positively skewed distribution 

turning closer to a normal distribution, and they are unit-free, so should avoid the 

problem of non-stationary time series. The equation for continuously compounding 

returns where 𝑟! are the continuously compounded returns at time 𝑡, 𝑝! denotes the 

asset price at time 𝑡, and 𝑙𝑛 denotes the natural logarithm. 

𝑟! = 100%	 ∙ ln	(
𝑝!
𝑝!2#

) = 100%	 ∙ (ln	 	𝑝! − 𝑙𝑛	𝑝!2#) 

Time series of returns 

We examined the time series of returns (Appendix 4) as an initial step in analyzing 

the data, as this can provide valuable insights into the behavior and characteristics 

of the underlying data. We examine close to a normal distribution of returns up until 

2020 and mean reversion, where the data reverts to its long-term average over time, 

and the magnitude of fluctuations in the returns is greater since 2020. The data 

exhibits seasonality in the return; regular fluctuations occur at fixed intervals in 

yearly cycles, with higher prices in the winter and lower in the summer. The 

extreme outliers in recent years demonstrate structural changes and increased 

variance in the market.  

 

Descriptive Statistics 

The following table below shows the results of the statistical tests previously 

mentioned. 
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Table 1: Descriptive Statistics 

 Monthly contracts traded 
monthly 

Quarterly contracts 
traded monthly 

Quarterly contracts 
traded quarterly 

Spot Futures Spot Futures Spot Futures 
Mean 1.66 2 1.66 1.73 4.98 5.2 
Std dev. 57.57 36.52 57.57 24.87 63.79 52.72 
Skewness 2.22 0.53 2.22 -0.53 -0.48 -2.03 
Kurtosis 11.64 5.88 11.64 5.47 4.89 8.49 
Jarque Bera 235.9416 23.4689 235.9416 18.0179 3.7316 38.861 

ADF 
Price levels 0 0.9 0 0 -1.31 -0.18 
First diff. -3.65 -2.87 -3.65 -3.81 -2.02 -2.26 

KPSS 
Price levels 0.87 0.24 0.87 0.23 0.33 0.17 
First diff. 0.1 0.22 0.1 0.18 0.12 0.2 

Ljung-box test on Standardized Residuals 
LB 1 Lag[1] 0.6698 0.001024 0.6698 0.1551 0.02245 0.2161 
LB 2 Lag[5] 4.4577 2.884020 4.4577 0.4055 1.38313 1.1206 
LB 3 Lag[9] 6.3486 5.087154 6.3486 1.6059 2.31758 4.5392 

Ljung-box test on Standardized Squared Residuals 
LB 4 Lag[1] 0.08066 0.05901 0.08066 0.3691 0.2222 0.1477 
LB 5 Lag[5] 1.23275 1.49888 1.23275 1.4709 4.1386 0.3739 
LB 6 Lag[9] 2.66322 2.62197 2.66322 2.4684 5.3178 0.5988 

Weighted ARCH LM Tests 
ARCH Lag[3] 0.4309 0.001021 0.4309 0.7212 0.001435 0.1474 
ARCH Lag[5] 2.0103 1.684023 2.0103 0.8870 0.604656 0.2695 
ARCH Lag[7] 2.8987 2.115035 2.8987 1.6651 1.017522 0.3561 

 
Correlation 0.2844 0.443 0.7232 
The 99% critical value for the Jarque Bera is 9.2103. The null hypothesis of the ADF test is that the series 
contains a unit root, and for the KPSS test, the null hypothesis is that the time series is stationary. The 
ADF 99% critical values for price levels and first differences are 1.7656 for contracts traded monthly and 
2.0073 for contracts traded quarterly. The KPSS 99% critical values for price levels and first differences 
are 2.8799 for all contracts. The null hypothesis of the weighted Ljung-Box test on standardized Residuals 
and standardized squared residuals is that there is no serial correlation. The null hypothesis for the 
Engle’s arch test is “series exibhits no conditional heteroscedasticity (ARCH effects)”. 99% CV for the 
most restrictions on the LB tests and ARCH test for the monthly contracts are approxematly 81.72 and 
43.19 and for the quarterly contracts 19.06 and 6.61. 

 

The monthly and quarterly spot contracts traded monthly exhibit means of 1.66, are 

positively skewed to a degree of 2.22, and exhibit high excess kurtosis. The futures 

have slightly higher means of 2 and 1.73, respectively, and the monthly contracts 

are positively skewed, while the quarterly contracts are negatively skewed, both 

exhibiting low excess kurtosis. The standard deviations of the spot and futures are 

different in the same market, the spot volatility (57.57) is higher than that of the 

futures, and the monthly contracts are more volatile than the quarterly contracts, 
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both traded monthly. The Jarque Bera test shows that the monthly and quarterly 

spot returns have a non-normal distribution of residuals. The futures are also not 

normally distributed but not by as great of a degree. The issue of non-normality is 

likely caused by outliers or heteroscedasticity in the time series (Brooks, 2019). 

Outliers can be removed, or dummy variables can be introduced, but due to the 

volatility of electricity prices in this period, we argue that every data point contains 

valuable information. Given that the monthly and quarterly spot contracts both 

exhibit a non-normal distribution of residuals, this may result in inefficient 

estimates. The heteroscedasticity in the time series means GARCH models may be 

appropriate. 

 

The quarterly contracts traded quarterly spot and future returns exhibit a mean of 

4.98 and 5.2, respectively. Both are negatively skewed, the futures to a greater 

extent than the spot returns. The spot returns exhibit a lower excess kurtosis than 

the futures, indicating that the distribution of quarterly spot returns has relatively 

heavy tails and potentially some outliers. The Jarque Bera test statistic for spot 

returns suggests that it is normally distributed; the p-value is greater than the 

significance level of 1%, indicating insufficient evidence to reject the null 

hypothesis of normality. The distribution of quarterly spot returns is likely normal 

despite the slight left-skewness and heavy tails. In contrast, the futures exhibit 

heavy tails, a potentially large number of outliers, and a significant left skewness. 

The Jarque Bera test shows that the quarterly future returns traded quarterly 

significantly deviate from the normal distribution. 

 

Spot returns in quarterly returns traded quarterly are appropriately normal but there 

is evidence of non-normality in future contracts for the same period, suggesting 

systemic factors or dynamics may be at play, causing the distribution of future 

returns to deviate formality. This can be attributed to various reasons, including 

market inefficiencies, structural changes or specific events impacting the market. It 

is essential to consider the non-normality in future returns, because if it is caused 

by occasional extreme events such as heavy tails, a standard hedging approach that 

assumes normality may not protect against such events. Alternative hedging 

techniques that account for this, for example, tail-risk hedging, could be more 

appropriate. The quarterly future returns traded quarterly have significant left 
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skewness, this could be incorporated into hedging techniques, or the hedge ratio 

could be dynamically adjusted based on observed asymmetries in the market. 

 

The ADF test on price levels rejects the null hypothesis in all cases, and the test 

statistic is smaller than the critical value in all cases, indicating that the time series 

is stationary. However, it presents high p-values indicating that we cannot reject the 

null hypothesis that there is a unit root. The ADF test has a high degree of Type I 

error, meaning it often rejects a true null hypothesis. Hence the results of this test 

are inconclusive, we cannot reject the null hypothesis based on the p-values, and 

there may be a unit root (non-stationarity) present in the data. For the KPSS test on 

price levels, the test statistic for all values is smaller than the critical value; we fail 

to reject the null hypothesis of stationarity. The p-values are greater than the 

significance level, reinforcing that stationarity may be present in all cases. When 

taking the first differences in the ADF test, we cannot reject the null that there is a 

unit root based on the p-values. However, the test statistic suggests that we reject 

the null, again potential evidence of a Type I error. The values of the test statistic 

for the first difference in the KPSS test mean we fail to reject the null that the data 

is stationary; the p-values reinforce this answer. The overall results suggest that the 

data is stationary; hence it would be beneficial to transform the series into returns 

before implementing the hedging strategies.  

 

In the Ljung Box test on standardized residuals for all lag lengths, the test statistics 

are below the critical values; we fail to reject that the time series has no serial 

correlation for all values. The p-value is also smaller than the significance level of 

1% in all of the lag lengths, which strengthens our findings of no serial correlation. 

If the time series had exhibited presence of autocorrelation in the residuals, it may 

have led to inefficient OLS coefficients, and the standard errors could be wrong 

(Brooks, 2019). The Ljung Box test with squared residuals fails to reject the null 

hypothesis that there are no serial correlation effects present in the time series. The 

p-values suggest that we should reject the null hypothesis; the time series does not 

contain serial correlation. 

 

We performed Engle's ARCH test for residual heteroscedasticity with 3, 5, and 7 

lags. Under the null hypothesis, the series exhibits no conditional heteroscedasticity 

(ARCH effects). We fail to reject the null and ascertain that there are no ARCH 
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effects present in the data. The p-value reinforces our conclusion against an alpha 

of 1%. These results suggest that implementing time-varying variances in the 

hedging model may not be as beneficial as we previously anticipated. 

 

Expected Results 

The expected result is that the uncertainty of the hedged portfolio will be reduced 

by hedging the spot prices in the Nordic electricity market. The expected outcome 

of employing a simple one-to-one hedging strategy can vary depending on market 

conditions and the effectiveness of the hedging approach. However, before 

implementing this strategy, there are several expectations we typically have. Firstly, 

we anticipate better price stability. By utilizing futures contracts for hedging, we 

can secure a predetermined price for future electricity sales, which is advantageous 

during periods of anticipated price volatility. Secondly, we expect to achieve 

enhanced income certainty. Producers can better understand their electricity income 

by hedging with futures contracts, facilitating improved budgeting, and reducing 

the risk of unexpected price fluctuations. In the event of a decline in spot prices, the 

hedge can help mitigate the loss by offsetting the decline and minimizing income 

reduction. Generally, we expect the hedge effectiveness to increase along with the 

holding period. 

 

It is important to note that this strategy assumes a perfect linear relationship 

between spot and futures price returns, which may not be applicable in the real 

world. Factors such as energy transportation costs, limited storage capabilities, and 

overall market production uncertainty introduce complexities. Consequently, the 

strategy is exposed to basis risk, where the connection between spot and futures 

prices deviates. If the basis widens or narrows significantly, the hedging strategy 

may not align perfectly with spot price movements, leading to potential gains or 

losses. 

 

A static OLS hedge recognizes that there may be imperfect correlation; however, 

the imposition of a restriction of a constant joint distribution between spot and 

future returns may result in suboptimal performance in periods with high basis 

volatility. A naïve hedge performs similarly to an OLS hedge when the OLS hedge 

ratio is close to one. A rolling-OLS hedge strategy is a dynamic hedge strategy; 
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hence it should enhance the risk reduction properties of the hedge compared to the 

naïve and OLS hedge, which are both static hedges. It can be advantageous in 

volatile markets where the relationship between spot and future prices or returns is 

not constant; hence we assume that it will perform best in the out-of-sample period 

(2022), given that the standard deviation of spot returns was high compared to 

futures.  

 

6.0 Hedging Results 
We present the results of the in- and out-of-sample hedge performances and analyze 

the naïve, static OLS and rolling OLS hedging approaches. This section will also 

discuss the development of spot- and futures price volatility and hedging 

effectiveness. We examine the hedge performance by looking at each strategy's 

variance and hedge effectiveness metric. We calculate the hedge effectiveness for 

both in- and out-of-sample periods.  

In-Sample Performance 

Table 2: Variances & Hedge Effectiveness in-sample 
2017-01-01 - 2021-12-31 No hedge Naive OLS Rolling Regression 

Monthly contracts traded monthly 

Variance 0.3314 0.3452 0.3046 0.3592 

Hedge effectiveness  -4.16% 8.09% -8.39% 

Quarterly contracts traded monthly 

Variance 0.3314 0.2664 0.2663 0.2838 

Hedge effectiveness  19.62% 19.63% 14.36% 

Quarterly contracts traded quarterly 

Variance 0.4069 0.1941 0.1941 0.2862 

Hedge effectiveness  51.24% 52.3% 29.67% 

 

The hedge effectiveness for the monthly contracts traded monthly is -4.16% for 

Naïve, 8.09% for OLS, and -8.39% for rolling regression. The naïve and rolling 

regression are inefficient and result in slightly increased variance compared to the 

unhedged, whereas the OLS hedge reduces variance. Both the Naïve and OLS 

hedge strategies for quarterly contracts traded monthly result in reduced variance 

compared to the unhedged variance, with almost equal hedge effectiveness of 

19.62% and 19.63%. The rolling regression hedge is also effective in reducing 

variance for that time period; however, it is not as effective as the other two hedging 
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strategies. The hedge ratio starts at one, and the OLS regression is applied for each 

data point, therefore it takes some time for the hedge ratio to catch up, which may 

be why it was not as effective as anticipated. A longer period may reduce the impact 

of this factor. 

 

For the quarterly contracts traded quarterly, variance is reduced by using both the 

Naïve and OLS hedge, the OLS outperforming with a hedge effectiveness of 52.3% 

while the Naïve hedge results in a hedge effectiveness of 51.24%. The rolling 

regression hedge also reduces variance, but again, it is not as effective as the other 

two hedging strategies. 

 

The OLS hedge is the most effective overall, reducing variance in all three cases. 

The Naïve hedge is almost identically as effective as the OLS hedge for quarterly 

contracts traded monthly and quarterly, however it shows inefficient results for 

monthly contracts. These variable results can be explained by the high volatility of 

electricity prices and the low correlation between spot and future returns for 

monthly contracts traded monthly. 

 

The correlation coefficient for spot and future results are highest for quarterly 

contracts traded quarterly (0.7232), which help explain why hedging these contracts 

is most efficient. All of the hedging strategies perform best when correlation is 

higher due to lower basis risk, which is the risk that the spot and future prices 

diverge over time. A higher correlation indicates that the price movements in the 

spot prices are closely correlated to those in the future market. As a result, the hedge 

position in the spot market is more likely to offset losses or gains in the futures 

market.   

 

The naïve hedge is ineffective for monthly contracts traded monthly; this may be 

because the hedge ratio is far from one, meaning the spot position is not utilized 

effectively to hedge the risk of a futures position. In contrast, the naïve hedge is 

more effective in reducing variance for quarterly contracts traded monthly and 

quarterly as the hedge ratio is closer to one. The hedge ratio for rolling OLS is 

closest to one for the quarterly contracts traded monthly and quarterly; these are the 

contract lengths where the hedge is most effective.  
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Out-of-Sample Performance 

The out-of-sample performance of the naïve and OLS hedge is tested by applying 

the static hedge ratios from the in-sample data to the out-of-sample data. The hedge 

ratios obtained are reported in the appendix, along with the conditional variances 

from the out-of-sample data which are used to compute the hedged variance and 

hedge effectiveness, the results of which are presented below. 

 

Table 3: Variances & Hedge Effectiveness out-of-sample 
2021-12-31 - 2022-12-31 No hedge Naive OLS Rolling Regression 

Monthly contracts traded monthly 

Variance 1.2788 1.5293 1.3141 1.3522 

Hedge effectiveness  -19.59% -2.76% -5.74% 

Quarterly contracts traded monthly 

Variance 1.2788 0.8298 0.823 0.8258 

Hedge effectiveness  35.11% 35.64% 35.43% 

Quarterly contracts traded quarterly 

Variance 0.6126 1.0383 0.9556 0.9404 

Hedge effectiveness  -69.51% -56% -53.52% 

 

All hedging strategies reduce variance compared to the unhedged for quarterly 

contracts traded monthly and are all close to equally effective. The hedging 

strategies for all the other contract lengths and trading periods are ineffective and 

increase variance. From record low levels in 2020, the electricity price increased 

substantially in 2021 and 2022. Electricity prices were at record highs in 2022. 

Given that our hedging strategy is based on the in-sample period, where electricity 

prices were less variable overall, this might cause lower hedge effectiveness in the 

out-of-sample period. 

 

The highest hedge ratio for the out-of-sample period is for the quarterly contracts 

traded monthly; this contract length performs best with the highest hedge 

effectiveness. The correlation between the spot and futures is highest for the 

quarterly contracts traded monthly (0.6596), hence why the hedging strategies 

reduced the volatility of this contract length and the hedges were effective. The 

correlation for the monthly contracts traded monthly and quarterly contracts traded 

quarterly are 0.0489 and -0.1832 respectively. The hedging strategies were 

ineffective for contracts with low correlation as this implies that the spot and future 
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returns are not moving close together or by similar magnitudes; hence the hedge 

cannot reduce the volatility or risk exposure of the underlying position. The naïve 

hedge assumes perfect correlation and that the futures position completely offsets 

the spot position.  

 

The out-of-sample analysis has an overall lower variance reduction compared to the 

in-sample results. The spot standard deviations are significantly higher than the 

futures for the out-of-sample period. This means that the futures do not capture the 

variance in the spot returns as much as in the in-sample period, hence are less 

effective in hedging the risk. The unhedged spot portfolio is more volatile than the 

hedged futures portfolio for the in-sample period; the opposite is true for the out-

of-sample period. 

 

Overall Performance and Market Development 

The OLS hedge performs best overall for the in-sample hedging. The out-of-sample 

hedging performance is highly variable and only performs well for quarterly 

contracts traded monthly. There is no significant outperformance by any of the 

hedging strategies in particular.  

 

The rolling-OLS hedge is a dynamic hedge strategy, meaning it takes advantage of 

time-varying correlations, trends or other patterns in the market. By adjusting the 

hedge ratio dynamically, a rolling-OLS hedge should enhance the risk reduction 

properties of the hedge compared to the naïve and OLS hedge, which are both static 

hedges. However, the dynamic model does not perform better than the static hedges 

overall.  

 

In the in-sample hedging, the rolling OLS performs worse than the static hedging 

strategies for all contracts. In contrast, the in-sample hedging, the rolling-OLS 

performs about the same as the static hedging strategies for all contract lengths. 

Previous literature finds that static hedge ratios are inefficient in markets 

characterized by high inefficiency, and introducing dynamic volatility- and 

correlation approaches can reduce hedging errors (Byström, 2003) and (Zanotti, 

Gabbi, & Geranio, 2010). Our findings on dynamic hedging strategies being more 

effective at reducing variance are inconsistent with previous literature. The rolling 
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OLS may have performed slightly better in the out-of-sample hedging due to the 

higher volatility of returns. Suppose we had implemented a more extended period 

for the out-of-sample testing. In that case, we might have seen more of a pattern of 

volatility clustering, therefore exhibiting more gains from taking time-varying 

variances into account.  

 

Hedging with quarterly frequency performs better than the monthly frequency in 

the in-sample period. The correlation coefficients between spot and futures are 

higher for these contracts. In contrast, in the in-sample period, hedging with 

monthly frequency for quarterly contracts performs best as it has a longer hedging 

duration but is adjusted more frequently. 

 

The naïve hedging strategy involves taking a hedge ratio, determined by the OLS 

regression, which is maintained throughout the hedging ratio. Any deviation in spot 

and futures prices over time may lead to a mismatch in the hedge and the underlying 

position. Periodic rebalancing is necessary to bring it back in line with the desired 

hedge ratio. Therefore, the naïve hedge is likely to be more costly due to transaction 

costs and also requires more time, effort and resources for frequent monitoring and 

administrative tasks. 

 

The OLS hedge strategy determines a single hedge ratio and does not require 

frequent rebalancing; the hedge ratio remains constant, and adjustments are only 

made if significant changes occur in the underlying relationship between spot and 

future prices. The hedge ratio for the rolling OLS strategy is rebalanced monthly or 

quarterly, depending on the trading frequency. Hence, the rolling OLS strategy will 

be more costly than the regular OLS hedge. 

 

Hedging with electricity futures has become less effective over the time period 

examined, as the correlation between spot and future returns is lower in the out-of-

sample period.  

 

(Byström)' s findings for the hedging of weekly futures from 1996 to 1999 result in 

spot and future returns with standard deviations of 0.0655 and 0.0418, respectively. 

(Zanotti, Gabbi, & Geranio) observe standard deviations of 0.0531 and 0.0239 from 

2004 to 2006. These observations vary significantly from the period we analyzed. 



 

Page 26 

While we only observed monthly and quarterly spot and futures, the standard 

deviation was significantly higher from 2017 to 2023. These changes demonstrate 

that the Nordic electricity market has become more volatile over the period 

examined. A recent study in a different market (Peña, 2023) found unstable 

correlations between spot and future price changes and limited out-of-sample 

performance; this is more consistent with our findings. 

 

Research on California electricity futures (Moulton, 2005) finds that hedge ratio 

analysis can be erratic at matching prices. Our research supports this statement as 

hedge ratios for the out-of-sample period were ineffective at hedging electricity 

price risk, and the correlation between future and spot prices is low for the out-of-

sample period except for quarterly contracts traded monthly. Hedging with more 

frequent rebalancing than the contract length may result in more effective hedging.  

 

The success of futures contracts depends on the commodity's attributes or the 

contract's structure according to theory and empirical evidence (Black, 1986). Such 

attributes may include the size and riskiness of a cash market, the futures contract's 

specifications and the existence of close substitutes contracts. Given that electricity 

markets have been volatile, and this volatility may increase with the increase in 

renewable energy production, together with the lack of substitute contracts and the 

inherent characteristics of electricity, we expect futures contracts to be less effective 

in reducing risk over time unless the design of the electricity market is reformed.  

 

Our results contrast those obtained in previous research in various other energy 

markets where futures contracts increase hedging efficiencies by up to 90% (Li, 

Huang, & Li, 2021). The Nordic market was the best performer in hedging 

electricity risk out of the most actively traded European electricity markets 

(APXUK and Phelix) between 2005-2014 in this paper.  

 

The sample period we analyze contains two crisis periods, the Covid pandemic from 

March 2020 and the Ukraine crisis, which started at the end of the pandemic in 

February 2022. The significant changes in the MV hedge ratio over time in the 

rolling regression suggest structural changes in the market. For the monthly 

contracts traded monthly, the hedge ratio was negative for most of 2017. Then it 

was stable primarily around 0.5 until the Covid pandemic in March 2020, where it 
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rose to around 0.8 for a couple of months then stabilizing close around 0.5 until the 

end of the sample period. The quarterly contracts traded monthly show a similar 

trend, except the hedge ratio remains close to 1 after the Covid pandemic. The 

quarterly contracts traded quarterly are low, between 0.1 and 0.25 until after the 

Covid pandemic where it stays around 0.8 until the end of the sample period. This 

reinforces our hypothesis of structural changes in the market. 

 

Uncertainty 

One of the hedging strategies we considered testing is the CCC-GARCH model 

hedge. This was developed from (Engle R. F.) 's ARCH model (1982) by 

(Bollerslev T. , 1986) and the strategy estimates the conditional variance as a 

function of both the lagged squared errors and lagged estimates of conditional 

variances. The coefficients on the lagged conditional variances must be non-

negative to ensure positive variance estimates. (Zanotti, Gabbi, & Geranio, 2010) 

found that the CCC-GARCH has historically been the best-performing model for 

the Nordic electricity market as it captures the time-varying nature of spot and 

futures returns.  

 

A CCC-GARCH model is appropriate when observing ARCH effects in the time 

series, and hedge effectiveness increases in the case of futures with ARCH effects. 

It is appropriate in the case of heteroscedasticity as it allows for the volatility to be 

time-varying and captures the persistence of volatility shocks. However, the 

absence of ARCH effects in our model means that despite GARCH models 

historically performing well in the Nordic electricity market, they are unsuitable for 

our dataset. We also tested an exponentially weighted moving average model, 

however, it performed poorly. Therefore, we decided to test an alternative dynamic 

hedging strategy, the rolling-OLS regression.  

 

One uncertainty we discovered in our data is that the results of the ADF test on 

price levels were inconclusive. The test statistic indicated that the time series was 

stationary; however, it also presented high p-values indicating we could not reject 

the null hypothesis that there is a unit root. The ADF test has a high degree of type 

I error, often rejecting a null hypothesis. However, the KPSS test results on price 
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levels indicated that the data may be stationary. These conflicting results led us to 

transform the series into returns before implementing the hedging strategies.  

 

In this thesis, we have used the last prices for the spot price and mid prices for the 

future prices due to the difficulty of obtaining the correct data. It is essential to 

acknowledge that utilizing different types of prices for spot and futures contracts 

introduces uncertainty in the research findings. This uncertainty can arise from 

various factors, such as market dynamics, liquidity variations, and trading activities, 

which may affect the results' reliability and accuracy. It also increases the chance 

of outliers in the data having a more significant impact on the results than initially 

expected. This problem also increases with the increasing timeframe, seeing as the 

monthly and quarterly spot prices are computed from the daily last price on those 

dates. 

 

7.0 Conclusion 
Our motivation for exploring this topic stemmed from an interest in the impact of 

increasing renewable energy generation on the electricity market. The power sector 

will bear the most considerable burden of emissions reduction in the energy 

transition and can contribute to the decarbonization of other polluting sectors. The 

design of the market will face increasing challenges from the growing generation 

share of non-dispatchable, zero-marginal cost technologies (Peña, 2023) and the 

consequent importance of the forward and futures markets and auctions of long-

term contracts (Fabra, Rapson, Reguant, & Wang, 2021). Hence, understanding to 

which extent exchange-traded futures can mitigate electricity price risk and the 

effectiveness of different hedging strategies is crucial, particularly given the recent 

volatility in the market.  

 

The deployment of renewables and the phase-out of gas requires the improvement 

of conditions in the electricity system for the use of flexibility solutions such as 

demand response, storage, and other weather-independent renewable and low-

carbon sources (European Commission, 2023). This can be achieved through 

incentivizing longer-term contracts, in particular increasing the market of power 

purchase agreements (PPAs), stabilizing the prices of electricity, and curbing 

excessive revenues of energy producers by requiring the use of two-way contracts 

for difference (CFDs) for new investments in low carbon generation where public 
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funding is needed, and improving the forward electricity markets. The proposal 

revising the EU's internal electricity market demand covers all of these topics, and 

it will make further research on the development of hedging with electricity futures 

all the more critical.   

 

The empirical results in this paper suggest significant differences between hedging 

performance, volatility characteristics, and optimal hedge ratios in the Nordic 

electricity market. The duration of time and volatility attributes also significantly 

influence the hedging effectiveness; notably, hedging is more effective for contracts 

with longer time periods. This suggests that participants in the electricity market 

may encounter difficulties in mitigating their exposure through short-term futures 

hedging. The comparatively inadequate performance of electricity futures as risk 

management instruments raise concerns as to the purpose and usefulness of 

electricity futures markets.  

 

Most methods present significant in-sample hedging effectiveness from 2017 to 

2021, the quarterly contracts are the most effective for reducing volatility, and the 

OLS hedge strategy outperforms all contracts with 8.09%, 19.63% and 52.3% 

hedge effectiveness. In contrast, the out-of-sample evaluation shows that all 

hedging strategies are ineffective except in the case of the quarterly contracts traded 

monthly. The hedge ratio estimates indicate a volatile hedge position due to 

unstable correlations between spot and future price changes. 
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Appendices 

Appendix 1 

Appendix 1 shows an overview of the number of observations for the two 

different contracts with the two different hedging durations. The in-sample period 

is 01.01.2017 - 31.12.2022, and the out-of-sample period is 01.01.2022 – 

31.12.2022. 

 Table A1.01 Number of observations 

 In-sample Out-of-sample 

Monthly contracts 

Traded monthly 60 12 

Quarterly contracts 

Traded monthly  60 12 

Traded quarterly 20 4 

 

Appendix 2 

Appendix 2 contains the hedge ratios used in this paper. 

 Table A2.1: Hedge ratios for OLS-hedge for in- and out-of-sample period 

 Monthly contracts traded 

monthly 

Quarterly contracts traded 

monthly 

Quarterly contracts traded 

quarterly 

Beta 0.4494271 1.025366 0.8759604 

 

 Table A2.2: Hedge ratios for Rolling OLS for in- and out-of-sample period 

 Monthly contracts 
traded monthly 

Quarterly contracts traded 
monthly 

Quarterly contracts traded 
quarterly 

2017-01-31 1 1  
2017-02-28 -0.4586 -0.2768  
2017-03-31 -0.4519 -0.2776 1 
2017-04-30 -0.3013 -0.2359  
2017-05-31 -0.2958 -0.2356  
2017-06-30 -0.2971 -0.2305 0.0918 
2017-07-31 -0.0146 -0.2363  
2017-08-31 0.0777 -0.085  
2017-09-30 0.1871 -0.0251 0.0717 
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 Monthly contracts 
traded monthly 

Quarterly contracts traded 
monthly 

Quarterly contracts traded 
quarterly 

2017-10-31 -0.1292 0.0629  
2017-11-30 -0.1695 0.0845  
2017-12-31 0.1169 0.1365 0.1629 
2018-01-31 0.2599 0.1647  
2018-02-28 0.3375 -0.0489  
2018-03-31 1.1085 0.3796 0.1324 
2018-04-30 0.9644 0.2143  
2018-05-31 1.0573 0.201  
2018-06-30 0.5798 0.4684 0.1652 
2018-07-31 0.4156 0.4583  
2018-08-31 0.466 0.4822  
2018-09-30 0.4594 0.4826 0.263 
2018-10-31 0.4982 0.525  
2018-11-30 0.4963 0.5168  
2018-12-31 0.4789 0.5163 0.255 
2019-01-31 0.4645 0.4777  
2019-02-28 0.4969 0.3354  
2019-03-31 0.5445 0.3708 0.1454 
2019-04-30 0.5625 0.3866  
2019-05-31 0.5421 0.2981  
2019-06-30 0.5203 0.2591 0.1365 
2019-07-31 0.5112 0.2852  
2019-08-31 0.6218 0.2852  
2019-09-30 0.634 0.2852 0.2456 
2019-10-31 0.6258 0.2852  
2019-11-30 0.6326 0.2918  
2019-12-31 0.6312 0.2941 0.2456 
2020-01-31 0.684 0.3623  
2020-02-29 0.8958 0.5923  
2020-03-31 0.8357 0.6391 0.2048 
2020-04-30 0.887 0.6684  
2020-05-31 0.7885 0.6215  
2020-06-30 0.541 0.6174 0.8223 
2020-07-31 0.507 0.6218  
2020-08-31 0.5136 0.4269  
2020-09-30 1.1404 0.7959 0.6904 
2020-10-31 0.8522 0.8745  
2020-11-30 0.8608 0.8766  
2020-12-31 0.455 0.8766 0.8361 
2021-01-31 0.3836 0.8692  
2021-02-28 0.4632 0.906  
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Appendix 3 

Appendix 3 contains more decriptive statistics for the data used. 

 Table A3.1 Descriptive statistics out-of-sample period 

 Monthly contracts 

traded monthly 

Quarterly contracts 

traded monthly 

Quarterly contracts 

traded quarterly 

 Spot Futures Spot Futures Spot Futures 

Mean -6.59 5.4 -6.59 3.76 -19.76 11.28 

Standard 

deviation 

113.09 55.88 113.09 41.81 78.27 52.47 

Skewness -0.5 -0.51 -0.5 -0.62 0.54 -0.21 

Kurtosis 3.18 3.11 3.18 1.86 1.81 1.86 

Correlation 0.0489 0.6596 -0.1832 

 

 

 Monthly contracts 
traded monthly 

Quarterly contracts traded 
monthly 

Quarterly contracts traded 
quarterly 

2021-03-31 0.4636 0.9601 0.8899 
2021-04-30 0.4619 0.9414  
2021-05-31 0.4666 0.9456  
2021-06-30 0.4656 0.9163 0.8901 
2021-07-31 0.4656 0.9162  
2021-08-31 0.4641 0.9081  
2021-09-30 0.4704 0.9162 0.9036 
2021-10-31 0.4528 0.9214  
2021-11-30 0.4616 0.9304  
2021-12-31 0.4846 1.038 0.8842 
2022-01-31 0.4494 1.0254  
2022-02-28 0.4549 0.9634  
2022-03-31 0.4507 1.0005 0.876 
2022-04-30 0.4584 1.0016  
2022-05-31 0.4599 1.0034  
2022-06-30 0.4471 0.9957 0.879 
2022-07-31 0.4464 0.988  
2022-08-31 0.4458 0.8968  
2022-09-30 0.4953 0.9238 0.8629 
2022-10-31 0.4977 0.965  
2022-11-30 0.4558 0.9666  
2022-12-31 0.5368 1.0757 0.6787 
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 Table A3.02 Descriptive statistics p-values 

 

Appendix 4 

Appendix 4 contains plots for visualization of the dataset. 

 Monthly contracts 
traded monthly 

Quarterly contracts traded 
monthly 

Quarterly contracts 
traded Quarterly 

Spot Futures Spot Futures Spot Futures 
Mean 1.66 2 1.66 1.73 4.98 5.2 
Standard 
deviation 

57.57 36.52 57.57 24.87 63.79 52.72 

Skewness 2.22 0.53 2.22 -0.53 -0.48 -2.03 
Kurtosis 11.64 5.88 11.64 5.47 4.89 8.49 
Jarque Bera 0 0 0 1e-04 0.1548 0 
ADF 
Price levels 0.99 0.99 0.99 0.99 0.8335 0.9888 
1st diff. 0.0368 0.2224 0.0368 0.0241 0.5653 0.4717 
KPSS 
Price levels 0.01 0.1 0.01 0.1 0.1 0.1 
1st diff.  0.1 0.1 0.1 0.1 0.1 0.1 

Ljung-box test on Standardized Residuals 
LB 
Lag[1] 

0.41312 0.9745 0.41312 0.6938 0.8809 0.6420 

LB 
Lag[5] 

0.01881 0.5459 0.01881 1.0000 0.9993 1.0000 

LB 
Lag[9] 

0.20393 0.4341 0.20393 0.9956 0.9666 0.5618 

Ljung-box test on Standardized Squared Residuals 
LB 
Lag[1] 

0.7764 0.8081 0.7764 0.5435 0.6374 0.7008 

LB 
Lag[5] 

0.8051 0.7402 0.8051 0.7471 0.2373 0.9753 

LB 
Lag[9] 

0.8130 0.8193 0.8130 0.8424 0.3842 0.9972 

Weighted ARCH LM Tests 
ARCH Lag[3] 0.5116 0.9745 0.5116 0.3957 0.9698 0.7010 
ARCH Lag[5] 0.4690 0.5453 0.4690 0.7667 0.8523 0.9483 
ARCH Lag[7] 0.5329 0.6930 0.5329 0.7877 0.9107 0.9895 
 
Correlation 0.2844 0.443 0.7232 
The null hypothesis for JB test is that skewness and excess kurtosis are jointly zero The null 
hypothesis of the ADF test is that the series contains a unit root, and for the KPSS test the null 
hypothesis is that the time series are stationary. 
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Table A4.01 Time series of returns 

 

 Table A4.02 Time series of prices 

 

 Table A4.03 Histogram of returns 
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