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Abstract 

This paper examines the efficacy of how certain yield curve factors, 

namely the level, slope, and curvature, can predict the shape of cumulative return 

distributions in equity markets. We utilise the GAMLSS framework to analyse 

distributional characteristics and examine the impact yield curve factors have on 

equity returns. Our findings indicate that the slope of the yield curve is the most 

influential factor affecting the shape of the return distribution, compared to other 

factors such as level and curvature. Specifically, as the slope becomes 

increasingly upward-sloping, the return distribution approaches symmetry, while a 

lower slope leads to the distribution becoming more negatively skewed. The 

results highlight the importance of accurate distributional assumptions in 

estimating risk metrics for making informed investment decisions. This is 

demonstrated by comparing several models based on different distribution 

families and incorporating more complexity to capture the characteristics in 

financial time series. Additionally, the predictive power of the slope on the shape 

of the distribution diminishes in US markets after the mid-1980s, consistent with 

existing academic literature that suggests a diminished effect in the slope’s ability 

to forecast output growth after the mid-1980s. However, we report evidence 

suggesting that the slope remains relevant for predicting the shape of the 

distribution in other developed markets. 

Keywords: Equity risk premia, yield curve factors, GAMLSS, distributional 

modelling, risk management, skewness. 
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1. Introduction 

Extensive research has been devoted to the prediction of equity returns, with 

researchers such as (Miller & Modigliani, 1961), (Fama & French, 1993) and 

(Campbell & Shiller, 1998) making significant contributions in this field. Through 

their work, they have defined variables that they claim to be persistent for 

predicting expected equity risk premia. More recently, in his book, Antti Ilmanen 

(2011) combines findings from over 20 years of research on this topic. Despite 

being touted in academic literature as having predictive power for the equity 

premium, most variables have performed poorly both in-sample and out-of-

sample (Welch & Goyal, 2008). Nonetheless, many variables have an asymmetric 

effect on the return distribution, affecting lower, central, and upper quantiles 

differently (Cenesizoglu & Timmermann, 2008). 

In this thesis, we aim to investigate the efficacy of the yield curve in 

predicting conditional excess return distributions in the equity market. While most 

literature in the field focuses on forecasting expected rates of return, the 

distribution of returns, and its conditional and time-varying nature, remains a 

largely undiscussed topic.  

The study of return distributions is essential for many financial 

professionals. Those include portfolio managers, who can leverage this 

information to make informed investment decisions; risk managers, who can 

evaluate the risk inherent in different investments; financial advisors, who can 

help clients grasp the possible outcomes of their investments; and regulators, who 

can gauge the effects of financial instruments and products on the financial system 

at large. 

An important question that needs to be addressed is the ability of the yield 

curve to forecast the mean and, if not, whether there is a need to delve beyond the 

mean to comprehend the changes in the distribution’s shape. It is also essential to 

determine if these predictors provide meaningful information on risk measures 

during periods of relatively high or low yield curve factor readings. We refer to 

the shape as the distribution’s asymmetry, which we use as a proxy for skewness. 

Given the ongoing changes in the global interest rate environment, we find 

this topic particularly relevant. Since the mid-1980s, markets have been 

experiencing a long-term cycle of decreasing interest rates, with some countries 

like Japan, Switzerland, and the Eurozone experiencing negative interest rates. 

The future of interest rates remains uncertain, and we don’t know if we will return 
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to a period of long-term increasing rates as we did before the mid-1980s. 

Regardless, by conducting this study, we can better prepare for any scenario or, at 

the very least, deepen our understanding of the equity return distribution 

conditional on changes in the yield curve. 

We utilise Generalized Additive Models for Location, Scale, and Shape 

(GAMLSS) to address the time-varying nature and the asymmetric effects on the 

return distributions. This framework provides flexibility in choosing distributional 

assumptions, which is crucial when working with fat-tailed and asymmetric data. 

Furthermore, it enables us to model the distribution of the equity risk premia 

based on the state of the yield curve factors, facilitating the comparison of 

different interest rate environments and their impact on the return distribution.  

Our approach begins with an Ordinary Least Squares regression (OLS), 

followed by a discussion of its limitations. We then transition to a GAMLSS 

model with a normal distribution assumption, demonstrating that this model 

produces results identical to the OLS. To account for fatter-than-normal tails, we 

extend our model by introducing a student-t distribution, which still retains 

symmetry. Furthermore, we introduce a Skewed-t distribution developed by 

Fernandez and Steel (1998) to capture asymmetry. Based on this distribution, we 

construct a Constant-Skew-T model that captures asymmetry by modelling it as a 

constant but freely estimated. Lastly, we implement the Conditional-Skew-T 

model to model the shape parameter as a function of yield curve factors while 

keeping the other distribution parameters constant. 

This thesis aims to contribute to the existing literature, particularly within 

the framework established by Giordani and Halling (2019). By moving beyond 

the mean of equity returns, we aim to provide a more nuanced understanding of 

how the conditional distribution of equity returns fluctuates in response to 

changes in yield curve factors. 

One of the key questions we seek to answer is whether fluctuations in 

yield curve factors during periods of high or low readings lead to significant 

changes in risk metrics. Moreover, we aim to challenge the convention of using 

the normal assumption in dealing with financial return time series, arguing that 

this assumption is often violated. We illustrate the impact of miss-specifying 

distribution assumptions by showing how much this influences risk metrics such 

as standard deviation, Value-at-Risk, and Expected Shortfall. 
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Finally, we aim to examine whether the yield curve factors as predictors 

for the return distribution have undergone any notable changes when comparing a 

sample before and after the mid-1980s. Through these objectives, our study aims 

to broaden the understanding of the dynamics between the equity risk premia and 

changing monetary policy regimes.  

We structure our thesis in the following way: Chapter 2 starts our 

discussion by exploring the related literature to our research question. Chapter 3 

details the data we are using, explaining the construction of yield curve factors, 

presenting descriptive statistics, and showcasing the preliminary analysis along 

with the limitations of using the OLS regression for our research question. 

Chapter 4 carefully walks through the methodology, introducing the GAMLSS 

model, model specifications, a comparison of models, interpretation of results, 

and computation of risk metrics. Our primary findings are detailed in Chapter 5 

and concentrate on our parameter estimates, predictive distributions, their 

implications, a robustness check using international evidence, and lastly, 

highlighting the limitations of our study. The thesis concludes with Chapter 6, 

which presents the conclusion of our study. Chapter 7 provides a list of references, 

and finally, Chapter 8 serves as the appendix, showing figures that were not 

included in the main body of the paper.  

 

2. Literature Review 

2.1: Interest Rate Indicators and Equity Market Returns 

The shape of the yield curve is closely related to business cycles, credit cycles, and 

monetary policy cycles. When the spread between the US 10-year and the US 3-

month inverts, it has frequently foreshadowed economic recessions, but during such 

downturns, the curve tends to rapidly become steeper and peak near business cycle 

troughs (Ilmanen, 2011). The countercyclical property of yield curves could shed 

light on why it can be effective in anticipating short-term stock returns: when the 

business cycle reaches its low point, high premia demand results in a steep yield 

curve, but when the business cycle reaches its peak, low premia requirements lead 

to an inverted yield curve. Similarly, Chen (1991) finds a significant relationship 

between the term premium, short-term rate, and future economic growth. Most 

importantly, he finds that the expected economic activity, in turn, forecasts the 

market excess returns.   
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In their paper, "Business Conditions and Expected Returns on Stocks and 

Bonds", Fama and French (1989) find empirical evidence that the term spread is 

closely related to shorter-term business cycles. In particular, the term spread, and 

the component of expected returns it tracks, are low around measured business-

cycle peaks and high near troughs. Fama and French (1989) find that the 

relationship is strongest for 1-year return lags and tends to decay thereafter. They 

suggest that the spread tracks a term or maturity premium in expected returns that 

are similar for all long-term assets and that the premium compensates for exposure 

to discount-rate shocks that affect all long-term securities. Contemporary research 

also confirms Fama and French’s findings that the term structure of interest rates 

predicts excess stock returns, as well as excess returns on T-bills and bonds 

(Campbell, 1987), (Schwert, 1990). 

More recent research also finds a positive relationship between the term 

spreads and future economic output. Ang et al. (2006) and Estrella (2005) show that 

the slope of the yield curve forecasts output growth and inflation. Interestingly, 

several studies find that the spread has forecast output growth less accurately since 

the mid-1980s, which some attribute to greater stability of output growth and other 

key macroeconomic data (D’Agostino et al., 2006), (Dotsey, 1998), and (Estrella et 

al., 2003). Other researchers also find empirical evidence of the term spread’s 

predictive power outside the US. For example, Plosser and Rouwenhorst (1994) 

find that term spreads are useful for predicting GDP growth in Canada and 

Germany, as well as the United States, but not in France or the United Kingdom. 

Supporting Fama and French’s argument that the discount-rate shock 

premium affects all long-term assets, Cochrane and Piazzesi (2005) provide a 

compelling argument that stocks can be viewed as a long-term bond plus cash-flow 

risk. Therefore, any variable that forecasts bond returns should also predict stock 

returns. Following this logic, Cochrane and Piazzesi construct a single-factor model 

that incorporates the yield curve’s level, slope, and curvature factors, which are 

commonly used in bond prediction (Veronesi, 2010). They find the single-factor 

model useful also for stock prediction. However, Cochrane and Piazzesi’s single 

factor is estimated on the whole sample and is unknown ex-ante. Therefore, we 

construct the level, slope and curvature and test their impact on the stock returns 

separately.  
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Bernanke and Gertler (1995) accredit the predictive power of monetary 

indicators to the credit channel of monetary policy transmission. A tighter monetary 

policy leads to a reduced and costlier bank loan supply that, in turn, impacts future 

cash flows and stock returns. Supporting the credit channel theory, (Chava & 

Purnanandam, 2011) argues that banks’ inability or unwillingness to extend credit 

to firms causes firms to reduce investment in some positive NPV investment 

projects leading to a drop in firm value. Further, (Chava et al., 2015) present 

evidence that tight lending standards predict future returns through cash flows, and 

the market does not immediately impound this information. This justifies our 

selection of the term structure level, used as an estimate for financing costs, as one 

of the variables for prediction. 

2.2: Non-normality and Modelling Asymmetry  

While a substantial amount of research exists documenting the effect of interest rate 

indicators on the mean of expected returns, classic research conducted by Fama, 

French and Campbell fails to recognise the time-varying impact of these variables 

on the return distribution’s shape. More importantly, the framework under which 

the factors have been studied assumes a normal distribution, implying a constant 

and symmetric distribution. However, studies such as (Fama, 1965), (Mandelbrot, 

1963) and (Mandelbrot & Taylor, 1967), among others, have provided evidence 

that the distribution of equity returns has fatter tails and does not conform to a 

normal distribution. Furthermore, not only do equity returns exhibit fatter tails, but 

aggregate stock market returns also display negative skewness (Albuquerque, 

2012).  

The explanation for the time-varying risk premia and non-normality of 

equity returns is multifaceted, with several theories offering insights. Non-

normality, represented by longer-than-normal tails, can arise from periods of 

volatile equity returns, whilst return asymmetry is observable through rapid price 

declines during stock market crashes. Research indicates that the equity risk premia 

(ERP) fluctuate throughout the business cycle, and the ERP refers to the (expected 

or realised) return of a broad equity index in excess over some non-equity 

alternative (Ilmanen, 2011). The ERP can also be defined as the reward for bearing 

losses during bad times, defined by low consumption growth, disasters, or long-run 

risks (Ang, 2014).  Ilmanen (2011) argues that there is a strong connection between 

the time-varying growth premium and the time-varying equity risk premium.  
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Ilmanen (2011) further argues that aggregate liquidity measures predict 

future market returns, which is aligned with the concept of time-varying liquidity 

premia. The presence of excess skewness, caused by sudden decreases in stock 

prices, can be explained through the liquidity spiral concept proposed by 

Brunnermeier & Pedersen (2009). This concept states that decreased liquidity, 

falling stock prices, margin calls, and forced selling can create a vicious cycle that 

leads to further declines in stock prices. Additionally, the phenomenon of "flight to 

safety" suggests that investors’ risk aversion changes over time, causing abrupt 

drops in the prices of risky assets (Yoon, 2015). Lastly, Ilmanen (2011) indicates 

that a high level of illiquidity tends to occur during bear market conditions and 

mildly predicts high medium-term future returns. However, this effect seems to be 

stronger for small-cap firms. 

 Giordani & Halling (2019) document the link between valuation levels and 

the shape of the distribution of cumulative total returns. Specifically, when 

valuations levels are high, they find that the return distribution becomes more 

asymmetric and negatively skewed. Contrastingly, when valuations levels are low, 

they document a roughly symmetric return distribution. While Giordani and 

Halling’s study documents the impact of valuation ratios on return distributions, we 

extend their modelling framework to explore the relationship between the yield 

curve factors and equity return distributions. To accomplish this, we utilise the 

GAMLSS (Generalized Additive Models for Location, Scale, and Shape) 

framework, which offers a convenient and novel way to examine the time-varying 

effect on distribution parameters. 

 

3. Data Description 

3.1 Data Sources 

This section provides an overview of the data sources used to construct the slope, 

level, and curvature factors of the yield curve, data for equity market returns and 

any additional control variable incorporated in the thesis. All bond yields and 

returns are presented on a daily basis. 

 The daily data for the 10-year, 5-year and 3-month market yields on US 

Treasuries were retrieved from Bloomberg. The daily yields for the 10-year and 5-

year Government Bond commences on the 2nd of January 1962, while the 3-month 

market yield for Treasury Bills starts on the 1st of January 1934. For equity market 

excess returns, data is available since 1926. These returns encompass the value-
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weighted performance of all firms listed on the New York Stock Exchange 

(NYSE), the American Stock Exchange (AMEX), and the NASDAQ. The daily 

market excess returns data were gathered from the Fama-French database.  The 

data analysis for our main results starts from the 2nd of January 1962 to match the 

earliest available market yield. 

Lastly, to ensure the robustness of our findings, we gather data for 

international markets. From Bloomberg, we retrieve daily data for the 10-year 

yield, the 5-year yield, the 2-year yield, and the total return indices for the UK, 

France, Germany, and Australia. This data was synchronised to the 29th of May 

1992 to achieve a comparable sample size for all international markets. 

 

3.2 Definitions and Variable Construction 

In this section, we present the response variables, cumulative 12- and 6-month log 

excess returns, and our covariates: namely, the level, slope, and curvature. The 

holding period of 12 months is chosen because of its documented strong signal 

(Campbell, 1987), (Schwert, 1990), while six months is chosen to capture short-

term business cycles described by (Fama & French, 1989).  

We assemble the traditional yield curve using three distinct market yields. 

To maximise our sample size, we select the 3-month yield as the short-term rate, 

the 5-year yield as a medium-term rate, and the 10-year yield as the long-term 

rate. A common example of yield curve factor construction can be found in 

Veronesi (2010). While Veronesi employs the 1-month yield as the short-term 

rate, our model utilises a 3-month yield, a measure more commonly used in yield 

curve construction across academic literature. 

Level 

The level of the yield curve represents the average interest rate across all 

maturities, providing a general rate of return that investors can expect from a 

bond, irrespective of its term. Thus, the level represents the general cost of 

financing for firms in the economy as a proxy for the credit channel described by 

Bernanke and Gertler (1995).   

 
𝐿𝑉𝐿 = ln(

1

3
(𝑦10𝑦𝑟 + 𝑦5𝑦𝑟 + 𝑦3𝑀)) 

3.1 

 



GRA 19703  

8 

Slope 

The slope of the yield curve measures the spread between short-term and long-

term interest rates. A high (low) slope indicates a high (low) term premium on a 

10-year Treasury Bond compared to the 3-month Treasury Bill. 

 𝑆𝐿𝑃 = ln(𝑦10𝑦 − 𝑦3𝑀) 3.2 

Curvature 

Lastly, the yield curve’s curvature represents the difference between mid-term and 

the average of short-term and long-term yields (constructed as a butterfly spread). 

High (low) curvature values indicate that the mid-term yield is relatively high 

(low) compared to the 10-year yield and 3-month yield. High values represent a 

concave term structure, while low curvature values represent a convex term 

structure.   

 𝐶𝑅𝑉 = ln(−𝑦10𝑦𝑟 + 2 ∗ 𝑦5𝑦𝑟 − 𝑦3𝑀) 3.3 

 

3.3 Data Cleaning and Transformation 

The data cleaning and transformation process was conducted in a two-step 

manner. First, data was gathered from various sources and consolidated in Excel, 

then imported to R for additional processing. Within the R environment, the 

market excess return data was synchronised by trading dates with the data from 

US Treasury yields. Any missing daily yield observations were addressed using a 

forward-filling technique, which involves carrying the last observation forward.

 All variables were converted to logs, including the market excess returns. 

We then standardised the yield curve factors with a mean of zero and a standard 

deviation of one, which simplifies parameter interpretation. 

In addition, we divide our dataset into two segments, before and after the 

1st of January 1985. In Chapter 2, we highlighted several studies which 

documented that the predictive power of the slope had diminished since the mid-

1980s. Existing research, paired with the empirical evidence from Figure 3.5.9, 

which highlights a transition from a long-term upward interest rate cycle to a 

downward cycle in the mid-1980s, motivated us to divide the sample at the 1985 

juncture.  

Lastly, we calculate the cumulative 12-month and 6-month log excess 

returns as the sum of market excess log returns.  
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3.4 Data Summary and Descriptive Statistics 

The response variable of interest is the cumulative, overlapping 12-month and 6-

month logarithmic excess return for the entire sample period, pre-1985 period, and 

post-1985 period. The construction of covariates, the level, slope, and curvature, 

is described in section 3.2. The following three figures highlight the descriptive 

statistics of the total logarithmic excess returns conditioned on different quartiles 

and the full distribution for all three yield curve factors. 

 

Table 3.4.1: 12-month cumulative log excess return statistics. The figure reports the mean, the 

standard deviation, and the standardised third moment (skewness) for the full sample, the pre-

1985 sample, and the post-1985 sample, conditional on different quartiles of the level factor, as 

well as for the full distribution. 

 

Table 3.4.2: 6-month cumulative log excess return statistics. The figure reports the mean, the 

standard deviation, and the standardised third moment (skewness) for the full sample, the pre-

1985 sample, and the post-1985 sample, conditional on different quartiles of the level factor, as 

well as for the full distribution. 

Tables 3.4.1 and 3.4.2 show that the level of the yield curve impacts the excess 

returns (reported as mean), with lower average yields (1st quartile) resulting in 

higher excess returns compared to higher average yields (4th quartile). The 

inverse relationship holds across all sub-samples and for both return horizons. 

The volatility, measured as the standard deviation of cumulative excess 

returns, decreases when average yields are low compared to a high average yield. 

This is particularly evident in the pre-1985 sample, where volatility decreases 

from 17.98% to 9.34% for the 12-month holding period. 

Skewness, measured as the third standardised moment, reduces for the full 

sample, and becomes positive in the pre-1985 sample as the average interest rate 

level becomes high. Remarkably, this trend shifts in the post-1985 sample, where 

mean st.dev skewness mean st.dev skewness mean st.dev skewness

Full Distribution 5,54 % 16,55 % -0,85 2,17 % 16,61 % -0,58 7,35 % 16,37 % -1,02

1st Quartile 11,93 % 14,80 % -0,95 6,96 % 9,34 % -0,54 13,55 % 14,15 % -0,30

2nd & 3rd Quartile 2,09 % 16,43 % -1,01 -1,21 % 17,93 % -0,64 3,66 % 16,94 % -1,30

4th Quartile 6,03 % 16,49 % -0,58 4,15 % 17,98 % 0,09 8,54 % 15,19 % -0,80

Level

Full Sample Pre-1985 Post-1985
12-months

mean st.dev skewness mean st.dev skewness mean st.dev skewness

Full Distribution 2,68 % 11,75 % -0,79 0,93 % 12,08 % -0,23 3,63 % 11,48 % -1,15

1st Quartile 5,97 % 10,76 % -0,90 2,38 % 9,10 % -0,95 7,71 % 9,61 % -0,31

2nd & 3rd Quartile 1,40 % 10,82 % -1,13 -0,32 % 13,21 % -0,24 1,17 % 11,93 % -1,48

4th Quartile 1,96 % 13,69 % -0,38 1,96 % 12,07 % 0,42 4,47 % 10,99 % -0,77

6-months
Full Sample Pre-1985 Post-1985

Level
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the returns become more negatively skewed as interest rates increase. 

Nonetheless, this measure of skewness is susceptible to large sampling errors, 

particularly in distributions with heavy tails, and it is vulnerable to outliers 

(Giordani & Halling, 2019). 

 

Table 3.4.3: 12-month cumulative log excess return statistics. The figure reports the mean, the 

standard deviation, and the standardised third moment (skewness) for the full sample, the pre-

1985 sample, and the post-1985 sample, conditional on different quartiles of the slope factor, as 

well as for the full distribution. 

 

Table 3.4.4: 6-month cumulative log excess return statistics. The figure reports the mean, the 

standard deviation, and the standardised third moment (skewness) for the full sample, the pre-

1985 sample, and the post-1985 sample, conditional on different quartiles of the slope factor, as 

well as for the full distribution. 

Summary statistics in Table 3.4.3 and 3.4.4 display a consistent increase in excess 

returns (mean) across all samples and horizons during periods of an upward-

sloping yield curve (4th quartile), contrasted with periods when the yield curve is 

either narrow or inverted (1st quartile). This trend is particularly pronounced in 

the full sample and pre-1985 sample. 

Conversely, an inverse relationship is observed regarding volatility. The 

volatility across all samples and horizons decreases during periods of upward-

sloping term structure compared to periods when the yield curve is narrow or 

inverted.  

Skewness becomes increasingly negative for the full sample as term 

structure steepens but shows contrasting behaviour between the two sub-samples. 

For the pre-1985 sample, skewness turns negative to positive as the yield curve 

steepens, while for the post-1985 sample, the skewness becomes increasingly 

negative as the term structure steepens. 

mean st.dev skewness mean st.dev skewness mean st.dev skewness

Full Distribution 5,54 % 16,55 % -0,85 2,17 % 16,61 % -0,58 7,35 % 16,37 % -1,02

1st Quartile -2,19 % 18,48 % -0,42 -6,60 % 20,58 % -0,22 4,37 % 18,55 % -0,60

2nd & 3rd Quartile 7,79 % 15,89 % -1,05 5,77 % 14,41 % -0,64 7,70 % 16,57 % -1,21

4th Quartile 8,77 % 12,99 % -0,48 3,79 % 12,59 % 0,87 9,65 % 12,79 % -0,82

12-months

Slope

Full Sample Pre-1985 Post-1985

mean st.dev skewness mean st.dev skewness mean st.dev skewness

Full Distribution 2,68 % 11,75 % -0,79 0,93 % 12,08 % -0,23 3,63 % 11,48 % -1,15

1st Quartile -1,49 % 12,28 % -0,25 -5,14 % 14,31 % -0,02 2,22 % 11,15 % -0,12

2nd & 3rd Quartile 4,41 % 11,15 % -1,22 3,33 % 10,72 % -0,14 4,55 % 11,57 % -1,85

4th Quartile 3,40 % 11,35 % -0,60 2,22 % 9,94 % 0,72 3,22 % 11,45 % -0,73

6-months

Slope

Full Sample Pre-1985 Post-1985
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Table 3.4.5: 12-month cumulative log excess return statistics. The figure reports the mean, the 

standard deviation, and the standardised third moment (skewness) for the full sample, the pre-

1985 sample, and the post-1985 sample, conditional on different quartiles of the curvature factor, 

as well as for the full distribution. 

 

Table 3.4.6: 6-month cumulative log excess return statistics. The figure reports the mean, the 

standard deviation, and the standardised third moment (skewness) for the full sample, the pre-

1985 sample, and the post-1985 sample, conditional on different quartiles of the curvature factor, 

as well as for the full distribution. 

Table 3.4.5 shows 12-month cumulative excess returns conditioned on curvature. 

We note an increase in the mean for all three samples for high curvature readings, 

representing a concave term structure (4th quartile) compared to a convex term 

structure (1st quartile). Table 3.4.6 show that the relationship is less concise for 

the 6-month holding period. We observe an increase in the mean for the full 

sample and pre-1985 sample, while it decreases with curvature in the post-1985 

period.  

The volatility decreases across all sub-samples for the 12-month holding 

period when curvature is high. The mean and volatility demonstrate properties 

similar to the slope. Again, the results for the 6-month holding period are less 

concise, displaying marginal changes in volatility in both directions.   

For the full and pre-1985 samples, the return distribution displays negative 

skewness under conditions of low curvature, contrasting with positive skewness 

observed in periods of high curvature. Interestingly, while the post-1985 sample 

follows a similar pattern of diminishing skewness during periods of high 

curvature, it does not transition into positive territory. For the 6-month skewness, 

the difference between the pre-and post-1985 samples are more pronounced, with 

skewness decreasing in curvature in the pre-1985 sample and increasing in the 

post-1985 period. 

mean st.dev skewness mean st.dev skewness mean st.dev skewness

Full Distribution 5,54 % 16,55 % -0,85 2,17 % 16,61 % -0,58 7,35 % 16,37 % -1,02

1st Quartile 3,25 % 21,05 % -0,81 -4,16 % 19,84 % -0,49 6,78 % 20,63 % -1,05

2nd & 3rd Quartile 5,82 % 15,11 % -0,78 3,15 % 14,79 % -0,67 7,55 % 15,14 % -0,88

4th Quartile 7,27 % 13,59 % 0,27 6,79 % 14,22 % 0,51 7,53 % 13,68 % -0,88

12-months

Curvature

Full Sample Pre-1985 Post-1985

mean st.dev skewness mean st.dev skewness mean st.dev skewness

Full Distribution 2,68 % 11,75 % -0,79 0,93 % 12,08 % -0,23 3,63 % 11,48 % -1,15

1st Quartile 3,17 % 11,97 % -0,53 -1,01 % 13,12 % -0,34 5,32 % 10,74 % -0,48

2nd & 3rd Quartile 2,59 % 11,81 % -1,06 0,80 % 11,78 % -0,34 3,80 % 11,50 % -1,47

4th Quartile 2,37 % 11,39 % -0,48 3,13 % 11,16 % 0,39 1,62 % 11,84 % -1,05

6-months

Curvature

Full Sample Pre-1985 Post-1985
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3.5 Preliminary Analysis 

This section provides further preliminary analysis beyond the descriptive statistics 

presented in section 3.4. First, we visualise and describe the characteristics of the 

return series, which serve as the response variable in the analysis. We then 

highlight why an Ordinary Least Squares (OLS) model is insufficient to capture 

the dynamics for our data, and lastly, we describe the yield curve factors. 

3.5.1: Cumulative and Conditional Returns 

 

Figure 3.5.1: Excess Return Characteristics. The top left picture shows the compounded daily log 

returns for the entire sample period, starting in 1962. The top right picture highlights daily market 

excess log returns. The middle-left (right) picture shows the QQ-plot of sample quantiles vs 

theoretical quantiles for cumulative 12-month (6-month) excess returns. The bottom left (right) 

picture shows the histogram of cumulative 12-month (6-month) excess log returns. 

The top left image in Figure 3.5.1 displays the compounded market excess returns 

from the inception of our sample in 1962. A quick look reveals periods of 

drawdowns in the compounded returns. The image on the top right focuses on 

daily excess returns plotted over time. This visualises the evidence of volatility 

clustering and draws attention to extreme return values, particularly the downside. 
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           The two middle images present QQ-plots comparing theoretical and sample 

quantiles of 12- and 6-month cumulative excess returns. If our return distribution 

perfectly followed a normal distribution, the data points in these plots would align 

precisely with the bright red straight line. However, the noticeable deviations from 

this line suggest that our cumulative return series do not follow the normal 

distribution, specifically in the left tail region.  

           Lastly, the two bottom plots in Figure 3.5.1 provide further evidence of 

non-normality. Here, we can see signs of skewness and heavier tails in the return 

distribution. These findings highlight one of the stylised properties of univariate 

financial time series, namely that tails are much thicker than the Gaussian. 

 

Figure 3.5.2: Full samples; scatter plots of standardised yield curve factors (x-axis) vs cumulative 

12-month excess log returns (y-axis) with a fitted simple linear regression line. The top plot shows 

the standardised level vs returns, the middle plot shows the standardised slope vs returns, and the 

bottom plot shows the standardised curvature vs returns. Scatter plots for the cumulative 6-month 

excess log returns are provided in Figure A.3.1 in the appendix.  
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Figure 3.5.2 displays scatter plots of the standardised yield curve factors on the x-

axis against the cumulative 12-month excess log returns on the y-axis. Figure 

A.3.1 in the appendix displays the same scatter plots for the 6-month horizon. A 

simple regression line is fitted to each scatter plot. These plots highlight subtle 

relationships between the response variable and our covariates.  

The regression line displays a negative relationship for the level factor 

while exhibiting a positive relationship for the slope and curvature factors. 

Additionally, we observe distinct clusters of data points for the slope and 

curvature factors and several outliers for each of the three factors. Similar 

observations can be seen for cumulative 6-month excess log returns, as shown in 

Figure A.3.1, except for the curvature factor, where the regression line appears to 

flatten out.  

3.5.2: Ordinary Least Squares Analysis 

We extend our preliminary analysis by estimating an OLS regression for the 

cumulative 12- and 6-month log excess returns on the yield curve factors. 

Although the OLS analysis is not the primary objective of this thesis, we report 

the full sample results for context. It is worth noting that the limitations of the 

OLS model, as we will demonstrate, apply to both the full sample and the sub-

samples. 

 

Table 3.5.3: OLS regression results, cumulative 12-month excess returns on yield curve factors. 

We report the estimated value, the standard error, and the t-statistic for both the intercept and the 

beta coefficient for each yield curve factor. All variables are in logs. 

 

Table 3.5.4: OLS regression results, cumulative 6-month excess returns on yield curve factors. We 

report the estimated value, the standard error, and the t-statistic for both the intercept and the 

beta coefficient for each yield curve factor. All variables are in logs. 

The results in Tables 3.5.3 and 3.5.4 illustrate how cumulative 12- and 6-month 

excess returns react to one-standard deviation shifts in the yield curve factors. 

Specifically, when the level increases by one standard deviation from the mean, 

Estimate Std. Error T-Value Estimate Std. Error T-Value Estimate Std. Error T-Value

Intercept 0,0554 0,0013 41,49 0,0554 0,0013 42,29 0,0554 0,0013 41,57

Beta -0,0195 0,0013 -14,60 0,0372 0,0013 28,42 0,0218 0,0013 16,33

Level Slope Curvature

Estimate Std. Error T-Value Estimate Std. Error T-Value Estimate Std. Error T-Value

Intercept 0,0268 0,0009 28,37 0,0268 0,0009 28,46 0,0268 0,0010 28,22

Beta -0,0122 0,0009 -12,96 0,0153 0,0009 16,29 0,0007 0,0010 0,76

Level Slope Curvature
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the cumulative 12-month excess returns decrease by -1.95%, while the cumulative 

6-month excess returns decrease by -1.22%. Contrarily, as implied by the OLS 

model, if the slope or curvature factor rises by one standard deviation from the 

mean, the cumulative 12-month excess returns increase by 3.72% and 2.18%, 

respectively (1.53% and 0.7% for the 6-month horizon, but significance 

drastically falls for the curvature).  

However, the OLS regression model makes several key assumptions about 

the errors which underpin the properties and reliability of the model estimates 

which we summarise in Table 3.5.5 below. 

(1) 𝐸(𝑢𝑡) = 0 Average value of errors is zero 

(2) 𝑣𝑎𝑟(𝑢𝑡) = 𝜎2 < ∞ Variance of errors is constant  

(3) 𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 0 Errors are linearly independent 

(4) 𝑐𝑜𝑣(𝑢𝑡, 𝑥𝑡) = 0 Covariates are non-stochastic 

(5) 𝑢𝑡~𝑁(0, 𝜎2) Errors are normally distributed 

Table 3.5.5: The table above highlights the mathematical notation and interpretation of OLS 

assumptions. (Brooks, 2019) 

Various tests can be performed to handle the violation of the assumptions outlined 

in the table above. Some examples are White’s test for heteroskedasticity, The 

Durbin-Watson test for autocorrelation, and the Bera-Jarque test for normality. 

While a deep dive into all assumptions is not the focus of this thesis, we will 

tackle the most critical assumption violation, especially given the nature of our 

data set. 

           Our response variable, cumulative excess log returns, is constructed using 

annual and semi-annual overlapping data with daily returns. This results in 

massive autocorrelation, making any test for this somewhat redundant. If we 

ignore autocorrelation, the coefficient estimates produced by OLS will still be 

unbiased, but inefficient, and standard errors will be incorrect (Brooks, 2019). We 

present the OLS results with heteroskedasticity- and autocorrelation-consistent 

(HAC) standard errors in Tables 3.5.6 and 3.5.7 below. 

 

Table 3.5.6: OLS regression results, cumulative 12-month excess returns on yield curve factors. 

We report the estimated value, the HAC standard error, and the t-statistic for the intercept and 

beta coefficients for each yield curve factor. 

Estimate Std. Error T-Value Estimate Std. Error T-Value Estimate Std. Error T-Value

Intercept 0,0554 0,0165 3,35 0,0554 0,0170 3,25 0,0554 0,0191 2,90

Beta -0,0195 0,0130 -1,50 0,0372 0,0132 2,81 0,0218 0,0173 1,26

Level Slope Curvature
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Table 3.5.7: OLS regression results, cumulative 6-month excess returns on yield curve factors. We 

report the estimated value, the HAC standard error, and the t-statistic for the intercept and beta 

coefficients for each yield curve factor. 

From the above results, we see a substantial decrease in significance compared to 

the findings in Tables 3.5.3 and 3.5.4 once we account for heteroskedasticity and 

autocorrelation. Notably, the slope factor emerges as the most significant 

covariate in predicting excess returns, as indicated by the largest t-statistic.  

           Figure 3.5.1 showed that our dataset contained outliers, which is common 

in financial return data. Because OLS aims to minimise the sum of the squared 

residuals, an outlier can disproportionately influence the line of best fit. This is 

because squaring the residuals amplifies the distances of points far from the line, 

so the line will be more ‘pulled’ towards an outlier. 

We utilise a simple boxplot to highlight outliers in our cumulative excess 

returns. This is a visual representation of the five-number summary of a dataset: 

the minimum, the first quartile, the median, the third quartile, and the maximum. 

  

Figure 3.5.8: Boxplot highlighting outliers of cumulative 12- and 6-month excess log returns. The 

box indicates the middle 50% of values, the line inside represents the median, and points outside 

the whiskers are potential outliers. It provides a quick way to spot outliers and understand the 

data’s spread. 

Figure 3.5.8 shows that our response variable has several outliers, highlighted as 

the data points that fall outside the “whiskers”. The “whiskers” represent the data 

outside the middle 50%.  

In summary, our OLS analysis displays some evidence of a relationship 

between the yield curve factors, particularly the slope, and the mean of cumulative 

excess returns. However, our data violates some of the assumptions underlying 

the standard linear regression and contains several outliers, which leads to 

Estimate Std. Error T-Value Estimate Std. Error T-Value Estimate Std. Error T-Value

Intercept 0,0268 0,0090 2,99 0,0268 0,0096 2,79 0,0268 0,0103 2,60

Beta -0,0122 0,0066 -1,87 0,0153 0,0093 1,66 0,0007 0,0094 0,08

Level Slope Curvature
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unreliable model estimates. Given these observed complications, it becomes 

apparent that a more complex and flexible modelling approach, such as GAMLSS, 

is warranted. Moreover, our analytical interests extend beyond merely exploring 

the mean behaviour. We aim to delve into the shape of the distribution, thereby 

necessitating the adoption of a modelling technique like GAMLSS capable of 

modelling multiple parameters of the distribution of the response variable. 

3.5.3: Yield Curve Factors 

This section examines our covariates, level, slope, and curvature, using time-

series plots and histograms to gain insights into their dynamics over time. 

 

Figure 3.5.9: Time series of standardised values of yield curve factors for the full sample. The 

orange line depicts the standardised level factor, the purple line shows the standardised slope 

factor, and the green line highlights the standardised curvature factor. Time series for subsamples 

are provided in Figures A.3.2 and A.3.3 in the appendix. 

From Figure 3.5.9, three significant observations warrant attention. Firstly, 

examining the level factor, a clear shift in interest rate environments is observed. 

Prior to 1985, the trend indicates a period of steadily rising long-term interest 

rates. However, post-1985 marks a pivot in this trend, indicating a shift towards a 

prolonged environment of decreasing interest rates. 

           Secondly, a correlation can be observed between the curvature and slope 

factors. For the full sample, the correlation stands at 72% between these two 

factors. However, a more detailed inspection reveals that this relationship varies 
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over time. Specifically, the correlation is 88% in the pre-1985 sample, while it 

moderates to 70% in the post-1985 sample. 

           Lastly, caution should be exercised using the level factor for prediction. 

Since our model is built to predict cumulative excess returns conditional on the 

level factor’s deviation from the mean, the prediction relies on a limited number 

of observations. This scarcity of data points could compromise the reliability of 

the results. 

 

Figure 3.5.10: This figure presents histograms of the standardised level, slope, and curvature 

factors for the full sample. Each histogram visually illustrates the distribution of its respective 

yield curve factor. Figures A.3.4 and A.3.5 in the appendix provide histograms of yield curve 

factors for the subsamples. 

Figure 3.5.10 presents histograms of standardised yield curve factors. Notably, the 

level factor values always stay above two negative standard deviations. This is an 

important implication when modelling conditional return distributions based on 

deviations from the mean. Both the slope and curvature histograms exhibit fatter 

tails, with the slope also displaying pronounced negative skewness. The evidence 

gathered from these histograms is important in understanding the underlying data 

structure and ensuring the robustness of our model. 
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4. Methodology  

In this chapter, we lay the groundwork for our analysis presented in Chapter 5 by 

providing a thorough overview of the fundamentals and assumptions that underpin 

our modelling approach. We start by introducing the GAMLSS framework and its 

advantages. We then propose the preferred distributions and describe the models 

used in the primary analysis. In the final section, we provide an overview of 

model estimation techniques, model selection criteria and the computational 

approach for risk metrics. 

 

4.1: Overview of GAMLSS model 

The main analysis in this thesis is based on the Generalized Additive Model for 

Location Scale and Shape (GAMLSS). Introduced by Rigby and Stasinopoulos 

(2005), GAMLSS builds upon two earlier models. The first is the Generalized 

Linear Models (GLMs), proposed by Nelder and Wedderburn (1972), and the 

second is the Generalized Additive Models (GAMs), developed by Hastie and 

Tibshirani (1990). The GAMLSS method extends their ideas, providing a more 

flexible and comprehensive tool for our analysis. 

Model Characteristics Function 

OLS Linear function for the mean. 

Higher moments are constant.  

 𝑦 ~ 𝑁(𝜇, 𝜎2) 

𝝁 = 𝑿𝜷 

4.1 

 

GLM Link function allowing a 

linear function to have a non-

linear relationship with 𝑦.  

 𝑦 ~ 𝐸𝑥𝑝𝐹𝑎𝑚𝑖𝑙𝑦(𝜇, 𝜙) 

𝒈(𝝁) = 𝑿𝜷 

4.2 

 

GAM Non-parametric function for 

the response variable. 

𝑦 ~ 𝐸𝑥𝑝𝐹𝑎𝑚𝑖𝑙𝑦(𝜇, 𝜙) 

𝒈(𝝁) = 𝑿𝜷 + 𝑠(𝑥1) + ⋯ + 𝑠𝑗(𝑥𝑗) 

4.3 

 

GAMLSS has two main advantages for modelling the impact of covariates on 

distribution parameters. Firstly, it provides flexibility in choosing distributional 

assumptions. Unlike GLM or GAM, which are limited to normal or exponential 

family distributions, GAMLSS allows us to select from a wide range of 

distributions that better represent our underlying data-generating process. A 

GAMLSS model is expressed as 𝒚 ~ 𝒟(𝝁, 𝝈, 𝝂, 𝝉), where 𝒟 represents the 

distribution of the response variable 𝑦. This general distribution can take any form 

with up to four parameters. 
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Secondly, GAMLSS enables us to model any distribution parameter as a 

function of the predictive variables. This means we can examine the impact of the 

yield curve level factors, the predictive variables, on the entire shape of the return 

distribution, not just the expected value. By considering the relationship between 

the covariates and the distribution parameters, we gain insights into how different 

factors influence the variance, skewness, and tails of the response variable’s 

distribution. The parameters of the distribution can be modelled as a function of 

the explanatory variables as follows: 

 𝒚 ~ 𝒟(𝝁, 𝝈, 𝝂, 𝝉) 

𝑔1(𝝁) = 𝑿𝟏𝜷𝟏 + 𝑠11(𝑥11) + ⋯ + 𝑠1𝐽1
(𝑥1𝐽1

) 

𝑔2(𝝈) = 𝑿𝟐𝜷𝟐 + 𝑠21(𝑥21) + ⋯ + 𝑠2𝐽2
(𝑥2𝐽2

) 

𝑔3(𝝂) = 𝑿𝟑𝜷𝟑 + 𝑠31(𝑥31) + ⋯ + 𝑠3𝐽3
(𝑥3𝐽3

) 

𝑔4(𝝉) = 𝑿𝟒𝜷𝟒 + 𝑠41(𝑥41) + ⋯ + 𝑠4𝐽4
(𝑥4𝐽4

) 

4.4 

In the model, 𝛽𝑗 represents the linear parametric estimator of 𝑔(. ), while 𝑠(. ) 

denotes a smoothing non-parametric function applied to some continuous 

explanatory variables. The gamlss package offers various non-parametric functions 

that can be used to improve the model’s fit by applying them to the explanatory 

variables. However, in this thesis, our primary objective is interpretation rather than 

maximising the model’s predictive power. Therefore, we will only utilise the 

parametric estimators 𝛽𝑗, as the non-parametric estimators are not easily 

interpretable, and we cannot perform significance tests in the same manner as with 

linear models. 

 

4.2: Modelling approach 

Our goal is to test the hypothesis of whether yield curve factors influence the 

shape of the conditional distribution of equity returns. Specifically, we want to 

check if the yield curve factors influence the asymmetry of the return distribution 

and its risk-return characteristics. To do that in the most parsimonious and easily 

interpretable way, we utilise a linear model with different distributional 

assumptions of the error terms. Gradually expanding the model flexibility allows 

us to isolate the effects of our predictors on the different distribution parameters. 

More specifically, we use the “Conditional-Skew-T” model to predict the time-

varying asymmetry of the distribution and compare the results to three other 
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benchmark models, namely the “Normal model”, “Symmetric-T model”, and 

“Constant-Skew-T model”. As a formal model comparison, we use the GAIC 

model selection criteria. This approach follows the logic in Fernandez and Steel 

(1998) that introduces skewness to the symmetric t-distribution. However, the 

more specific approach to testing the distribution parameters on equity returns 

follows the methodology outlined in Giordani and Halling (2019). The latter is 

more convenient for our purpose, as the specific models proposed are directly 

applicable to analyse the shape of the return distribution.  

Equity returns often exhibit several key characteristics that require more 

flexible distribution families to accurately represent the underlying data-

generating process. As noted in Chapter 3, our dataset displays asymmetry and 

thicker tails than a normal distribution. If the error terms are not normally 

distributed but, for example, have a heavy-tailed distribution, OLS estimates of 

regression coefficients can be disproportionately affected by outliers or extreme 

values. This makes OLS model estimates less efficient, increasing the model 

variance. 

To tackle the problem of asymmetry and heavy tails in our data, we employ 

a t-distribution, which allows for heavier tails than a Gaussian, and a skew t-

distribution, which introduces asymmetry. A more flexible distribution for error 

terms can make estimates more robust against non-normality since more flexible 

distribution parameters can now capture outliers. Another method to deal with 

outliers is to move away from a linear estimator and use splines or other non-linear 

methods. The problem with non-linearity is complex interpretation, and in gamlss, 

the standard errors must be treated with caution (Rigby et al., 2017). Therefore, we 

opt for the linear model, but by changing the distributional assumption, we mitigate 

the effect of outliers and leverage points. 

Another important issue in our dataset is the presence of overlapping 

observations. Since we are forecasting the cumulative excess returns a year ahead, 

𝑟𝑥 = (𝑝𝑡+252 − 𝑝𝑡), we have 251 overlapping observations, and the same logic 

applies for the semi-annual sample. The autocorrelation introduced by this large 

number of observations will significantly overestimate the t-statistics. In an OLS 

model, one would employ autocorrelation consistent standard errors. However, the 

gamlss package lacks any means of adjusting for overlapping observations.  

Therefore, we employ a solution proposed by Giordani and Halling (2019) to adjust 

the t-statistics and log-likelihood, described in detail in Sections 4.4 and 4.5.  
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4.3: Distribution Family and Model Specifications 

This chapter presents the models used in the analysis, including distributional 

assumptions and parameter functions. To methodically document the marginal 

improvements of gradually increasing model flexibility, we start with the Normal 

distribution assumption and move gradually to distributions with more 

parameters.  

Since we are using a simple linear model and only change the 

distributional assumptions of the error terms, we can interpret the 𝛽𝑖,𝜙 coefficients 

similarly to OLS coefficients. After adjusting for autocorrelation, we can also 

perform tests of statistical significance for the linear coefficients.  

In all models, we are using standardised log values for the covariates. This 

implies that the 𝛽𝑖,𝜙 coefficients represent the percentage change in the response 

variable, given one standard deviation change in the yield curve factors.  

Normal model 

Our Normal model is equivalent to a linear model estimated by OLS since we use 

a normal distribution and only model the mean parameter as a function of our 

covariates. The Normal model has the following functional form: 

 𝒚 ~ 𝑁(𝝁, 𝝈) 

𝑔1(𝝁) = 𝛽0,𝜇 + 𝛽1,𝜇𝑥𝑡 

𝑔2(𝝈) = 𝛽0,𝜎 

4.5 

If the data represents thicker-than-normal tails, a Normal model with normal tail 

behaviour needs to increase the scale (𝜎) to capture observations in the tails 

(Fernandez & Steel, 1998). This characteristic will misrepresent the relevant risk 

metrics if the distribution is misspecified. 

Symmetric-T model 

The Symmetric-T model leverages the Student’s t-distribution, allowing for 

longer-than-normal tails. This allows for more robust statistical modelling of 

datasets with outliers and fat-tail errors. The t-distribution, defined by three 

parameters 𝑦𝑡,𝑡+ℎ~𝑡(𝜇, 𝜎, 𝜈), extends the typical normal distribution used in linear 

models. Its degree of freedom parameter 𝜈 aids in reliable mean estimation (Lange 

et al., 2019). Unlike models with normal error assumptions, which are vulnerable 

to outliers, the heavy tails of the t-distribution result in less outlier sensitivity and 
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more robust mean estimates. In a linear regression context, using a t-distribution 

can result in estimates that are less sensitive to changes in a small number of data 

points. 

We construct the Symmetric-T model with a time-dependent mean, while 

keeping the dispersion and degrees of freedom constant. This way, we can 

estimate the significance of the predictive variables on the mean, while controlling 

for outliers in the sample. The Symmetric-T model in functional form is written as 

follows:  

 𝒚 ~ 𝑡(𝝁, 𝝈, 𝝂) 

𝑔1(𝝁) = 𝛽0,𝜇 + 𝛽1,𝜇𝑥𝑡 

𝑔2(𝝈) = 𝛽0,𝜎 

𝑔3(𝝂) = 𝛽0,𝜈 

4.6 

Interpretation of the model is still straightforward. The 𝝁 is the mode, but since 

the distribution is symmetric, the mode equals the mean. 𝝈 is the standard 

deviation, while 𝝂 is the degrees of freedom parameter that controls the length of 

the tails. When the degrees of freedom are high, the t-distribution is similar to a 

normal distribution. However, when the degrees of freedom are low, the t-

distribution has fatter tails. Note that the degrees of freedom parameter, 𝜈, in the 

Symmetric-T model is equivalent to 𝜏 in the following two models, while 𝜈 in the 

following two models represents the asymmetry parameter.  

Constant-Skew-T model 

In our Constant-Skew-T model, we employ the Skewed Student-t Type 3 (ST3) 

distribution created by Fernandez and Steel (1998). The ST3 distribution adds 

another layer to the t-distribution by introducing a shape parameter 𝜈 that controls 

the asymmetry of the distribution. This method allows linear models to account 

for skewed error distributions with fat tails. By including a separate shape 

parameter 𝜈, in addition to the tail parameter 𝜏, the Constant-Skew-T mitigates the 

risk of the model treating asymmetry as excess kurtosis (Giordani & Halling, 

2019).  

The shape parameter is the main output in the analysis and acts as a proxy 

for the skewness of the distribution. As previously mentioned, the skewness 

defined as a third moment is a volatile metric highly affected by outliers. An ST3 
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distribution is designed so that the shape parameter, 𝜈, controls the allocation of 

probability mass to each side of the mode as:  

 𝑃(𝑦𝑡 ≥ 𝑚|𝜈𝑡)

𝑃(𝑦𝑡 ≤ 𝑚|𝜈𝑡)
= 𝜈𝑡

2 
4.7 

The asymmetry parameter is defined 0 < 𝝂 < ∞, where 𝝂 = 1 is a symmetric 

distribution. A major advantage of using the ST3 distribution is that the approach 

completely separates the effect of the skewness parameter, 𝜈, and the tail 

parameter, 𝜏, facilitating their interpretation and making prior independence 

between the two a plausible assumption (Fernandez & Steel, 1998). In a 

functional form, our Constant-Skew-T model is presented in the following way:  

 𝒚 ~ 𝑠𝑘𝑒𝑤𝑡(𝝁, 𝝈, 𝝂, 𝝉) 

𝑔1(𝝁) = 𝛽0,𝜇 + 𝛽1,𝜇𝑥𝑡 

𝑔2(𝝈) = 𝛽0,𝜎 

𝑔3(𝝂) = 𝛽0,𝜈 

𝑔4(𝝉) = 𝛽0,𝜏 

4.8 

The interpretation of the ST3 is more complicated than for the regular Student’s t-

distribution since the statistical moments are generally a combination of all four 

distribution parameters. However, since the skewness and tail parameters are 

separated, we can infer the effect of the covariates on the shape of returns. 

Parameter 𝝉 now controls the degrees of freedom and has the same 

interpretation as in the Symmetric-T model (stated as 𝜈 in the Symmetric-T). 𝝁 is, 

in general, the mode for all values when 𝝂 ≠ 𝟏, with the special case of 

symmetry, then the mode becomes the mean. 𝝈 now becomes the dispersion 

parameter.  

Conditional-Skew-T  

We introduce the Conditional-Skew-T model to effectively isolate and model the 

time-varying effect of the shape parameter 𝜈. This model differs from the Constant-

Skew-T by modelling the shape parameter as a function of our covariates. While 

the GAMLSS framework theoretically enables us to also model the kurtosis or 

degrees of freedom as a function of covariates, the limited number of extreme 

observations presents a challenge. Therefore, attempting to model the thickness of 
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the tails as a function of covariates could lead to high model variance and unstable 

parameters. 

As a compromise, we adopt a distribution family that includes a tail 

parameter but treats it as a constant in our modelling approach. This decision 

allows us to ensure model stability while separating the effect of tail behaviour 

and asymmetry on the shape of the distribution. The Conditional-Skew-T model 

has following functional form:  

 𝒚 ~ 𝑠𝑘𝑒𝑤𝑡(𝝁, 𝝈, 𝝂, 𝝉) 

𝑔1(𝝁) = 𝛽0,𝜇 

𝑔2(𝝈) = 𝛽0,𝜎 

𝑔3(𝝂) = 𝛽0,𝜈 + 𝛽1,𝜈 

𝑔4(𝝉) = 𝛽0,𝜏 

4.9 

The interpretation is similar to the Constant-Skew-T model, but now we also 

estimate the linear 𝛽1,𝜈 coefficient. The coefficient measures the time-varying 

effect of the yield curve factors on the shape of cumulative equity returns and is 

crucial for our analysis.   

 

4.4: Model Estimation Techniques 

Estimation in a linear parametric GAMLSS model is done by maximising the log-

likelihood ℓ given by: 

 
ℓ = ∑ log 𝑓(𝑦𝑖|𝜇𝑖, 𝜎𝑖 , 𝜈𝑖, 𝜏𝑖)

𝑛

𝑖=1

 
4.10 

Where 𝑓(. ) represents the Probability Density Function (PDF) of the response 

variable. While a more general, non-parametric model is estimated using maximum 

penalised log-likelihood estimation, we focus only on parametric models; thus, the 

simple maximum log-likelihood algorithm holds. It is also important to note that 

the log-likelihood function assumes that the observations in the response variables 

are independent. Clearly, the independence assumption is violated due to volatility 

clustering and autocorrelation present in our data. Violating the independence 

assumption leads to incorrect estimates of the standard errors, which makes the t-

statistics incorrect. Therefore, a correction for autocorrelation should be made to 

compute standard errors and t-statistics. In our particular case of 251 overlapping 

observations for the 12-month holding period, the t-statistics are significantly 
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overestimated. The same reasoning applies to other holding periods. Because, to 

the best of our knowledge, the gamlss package lacks the means of correcting for 

autocorrelation, we employ a solution proposed by Giordani and Halling (2019). 

The solution corrects the standard errors by multiplying them by √1 +
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

2
. 

Then the adjusted t-statistics are derived in the following way:  

 
𝑡𝑠𝑡𝑎𝑡 =  

𝛽

𝑆𝐸
 

4.11 

𝑡𝑠𝑡𝑎𝑡𝑎𝑑𝑗.
=

𝛽

𝑆𝐸 ∗ √1 +
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

2

=
𝛽

𝑆𝐸
∗

1

√1 +
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

2

= 𝑡𝑠𝑡𝑎𝑡 ∗
1

√1 +
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

2

 
4.12 

Where in our case, the overlap is equal to 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 − 1.  

 

4.5 Model Selection Criterion 

To compare the model fit, we employ an extended version of the Akaike 

Information Criterion (AIC) called Generalized Akaike Information Criterion 

(GAIC). The AIC penalises models for having more parameters, aiming to avoid 

overfitting. 

The more parameters a model has, the better in-sample fit it can achieve. 

However, the overall variance of the model can suffer as a result, which implies 

that the out-of-sample performance of the model can become weaker. On the other 

hand, if we pick a rigid model, such as OLS, we introduce bias but reduce 

variance. To optimise the bias-variance trade-off, several information criteria 

have been developed, such as the AIC. One of the advantages of using AIC is that 

we can evaluate models of different dimensions without the need for out-of-

sample tests, such as cross-validation. This is advantageous because we can train 

our model on the full sample size.  

 𝐴𝐼𝐶 = 2𝑑 − 2ln (𝐿̂) 4.13 

Where 𝑑 is the number of estimated parameters in the model and 𝐿̂ is the 

maximum value of the likelihood function for the model. The lower the AIC 

value, the better the model is considered to fit the data. Therefore, the model with 

the lowest AIC is preferred. To account for non-parametric models, GAMLSS 

uses GAIC as a default information criterion. 
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 𝐺𝐴𝐼𝐶 = 𝑘 ∗ 𝑑𝑓 − 2ln (𝐿̂) 4.14 

Where 𝑘 is a penalty term. Setting k = log (n), where n is the number of 

observations, yields the Bayesian Information Criterion (BIC). Setting 𝑘 = 2 

yields the regular AIC, the default GAMLSS setting, and the one we use to 

evaluate our models. Similar to AIC, the model with the lowest GAIC score is 

preferred.  

Like the t-statistics mentioned in the previous section, the GAIC score will 

be off due to overlapping observations. Due to high autocorrelation, the log-

likelihood will be overestimated, providing an artificially better model fit in terms 

of information criteria. When computing the information criteria, we use the same 

adjustment as model estimates, dividing the log-likelihood by the correction term.  

 
𝐺𝐴𝐼𝐶𝑎𝑑𝑗. =  𝑘 ∗ 𝑑𝑓 −

2 ln(𝐿̂)

(1 +
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

2 )
 

4.15 

Where in our case, the overlap is equal to 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 − 1.  

 

4.6: Parameter Estimates and Risk Metrics  

We estimate the distribution parameters 𝑆𝑇3~(𝜇, 𝜎, 𝜈, 𝜏) , 𝑡~(𝜇, 𝜎, 𝜈), and 

𝑁~(𝜇, 𝜎) by maximum likelihood. The probability density functions of these 

distributions are available in closed form, and we can retrieve the PDF 

Pr[𝑎 ≤ 𝑋 ≤ 𝑏] = ∫ 𝑓𝑥(𝑥)𝑑𝑥
𝑎

𝑏
 based on the estimated parameters within the 

gamlss package. The PDF is used for simulation, from which the risk metrics can 

be computed empirically. The PDF can also be overlayed on the dataset’s 

histogram to visualise the estimated distribution’s fit. 

Value-at-Risk and Expected Shortfall 

We calculate the Value-at-Risk using the ‘qSST()’ function from the gamlss 

package, which computes the quantile function given specified distribution 

parameters. We are interested in the 1% Value-at-Risk, which means we compute 

the quantile of the loss distribution at the 1% level. 

 Lastly, to compute the Expected Shortfall, we use simulations. The 

expected shortfall is the expected loss given that Value-at-Risk is met or 

exceeded.  
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 𝐸[𝐿𝑜𝑠𝑠|𝐿𝑜𝑠𝑠 ≥ 𝑉𝑎𝑅𝛼] 4.16 

Based on the distribution parameters, we simulate random draws from the SST 

distribution using the ‘rSST()’ function from the gamlss package. Next, we 

compute the average loss from these simulations but only consider the values 

equal to or exceeding the Value-at-Risk. 

 

5. Results and Discussion 

5.1: Model Parameters 

In this section, we systematically evaluate the statistical models described in 

Chapter 4 using log covariates defined in Chapter 3. These models progressively 

increase in complexity by integrating more flexible distribution families with a 

greater number of distribution parameters. This procedure is similar to the one 

conducted by Giordani and Halling (2019) and allows us to evaluate the 

significance of the shape parameter. 

 

Table 5.1.1: Illustrates parameter estimates for different statistical models with various 

distribution assumptions for the 12-month cumulative excess return horizon. The t-statistics 

provided in parenthesis are adjusted for overlapping observations, and so is the GAIC reported 

below each model.  LVL, SLP, and CRV stand for level, slope, and curvature, respectively. 

 

LVL SLP CRV LVL SLP CRV LVL SLP CRV LVL SLP CRV

0,06 0,06 0,06 0,07 0,07 0,07 0,14 0,14 0,15 0,15 0,15 0,15

adj. t-stat (3,68) (3,75) (3,69) (4,66) (4,34) (4,32) (5,41) (5,30) (5,77) (5,76) (5,78) (5,76)

-0,02 0,04 0,02 -0,02 0,03 0,01 -0,01 0,02 0,00

adj. t-stat -(1,28) (2,52) (1,43) -(1,43) (2,19) (0,79) -(0,88) (1,47) (0,34)

-1,81 -1,82 -1,81 -2,03 -1,99 -2,00 -2,13 -2,10 -2,12 -2,14 -2,13 -2,11

adj. t-stat -(27,98) -(28,28) -(28,01) -(15,69) -(16,64) -(14,95) -(15,78) -(15,68) -(15,27) -(15,86) -(16,50) -(15,58)

-0,40 -0,39 -0,42 -0,42 -0,41 -0,42

adj. t-stat -(2,92) -(2,86) -(3,12) -(3,09) -(3,05) -(3,13)

-0,07 0,14 0,08

adj. t-stat -(1,16) (2,36) (1,45)

1,64 1,93 1,78 1,76 1,92 1,80 1,74 1,91 1,95

adj. t-stat (2,91) (2,83) (2,65) (2,94) (2,83) (2,84) (3,03) (2,97) (2,75)

GAIC: 86,91-    91,46-    87,29-    90,04-    92,76-    88,62-    98,34-    99,72-    97,66-    98,92-    103,12- 99,58-    

Constant-Skew-T Conditional-Skew-TNormal Symmetric-T

𝛽0,𝜇

𝛽0,𝜎

𝛽0,𝜈

𝛽0,𝜏

𝛽1,𝜈

𝛽1,𝜇

LVL SLP CRV LVL SLP CRV LVL SLP CRV LVL SLP CRV

0,03 0,03 0,03 0,03 0,03 0,04 0,06 0,07 0,07 0,07 0,07 0,07

adj. t-stat (3,57) (3,59) (3,55) (5,01) (4,90) (4,94) (4,73) (4,86) (5,18) (5,15) (5,22) (5,19)

-0,01 0,02 0,00 -0,02 0,02 0,00 -0,01 0,01 0,00

adj. t-stat -(1,63) (2,04) (0,10) -(2,35) (2,26) -(0,07) -(1,72) (1,93) -(0,11)

-2,15 -2,15 -2,14 -2,40 -2,37 -2,37 -2,41 -2,39 -2,39 -2,41 -2,41 -2,39

adj. t-stat -(47,16) -(47,22) -(47,04) -(28,63) -(29,84) -(28,60) -(28,35) -(29,16) -(28,24) -(28,27) -(28,86) -(28,38)

-0,22 -0,24 -0,25 -0,24 -0,24 -0,25

adj. t-stat -(2,45) -(2,65) -(2,88) -(2,79) -(2,81) -(2,89)

-0,05 0,08 0,01

adj. t-stat -(1,24) (1,96) (0,30)

1,58 1,69 1,67 1,69 1,80 1,79 1,73 1,74 1,80

adj. t-stat (4,69) (4,81) (4,61) (4,45) (4,52) (4,35) (4,45) (4,55) (4,38)

GAIC: 345,31- 346,77- 342,68- 359,87- 359,61- 354,55- 364,07- 364,81- 361,18- 362,75- 365,10- 361,26- 

Normal Symmetric-T Constant-Skew-T Conditional-Skew-T

𝛽0,𝜇

𝛽0,𝜎

𝛽0,𝜈

𝛽0,𝜏

𝛽1,𝜈

𝛽1,𝜇



GRA 19703  

29 

Table 5.1.2: Illustrates parameter estimates for different statistical models with various 

distribution assumptions for the 6-month cumulative excess return horizon. The t-statistics 

provided in parenthesis are adjusted for overlapping observations, and so is the GAIC reported 

below each model.  LVL, SLP, and CRV stand for level, slope, and curvature, respectively. 

The benchmark model, Normal, is fitted using a normal distribution, where the 

mean is modelled as a function of individual yield curve factors, and the standard 

deviation is fixed. This model is equivalent to the OLS model in section 3.5, and 

the beta estimates from both models are identical. Looking at the slope factor, we 

can observe that a one standard deviation increase in SLP corresponds to an 

increase in 12-month (6-month) expected excess returns of 3.71% (1.53%). 

Next, we expand our model using the Student’s t-distribution, creating the 

Symmetric-T model. Since the Student’s t-distribution is symmetric, the 𝛽0,𝜇 and 

𝛽1,𝜇 estimates predict the mean of the return distribution. We can observe that the 

fit, measured by the adjusted GAIC, increases for all covariates compared to the 

Normal model. For the Symmetric-T model, the slope factor is still statistically 

significant in predicting the mode (mean). However, when allowing the residuals 

to follow fat-tailed distribution, the impact of a one standard deviation increase in 

SLP decreases to 3.25% for the 12-month time horizon but increases from 1.53% 

to 1.60% for the 6-month time horizon. 

 Constant-Skew-T extends the symmetric Student’s t-distribution by 

including a skewness parameter. As indicated by the GAIC, allowing the 

distribution to capture asymmetry results in an improved fit for all covariates 

compared to the Symmetric-T model. The intercept 𝛽0,𝜈 implies negatively 

skewed distributions for all three covariates (-0.4 for LVL, -0.39 for SLP, and -

0.42 for CRV for the 12-month time horizon). However, the mode estimate 𝛽1,𝜇 

becomes less pronounced and more uncertain, as demonstrated by the decreasing 

t-statistic for both holding periods.  

 Lastly, the Conditional-Skew-T model introduces a time-varying shape 

estimate 𝛽1,𝜈 while keeping all other parameters constant and freely estimated. 

Compared to the Constant-Skew-T, this improves the model fit, as shown by 

decreasing values of GAIC for all covariates. Tables 5.1.1 and 5.1.2 show that 

SLP yields the highest estimates with the largest t-statistics for both time horizons. 

Conditioning SLP, we find positive shape estimates 𝛽1,𝜈 of 0,14 (0,08) for a 12-

month holding period (6-month), with t-statistics above 1,96. A positive value for 
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𝛽1,𝜈 indicates that as the SLP increases, the distribution becomes more positively 

skewed. 

Motivated by the results of the slope covariate, we conduct a robustness 

check for different holding periods using the Conditional-Skew-T model. Table 

5.1.3 presents 𝛽1,𝜈 estimates across holding periods between 1 and 24 months for 

all covariates. Examining the results, we observe that the slope covariate has the 

largest effect on the time-varying shape parameter 𝛽1,𝜈 compared to level and 

curvature covariates. The slope delivers both consistently higher 𝛽1,𝜈 estimates 

compared to other covariates, and the t-statistics are consistently above 1,96. 

Interestingly, for the slope covariate, the positive skewness increases with the 

holding period. As for the level and curvature factors, the estimates are small and 

not significant.  

 

Table 5.1.3: Provides beta estimates for the shape parameter, 𝛽1,𝜈, for various timeframes of 

cumulative returns, ranging from 1-month cumulative returns to 24-month cumulative returns. 

In summary, we can conclude from Table 5.1.1 and Table 5.1.2 that the 

Conditional-Skew-T yields the lowest GAIC score. This means that compared to 

other models, the model with the time-varying asymmetry best describes the 

cumulative log returns at the 12-month and 6-month horizon. This finding 

provides evidence of time-varying asymmetry in the returns. The main takeaway 

from the results in Tables 5.1.1 and 5.1.2 is that the distribution becomes more 

positively skewed when the slope of the yield curve is increasingly more upward 

sloping. This is captured by 𝛽1,𝜈 > 0 for all time frames. 

Furthermore, Table 5.1.3 shows that the slope factor provides consistent 

statistically significant estimates of the time-varying shape parameter 𝛽1,𝜈. In 

contrast, the other yield curve factors are typically not significant at a 90% 

confidence level, with only the level factor providing significant results at a 1-

month holding period. Given the results in this section, we further conclude 

analysis only using the SLP covariate.  

Level Slope Curvature Level Slope Curvature

Conditional-Skew-T

-0,04 0,06 0,01 -0,06 0,11 0,06

t-stat -(2,20) (3,18) (0,62) -(1,23) (2,22) (1,16)1M 9M

-0,05 0,07 0,01 -0,07 0,14 0,08

t-stat -(1,53) (2,41) (0,25) -(1,16) (2,36) (1,45)3M
12M

-0,05 0,08 0,01 -0,12 0,17 0,05

t-stat -(1,24) (1,96) (0,30) -(1,27) (1,97) (0,65)6M
24M

𝛽1,𝜈

𝛽1,𝜈

𝛽1,𝜈
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5.2: Predictive Distributions and Risk Return Dynamics 

In the previous section, we examined the parameter estimates provided by our 

model and the implications of changes in yield curve factors on the return 

distribution. Here we present our principal findings of the thesis, particularly the 

predictive distributions of cumulative excess returns conditional on the slope and 

its implications for risk metrics. We explore the magnitude of the impact on the 

return distribution and the corresponding risk-return dynamics when high and low 

SLP readings are compared. Specifically, we focus on the predictive distribution 

conditional on SLP being two standard deviations from the mean. Tables 5.2.1, 

5.2.4, 5.2.5, and 5.2.6 present the mean, mode, standard deviation, shape (only 

applies to Constant-Skew-T and Conditional-Skew-T), 1% Value-at-Risk (VaR), 

and 1% Expected Shortfall (ES) implied by the four models estimates presented in 

Section 5.1. Furthermore, Figure 5.2.2 and Figure 5.2.3 visualises the shifts in the 

distribution’s conditional on the slope for the 12- and 6-month cumulative return 

period. 

Predictive Distribution of Conditional-Skew-T 

 

Table 5.2.1: This table describes the key statistics from our conditional excess return distributions 

based on the Conditional-Skew-T model for the 12- and 6-month horizon. The table provides the 

mean, mode, standard deviation (St.Dev), the shape (skewness), the 1% Value-at-Risk, and the 1% 

Expected Shortfall. These statistics are reported for low values (2 standard deviations below the 

mean) and high values (2 standard deviations above the mean). All variables are reported in log. 

The mode, representing the most probable return of the distribution, is identical 

for high and low values as it is constructed to be fixed. However, if we compare it 

to the expected returns (mean), we observe that our model implies different 

measures when comparing low and high readings of SLP. While low SLP readings 

imply negative expected returns for both time frames (-1.47% for 12 months and -

0.23% for 6 months), compared to positive expected returns when SLP is high 

(12.03% for 12 months and 5.58% for 6 months). The same observation can be 

made for the volatility (St.Dev), in that it decreases for high SLP (14.36% for 12 

months and 11.23% for 6 months) compared to low SLP (19.70% for 12 months 

Mean Mode St.Dev Shape 1% VaR 1% ES

Conditional-Skew-T 

Low Values -1,47 % 14,63 % 19,70 % 0,50 -65,19 % -84,22 %

High Values 12,03 % 14,63 % 14,36 % 0,89 -27,05 % -37,80 %12M

Low Values -0,23 % 6,87 % 12,73 % 0,66 -40,14 % -52,91 %

High Values 5,58 % 6,87 % 11,23 % 0,92 -24,76 % -33,93 %6M
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and 12.73% for 6 months).  Both are characteristics favoured by investors. 

However, given how this model is constructed, these changes arise because of 

changes in the shape parameter.  

 As our primary interest lies in the shape of the distribution, further insights 

can be obtained by examining the shape metric, 0 < 𝜈𝑡 <  ∞, which indicates the 

asymmetry of the distribution. This metric has an intuitive interpretation, in which 

𝜈 = 1 corresponds to a perfectly symmetric distribution, and a decrease in this 

value indicates increasing negative skewness. In Table 5.2.1, Figure 5.2.2, and 

Figure 5.2.3, we can observe that the distribution tends to become substantially 

more negatively skewed for low SLP readings. Interestingly, the return 

distribution nears symmetry when these values are high, as suggested by the shape 

parameter approaching the value of one and the mean converging with the mode. 

This means that the most probable outcome will be very close to the expected 

return. 

 

Figure 5.2.2: 12M - The figure depicts the Conditional-Skew-T model’s implied 12-month excess 

return conditional on SLP. Top graph is implied excess returns conditional on high SLP (2 

standard deviations above the mean). Bottom graph is implied excess returns conditional on low 

SLP (2 standard deviations below the mean). Predictive distribution plots for the Normal, 

Symmetric-T, and Constant-Skew-T are provided in figures A.5.7 – A.5.9 in the appendix. 
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Figure 5.2.3: 6M - The figure depicts the Conditional-Skew-T model’s implied 6-month excess 

return conditional on SLP. Top graph is implied excess returns conditional on high SLP (2 

standard deviations above the mean). Bottom graph is implied excess returns conditional on low 

SLP (2 standard deviations below the mean). Predictive distribution plots for the Normal, 

Symmetric-T, and Constant-Skew-T are provided in figures A.5.10 – A.5.12 in the appendix. 

Risk Return Dynamics and Comparison with the Normal Distribution 

Accurately defining the return distribution is particularly important when dealing 

with risk metrics. To illustrate the significance of this point, we compare the 

predictive distributions derived from the Conditional-Skew-T and the normal 

distribution. Two key factors drive our decision to compare the Conditional-

Skew-T with the normal distribution: firstly, it allows us to underscore the 

considerable underestimations in risk metrics that arise from misspecification of 

the distribution; secondly, it highlights a common pitfall in predictive modelling – 

namely, the unwarranted reliance on the normal distribution for financial time 

series data which in fact, does not conform to a normal. 

 

Mean Mode St.Dev 1% VaR 1% ES

Normal

Low Values -1,89 % -1,89 % 16 % -39,40 % -44,84 %

High Values 12,97 % 12,97 % 16 % -24,54 % -29,94 %12M

Low Values -0,36 % -0,36 % 12 % -27,45 % -31,38 %

High Values 5,73 % 5,73 % 12 % -21,36 % -25,26 %6M
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Table 5.2.4: This table describes the key statistics from our conditional excess return distributions 

based on the Normal model for the 12- and 6-month horizon. The table provides the mean, mode, 

standard deviation (St.Dev), the 1% Value-at-Risk, and the 1% Expected Shortfall. These statistics 

are reported for low values (2 standard deviations below the mean) and high values (2 standard 

deviations above the mean). All variables are reported in log. 

Risk metrics derived from a symmetric, normal distribution (such as standard 

deviation, 1% VaR, 1% ES) are significantly underestimated compared to 

Conditional-Skew-T metrics that account for larger-than-normal tails and 

asymmetry. For instance, considering the 1% VaR for the 12-month cumulative 

returns when SLP is low, the Normal model projects a 1% probability of a -

39.40% loss (-32.57% in arithmetic returns). However, with a more flexible 

distributional assumption, this potential loss surges to -65.19% (-47.89% in 

arithmetic returns). The discrepancy becomes even more pronounced when 

considering the 1% ES. 

Risk-Return Dynamics and t-Distributions 

We compare the Symmetric-Skew-T and Constant-Skew-T with the Conditional-

Skew-T model to address the nuances in risk-return dynamics. Across all models, 

we observe that expected returns are considerably higher when SLP is high than 

when it is low. Also, the expected returns are similar across all models, including 

the Normal model.  

From Tables 5.2.5 and 5.2.6 we observe that for high SLP readings the 1% 

ES is -37.80% for the Conditional-Skew-T model, compared to -54.95% for the 

Constant-Skew-T model. For low slope readings, the 1% ES is at -84.22% for the 

Conditional-Skew-T model, compared to -62.84% for the Constant-Skew-T 

model. 

         These results align with the findings of Giordani & Halling (2019), that used 

a similar approach when predicting return distributions conditional on the CAPE 

valuation metric. Specifically, for higher slope values, both the Symmetric-Skew-

T and Constant-Skew-T models tend to overestimate risk metrics such as standard 

deviation, VaR, and ES while underestimating them for lower slope readings. 

These findings highlight that selecting the appropriate distributional assumption is 

key to accurately capturing financial markets’ risk and return dynamics and has 

economically significant implications for risk management. 
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Table 5.2.5: This table describes the key statistics from our conditional excess return distributions 

based on the Symmetric-T model for the 12- and 6-month horizon. The table provides the mean, 

mode, standard deviation (St.Dev), the shape (skewness), the 1% Value-at-Risk, and the 1% 

Expected Shortfall. These statistics are reported for low values (2 standard deviations below the 

mean), and high values (2 standard deviations above the mean). All variables are reported in log. 

 

Table 5.2.6: This table describes the key statistics from our conditional excess return distributions 

based on the Constant-Skew-T model for the 12- and 6-month horizon. The table provides the 

mean, mode, standard deviation (St.Dev), the shape (skewness), the 1% Value-at-Risk, and the 1% 

Expected Shortfall. These statistics are reported for low values (2 standard deviations below the 

mean), and high values (2 standard deviations above the mean). All variables are reported in log. 

 

5.3: Predictive Distributions for Pre- and Post-1985 

In this section, we focus on the recent findings of Estrella et al. (2003), which 

suggest that the predictive power of the slope for output growth in the US has 

diminished after the mid-1980s. However, in our thesis, we aim to investigate 

whether the predictive power is also diminished for the shape of the return 

distribution in US equity markets. As concluded in the previous sections, we 

provide evidence that the Conditional-Skew-T model best describes the returns in 

our dataset. Additionally, among the yield curve factors examined, the slope 

factor exhibited the highest level of robustness.  

To test the hypothesis regarding the diminished predictive power of the 

slope, we divided the sample into pre-1985 and post-1985 subsamples, as outlined 

in Chapter 3.3. For each sub-sample, we estimate the Conditional-Skew-T model 

and run the predictive distribution on the estimated parameters to grasp any 

changes in the risk-return characteristics between the two periods. However, since 

the pre-1985 sample is about half the sample size of the post-1985 sample, the 

Mean Mode St.Dev 1% VaR 1% ES

Symmetric-T

Low Values 0,19 % 0,19 % 16 % -41,02 % -51,37 %

High Values 13,23 % 13,23 % 16 % -27,98 % -38,66 %12M

Low Values 0,26 % 0,26 % 12 % -30,09 % -38,96 %

High Values 6,64 % 6,64 % 12 % -23,72 % -32,92 %6M

Mean Mode St.Dev Shape 1% VaR 1% ES

Constant-Skew-T

Low Values 1,11 % 9,99 % 16 % 0,68 -48,65 % -62,84 %

High Values 9,56 % 18,34 % 16 % 0,68 -40,30 % -54,95 %12M

Low Values -0,14 % 3,95 % 12 % 0,79 -34,19 % -44,24 %

High Values 5,49 % 9,51 % 12 % 0,79 -28,63 % -39,03 %6M
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estimates are less reliable for the former.  Additionally, the variance in our 

explanatory variable is smaller in the post-1985 sample (1.2806) compared to the 

pre-1985 sample (1.5726), which also reduces statistical precision. 

 

Table 5.3.1: Illustrates parameter estimates for the Conditional-Skew-T for 6-month and 12-month 

cumulative excess return horizon when estimated on pre-1985 and post-1985 sub-samples. The t-

statistics provided in parenthesis are adjusted for overlapping observations.  

Table 5.3.1 shows that the 𝛽1,𝜈 coefficients become much smaller in the post-1985 

sample compared to the pre-1985 sample for both holding periods. While the 𝛽1,𝜈 

estimate almost halves for the 12-month holding period (0,18 to 0,08), the change 

is more pronounced for the 6-month holding period, where the estimate decrease 

from 0,14 to 0,02. In addition, the t-statistics for both holding periods fall below 

the 90% significance level in the post-1985 sample. This provides evidence, in 

line with related literature, that the predictive power of the slope as a predictor for 

stock returns has diminished since mid-1985. 

The predictive distribution of the pre-1985 sample illustrated in Table 

5.3.2 shows large discrepancies in the risk-return characteristics between high and 

low slope values. The mean changes from negative (-6,56% for 12-month and -

4,23% for 6-month) to positive (11,11% for 12-month and 6,32% for 6-month) for 

both holding periods. Similarly, the standard deviation decreases for high SLP 

readings for both holding periods, signalling more favourable risk-return 

characteristics for investors. Interestingly, the skewness of the distribution turns 

positive for high slope values with the shape parameter 𝑣 > 1. As expected, the 

VaR and ES values become much smaller for high slope values than under 

conditions with low or negative term spreads 

Conditional-Skew-T Pre-1985 Post-1985 Pre-1985 Post-1985

0,10 0,17 0,02 0,08

adj. t-stat (4,56) (6,04) (0,90) (5,43)

-1,93 -2,26 -2,21 -2,55

adj. t-stat -(17,54) -(12,95) -(17,49) -(23,20)

-0,29 -0,45 -0,07 -0,29

adj. t-stat -(3,03) -(2,62) -(0,48) -(2,52)

0,18 0,08 0,14 0,02

adj. t-stat (2,36) (1,02) (2,21) (0,31)

58,50 1,44 3,02 1,43

adj. t-stat (38665710,99) (2,55) (1,50) (3,78)

12 months 6 months

𝛽0,𝜇

𝛽0,𝜎

𝛽0,𝜈

𝛽0,𝜏

𝛽1,𝜈
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Table 5.3.2: This table describes the key statistics from our conditional excess return distributions 

based on the Conditional-Skew-T model for the 12- and 6-month horizon for the pre-1985 sub-

sample. The table provides the mean, mode, standard deviation (St.Dev), the 1% Value-at-Risk, 

and the 1% Expected Shortfall. These statistics are reported for low values (2 standard deviations 

below the mean) and high values (2 standard deviations above the mean). All variables are 

reported in log. 

A drastic change in the predictive distribution can be observed in the post-1985 

sub-sample in Table 5.3.3. Though the discrepancies are still economically 

significant for the 12-month holding period, the 6-month holding period displays 

the minimal change between high and low slope readings. While the shape 

parameter changes from 0,54 to 0,75 for the 12-month holding period, it remains 

almost unchanged for the 6-month holding period. Although SLP values indicate 

larger discrepancies for the 12-month holding period, the slope no longer seems to 

predict stock market contraction (negative cumulative expected returns) as it did 

for the full sample in Table 5.2.1 and the pre-1985 sample in Table 5.3.2. 

 

Table 5.3.3: This table describes the key statistics from our conditional excess return distributions 

based on the Conditional-Skew-T model for the 12- and 6-month horizon for the post-1985 sub-

sample. The table provides the mean, mode, standard deviation (St.Dev), the 1% Value-at-Risk, 

and the 1% Expected Shortfall. These statistics are reported for low values (2 standard deviations 

below the mean) and high values (2 standard deviations above the mean). All variables are 

reported in log. 

 

5.4: International Evidence   

As additional evidence to ensure the robustness of our findings, we conduct the 

analysis on international data. Specifically, we use data from the UK, France, 

Australia, and Germany. For each country, we construct the slope using the log 

yield of the 10-year and 2-year government bonds.  

Mean Mode St.Dev Shape 1% VaR 1% ES

Conditional-Skew-T 

Pre-1985

Low Values -6,56 % 9,53 % 18,82 % 0,52 -59,21 % -67,98 %

High Values 11,11 % 9,53 % 14,54 % 1,07 -21,55 % -26,15 %12M

Low Values -4,23 % 2,37 % 12,62 % 0,70 -39,05 % -45,78 %

High Values 6,32 % 2,37 % 11,98 % 1,24 -18,99 % -22,97 %6M

Mean Mode St.Dev Shape 1% VaR 1% ES

Conditional-Skew-T 

Post-1985

Low Values 3,18 % 16,76 % 19,34 % 0,54 -63,16 % -90,64 %

High Values 10,88 % 16,76 % 15,55 % 0,75 -37,39 % -57,21 %12M

Low Values 3,09 % 8,32 % 11,87 % 0,72 -34,78 % -49,85 %

High Values 4,28 % 8,32 % 11,59 % 0,77 -31,31 % -45,90 %6M
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 𝑆𝐿𝑃(𝐼𝑁𝑇) = ln(𝑦10𝑦𝑟 − 𝑦2𝑦𝑟) 5.1 

The slope construction deviates from the main analysis due to data availability in 

international markets. To control for this change, we also include the US market, 

with the slope constructed the same way as other international markets. For equity 

returns, we use the total return index in each country, commencing 29th of May 

1992, to have comparable lengths for all markets. The appendix in Tables A.5.1 – 

A.5.6 includes a complete overview of model estimates. 

 

Table 5.4.1: This table describes the shape parameter 𝛽1,𝜈 and its t-statistics estimated by the 

Conditional-Skew-T. The t-statistics are adjusted for overlapping observations. The shape 

parameter is estimated on total return indexes in different international markets for 12-month and 

6-month holding periods. 

Our analysis in Chapter 5.3 reveals evidence of limited predictive performance for 

the slope in US markets for the post-1985 subsample. This is in line with the 

findings in Table 5.4.1, namely that the slope has limited predictive accuracy for 

the post-1992 sample. However, the results suggest that the slope remains relevant 

for predicting the distribution shape in other developed markets post-1992. 

Furthermore, 𝛽1,𝜈 estimates are always positive. This confirms that the 

slope of the yield curve and the skewness of cumulative equity returns are 

positively related. Interestingly, all markets in the sample show a much higher 

slope estimate than the US market, with the German market displaying the most 

pronounced effect of 0,27 for a 12-month holding period, compared to only 0,08 

for the US market. The t-statistics in non-US markets are all above 2 for the 12-

month holding period, compared to only 0,81 for the US market, displaying a 

higher level of coefficient estimate certainty in non-US developed markets. 

Table 5.4.2. and Table 5.4.3 confirms that the Conditional-Skew-T model 

is supported in the data for all non-US markets in the sample. This is illustrated by 

the Conditional-Skew-T model having a lower GAIC score compared to the 

Constant-Skew-T and Symmetric-T models. However, for the US, the Constant-

Skew-T provides a lower GAIC than the Conditional-Skew-T for the 6-month 

holding period.  

Conditional-Skew-T US UK DE AUS FR

0,08 0,20 0,27 0,16 0,20

adj. t-stat (0,81) (2,33) (2,86) (2,00) (2,48)12
M

0,05 0,12 0,23 0,09 0,19

adj. t-stat (0,80) (1,91) (3,43) (1,51) (2,98)6M

𝛽1,𝜈

𝛽1,𝜈



GRA 19703  

39 

 

Table 5.4.2: This table lists the GAIC values for the Conditional-Skew-T, Constant-Skew-T and 

Symmetric-T models. Models are estimated on total return indexes in different international 

markets for the 12-month holding period. The GAIC is adjusted for overlapping observations. 

 

Table 5.4.3: This table lists the GAIC values for the Conditional-Skew-T, Constant-Skew-T and 

Symmetric-T models. Models are estimated on total return indexes in different international 

markets for the 6-month holding period. The GAIC is adjusted for overlapping observations. 

In summary, we discovered evidence from the sample of international developed 

markets that contradicts the primary findings for the US market in the post-1985 

sample. The slope covariate demonstrates stronger in-sample predictive power for 

the shape of equity returns in international markets, with a coefficient of at least 

0,16 and a t-statistics equal to or above 2.0 for the 12-month holding period. 

Additionally, as documented by the GAIC score, our findings suggests that the 

Conditional-Skew-T model, with its time-varying shape, provides a better fit to 

the data for non-US markets compared to the other models. 

 

5.5: Limitations and Assumptions  

It is important to acknowledge the limitations and assumptions inherent in the 

analysis. Firstly, while there may be other variables, or combinations of variables, 

that could offer a better fit for the data, this study focuses on understanding how 

the return distribution changes based on level, slope, and curvature readings 

individually. Therefore, the decision to include these variables in the analysis is 

driven by the research objectives and not by the goal of constructing the best-

fitting model. 

Lastly, it is worth noting that the entire analysis is conducted solely on in-

sample data. This means the findings and conclusions are based solely on the 

observed data used for analysis. Extrapolating these results to out-of-sample or 

future data should be done with caution, as the model’s performance and 

assumptions might be less effective when applied to new or unseen data. 

GAIC 12M US UK DE AUS FR

Conditional-Skew-T -43,52 63,52-      16,54-      64,53-      20,82-      

Constant-Skew-T -42,91 60,52-      13,68-      61,41-      17,98-      

Symmetric-T -39,33 57,53-      11,84-      60,75-      17,06-      

GAIC 6M US UK DE AUS FR

Conditional-Skew-T -193,20 223,07-   121,85-   219,29-   144,21-   

Constant-Skew-T -193,32 221,29-   115,57-   217,20-   138,89-   

Symmetric-T -189,95 217,77-   113,74-   214,74-   136,06-   
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Including out-of-sample testing and validation would provide a more robust 

assessment of the model’s predictive capabilities. However, since the objective is 

not to construct a model for the best fit but to explore the general dynamics of the 

return distribution in relation to changing yield curve factors, the emphasis on out-

of-sample analysis is relatively less important. While out-of-sample analysis 

would be crucial for accurate forecasting, in this context, the focus is on 

understanding the broader patterns and relationships between the yield curve 

factors and the changing dynamics of the return distribution. 

 

6. Conclusion 

In this paper, we investigated yield curve factors’ efficacy in predicting the 

distribution of cumulative 12-month and 6-month total log returns in the 

aggregate US market and other developed markets. Our key results indicate that 

the slope of the yield curve is the most influential factor affecting the shape of the 

return distribution, compared to other factors such as level and curvature. 

Specifically, as the slope becomes increasingly upward-sloping, the return 

distribution approaches symmetry, while a lower slope leads to the distribution 

becoming more negatively skewed.  

However, as depicted in the literature, the significance of using the slope 

to forecast output growth has diminished after the mid-1980s, and we find a 

similar reduction in the slope’s efficacy in forecasting the shape of US equity 

return distribution. Despite the reduced effect of the slope in US markets post-

mid-1980s, we find evidence that the slope is still useful for predicting the shape 

of the distribution in some other developed markets. Specifically in the UK, 

Germany, France, and Australia, the effect seems to persist. 

 While existing literature emphasises the prediction of expected returns, we 

focus on the importance of accurately describing the shape of the distribution for 

risk management purposes. To highlight this importance, we derive risk metrics, 

such as Value-at-Risk and Expected Shortfall and compare them across several 

models with different distributional assumptions. Compared to a model which 

allows for time-varying asymmetry, we find that using a normal distribution, a 

symmetric distribution, or one with constant skewness drastically underestimated 

the risk metrics when the yield curve is flat or downward sloping and 

overestimated them when it was upward sloping. 
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By moving beyond traditional mean-based models, such as the OLS, we 

provided a more comprehensive understanding of how changes in yield curve 

factors influence the shape of the distribution of cumulative equity excess returns. 

By incorporating GAMLSS, a novel framework for modelling non-normality and 

asymmetry, we contribute to existing literature and offer a fresh perspective on 

flexible distribution modelling of financial return series. 

  



GRA 19703  

42 

7. References 

Albuquerque, R. (2012). Skewness in Stock Returns: Reconciling the Evidence on 

Firm Versus Aggregate Returns. The Review of Financial Studies, 25(5), 1630–

1673. http://www.jstor.org/stable/41485537 

Ang A. (2014). Asset management a systematic approach to factor investing. 

Oxford University Press. 

https://doi.org/10.1093/acprof:oso/9780199959327.001.0001 

Ang, A., Piazzesi, M., Wei, M. (2006). What does the yield curve tell us about 

GDP growth?. Journal of Econometrics, 131(1–2), 359-403. 

https://doi.org/10.1016/j.jeconom.2005.01.032 

Bernanke, B. S., & Gertler, M. (1995). Inside the Black Box: The Credit Channel 

of Monetary Policy Transmission. The Journal of Economic Perspectives, 9(4), 

27–48. http://www.jstor.org/stable/2138389 

Brooks, C. (2019). Introductory Econometrics for Finance (4th ed.). Cambridge: 

Cambridge University Press. doi:10.1017/9781108524872 

Brunnermeier M. K., & Pedersen, L. H. (2009). Market Liquidity and Funding 

Liquidity. The Review of Financial Studies, 22(6), 2201–2238. 

https://doi.org/10.1093/rfs/hhn098 

Campbell, J.Y. (1987). Stock returns and the term structure. Journal of Financial 

Economics, 18(2), 373-399. https://doi.org/10.1016/0304-405X(87)90045-6 

Cenesizoglu, T., & Timmermann, A. (2008). Is the Distribution of Stock Returns 

Predictable? Available at SSRN: https://ssrn.com/abstract=1107185 

Chava, S., Purnanandam, A. (2011). The effect of banking crisis on bank-

dependent borrowers. Journal of Financial Economics, 99(1), 116-135. 

https://doi.org/10.1016/j.jfineco.2010.08.006 

Chava, S.,Gallmeyer, M. F., Park, H. (2015). Credit Conditions and Stock Return 

Predictability. Journal of Monetary Economics, 74, 117-132. 

http://dx.doi.org/10.2139/ssrn.1571958 

 

http://www.jstor.org/stable/41485537
https://doi.org/10.1093/acprof:oso/9780199959327.001.0001
https://doi.org/10.1016/j.jeconom.2005.01.032
http://www.jstor.org/stable/2138389
https://doi.org/10.1093/rfs/hhn098
https://doi.org/10.1016/0304-405X(87)90045-6
https://ssrn.com/abstract=1107185
https://doi.org/10.1016/j.jfineco.2010.08.006
http://dx.doi.org/10.2139/ssrn.1571958


GRA 19703  

43 

Chen, N.-F. (1991). Financial Investment Opportunities and the Macroeconomy. 

The Journal of Finance, 46(2), 529–554. https://doi.org/10.2307/2328835 

Cochrane, J. H., Piazzesi., M. (2005). Bond Risk Premia. American Economic 

Review, 95(1), 138-160. 

https://www.aeaweb.org/articles?id=10.1257/0002828053828581 

D’Agostino, A., Giannone, D., and Surico, P. (2006). (Un)Predictability and 

Macroeconomic Stability. ECB Working Paper No. 605. 

http://dx.doi.org/10.2139/ssrn.890990 

Dotsey, M. (1998). The Predictive Content of the Interest Rate Term Spread for 

Future Economic Growth. FRB Richmond Economic Quarterly, 84(3), 31-51. 

https://ssrn.com/abstract=2126284 

Estrella, A. (2005). Why Does the Yield Curve Predict Output and Inflation?. The 

Economic Journal, 115(505), 722-744. https://doi.org/10.1111/j.1468-

0297.2005.01017.x 

Estrella, A., Rodrigues, A. R., & Schich, S. (2003). How Stable Is the Predictive 

Power of the Yield Curve? Evidence from Germany and the United States. The 

Review of Economics and Statistics, 85(3), 629–644. 

http://www.jstor.org/stable/3211702 

Fama, E. F. (1965). The Behavior of Stock-Market Prices. The Journal of 

Business, 38(1), 34–105. http://www.jstor.org/stable/2350752 

Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on 

stocks and bonds. Journal of Financial Economics, 25(1), 23-49. 

https://doi.org/10.1016/0304-405X(89)90095-0 

Fernandez, C., & Mark F. J. Steel. (1998). On Bayesian Modeling of Fat Tails and 

Skewness. Journal of the American Statistical Association, 93(441), 359–371. 

https://doi.org/10.2307/2669632 

Giordani, P., & Halling, M. (2019). Valuation Ratios and Shape Predictability in 

the Distribution of Stock Returns. Swedish House of Finance Research Paper No. 

17-5. https://ssrn.com/abstract=2887156 

 

https://doi.org/10.2307/2328835
https://www.aeaweb.org/articles?id=10.1257/0002828053828581
http://dx.doi.org/10.2139/ssrn.890990
https://ssrn.com/abstract=2126284
https://doi.org/10.1111/j.1468-0297.2005.01017.x
https://doi.org/10.1111/j.1468-0297.2005.01017.x
http://www.jstor.org/stable/3211702
http://www.jstor.org/stable/2350752
https://doi.org/10.1016/0304-405X(89)90095-0
https://doi.org/10.2307/2669632
https://ssrn.com/abstract=2887156


GRA 19703  

44 

Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. Statist. 

Sci. 1 (3) 297 – 310. https://doi.org/10.1214/ss/1177013604 

Ilmanen A. (2011). Expected returns: an investor’s guide to harvesting market 

rewards (1st ed.). John Wiley. 

Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal 

of Business, 36(4), 394–419. http://www.jstor.org/stable/2350970 

Mandelbrot, B., & Taylor, H. M. (1967). On the Distribution of Stock Price 

Differences. Operations Research, 15(6), 1057–1062. 

http://www.jstor.org/stable/168611 

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. 

Journal of the Royal Statistical Society, Series A (General), 135(3), 370–384. 

https://doi.org/10.2307/2344614 

Plosser, C. I., Rouwenhorst, K., G. (1994). International term structures and real 

economic growth. Journal of Monetary Economics, 33(1), 133-155. 

https://doi.org/10.1016/0304-3932(94)90017-5 

Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized Additive Models for 

Location, Scale and Shape. Journal of the Royal Statistical Society. Series C 

(Applied Statistics), 54(3), 507–554. http://www.jstor.org/stable/3592732 

Rigby, R.A., Stasinopoulos, M.D., Heller, G.Z., Voudouris, V., & De Bastiani, F. 

(2017). Flexible Regression and Smoothing: Using GAMLSS in R (1st ed.). 

Chapman and Hall/CRC. https://doi.org/10.1201/b21973 

Schwert, G. W. (1990). Stock Returns and Real Activity: A Century of Evidence. 

The Journal of Finance, 45(4), 1237–1257. https://doi.org/10.2307/2328722 

Veronesi, P. (2010). Fixed Income Securities: Valuation, Risk, and Risk 

Management (1st ed.). John Wiley. 

Welch, I., & Goyal, A. (2008). A Comprehensive Look at the Empirical 

Performance of Equity Premium Prediction. The Review of Financial Studies, 

21(4), 1455–1508. http://www.jstor.org/stable/40056859 

 

https://doi.org/10.1214/ss/1177013604
http://www.jstor.org/stable/2350970
http://www.jstor.org/stable/168611
https://doi.org/10.2307/2344614
https://doi.org/10.1016/0304-3932(94)90017-5
http://www.jstor.org/stable/3592732
https://doi.org/10.2307/2328722
http://www.jstor.org/stable/40056859


GRA 19703  

45 

8. Appendix 

 

Figure A.3.1: Scatter plots of standardised yield curve factors (x-axis) vs cumulative 6-month 

excess log returns (y-axis) with a fitted simple linear regression line. The top plot shows the 

standardised level vs returns, the middle plot shows the standardised slope vs returns, and the 

bottom plot shows the standardised curvature vs returns. 
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Figure A.3.2: Time series of standardised values of yield curve factors. A pre-1985 sample is 

used. The orange line depicts the standardised level factor, the purple line shows the standardised 

slope factor, and the green line highlights the standardised curvature factor. 

 

 
Figure A.3.3: Time series of standardised values of yield curve factors. A post-1985 is used. The 

orange line depicts the standardised level factor, the purple line shows the standardised slope 

factor, and the green line highlights the standardised curvature factor. 
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Figure A.3.4: This figure presents histograms of the standardised level, slope, and curvature 

factors for the pre-1985 sample. Each histogram visually illustrates the distribution of its 

respective yield curve factor. 

 
Figure A.3.5: This figure presents histograms of the standardised level, slope, and curvature 

factors for the post-1985 sample. Each histogram visually illustrates the distribution of its 

respective yield curve factor. 
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Table A.5.1: Illustrates parameter estimates for various international markets using the 

Conditional-Skew-T model for the 12-month holding period. The t-statistics provided in 

parenthesis are adjusted for overlapping observations. 

 

Table A.5.2: Illustrates parameter estimates for various international markets using the 

Conditional-Skew-T model for the 6-month holding period. The t-statistics provided in parenthesis 

are adjusted for overlapping observations. 

 

Table A.5.3: Illustrates parameter estimates for various international markets using the Constant-

Skew-T model for the 12-month holding period. The t-statistics provided in parenthesis are 

adjusted for overlapping observations. 
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Table A.5.4: Illustrates parameter estimates for various international markets using the Constant-

Skew-T model for the 6-month holding period. The t-statistics provided in parenthesis are adjusted 

for overlapping observations. 

 

Table A.5.5: Illustrates parameter estimates for various international markets using the 

Symmetric-T model for the 12-month holding period. The t-statistics provided in parenthesis are 

adjusted for overlapping observations. 

 

Table A.5.6: Illustrates parameter estimates for various international markets using the 

Symmetric-T model for the 6-month holding period. The t-statistics provided in parenthesis are 

adjusted for overlapping observations. 

 

 

 

 

 



GRA 19703  

50 

 

Figure A.5.7: 12M - The figure depicts the Normal model’s implied 12-month excess return 

conditional on the slope factor. The top graph is implied excess returns conditional on high (2 

standard deviations above the mean) slope readings, whereas the bottom graph are implied excess 

returns conditional on low (2 standard deviations below the mean) slope readings. 

 

Figure A.5.8: 12M - The figure depicts the Symmetric-T model’s implied 12-month excess return 

conditional on the slope factor. The top graph is implied excess returns conditional on high (2 

standard deviations above the mean) slope readings, whereas the bottom graph are implied excess 

returns conditional on low (2 standard deviations below the mean) slope readings. 
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Figure A.5.9: 12M - The figure depicts the Constant-Skew-T model’s implied 12-month excess 

return conditional on the slope factor. The top graph is implied excess returns conditional on high 

(2 standard deviations above the mean) slope readings, whereas the bottom graph are implied 

excess returns conditional on low (2 standard deviations below the mean) slope readings. 

 

Figure A.5.10: 6M - The figure depicts the Normal model’s implied 6-month excess return 

conditional on the slope factor. The top graph is implied excess returns conditional on high (2 

standard deviations above the mean) slope readings, whereas the bottom graph are implied excess 

returns conditional on low (2 standard deviations below the mean) slope readings. 
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Figure A.5.11: 6M - The figure depicts the Symmetric-T model’s implied 6-month excess return 

conditional on the slope factor. The top graph is implied excess returns conditional on high (2 

standard deviations above the mean) slope readings, whereas the bottom graph are implied excess 

returns conditional on low (2 standard deviations below the mean) slope readings. 

 

Figure A.5.12: 6M - The figure depicts the Constant-Skew-T model’s implied 6-month excess 

return conditional on the slope factor. The top graph is implied excess returns conditional on high 

(2 standard deviations above the mean) slope readings, whereas the bottom graph are implied 

excess returns conditional on low (2 standard deviations below the mean) slope readings. 


