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Abstract

This thesis explores how fundamental shocks in form of surprising changes in

the federal funds rate can impact bond exchange-traded fund (ETF) premiums.

We utilize a linear model with interaction terms, and ETF fixed effects on a

representative sample of U.S. bond ETFs between 2012-2022. We find that the

fundamental shocks do not impact bond ETF premiums during ordinary times, as

they impact the underlying bonds and the ETF equally. However, post Covid as

well as on days of monetary policy announcements, surprises are negatively related

to changes in premiums. It suggests that under certain circumstances fundamental

shocks can impact ETF premiums due to the illiquidity of the underlying assets.
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Chapter 1

Introduction

1.1 Introduction

Bond exchange-traded funds (ETFs) are an asset class that has experienced in-

creasing popularity over the last two decades. Between 2011-2021 alone, the bond

ETF market has increased from $220 billion to $1.2 trillion (Shim & Todorov,

2022). Bond ETFs provide institutional and retail investors easy and cheap access

to the bond market, a market not accessible to most investors and characterized

by its low liquidity.

However, connecting the illiquid bond market with the liquid stock market

through ETFs is not straightforward. Researchers have found that the liquidity

mismatch in the two markets impacts the mechanisms keeping the ETF’s price

close to the Net Asset Value (NAV), i.e., the value of the underlying securities.

(e.g., Madhavan and Sobczyk, 2016; Pan and Zeng, 2017; Shim and Todorov,

2022). Bond ETF prices, therefore, deviate more severely from their NAV than

the more liquid ETFs, such as equity ETFs. Consequently, bond ETFs are often

found to trade above the NAV at a premium or below the NAV at a discount.1

The literature discusses two different theories with respect to the root and

consequences of these premiums in ETFs. The first is that ETFs are prone to

transitory liquidity shocks, where the ETF prices temporarily depart from the

fundamental value only to move back to their intrinsic value over time (Ben-

David, 2018). In that case, the dislocations of ETF price from the NAV carry

a cost to the uninformed investor who is ignorant to the source of the premium

and will pay too much for the ETF or receive too little when selling the ETF

(Petajisto, 2017).

1For convenience, we will use the term premium for both cases. We will use the terms positive
premiums, and discounts when explicitly discussing one of the two cases.
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The second theory is that ETF prices incorporate shocks to the fundamental

value quicker than the underlying assets, which causes premiums to occur. This

is especially true for bond ETFs, where the underlying securities are staler than

the ETFs that trade on the stock market as shares. Hence, bond ETFs can be

seen to promote price discovery (Madhavan & Sobczyk, 2016). Provided that the

ETF price reflects the true value of the underlying, the ETF can offer investors a

liquid, transparent, and cost-effective investment vehicle into the bond market.

Observing the conflicting theories, we want to further investigate the idea of

bond ETFs as a tool for price discovery in the bond market. To do so, we utilize

surprising changes in the federal funds, estimated from Federal Funds Future Con-

tracts, as shocks to the fundamental value. First introduced by Kuttner (2001),

this method has often been used in the context of Federal Open Market Com-

mittee (FOMC) announcements to study the efficiency and impact of monetary

policy decisions. Kuttner finds that these surprises explain much of the 1-day

changes in interest rates after FOMC announcements. We believe that due to the

inverse relationship between interest rates and bonds, these Kuttner-surprises can

also function as shocks to the fundamental value in bond ETFs, thereby offering

an approach to explore the potentially diverse impacts the shocks have on NAV

and ETF price. Consequently, we propose the following research question: “How

do fundamental shocks in the form of surprising federal fund rate changes impact

ETF premiums?” By answering this research question we hope to reveal the ap-

propriateness of bond ETFs as price discovery tools, and thereby contribute to

the general understanding of bond ETFs.

To answer the research question, this thesis discusses how surprising rate

changes might impact ETF premiums in general and how different factors might

impact the relationship between the two. The factors include (1) the general bond

market illiquidity, (2) the size of the ETF, (3) FOMC announcement days, and

(4) the period after the initial COVID-19 (Covid) shock.

To empirically assess how the Kuttner-surprises and the factors mentioned

determine changes in ETF premiums, we use a panel data set consisting of 65 of

the largest U.S. bond ETFs over the period 2012-2022. The different factors are

tested using interaction terms between proxies of these and the surprise measure.

Next to observing the impact of surprises on the premiums, we also look at their

impact on the price and NAV of the ETFs individually. We do so to identify

whether the observed shock is due to prices reacting more quickly to the surprises

than the NAV.

Pooled ordinary least squares (POLS), fixed effects (FE), and random effects

(RE) estimators are tested on which is the most appropriate estimator to use for
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the analysis by using a set of statistical tests. Based on the tests, we conclude

that the fixed effect estimator is the most appropriate method to use, and the

empirical analysis is conducted using this method.

The findings of the empirical analysis suggest that in normal times, the Kuttner-

surprises impact ETF prices and the NAV. However, the impact on the two vari-

ables is equally strong, making the impact on ETF premiums insignificant. Still,

we find that on FOMC announcement days and during the period after Covid,

prices are impacted significantly more by the surprises than the NAV, which causes

premiums to change. Therefore, we conclude that small fundamental shocks do

not impact ETF premiums during standard times and that the NAV can incor-

porate the news as quickly as the ETF. Conversely, during more volatile and

uncertain times, such as the post-Covid period and the FOMC announcement

days, the NAV is staler than the price, and the ETF can enhance price discovery.

The paper adds to the existing literature in various aspects: First, we add

to the emerging but still small literature on bond ETFs. Second, we contribute

to the understanding and knowledge of bond ETF premiums by examining how

these changes are due to small but fundamental shocks. Third, we introduce the

application of surprising federal funds rate changes as regular fundamental shocks

to the bond ETF market. Prior application of Kuttner-surprises has exclusively

been to study the impact of monetary policy on the market on FOMC announce-

ment days. We show that surprising federal funds rate changes can also impact

the market in regular periods.

The remainder of the paper is structured as follows: In section 2, we present the

institutional details on (bond) ETFs, discuss the literature on how ETFs enhance

price discovery, and present the factors that have been associated with the size

and persistence of ETF premiums in the literature. In section 3, we introduce the

method of using Kuttner-surprises as fundamental shocks to the ETF and develop

hypotheses on how these surprises alone and in interaction with before mentioned

factors can impact ETF premiums. Section 4 presents the methodology used to

test the hypotheses empirically. In Section 5, we present and examine our data

before presenting and discussing the results of the empirical analysis in Section 6.

In section 7, we conclude.
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Chapter 2

Literature Review and

Background

2.1 Institutional Details

Exchange-traded funds are investment funds similar to mutual funds, but unlike

mutual funds, ETFs are traded as stocks on the stock market. Much like index

funds, ETFs usually aim to replicate the performance of a specific index. From

the first ETF tracking the S&P 500, there are now ETFs for several asset classes,

including equity, bonds, commodities, and currencies. There is also a broad spec-

trum of ETFs with more specific investment scopes, such as geography, maturity,

ESG, or investment style. Due to its relatively low cost, access to liquidity, and di-

versification benefits, it has become a popular investment vehicle among investors.

Since first introduced in 1993, the ETF market has grown substantially, and as

of 2020, the total ETF market had about $7 trillion in assets under management

globally (Todorov, 2021).

To understand the cost-effectiveness of ETFs, one must understand the unique

mechanisms behind the asset class. ETFs generally rely on authorized participants

(APs) to conduct trades that arbitrage the differences between an ETF and the

value of its underlying securities. APs are usually large market-makers or broker-

dealers that have an agreement with the ETF sponsor/trustee to participate in an

in-kind transaction where the APs create or redeem ETF shares in exchange for

a basket of the underlying whenever the ETF price is above or below the NAV.

To better understand the arbitrage process, we can look at creation and re-

demption scenarios separately. First, let us say an ETF experiences a surge in

popularity, and its price moves above the NAV, then the ETF trades at a premium.

In that case, APs are incentivized to step in and reconcile the difference between
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the price and NAV in a process known as the creation process. In a creation

process, APs will go to the secondary market and purchase a creation basket, a

basket of the underlying securities in the necessary weights, and exchange it with

the ETF sponsor for a set of ETF shares. The APs can then sell the received ETF

shares in the secondary market. In doing so, they put downward pressure on the

ETF price and upward pressure on the NAV, which closes the gap between ETF

price and NAV.

The opposite is the case when the ETF price moves below the NAV. The

ETF then trades at a discount, and a redemption process is initiated. In this

scenario, APs are incentivized to step in and purchase ETF shares in the secondary

market. The APs will then exchange these ETFs with the ETF sponsor for a

redemption basket of securities. The APs can take the redemption basket and sell

it in the market. By doing so, they put upward pressure on the ETF price and

downward pressure on the NAV, closing the gap between the ETF price and NAV.

After accounting for transaction costs, the APs gain either the initial premium or

discount as an arbitrage profit in both the creation and the redemption scenarios.

The ETF mechanisms described reduce the costs of ETFs compared to mutual

funds and passive index funds. Since most ETFs passively track an index, the

costs of setting up and managing them are relatively low compared to actively

managed mutual funds. Still, when comparing the costs of ETFs with the costs of

passive funds, ETF costs are lower. There are primarily two factors that reduce

the costs of ETFs in comparison to other funds: (1) Operational cost transfer:

Since APs are doing all the buying and selling, the hidden costs of operating a

fund, such as transaction fees, distribution fees, and transfer agent fees, are moved

to the APs. (2) Tax benefits: Take a redemption situation when the ETF trades

at a premium. In this case, the fund would have to pay tax on the capital gains it

makes when selling the redemption basket. Through the in-kind system, the APs

can avoid the tax cost by controlling when the capital gain occurs by trading the

ETF shares instead.

Bond ETFs incorporate unique features that make the asset class interesting

to explore. Bond ETF shares trade on the liquid stock market, and the underlying

securities trade on the relatively illiquid bond market. The implications of tying

together two markets with contrasting properties and the liquidity mismatch this

generates are worth understanding better. There are three primary factors for why

bonds are more illiquid than equity: First, bonds trade in the over-the-counter

market, a market that is not accessible to most investors, which means that there

are fewer sellers and buyers. Second, minimum trade amounts are usually high,

meaning fewer possible trades are made. Third, bonds do not trade as frequently
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as other assets, sometimes there are days between each transaction.

Additionally, bonds introduce a dimension that equity ETFs do not have,

namely maturities. Usually, bond ETFs set a benchmark index and maturity

that it seeks to track. Consequently, bonds must regularly be replaced to match

target maturity. To optimally match the target benchmark index and maturity,

ETF sponsors need to be flexible when deciding what securities to include in the

ETF. The same flexibility is required by APs when they compose their baskets to

match the key characteristics of the fund.

Bond ETFs have many of the same features as bonds and pay coupons to their

investors regularly. The asset class is, therefore, a relatively cheap and convenient

tool for investors looking to invest in the traditionally inaccessible bond market.

It is, therefore, crucial that the market is as efficient as possible. This thesis seeks

to measure and analyze the interplay between ETF price and underlying NAV to

assess the efficiency of the asset class.

2.2 Bond ETFs as a Tool for Price Discovery

With characteristics such as providing diversification and liquidity at relatively

low cost, ETFs have become an attractive asset class for an ever more diversified

group of investors. The surge in popularity has made it an interesting topic for

researchers. Hence, in the last few years, we have seen a growing body of research

on how ETFs impact financial markets and the underlying securities.

Liebi (2020) provides a detailed literature review on some of the most im-

portant aspects of ETFs impacting the financial markets. These aspects include

liquidity, price discovery, volatility, and the co-movement of the underlying secu-

rities. Regarding liquidity, Liebi (2020) finds that papers agree that ETFs usually

improve the underlying liquidity, except during extreme market turbulence, when

liquidity provision of ETFs can deteriorate, which can transmit to the underlying

securities. With volatility, Liebi (2020) finds that when a security is included

in an index, as in an ETF, its correlation with other stocks increases, resulting

in a co-movement of securities included in the same ETF. We will focus on the

aspect of price discovery, as this is the relevant factor we want to investigate in

this thesis.

Following Ben-David et al. (2018), there are two opposing hypotheses related

to the interplay between ETF and NAV and the fundamental value of the underly-

ing securities. The first is what the authors call the ”liquidity trading hypothesis.”

According to this hypothesis, ETF price movements are predominantly due to liq-

uidity trading or nonfundamental liquidity shocks. When these liquidity shocks
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happen, the NAV will soon follow when APs arbitrage the gap between price and

NAV. Once the shock’s effect vanishes, the value of the ETF will revert to its

fundamental value. A consequence of this liquidity trading is greater volatility in

the underlying assets.

The second hypothesis, which Ben-David et al. (2018) label ”the price discov-

ery hypothesis,” is, in essence, that fundamental shocks permanently change the

value of the underlying securities, to which the ETF price responds quicker than

the NAV. The NAV experiences staleness and only moves after the ETF price

with a delay. As a consequence, premiums appear.

Utilizing a sample of equity ETFs, Ben-David et al. (2018) test the validity of

the two hypotheses by examining whether ETF prices are associated with a large

degree of mean reversion, suggesting temporary liquidity shocks. However, using

ETF flows, they find that after an initial shock to the ETF price, the underlying

securities first follow the movement of the ETF but revert to the original level

during the next 40 days. The evidence shows a complete reversal of the price

impact, which strongly supports the liquidity trading hypothesis.

However, literature has also found evidence that partially supports the price

discovery hypothesis. Madhavan and Sobczyk (2016) developed a model based

on the ETF arbitrage mechanisms, that captures the ETF price dynamics. In

their model, they divide the premium into two parts: one measures the distance

of the ETF price from the fundamental value of the underlying assets, and the

other measures the NAV’s distance from the fundamental value. The first part

reflects transitory liquidity shocks, while the second reflects staleness in the NAV.

Calibrating their model, they find that bond ETFs experience a larger degree of

staleness than equity ETFs. This is also reflected in the time it takes to reduce

the pricing error by half, which is 0.43 days for domestic equity ETFs and 2.02

days for domestic bond ETFs. Regarding the price discovery component, they

find that it accounts for about 46% of the size in premiums across asset classes,

implying that the NAV is, to a large extent lagging behind the ETF price.

While Ben-David et al. (2018) solely examine equity ETFs, Madhavan and

Sobczyk (2016) compare ETFs with different asset classes as the underlying se-

curities. The kind of ETFs the two papers focus on seems to lead to diversified

findings on the importance of price discovery. Equity ETFs naturally have similar

liquidity as ETF shares and, therefore, do not experience much staleness. Pro-

vided that staleness is the primary driver behind the price discovery aspect of

premiums, it explains why Ben-David et al. (2018) only find evidence for the liq-

uidity trading hypothesis. While for fixed-income ETFs, price discovery is a more

plausible explanation, as the underlying security experience greater staleness, as

7



Madhavan and Sobczyk (2016) found.

Notably, ETFs can also amplify negative fundamental shocks in times of mar-

ket turmoil. In a recent study, Dannhauser and Hoseinzade (2022) found that

during the Taper Tantrum period, the bonds that were part of ETF holdings

experienced greater increases in the yield spread relative to bonds that were not

part of an ETF holding. However, with time the yield spreads of the ETF that

included bonds revert to the level of the non-ETF bonds. Hence, especially during

times of market turmoil not all movements in bond ETFs following a shock are

due to price discovery.

The disagreement about whether ETFs can function as tools for price discovery

and whether that price discovery is the source of premiums, makes it an interesting

topic to investigate further. Madhavan and Sobczyk (2016) findings primarily

focus on how the illiquidity of the underlying securities in bond ETFs impacts

the size of premiums and the time it takes for the premiums to decrease in size. We

aim to add to these results by examining how fundamental shocks initially impact

premiums of bond ETFs. To do so, we will explore several factors associated with

ETF premiums, and then we will discuss how surprising interest rate changes can

function as fundamental shocks that impact the ETF price and NAV.

2.3 Factors of Bond ETF Premiums

As mentioned before, the liquidity of the underlying securities is a major factor

behind ETF premiums and is one of the most common explanations for why bond

ETFs exhibit more significant premiums than, for instance, equity ETFs. The

explanation for the relatively bigger premiums in bond ETFs is, according to

Madhavan and Sobczyk (2016), related to slower tracking error correction and

slower arbitrage. In ETFs with bonds as the underlying securities, APs must

weigh the costs of trading illiquid bonds with the benefit of arbitraging. Balancing

this trade-off leads to slower arbitraging, slower error correction, and, ultimately,

higher premiums. Shim and Todorov (2022) make similar observations in their

paper analyzing the different explanations for premiums in bond ETFs. They find

that within the ETFs holding exclusively bonds, the ETFs that hold less liquid

bonds experience a greater persistence in their premiums. Thus, liquidity plays a

crucial role in explaining premiums when comparing the different kinds of ETFs

and within the different ETFs holding exclusively bonds.

Further, Shim and Todorov (2022) find that liquidity plays a significant role

in explaining the magnitude of positive premiums and a smaller role in explaining

the size of negative premiums (discounts). Similarly, Pan and Zeng (2017), who
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develop a model to predict the efficiency of ETF arbitrage, find that greater bond

illiquidity limits arbitrage, which leads to persistent mispricing. They argue that

with increased bond illiquidity, the additional costs from trading in the bond

market outweigh the profits from arbitraging away the premiums.

Additionally, Pan and Zeng (2017) test whether balance sheet constraints may

limit arbitrage. For instance, if an ETF is trading at a substantial discount, the

AP would like to initiate a redemption process. However, Pan and Zeng (2017) find

that APs sometimes face balance sheet constraints due to already holding large

positions in certain bonds. In those cases, the AP’s ETF-desks can be reluctant

to redeem ETF shares and hinder the arbitraging, and in some cases, even go the

opposite direction and create ETFs to reduce their bond holdings. Pan and Zeng

(2017) find that this activity disconnects the creations/redemptions from initial

mispricing, which distorts ETF arbitrage and leads to larger premiums.

Connected to the above point, Shim and Todorov (2022) also examine how

the AP’s inventory may impact premiums. By analyzing the extreme discounts

observed at the outbreak of the Covid-19 pandemic, the authors hypothesize that

APs have incentives to restrain from arbitrage under certain situations to protect

the bonds in their inventory from fire sales. The idea is that when ETFs are

trading at substantial discounts, the APs should ideally redeem ETFs which would

lead to a decrease in the price of the underlying bonds, bonds that the APs, to

some degree, also hold in their inventory. The market impact costs of redeeming

the bonds might be substantial during periods of significant market stress as there

is a significant risk of creating fire sales. Hence, in extreme market situations, such

as the Covid-19 outbreak, APs weigh the benefits of arbitraging with the costs

of creating potential fire sales. This can lead to larger discounts. According to

Shim and Todorov (2022), this effect was evident in the period surrounding the

outbreak of Covid-19 and the market turmoil that ensued.

The ETF size is another factor that has, in some aspects, been observed to be

related to the size of premiums. Madhavan and Sobczyk (2016) find that large

ETFs experience greater staleness than smaller ETFs. They suggest that the

larger ETFs track larger indexes which are more difficult to mark to market. In

contrast, Dannhauser and Hoseinzade (2022), who studied ETFs during the Taper

Tantrum period, found that the largest ETFs in terms of AUM maintained ETF

prices the closest to the NAV, while smaller ETFs experienced more persistent

premiums than the larger ones. These findings are interesting since the largest

ETFs in their sample are the ETFs with the highest liquidity, contradicting to a

degree what Madhavan and Sobczyk (2016) suggests, that the larger ETFs, track-

ing larger indexes, experience more staleness than smaller ones. It is, therefore,
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worthwhile to investigate this further.

To sum up, the literature associates the size and the persistence of premiums

to a large degree with the illiquidity of bonds. The result of illiquidity makes

arbitraging more costly for the APs, who, in turn, weigh the cost of trading the

underlying. The APs further consider how arbitraging affects their balance sheet

and may reduce arbitraging if its impact on the balance sheet is too large. Another

reason observed to be related to the premiums is the size of the ETFs.
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Chapter 3

Theory and Hypotheses

3.1 Theory and Main Hypothesis

We are interested to see how fundamental shocks in the form of surprising interest

rate changes may impact ETF premiums, assuming that ETFs function as tools

for price discovery where the price reacts stronger to the shocks than the NAV

does. In the following section, we will introduce the idea of using surprising

federal funds rate changes as fundamental shocks to ETF and NAV and develop

hypotheses on how the premiums react to these shocks under normal and specific

circumstances.

As fundamental shocks, we will use surprising effective federal funds rate

changes by exploiting a method introduced by Kuttner (2001) that takes ad-

vantage of the Fed funds future contracts. Kuttner (2001) developed this method

to measure the impact of the Fed’s fund rate target changes on interest rates.

The idea is that the Fed’s policy actions are usually composed of two parts: the

anticipated component (i.e., the expected change in the target rate) and the sur-

prise component. As market participants have certain expectations about the

Fed’s actions and anticipate a certain action with some probability, the antici-

pated component will likely already be priced in the market. Consequently, when

the fund rate target is changed, the market should not react much to the antici-

pated component. However, the market does not know with certainty the policy

action and is partially surprised by the action explained be the surprise compo-

nent. Kuttner (2001) finds that the response in the interest rates to the surprise

component is strong and significant, while the anticipated component’s impact is

minimal.

Since expectations about the Fed policy actions cannot be directly observed
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in the market, Kuttner (2001) uses the prices of Fed funds futures contracts1 as a

natural, market-based proxy for the expectations about the target rate changes.

These futures are priced based on the expected average effective federal funds rate

during a specific month. Krueger and Kuttner (1996) find that they efficiently

forecast changes in the federal funds rate by incorporating almost all publicly

available quantitative information. Additionally, investors can trade in the “spot

month,” which is the future contract for the effective federal fund rate of the

current month.

The author uses the spot-month contract to extract the surprising target rate

changes, described in the following: At any day t during the spot months, the

rate used to price the future contract is as follows:

f 0
s,t =

t

m
r̄i≤t +

m− t

m
Etr̄i>t (3.1)

Where m is the number of days during that specific month, ri≤t is the realized

average rate for all days prior to and including day t, and Etr̄i>t is the expected

average rate for the remaining days during the month s. Consequently, f 0
s,t is a

weighted average of the already realized average effective federal funds rate and

its expected average rate during the remaining month. As the measure includes

expectations about the effective federal funds rate for the remaining month, only

unexpected changes or changes in these expectations can alter the contract price.

A change in the price from t-1 to t can then be interpreted as follows:

(f 0
s,t − f 0

s,t−1) =
m− t

m
∆r̃ut (3.2)

In the equation above, ∆r̃ut is the unexpected change in the average federal

funds rate or a change in the expectations about future changes during the current

month. ∆r̃ut is scaled by m−t
m

on RHS since a surprise that happens early in the

month will have a greater impact on the average expected rate than a surprise

happening late in the month. If f 0
s,t − f 0

s,t−1 = 0, no surprise has been recorded

on day t. To find the surprise rate change we can rewrite the equation as follows:

∆r̃ut =
m

m− t
(f 0

s,t − f 0
s,t−1) (3.3)

With a few exceptions, the above equation holds for any day of the month. As

for the month’s first day, Kuttner uses the previous month’s ”one-month” future

1Initially established at the Chicago Board of Trade, Fed Funds Futures contracts now trade
at the Chicago Mercantile Exchange (CME) and trade for all months up to 5 years into the
future.
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contract rate, as observed on the last day of the month instead of f 0
s,t−1. The

“one-month” future rate f 1
s−1,m is used since the “one-month” contract turns into

the spot contract on the first day of the month s. For the last 3 days of the

month, it is suggested to use the unscaled change in the “one-month” contract

in order to minimise the effect of possible month-end noise in the effective funds

rate (Bernanke & Kuttner, 2005).

Since first introduced, Kuttner’s method has been used extensively in academic

research to measure the impact and effectiveness of monetary policy and how

surprises impact the market (e.g., Bernanke and Kuttner (2005); Faust et al.

(2007)). For instance, Bernanke and Kuttner (2005) study how surprising target

rate changes impact changes in equity prices on FOMC announcement days and

find that they lead to an increase in broad stock indexes. Faust et al. (2007)

look at intraday changes in the Federal funds futures contracts to measure the

high-frequency response of exchange rates and interest rates to monetary policy

announcements.

After observing the advantage of using Kuttner’s method for measuring specific

impacts of target rate changes on FOMC announcement days, we believe the

method can also be used in a more general setting, even when the aim is not to

measure the impact of some specific event. Unlike the papers mentioned earlier,

we are not interested in measuring the impact of events per se, at least not as our

primary objective. Instead, we are interested in analyzing whether ETF prices and

NAVs react differently to fundamental shocks and whether the ETFs can function

as price discovery tools. The effective federal funds rate, and expectations about

its rate, change consistently as new information hits the market, and we argue that

the surprising changes can be used as fundamental shocks that we can measure

and use for further analysis.

Kuttner (2001) finds that surprising rate changes, as predicted by the Fed

funds futures, impact interest rates. More specifically, he finds that surprises

impact interest rates of all maturities from 3 months up to 30 years. However,

the impact is the strongest for the rates with shorter maturities. According to

standard finance theory, interest rates have an inverse relationship with bond

prices. Consequently, surprising interest rate changes should impact the price of

bonds and the price of any security that has bonds as underlying, such as ETFs.

Therefore, we argue that surprises can be applied as fundamental shocks to ETF

prices and NAVs. Considering the liquidity mismatch, we can take advantage of

the relationship between ETF price and NAV to investigate whether they react

differently to fundamental shocks. Specifically, since the interest rate shocks are

fundamental in nature, a situation in which the ETF reacts stronger to the surprise
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than the NAV would suggest that the NAV experiences staleness and the ETF

function as a price discovery tool. Consequently, the interplay between ETF price

and NAV would result in a change in the ETF premium.

Following this idea, we can predict how an interest rate surprise impacts ETF

premiums. A surprising hike (cut) in the effective federal funds rate should lead

to a decrease (increase) in ETF price and NAV. However, as the ETF price reacts

more strongly, the price decreases (increases) more, and as a consequence, the

premium changes negatively (positively). Therefore, our main hypothesis is as

follows:

Hypothesis 1: Surprising federal funds rate changes are negatively correlated

with changes in bond ETF premiums.

3.2 Hypothesis 2

Other than the ETF-specific mechanisms discussed earlier, we assume that dif-

ferent economic factors also impact the relationship between surprises and ETF

premiums. In the following, we will discuss a few of these factors, building upon

the discussion of the different factors related to ETF premiums. The factors we

are looking at include (1) bond market illiquidity, (2) riskiness of the underlying

bonds, (3) ETF size, (4) FOMC meetings, and (5) the post-Covid period.

Recalling the findings of Pan and Zeng (2017), general bond market illiquidity

significantly impacts the AP’s arbitrage activity. In particular, as bond market

illiquidity increases, the APs arbitrage less for a given size of the ETF premium,

which can be associated with the APs weighing the benefits of arbitraging with the

additional transaction costs from managing their bond positions. Consequently,

the NAV should experience more staleness with greater bond market illiquidity.

Assuming that the ETFs price discovery component is unchanged by bond market

illiquidity, the effect of an interest rate surprise should be amplified during times

of increased bond market illiquidity. In other words:

Hypothesis 2: With increased bond market illiquidity, the impact of surprising

federal funds rate changes on changes in bond ETF premiums is increased.
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3.3 Hypothesis 3

Bond ETFs vary in size regarding asset under management (AUM). We have seen

before that ETF size seems to impact premiums, even if that impact is ambigu-

ous. Madhavan and Sobczyk (2016) find that large ETFs experience the greatest

staleness, which in the context of this thesis, would imply the amplified impact

of the surprise on premiums due to AUM size. On the contrary, Dannhauser and

Hoseinzade (2022) find that during the Taper Tantrum period, premiums were

the smallest for large ETFs, and smaller ETFs usually had more significant and

more persistent premiums. If staleness is connected to premium size, those find-

ings contradict each other. Therefore, finding that size significantly affects the

impact of surprises on premiums in any direction would shed some extra light

on how ETF size might impact premiums. Therefore, we introduce the following

non-directional hypothesis:

Hypothesis 3: ETF size alters the impact of surprising federal funds rate

changes on changes in bond ETF premiums.

3.4 Hypothesis 4

Having discussed how liquidity and specific ETF characteristics impact the rela-

tionship between surprise and premiums, we now focus on the impact of specific

events. One such specific event is the scheduled announcement of changes in

monetary policy by the Federal Open Market Committee (FOMC). Eight times

a year, the FOMC holds pre-scheduled meetings to review economic and finan-

cial conditions and assess the risks to its long-run goals of price stability and

maximum employment. Based on these assessments, the FOMC decides on the

appropriate stance of monetary policy (Feliz et al., 2021). Towards the end of

the two-day meetings, the Chair announces the decisions in a press conference.

Statements containing information about the FOMC views on the economy and

possible changes to the monetary policy are released with it.

The FOMC announcements are particularly interesting as they are the most

direct way the Fed impacts the economy. The Fed’s primary tool for conducting

monetary policy is lowering or increasing the target interest rate and, by doing

so, directly impacting the short-term interest rate. Since the financial crisis, the

Fed has also applied more alternative tools for conducting monetary policy, such

as large-scale asset purchase programs or quantitative easing (QE), where the Fed
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will purchase assets in the open market to boost the economy.

Due to its economic implications, the impact of the FOMC meetings has been

studied widely, partially using the Kuttner (2001) approach. However, the liter-

ature finds that the Fed impacts the market via various additional channels on

the days they announce monetary policy changes beyond the impact of surpris-

ing target rate changes. One of the alternative channels is the statements that

the Fed publishes alongside the decisions about the changes in the target rate.

Gürkaynak et al. (2005) find that the information released in the statements ac-

counts for more than three fourth of the explainable variation in the movements

of five and ten-year treasury yields on FOMC dates. In comparison, the surprising

changes in the target rate only account for about a fourth of the variation of these

long-term yields. The authors believe this is due to the statements influencing

financial market expectations of future policy actions.

Similarly, Hillenbrand (2021) finds that long-run Fed guidance further impacts

long-term bond yields due to the dot plot. This dot plot, published on FOMC

announcement days, shows the FOMC members’ forecasts for the federal funds

rate over the upcoming three years and their forecasts for the federal funds rate

over the longer run. The author finds that decreases in the long-run forecasts

lead to long-term yield decline. He suggests that this is due to the Fed’s guidance

about the long-term interest rates causing the market to update its beliefs about

the future path of short rates.

Research has also found that the FOMC announcing policy changes can cause

the market to update its beliefs about the future path of the economy. Smolyansky

and Suarez (2021) examines whether surprising monetary policy changes impact

the yield spreads of corporate bonds via a ’Fed information effect.’ This effect

captures the idea that the Fed’s surprising monetary policy tightening (easing)

signals a healthier (weaker) economy than previously believed. Using the price

reaction of corporate bonds to changes in the 2-year nominal Treasury yield on

FOMC announcement dates, they find that riskier corporate bonds outperform

safer ones following a target rate hike and underperform following a target rate

cut. Hence, surprises in FOMC announcements appear to impact credit spreads

by updating the markets’ view of the economy.

The literature concludes that the financial markets are impacted in various

aspects beyond the unexpected changes in the federal funds rate on FOMC an-

nouncement days. Consequently, the impact may also alter the reaction between

the Kuttner-surprises and the bond ETF premiums on those dates. For instance,

by FOMC announcements affecting long-term yields, the surprises may impact

premiums differently than on normal days. The same applies to the affected
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credit spreads, which can change the relationship between the surprise and the

ETF premium. A further factor not discussed yet is that both realized volatility

and trading volume jump after the announcement as the market incorporates new

information into the market (Lucca & Moench, 2015). All these different factors

lead us to specify the following non-directional hypothesis:

Hypothesis 4: On FOMC announcement days, the impact of surprising federal

funds rate changes on changes in bond ETF premiums is altered.

3.5 Hypothesis 5

It is interesting to examine the development of the relationship between the

Kuttner-surprises and the bond ETF premiums over time. The last few years

are especially interesting to investigate. The 2010s is a period characterized by

a long expansion of the U.S. economy, a period that was quickly abrupted by

substantial market turmoil and rising interest rates caused by the outbreak of the

Covid-19 pandemic.

In early 2020, it became evident that Covid-19 was a global pandemic. To mit-

igate the impact of the pandemic, governments globally enforced lockdowns, social

distancing, and limitations to commercial activity. These lockdown measures led

to a substantial hit to the global economy. The market turmoil was characterized

by a significant increase in market volatility, plummeting equity prices, a rapid in-

crease in unemployment, and a significant drop in the inflation rate. To battle the

economic impact of the lockdowns, the Fed responded with unprecedented mea-

sures such as setting the target rate to zero lower bound, substantial open market

operations, and large-asset asset purchase programs. (Clarida et al., 2021). The

result was that the Covid-19 recession was the shortest recession in U.S. history,

only lasting for two months, as the economy started to expand again in May 2020

(NBER, 2021).

No part of the economy was spared, and the bond market experienced soaring

yield spreads and an almost standstill in liquidity. To stimulate the bond mar-

ket, the Fed introduced two programs that directly impacted the bond market

and the bond ETF market. The Primary Market Corporate Credit Facility (PM-

CCF) involved purchasing investment-grade bonds, while the Secondary Market

Corporate Credit Facility (SMCCF) was aimed at investment-grade bond ETFs

(Clarida et al., 2021). Later on, the SMCCF also expanded to include high-yield

bond ETFs (Todorov, 2021)
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The initial Covid months corresponding to the economic recession during

March and April 2020 were interesting since bond ETFs as premiums increased

enormously during this period (Todorov, 2021). However, examining bond ETF

premiums during the subsequent expansion is equally interesting. The post-Covid

period is characterized by some distinct differences compared to the pre-Covid

expansion. Although the economy has been in a boom period since the initial

turmoil of the pandemic outbreak, it has shown distinct differences compared to

the boom period before the Covid shock. The post-Covid period includes compa-

rable higher levels of inflation and an increased probability of a recession due to

the Fed’s mitigating actions to battle the persistent inflation.

Initially, the increasing U.S. inflation rates were seen by many, including the

Fed, as transitory (Federal Open Market Committee, 2021)). As the unemploy-

ment rate fell to only pre-pandemic levels following the initial Covid shock, the

persistence of inflation was underestimated (Ball et al., 2022). Finding very high

values for the ratio between job vacancies and unemployment during 2021 and

2022, (Ball et al., 2022) suggest that labor markets were actually much tighter

during that period, causing core inflation to rise. Further, they suggest that the

observers who considered the inflation to be transitory overlooked the concurrent

impact of the Covid-related inflation shocks on core inflation. In that regard, Ball

et al. (2022) find that shocks such as the shock to energy prices and problems in

supply chains make up for 4.6 percentage points of the 6.9 percentage point rise

in inflation between late 2020 and September 2022.

The high and persistent inflation levels have motivated the Fed to tighten

monetary policy substantially. From a target rate at the zero lower bound, the

Fed has increased the target rate to above 4.25 percentage points through several

consecutive target rate hikes of up to 75 bps in size until the end of 2022. Increased

interest rates have far-reaching economic implications. Higher borrowing costs

lead to reduced investments, reduced consumption, cooled economic growth, and

a potential recession. If there is a general fear of recession in the market, it could

also exaggerate its response to surprising changes in the federal funds rate.

We suspect that the ramifications of the persistent inflation also impact the

bond (ETF) market. We suspect that bond ETFs react stronger to surprises

compared to the more stable period during the period before Covid. Further,

due to the liquidity mismatch, this will exaggerate the impact on the bond ETF

premiums:

Hypothesis 5: During the post-COVID period, the impact of surprising federal

funds rate changes on changes in bond ETF premiums is increased.
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Chapter 4

Methodology

The following section presents the methodology used to test our hypotheses em-

pirically. We use a linear model, which we extend by adding interaction terms

between the Kuttner-surprises1 and proxies of the factors we believe alter the sur-

prises’ impact on the ETFs. The model is run on the change in premiums and the

change in ETF price and NAV, respectively, to investigate whether the impact on

premiums is due to price discovery in the ETFs. Since the data sample contains

observations across both the ETF- and time dimension, we discuss the appropri-

ateness of different panel methods. Lastly, we elaborate on the limitations of our

methodology.

4.1 The Model

To investigate our hypotheses, we set up a linear model. The change in premium

(from now on referred to ∆Premium) is modeled as a function of the Kuttner-

surprises, a vector X consisting of the factors we believe alter the relationship

between Surprise and ∆Premium and interaction terms between vector X and

Surprise. Further, a one-day lag of the premium is included:

∆Premiumi,t = β0+β1Surpriset+β2Xi,t+β3Surpriset ·Xi,t+β4Premiumt−1+ εi,t

(4.1)

Where i is the specific ETF and t the day of the observation.

We choose to use interaction terms as it allows us to test the before-established

hypotheses within the framework of a linear model. By keeping the model linear

1We define the Kuttner-surprises as the variable Surprise
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in parameters, we can still estimate the model’s coefficients using linear regression

techniques like ordinary least squares (OLS). By having interaction terms, we can

observe whether the impact of Surprise on ∆Premium is stronger or weaker, e.g.,

on days of more illiquid bond markets or on days with FOMC announcements.

The one-day lag of the premium is included to proxy and control for general

arbitrage pressure on the premiums by the APs. Since APs have strong incentives

for closing any existing gap between the ETF price and NAV, yesterday’s premium

should explain, to some degree, ∆Premium. For instance, if a positive premium

is observed at t-1, the APs will try to arbitrage the premium away, leading to a

negative ∆Premium. Vice versa, if at t-1 a discount is observed, arbitraging away

the premium should lead to ∆Premium being positive.

Apart from analyzing the impact of the surprises on ETF premiums, we are

also interested in whether the change in ETF premiums is due to the ETF re-

sponding faster to the shock than the NAV. Measuring the impact on ∆Premiums

will only tell us that there is a difference in the response of the two, but not to

what degree it impacts the ETF price and the NAV individually. To test this, we

run the same model separately on the change in price and NAV (see equations

4.2 and 4.3 below). By doing so, we will be able to observe the general reaction

of the ETF and the underlying assets to the shock, and more importantly, we can

see whether the ETF price responds quicker to the shock than the NAV does.

∆Pricei,t = β0+β1Surpriset+β2Xi,t+β3Surpriset ·Xi,t+β4Premiumt−1+εi,t (4.2)

∆NAVi,t = β0+β1Surpriset+β2Xi,t+β3Surpriset ·Xi,t+β4Premiumt−1+εi,t (4.3)

4.2 Panel Data Methods

To estimate the coefficients of the model parameters, we will use a panel dataset

including several ETFs observed over eleven years. The most straightforward and

efficient approach to run the model is to pool the data and use OLS, a method

also known as pooled OLS (POLS). In doing so, we ignore the dataset’s panel

structure and disregard each observations’ time and cross-section. However, the

panel structure can be useful as it allows us to control for some of the unobserved

factors in our model, reducing the chance of omitted variable bias. Those factors

for bond ETFs include, e.g., the maturity or rating of the underlying bonds, as

well as the investment focus of the ETF.

These unobserved ETF-specific factors can potentially be related to our in-
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dependent variable ∆Premium and the ETF-specific explanatory variables (i.e.,

variables regarding the ETF size or the premium in the previous period). If that is

the case, using POLS will result in obtaining biased coefficients. However, assum-

ing that these factors are constant over time, advanced panel methods such as the

entity fixed effects (FE) or random effects (RE) estimator can be used to control

for the unobserved factors. This assumption is likely to hold as, e.g., an ETF that

offers exposure to high-yield long-term corporate bonds at the beginning of the

sample period will also do so at the end.

Using the FE estimator, the original model is transformed by time-demeaning

the data for each ETF. This approach subtracts the ETF-specific time-mean from

each variable and thereby controls for unobserved ETF fixed characteristics. This

is effectively the same as adding a dummy for each ETF to the model, known as

the least squares dummy variable (LSDV) approach. The LSDV approach can

also be used to test the appropriateness of the more efficient POLS estimator over

the FE estimator. The test uses an F-test for the joint significance of the ETF

dummies. If the test result is insignificant, it implies that the ETF dummies in

the FE estimator do not improve the estimation, warranting the use of POLS for

the regression.

The RE estimator is similar to the entity FE estimator, but it differs in that

it assumes that the unobserved variables are uncorrelated with the regressors

included in the model. Under that assumption, the estimator subtracts fractions

of the average variable values from the original specification, reducing the loss in

degrees of freedom compared to FE. Hence, the RE is more efficient than FE, with

the RE estimates being between the FE and POLS estimates. To test whether

the RE estimator is optimal, we apply the Hausman test. The Hausman test

checks whether using FE and RE will give similar estimates. We refrain from

using the RE estimator if the Hausman test indicates that the RE estimates differ

significantly from the FE estimates.

In our thesis, we initiate the analysis by simultaneously running the complete

model 4.1 with POLS, ETF fixed effects (FE), and random effects (RE) estimator.

Based on the obtained estimates, we will run the F-test for the joint significance of

the dummies and the Hausman test to decide on the most appropriate estimator.

We will apply the optimal estimator for the remaining analysis.

4.3 Limitation of Methodology

Before exploring the data, it is essential to address a limitation of our methodol-

ogy. The Kuttner-surprises have initially been used in event studies, which use the
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controlled release of economic news as a pseudo-natural experiment. This method-

ology assumes that the jump in an asset price during a small window around the

announcement of some news reflects the causal impact of the particular news and

likely little else (Gürkaynak & Wright, 2013). As we are not interested in the

effect of some specific news that caused a surprise on a specific day, except for

FOMC announcement days, this is not necessarily important in our approach.

However, it can be an issue that we do not precisely know when the surprise

happens on a specific day. By measuring all variables on a daily end-of-day ba-

sis, our approach assumes that all surprises happen shortly before closing time.

However, since the surprise can happen anytime during the day, part of the shock

may not be observed in our analysis since the NAV may already have caught up

with the ETF by the time we measure it. Therefore, since we can miss the initial

shock in our analysis, it can lead to measurement errors in our model.2

Nevertheless, considering the persistence of premiums, we believe the approach

can still be justified in the case of bond ETF premiums. Madhavan and Sobczyk

(2016) define the half-life concept, which measures the period over which a given

deviation of the ETF price from the NAV is halved. They find that the half-time

of domestic bond ETFs equals 2.02 days. This finding implies that it takes, on

average, about two days until a bond ETF premium of 2% is reduced to 1%. For

comparison, the half-time of domestic equity ETFs is much shorter (0.43 days).

Given this evidence, we believe using end-of-day measurements is sufficient for

measuring the impact of the surprise on bond ETF premiums since it takes several

days to close bond ETF premiums. While high-frequency data provides a superior

temporal localization of the surprise shock, we postulate that the described half-

time allows us to observe most of the impact of the surprise at the end of the day.

Also, any impact we find at the end of the day can be assumed to be even more

significant close to the actual occurrence of the surprise.

2The exception is the surprises that occur on FOMC announcement days. These announce-
ments are usually made late in the trading day, lately at 2:00 pm. Hence, we have a more
accurate measure of the surprise impact on FOMC days.
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Chapter 5

Data

In this section, we will describe the data used in our analysis to investigate the

impact of the fundamental shocks in the form of surprises on bond ETF premiums.

Our sample consists of data collected from 65 U.S. bond ETFs from January 2012

until December 2022. We chose this period to obtain a sufficiently large sample

of ETFs, allowing us to observe the whole period and acquire a balanced panel.

Even though the first bond ETFs have existed since 2002, many current large

ETFs were only created afterward. By applying a sample starting in 2012 and

ending in 2022, we cover a large part of the expansion period of the U.S. economy

during the 2010s and the post-Covid period. In total, we have data from 2786

trading days.

According to etf.com (2023), one of the leading information providers on ETFs,

there are, as of June 2023, 592 ETFs traded on the U.S. market, with $1,388 billion
in total assets under management (AUM). While most of these ETFs include

bond ETFs focusing exclusively on the U.S. market, a fraction includes global

bonds, focusing, e.g., on emerging markets or developing countries. We exclude

the international ETFs as U.S. interest rate changes might impact underlying

international bonds differently than U.S. bonds. Further, we exclude any inverse

and leveraged fixed-income ETFs. The remaining 425 U.S.-bond ETFs make up

$1,235 billion in AUM. The 65 bond ETFs in our sample are among the 150

largest bond ETFs in terms of AUM today and correspond to $871 billion in

AUM. 1 Therefore, our sample accounts for 70.5% of the corresponding U.S. bond

ETF market today. An overview of the raw data, which we either use directly or

manipulate to obtain the variables of interest, can be found in Table 5.1 below.

1For a closer look at the sample, please refer to Table A.1 and Table A.2

23



Table 5.1: Data Sources

Data Description Source

ETF-Prices End-of-day ETF prices Bloomberg

NAV of ETFs End-of-day net asset value of the ETFs’ underlying assets Bloomberg

30 day Fed Funds Futures End-of-day prices of 30-Day Federal Fund Futures Bloomberg

VIX End-of-day prices CBOE Volatility Index Yahoo

AUM End-of-day ETF asset under management size Bloomberg

FOMC Statistics Dates of FOMC announcements Bloomberg

5.1 Dependent Variable

To obtain a measurement of the ETF premiums required to compute changes in

the premiums, we collect data on the daily ETF closing prices and closing NAVs

from Bloomberg. Bloomberg collects data on an ETF’s NAV directly from the

ETF sponsor, who uses proprietary models to estimate the NAV (Pan & Zeng,

2017). Further, Bloomberg adjusts the data on the NAV for differences in the

closing times of the equity and bond market, aligning the ETF price and the

NAV to the closing time of the equity market (Pan & Zeng, 2017). This process

ensures that ETF price and NAV are measured at the same time.

The premium measured for a specific ETF on day t is then simply the relative

difference between its price and NAV on that day:

PremiumETF,t =
PriceETF,t − NAVETF,t

NAVETF,t

(5.1)

Since we are not interested in the level of the price discrepancies but in how

they get affected by the surprises, we are computing the change in the premiums

(∆Premium) by taking the differences between the premiums on the date of the

observed surprise and the day before. Further, we multiply the change by 10,000

in order to analyze the results in basis points (bps):

∆PremiumETF,t = (PremiumETF,t − PremiumETF,t−1)× 10, 000 (5.2)

Hence, ∆Premiumt = 1 is a change in the price discrepancies of one bps.

Figure 5.1 below shows the average ∆Premium of the 65 ETFs in our sample

from 2012 to 2022. A few things can be observed. First, the average ∆Premium

for the ETFs in our sample is for most days within a range of ±20 bps from

zero, or at least between ±40 bps. The exception is some very large observations

during the initial period of Covid-19 in March-April 2020, highlighted in green in
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the figure. During that time, the changes in average ∆Premium extend from +160

bps to -160 bps. These extreme outliers suggest that the two months should be

excluded from the analysis, as they can potentially alter any estimate significantly.

As described in the methodology, we also look at the change in the ETF price

and NAV, respectively. We do that to gain more insight into how both react to

the surprises and discuss the applicability of ETFs as a price discovery tool. The

relative day-to-day changes in the ETF price and the NAV itself, which reflect

the returns of both variables, are again multiplied by 10,000 to be measured in

bps (see equations 5.3 and 5.4).

∆PriceETF,t =

(
PriceETF,t − PriceETF,t−1

PriceETF,t−1

− 1

)
× 10, 000 (5.3)

∆NAVETF,t =

(
NAVETF,t − NAVETF,t−1

NAVETF,t−1

− 1

)
× 10, 000 (5.4)

Figure 5.1: Average ETF ∆Premiums

Note: The figure displays the average ∆Premiums from Jan 2012 to Dec 2022.
The outbreak of COVID-19 in March-April 2020 is highlighted in green.

5.2 Explanatory Variables

Table 5.2 below provides an overview of all the variables used to investigate the

hypotheses.
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Table 5.2: Data Description

Data Description Measurement Concept

∆Premium Day-to-day change in ETF premium In bps Dependent Variable

∆Price Day-to-day change in ETF price In bps Additional Dependent Variable

∆NAV Day-to-day change in ETF NAV In bps Additional Dependent Variable

Surprise Surprising change in effective federal fund rate In bps Hypotheses 1

VIX Proxy for aggregated bond market illiquidity Index Hypotheses 2

AUM Assets under management Standardized Hypotheses 3

FOMC FOMC announcement days Dummy Hypotheses 4

Post-Covid Post-Covid period Dummy Hypotheses 5

One day lag of premium Size Premium on the previous day In bps Control Arbitrage Mechanism

The main independent variable on which we test our hypotheses is, as discussed

in the hypotheses part, the surprising change in the effective federal funds rate

measured using the Kuttner (2001) method, which takes advantage of changes in

the federal funds future contracts. Data on the closing prices of the federal funds

futures contracts are obtained from Bloomberg. Since we need the prices of the

contracts during each month where the contracts are maturing and the prices on

the last day of the previous month, we must look at 132 different contracts.

In Figure 5.2, we can observe the time series of the extracted surprises. There

are several interesting findings to be made. First, most of the surprises lie between

±5 bps, though we can observe some larger outliers. As with the ∆Premium

observations, we find the most striking outliers during the initial Covid month in

March and April 2020 (highlighted green). We can observe surprises far below -10

and one larger than +10 on several days during this period. These observations

confirm that excluding the two Covid months from the analysis is a good idea.

Additionally, to these Covid-outliers, we observe two outliers larger than 10 bps in

absolute terms, one observation in late 2019 and one negative outlier in mid-2022.

We must consider the outliers in our analysis, as they can potentially function as

leverage points that can severely bias our findings.

In addition to the outliers, it can also be observed that the surprises are

happening more often during the last years of our sample. This trend likely

stems from escalating market uncertainty due to Covid-19 and more pronounced

increases in the Federal Reserve’s target rate. In comparison, we observed that

the surprises were fewer and weaker during the first few years of our sample, a

period characterized exclusively by zero lower-bound interest rates.

We employ the CBOE Volatility Index (VIX) closing values obtained from

Yahoo Finance to test our second hypothesis. We use the VIX to proxy for the

general bond market illiquidity. While the VIX primarily measures the implied

volatility in the stock market, Bao et al. (2011) find that the VIX is also signifi-
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Figure 5.2: Surprises

Note: The figure displays the federal funds rate surprises from Jan 2012 to
Dec 2022. The outbreak of COVID-19 in March-April 2020 is highlighted in
green.

cantly and positively related to the illiquidity of corporate bonds. After publishing

their influential paper, the VIX has been used as a proxy for the bond market illiq-

uidity in several studies on corporate bonds (e.g., Goldstein et al. (2017), Javadi

et al. (2018), Pan and Zeng (2017)).

Figure 5.3 plots the time series of the VIX from 2012 to 2022. As with

∆Premium and the surprises, we observe the most extreme outliers during the

initial Covid-19 period in March-April 2020. In contrast to the rest of the sample

period, where the VIX rarely exceeded 40, the VIX reached values well above

80 and usually hovered above 40 during the Covid-months. This finding further

underscores the importance of omitting the Covid period from our analysis. Strik-

ingly, after the initial Covid shock, the VIX stays elevated on average compared

to the pre-Covid time.

To test the hypothesis on ETF size, we have extracted data on the asset under

management (AUM) of each bond at each point in time. Since its introduction,

the bond ETF market has steadily increased in size. We can observe this surge in

popularity in Figure 5.4, a time plot of the aggregated AUM of the whole sample.

While the aggregated AUM was below $200 billion in 2012, it quadrupled by 2022,
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Figure 5.3: VIX

Note: The figure displays CBOE Volatility Index (VIX) closing values from
Jan 2012 to Dec 2022. The outbreak of COVID-19 in March-April 2020 is
highlighted in green.
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reaching over $800 billion. Due to this large growth of the bond ETF market, we

cannot include AUM measured in dollars in our regression, as the current much

larger observations would dominate the estimates. Instead, we standardize AUM

by subtracting the mean on day t from each observation and dividing it by the

standard deviation on day t :

AUM Stand. =
AUMETF,t − µAUM,t

σAUM,t

(5.5)

Figure 5.4: AUM

Note: The figure displays the aggregated asset under management (AUM) of
the 65 bond ETFs in our sample from Jan 2012 to Dec 2022. The outbreak of
COVID-19 in March-April 2020 is highlighted in green.

In addition to the variables described, we specify dummies for FOMC meetings

and the post-Covid time. We define the post-Covid period as the period that

starts after May 2020. We specify these dummies to examine our hypotheses

that the relationship between Surprise and ∆Premium significantly differs during

these times. Furthermore, we include a one-day lag of the premium to control

for arbitrage pressure on the premiums. The average premiums per day can be

seen in Figure 5.4. As with ∆Premium, on most days, the average premium of

all ETFs seems to be within a range of ±50 bps and, usually, within a range of

±25bps. Noteworthy exceptions to this pattern are the Taper Tantrum and the
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Figure 5.5: Average Premiums

Note: The figure displays the average Premiums from Jan 2012 to Dec 2022.
The outbreak of COVID-19 in March-April 2020 is highlighted in green.

Covid-19 period. The Taper Tantrum corresponds to a short period during the

summer of 2013, where a demand shock led to significant persistent discounts in

ETFs (Dannhauser & Hoseinzade, 2022). However, the observations during the

Covid shock in March-April 2020 are still the most extreme. During the Covid-

period, we observe several substantial average positive premiums and even more

extreme average discounts. The average discounts are up to -375 bps on some

days and therefore distinguish a lot from the remaining timespan.

5.3 Descriptive Statistics

We will now have a closer look at the variables and discuss the descriptive statis-

tics of our variables and the correlation matrix in the following. Owing to the ob-

served extreme outliers during March and April 2020, we have decided to exclude

this period from the continued analysis.2 Consequently, the following descriptive

statistics include the data from all days except the two Covid-months.

Table 5.3 shows the descriptive statistics for the different variables used in

2We also exclude the last trading day of February 2020, (i.e. February 28th)
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our analysis. Besides the continuous variables, the dummy variables for FOMC

announcements and the post-Covid period are included. For these categorical

variables, the statistics of primary interest is the mean, which shows the share of

the total sample that corresponds to each of those events/periods. For instance,

3% of the days in our sample correspond to a day of an announcement by the

FOMC.

Table 5.3: Descriptive Statistics - All Variables

Variable Count Mean Std Min 25% 50% 75% Max

∆Premium 176995 -0.02 15.69 -307.04 -5.39 0.00 5.29 484.35

∆Price 176995 -0.23 42.70 -660.09 -12.21 0.00 13.29 523.26

∆NAV 176995 -0.21 40.68 -663.46 -10.23 0.66 11.25 520.59

Surprise 2723 0.01 0.71 -10.00 0.00 0.00 0.00 15.47

VIX 2723 17.34 5.58 9.14 13.19 15.82 20.37 40.79

AUM stand. 176995 0.00 0.99 -0.74 -0.57 -0.43 0.15 5.13

FOMC 2723 0.03 0.175 0.00 0.00 0.00 0.00 1.00

Post Covid 2723 0.25 0.43 0.00 0.00 0.00 0.00 0.00

Premium 176995 5.56 23.66 -583.09 -1.35 3.96 12.33 396.00

Considering the variables ∆Premium, Premium, and the returns of both the

ETF and the NAV, we observe that all their distributions have somewhat fat

tales. For instance, ∆Premium has a min of -307.04bps and a max of 484.35bps,

even after omitting the Covid-months. This finding shows that large changes

in the premiums also occur during more normal times. For ∆Price and ∆NAV,

however, we observe that they have less fat tails as their outliers are less extreme

compared to standard deviations. Further, we can spot that, on average, ∆price

and ∆NAV go down (mean of -0.23 and -0.21, respectively). This observation is

most likely due to interest rates being at the lower zero bound at the beginning

of our sample in 2012, which caused higher bond prices than at the end of 2022

when interest rates are hiking again. We can observe that premiums are, on

average, 5.56 bps. This could indicate that investors are, on average willing to

pay a positive premium for the ETF in exchange for access to liquidity.

The surprise variable is also characterized by extreme outliers compared to

its standard deviation. Noteworthy is that all the observations are zero between

the 25th and 75th percentile. This means that for more than half of the sample,

no surprises were recorded at all. As mentioned before, the days of the extreme

values will get dummies to mitigate the risk of leverage points.

We are primarily interested in analyzing the interplay between the surprises

and ∆Premiums over time. However, to get a comprehensive understanding, it is

also valuable for our analysis to characterize the ∆Premiums and premiums on
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FOMC and non-FOMC dates by comparing the descriptive statistics. In addition,

we compare the pre-Covid and post-Covid periods to assess the potential differ-

ences between the two periods. The results are displayed in Table B.1, together

with the absolute values of these variables. We add the absolute values since

positive and negative ∆Premiums and premiums tend to cancel each other out,

and absolute values allow us to observe when premiums were larger on average.

We observe that on FOMC days, ∆Premium tends to be more positive (mean

of 1.25bps vs. -0.06bps), with a greater standard deviation (17.96bps vs 21.23bps)

than on non-FOMC days. The same is the case for the level of the premiums. A

possible explanation for this discrepancy can be found in Table B.2, which shows

the descriptive statistics for the surprises on FOMC days and non-FOMC days.

The surprises are, on average, slightly more negative on FOMC days (-0.06bps),

while they tend to be slightly positive (0.012bps) on non-FOMC days. Following

our assumption that negative surprises increase the value of the underlying and

that the ETF price reacts stronger to the surprises than the NAV, it could help to

explain the observed deviations. Still, the observations are too small to conclude.

Furthermore, it can be seen that the surprises are more common on FOMC days

compared to non-FOMC days (at least on 50% of FOMC days vs. less than 50%

on non-FOMC days). Hence, following the same narrative, it can be assumed that

more frequent surprises lead to, in absolute terms, more significant ∆Premiums

and larger premiums on average.

When comparing the pre-Covid with the post-Covid period, we observe that

the movements in premiums are slightly larger in absolute terms post-Covid

(9.64bps) than pre-Covid (9.28bps). However, the level of the premiums is more

significant in the pre-Covid period than post-Covid (14.74bps vs. 11.91bps). This

finding could suggest that premiums were more persistent before Covid than after

Covid.

Table 5.4 shows the Pearson correlation matrix, including the correlations

between the different dependent variables, the non-binary independent variables,

as well as the absolute values for ∆Premium, and Surprise.

We first examine the three dependent variables ∆Premium, ∆Price, and ∆NAV.

We first observe that ∆Price and ∆NAV have a correlation of 0.93, which is not

unexpected considering the two variables are tied together by arbitrage. What is

interesting, however, is that ∆Price has a moderate correlation with ∆Premium

at 0.31, while the correlation between ∆NAV and ∆Premium is with its -0.06,

close to zero. This result implies that changes in ETF premiums are primarily

due to changes in the ETF price.

As for the remaining variables, Surprise, VIX, AUM, and Premium lag (ab-
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solute values excluded), we do not see any significant correlations between them

and the dependent variables, except the correlation between ∆Premium and Pre-

mium lag, which is -0.33, indicating that premiums tend to return to zero. The

correlation between Surprise and ∆Premium is also minuscule, indicating that

the surprises are not the primary reason premiums change during the day. Still,

based on the observed correlation, it cannot be concluded that the surprises do

not impact the premiums. Additionally, we do not observe any strong correlations

among the explanatory variables.

To measure the correlation of VIX with the two variables Surprise and ∆Pre-

mium, we include the absolute values of the two variables. We need the absolute

variables since VIX is always positive, while the other two can be both negative

and positive. Assuming that greater values of VIX, which proxies the illiquidity

of the bond market, are positively correlated with both positive and negative

changes in the premiums, it makes sense to check the correlation between VIX and

|∆Premium|. Similarly, the VIX can be positively correlated with both positive

and negative surprises since VIX also measures the general volatility in the market,

which could lead to more significant surprises, both negatively and positively. The

correlation between VIX and |Surprise| and |∆Premium| shows that these are

positive, with 0.12 and 015, respectively. The correlations for the absolute values

are indeed larger than those between the relative variables, which are -0.01 and

0.01, respectively, but still very small. Therefore, it can be concluded that there

are no multicollinearity issues in the data.

Table 5.4: Correlation Matrix

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆Premium (1) 1

∆Price (2) 0.31 1

∆NAV (3) -0.06 0.93 1

Surprise (4) 0 -0.09 -0.09 1

VIX (5) -0.01 -0.02 -0.02 0.01 1

AUM (6) 0 -0.01 -0.01 0.01 0.16 1

Premium lag (7) -0.33 -0.04 0.09 -0.01 -0.03 0.04 1

|∆Premium| (8) 0.01 -0.01 -0.02 0.01 0.12 -0.09 -0.07 1

|Surprise| (9) 0.02 0.01 0.01 0.17 0.15 0.06 -0.02 0.03 1
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Chapter 6

Results

6.1 Choosing the Right Estimator

In this section, we will present and discuss the results of our analysis. As discussed

in the methodology part, we start our analysis by running the complete model

using POLS, entity FE, and RE to choose the best estimator for the remaining

analysis. Table 6.1 below shows the results of these three regressions. In addition

to the variables displayed, all regressions include dummies for the two large sur-

prises detected in the data section before. The outlier-dummies are included to

prevent possible leverage points from biasing the findings but are not displayed

as they are of no particular interest for the analysis.

When comparing the results of the fixed effect estimator with the pooled OLS

estimator, we observe that the coefficients are usually similar for most of the

variables. However, when conducting the F-test for the joint significance of the

ETF dummies in the fixed effects regression, we find a t-statistic of 83.56. The

corresponding p-value is < 0.01, which implies that one can reject the null hy-

pothesis that these are jointly insignificant, and hence using the entity fixed effect

estimator is preferred over pooled OLS.

Next, we will compare the results of the fixed effects estimator with the ran-

dom effects estimator. Should the two estimators be similar, the random effects

estimator should be used as it is the most efficient estimator of the two. We

compare the two statistically using a Hausman test whose null hypothesis is that

the estimates of the FE and RE estimators are not different from one another.

The t-statistic of the test, which can be seen at the bottom of table 6.1, equals

6120.05 and corresponds to a p-value < 0.01. Hence, the null hypothesis is re-

jected, and the estimates are significantly different, requiring us to use the fixed

effect estimator.
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Table 6.1: Full Model - Comparison between Pooled OLS, Fixed Effects and
Random Effects Estimator

Dependent variable: ∆Premium

POLS FE RE

(1) (2) (3)

Surprise -0.017 -0.030 -0.017

(0.226) (0.223) (0.226)

VIX -0.064∗∗∗ -0.068∗∗∗ -0.064∗∗∗

(0.008) (0.008) (0.008)

VIX x Surprise -0.009 -0.006 -0.009

(0.013) (0.013) (0.013)

AUM stand. 0.368∗∗∗ -0.133 0.368∗∗∗

(0.035) (0.113) (0.035)

AUM x Surprise -0.102∗∗ -0.098∗∗ -0.102∗∗

(0.050) (0.049) (0.050)

FOMC 1.229∗∗∗ 1.232∗∗∗ 1.229∗∗∗

(0.201) (0.198) (0.201)

FOMC x Surprise -0.483∗∗∗ -0.499∗∗∗ -0.483∗∗∗

(0.146) (0.144) (0.146)

Post Covid 0.138 0.081 0.138

(0.108) (0.107) (0.108)

PostCovid x Surprise -0.458∗∗∗ -0.495∗∗∗ -0.458∗∗∗

(0.156) (0.154) (0.156)

Premium lag -0.222∗∗∗ -0.275∗∗∗ -0.222∗∗∗

(0.001) (0.002) (0.001)

Constant 2.245∗∗∗ 2.245∗∗∗

(0.134) (0.134)

F-test for Poolability 83.56

Hausman-test 6120.05

Observations 176,995 176,995 176,995

R2 0.114 0.140 0.114

Adjusted R2 0.114 0.139 0.114

Note: The table displays the results of running the complete model on Pooled Re-
gression (POLS), Fixed Effect Estimator (FE), and Random Effect Estimator (RE).
Displayed are also the F-test for Poolability, and the Hausman-test used to test whether
FE and RE provide same estimates. The statistical significance of the coefficients is
indicated as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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6.2 Changes in Premiums

Having found that the entity fixed effect estimator is the preferred estimator for

our model, the remainder of the analysis is conducted using this estimator. In

Table 6.2, we display the complete FE model, including some variations, in which

we exclude some of the regressors. Again, the regressions include dummies for

the two surprises whose coefficients are not displayed here. Further, we conduct a

Breusch-Pagan test and a Breusch-Godfrey test to test both for heteroskedastic-

ity and autocorrelation in the residuals of the complete model. Both tests have

significant p-values, indicating evidence for both heteroskedasticity and autocorre-

lation. Therefore, we use clustered standard errors in all the specifications, which

account for both heteroskedasticity and autocorrelation. The resulting standard

errors are larger than normal standard errors, and the conclusions based on these

are, therefore, more conservative.

Looking at the results of the full model in column (1), we find that the coeffi-

cient of Surprise, although slightly negative, does not seem to impact ∆Premiums

significantly. Hence, we find no evidence for the first hypothesis stating that the

federal funds rate surprises negatively impact ETF premiums. This result could

be due to two different reasons: First, the surprises actually do not impact the

underlying bonds or the ETF. This would imply that the surprises cannot be

considered a fundamental shock to bonds. However, Kuttner (2001) finds that

surprises, in fact, impact interest rates, which suggests that another explanation

is more likely: Namely, that the surprises impact the NAV and the ETF to the

same extent, and no change in the premiums is found. This would imply that the

prices of bonds are as quick as the ETF price in incorporating the fundamental

shocks. The result indicates that the ETF perhaps does not necessarily promote

price discovery.

Besides finding no significant effect of the surprises in general, we also do not

find evidence for our hypotheses 2 and 3. The interaction terms’ coefficients be-

tween Surprise, VIX, and AUM are insignificant, respectively. Therefore, neither

the illiquidity of the market nor the ETF size seems to alter the impact of the

Surprise on ∆Premium. With respect to ETF size, we can, therefore, not shed

more light on the opposing findings of Dannhauser and Hoseinzade (2022) and

Madhavan and Sobczyk (2016). Considering the bond market illiquidity, we as-

sumed that as it increases, the impact of Surprise on ∆Premium would increase

since the APs would arbitrage less. According to the coefficient, however, the APs

seem to keep ETF and NAV together in response to a surprise regardless of the

overall bond market liquidity.
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However, a coefficient that does show significance is the main effect of VIX

on ∆Premium, which is negative. Although the main effects are not our primary

interest in the analysis, we can still interpret them. The coefficient indicates that

discounts tend to form on days when the bond market is more illiquid. This

finding aligns somewhat with the fire sale theory of Shim and Todorov (2022).

They find that during the initial Covid months, when the bond markets got very

illiquid, the APs tended not to arbitrage the gap between ETFs and underlying

away when the ETF prices dropped. Their findings suggest that the APs feared

triggering a fire sale by arbitraging the discounts that could significantly impact

the value of the remaining bonds in the APs’ portfolios. It is debatable whether

the fear of fire sales also holds during more normal times, but on the other hand,

it is possible that the APs also arbitrage discounts less when the bond market is

more illiquid in general.

In contrast to hypotheses one, two, and three, we find evidence for hypotheses

four and five regarding the FOMC announcement days and the post-Covid period,

as the interaction terms with the Surprise are significant. Table 6.2 shows that

the FOMC x Surprise interaction term is significant at the 1% level, and the Post-

Covid x Surprise is significant at the 5% level. Considering first the role of FOMC

announcement days, we see that on these days, Surprise negatively impacts the

premiums, which is also the relationship we expected for Surprise in general. A

positive Surprise will lead to discounts, while a negative Surprise will lead to

positive premiums. The size of the coefficient also tells us that for a positive

Surprise of 10 bps, the premium will go down by about 4.99 bps. Vice versa, for

a negative Surprise of the same size, it goes up by about 4.99 bps. Whether this

is due to increased staleness in the NAV due to faster price discovery in the ETFs

on these days can be seen once we run the regressions on ∆Price and ∆NAV.

The effect of the post-Covid period on the relationship between Surprise and

∆Premium is also negative and similar in size to the one of the FOMC interaction

term. Hence, after the initial Covid period starting in May 2020, the surprises

seem to impact premiums significantly, as expected. Again, to observe whether

this is due to faster price discovery in the ETFs or greater staleness in the NAV,

we must observe the individual effect both on price and NAV separately.

Concerning Premium lag, its coefficient is significantly negative, as expected.

Positive premiums should experience a negative change in the premium as arbi-

trage will push it to zero, while discounts should experience a positive change for

the same reasons.

The intention of running regressions (2), (3), and (4) is to investigate the im-

pact of excluding the FOMC and post-Covid interaction terms and their dummies
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from the regression. In regression (2), both are missing, while regression (3) ex-

cludes post-Covid, and regression (4) excludes FOMC. Looking at the results, we

can see that, for the most part, the coefficients of the other variables only change

marginally. However, one interesting exception is the coefficient of the interac-

tion term between VIX and the Surprise. The coefficient becomes significantly

negative when not controlling for the post-Covid period in regression (2) and (3).

The result implies that with larger bond market illiquidity, the impact of Surprise

actually does increase, which is what we assumed in hypothesis two.

However, since the interaction term of VIX is only significant when dropping

the post-Covid interaction term from the regression, it is very likely that VIX

only captures the effect previously observed during the post-Covid period. As we

have seen before, VIX has been, on average greater post-Covid than pre-Covid.

One explanation of this observation is that the interaction term absorbs the effect

of the post-Covid period. Therefore, this does not fully serve as evidence for

hypothesis two.

It is also worthwhile to discuss the adjusted R2 of our regressions. The com-

plete model has an adjusted R2 of 13.9%, implying that it can explain about

13.9% of the variance in the movements of the premiums. Although it is not

particularly large, it is not surprising. The underlying bonds and the ETF most

likely experience a great variety of liquidity and fundamental shocks each day, not

due to surprising changes in the federal funds rate. Hence, it can be expected that

when using daily data on the ETFs, a model able to explain most of the variation

in ∆Premium between days would need many more factors.

38



Table 6.2: Different Specification of Fixed Effect Estimator

Dependent variable: ∆Premium

(1) (2) (3) (4)

Surprise -0.030 0.245 0.291 -0.070

(0.291) (0.198) (0.202) (0.291)

VIX -0.068∗∗∗ -0.064∗∗∗ -0.064∗∗∗ -0.069∗∗∗

(0.021) (0.022) (0.022) (0.021)

VIX x Surprise -0.006 -0.036∗∗∗ -0.033∗∗∗ -0.010

(0.018) (0.011) (0.011) (0.018)

AUM stand. -0.133 -0.133 -0.133 -0.133

(0.421) (0.417) (0.418) (0.421)

AUM x Surprise -0.098 -0.098 -0.098 -0.098

(0.061) (0.060) (0.060) (0.061)

FOMC 1.232∗∗∗ 1.264∗∗∗

(0.226) (0.231)

FOMC x Surprise -0.499∗∗∗ -0.445∗∗∗

(0.133) (0.132)

Post Covid 0.081 0.096

(0.281) (0.282)

PostCovid x Surprise -0.495∗∗ -0.472∗∗

(0.229) (0.229)

Premium lag -0.275∗∗∗ -0.275∗∗∗ -0.275∗∗∗ -0.275∗∗∗

(0.031) (0.031) (0.031) (0.031)

Observations 176995 176995 176995 176995

R2 0.139 0.139 0.139 0.139

Adjusted R2 0.139 0.139 0.139 0.139

Note: The table displays the results of the FE estimator. Model (1) displays the complete model with all
the variables included. Model (2) displays the model excluding the FOMC dummy, the interaction term
between FOMC and Surprise, the Post-Covid dummy, and the interaction term between post-Covid and
Surprise. Model (3) excludes the Post-Covid dummy and the interaction term between Post-Covid and
Surprise. Model (4) excludes the FOMC dummy and the interaction term between FOMC and Surprise.
Clustered standard errors are reported in parentheses. The statistical significance of the coefficients is in-
dicated as follows: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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6.3 Price Discovery

As we are not only interested in the change of the premiums but also in whether

they are caused by price discovery in the ETFs, we also run the complete model

with ∆Price and ∆NAV as the dependent variables. Doing so allows us to see

how the ETF and the NAV react differently to the fundamental shock implied

by Surprise. The difference in their reaction is also the source of the changes in

the premiums. Table 6.3 contains the results of these regressions. Regression (1)

is again the complete model with ∆Premium as the dependent variables, while

regression (2) and (3) show the results for ∆Price and ∆NAV as the dependent

variables, respectively.

Table 6.3 shows that ETF prices and NAV are significantly impacted by the

Surprises with coefficients of -6.11 and -6.07, respectively. This result shows that

the surprises are indeed fundamental shocks, and that the surprises do have a

directional impact on the bonds and ETFs, as expected. However, according

to the results, the two variables are not impacted significantly differently by it,

which is why we do not see any impact on the premiums. This could be due to the

NAV incorporating the new information stemming from the fundamental shock

as quickly as the ETF price does, at least when measured daily. If that is the

case, it indicates that ETF price and NAV tie together well and that the bond

ETF market is efficient.

Moving on to the interaction term between the FOMC dummy and Surprise,

we observe that the impact of the Surprise is muted on FOMC announcement

days. For both the price and NAV, we can observe that the coefficients of the

FOMC interaction terms are positive, implying that the impact of a 1 bps surprise

on FOMC announcement days is equal to -1.061 bps (-6.11+5.049) on the prices

and -0.521 bps (-6.069+5.548) on the NAV. The fact that the impact of Surprise

on NAV is muted more is why we observe a significant impact on the premiums on

FOMC days. The result indicates that the NAV is staler than the price. Therefore,

the ETF seems to affect the price discovery on FOMC days.

Interestingly, we observe that the impact of Surprise on ∆Price and ∆NAV is

smaller on FOMC days compared to non-FOMC days. This indicates that some

of the manners in which the FOMC announcements impact the markets counter-

act the surprises’ impact on interest rates. For instance, one possible explanation

could be the impact of FOMC announcement on credit risk, as discussed earlier.

Following Smolyansky and Suarez (2021), a surprising hike in the target rate on

FOMC announcement days leads to lower credit spreads on bonds as confidence

in the market increases. Consequently, interest rates may go up due to the sur-
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prise, while credit spreads go down due to the same surprise. These two effects

countering each other could explain the dampened effect of the Surprise.

Turning our attention to the post-Covid interaction term, we observe that

the reason for the significance is slightly different. The impact of Surprise on

both price and NAV is negative and significant, which implies that the impact

of Surprise on both is amplified for the post-Covid period. When adding the

coefficients to the main effects of Surprise, the price goes down by -7.956 bps

(-6.11 + (-1.846)) for a 1 bps surprise while the NAV goes down by -7.419 bps

(-6.069 +(-1.350)) in response to same surprise. Again, the NAV is relatively

staler than the ETF, indicating that the ETF promotes price discovery. These

findings align with our expectations that, in the aftermath of Covid-19, surprises

have a stronger impact on both ETF price and NAV. Further, these fundamental

shocks are due to the relative staleness of the NAV. However, our approach does

not allow us to identify the causes behind the staleness in NAV. One possible

explanation can be that the increased market uncertainty during this time may

lead to greater reactions to fundamental shocks.

Finally, it is interesting to look at the coefficients of the lag of the premium.

Several things can be observed. For a positive premium the previous day, the

price tends to go down while the NAV tends to go up. This observation makes

sense since APs arbitrage the premium, imposing downward pressure on the price

and upward pressure on the NAV, and vice versa in a discount scenario. What is

particularly interesting, however, is that the coefficient corresponding to a change

in NAV is more than twice the size of the ETF price coefficient in absolute terms.

If the movement of price and NAV were solely due to arbitrage, one would expect

that price and NAV would change to a similar degree. Hence, the larger movement

in the NAV points to what Madhavan and Sobczyk (2016) find regarding NAV

catching up with the ETF. The finding indicates that the movements in the ETF

prices are, to some degree, due to changes in the fundamentals of the underlying,

to which the NAV needs more time to adjust than the ETF price. Therefore, it

functions as further evidence for the price discovery hypothesis.

41



Table 6.3: Comparison of ∆Premium, ∆Price and ∆NAV

∆Premium ∆Price ∆NAV

(1) (2) (3)

Surprise -0.030 -6.110∗∗∗ -6.069∗∗∗

(0.291) (0.803) (0.760)

VIX -0.068∗∗∗ -0.004 0.063

(0.021) (0.089) (0.075)

VIX x Surprise -0.006 -0.015 -0.009

(0.018) (0.030) (0.020)

AUM stand. -0.133 -0.171 -0.032

(0.421) (0.296) (0.308)

AUM x Surprise -0.098 0.428 0.529

(0.061) (0.349) (0.366)

FOMC 1.232∗∗∗ 6.564∗∗∗ 5.328∗∗∗

(0.226) (0.682) (0.647)

FOMC x Surprise -0.499∗∗∗ 5.049∗∗∗ 5.548∗∗∗

(0.133) (0.605) (0.631)

Post Covid 0.081 -2.648∗∗∗ -2.730∗∗∗

(0.281) (0.965) (0.913)

PostCovid x Surprise -0.495∗∗ -1.846∗∗∗ -1.350∗∗∗

(0.229) (0.512) (0.401)

Premium lag -0.275∗∗∗ -0.085∗∗∗ 0.190∗∗∗

(0.031) (0.013) (0.025)

Observations 176995 176995 176995

R2 0.139 0.012 0.02

Adjusted R2 0.139 0.012 0.02

Note: The table displays the results of running the full model on ∆Premium
(1), ∆Price (2), and ∆NAV(3). Clustered standard errors are reported in
parentheses. The statistical significance of the coefficients is indicated as fol-
lows: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Chapter 7

Conclusion

With this thesis, we wanted to investigate how fundamental shocks in the form

of surprising federal funds rate changes can impact bond ETF premiums. Recent

literature discusses whether premiums are caused by price discovery or whether

they are due to non-fundamental liquidity shocks. We wanted to add to the

literature by using surprising federal funds rate changes as fundamental shocks to

the ETF and its NAV to test whether premiums can result from price discovery

in the ETF.

We conducted the empirical analysis utilizing ETF fixed effects on a panel of

65 U.S. bond ETFs from 2012 to 2022 and examined how the surprising federal

funds rate changes under different conditions impact the ETF premiums. Further,

we examined how the ETF price and the NAV were impacted separately by the

surprises. Our primary finding reveals that, on normal days, the surprises do

not significantly impact ETF premiums. This is attributable to ETF price and

NAV being impacted by the surprises to the same degree. This finding indicates

that there is no extra price discovery in the ETF and that the NAV seems to

incorporate the new information as quickly as the ETF price.

By using interaction terms to test for different characteristics and situations

under which the surprise may impact premiums, we find that the surprises impact

premiums negatively on FOMC announcement dates and during the period after

the initial Covid shock, i.e., the period from May 2020 onwards. Further, when

we analyze the individual impact on ETF price and NAV, we see that in both

cases, the price is more strongly impacted by the surprises, serving as evidence

for price discovery in the ETFs.

Notably, after the Covid outbreak, our findings show that the surprises im-

pacted both NAV and ETF prices more than the baseline observations. The

results show an increased reaction to the surprises in asset pricing after Covid.
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Given the liquidity mismatch between ETF price and NAV, the increased impact

of the surprises could lead to observable price discrepancies. This finding suggests

that the ETF can function as a tool for price discovery.

Our findings also reveal price discrepancies on FOMC days. However, the

model provides some puzzling results. The impact of the surprises on ETF price

and NAV are both attenuated compared to the baseline observations. A possible

reason for the subdued impact can be that FOMC announcements affect the

market in many different and possibly opposing ways, such as affecting credit

risk. Since most bond ETFs hold bonds representing broad indices, the asset class

incorporates many of these opposing factors, which can cause a muted impact.

Still, the results show that the NAV is staler relative to the ETF price, which

suggests that the ETF can function as a price discovery tool on FOMC days.

However, using the approach at hand does not allow us to explain why the effect

is different.

Our analysis also finds that the daily observed price discrepancies tend to

go to zero, mainly because the APs arbitrage them away. However, the NAV

interestingly moves more than the ETF price. This finding suggests that the

NAV generally tends to follow the ETF price, a fact that Madhavan and Sobczyk

(2016) associate with price discovery.

Given these results, there is only partial evidence that the fundamental shocks

in the shape of surprising federal funds rate changes impact ETF premiums daily.

This makes it difficult to give clear recommendations to investors. Our model

shows that the Surprises impact ETF price and NAV equally strongly in regular

periods, indicating that small fundamental shocks are incorporated equally quickly

in the ETF price and underlying securities. Therefore, the ETF does not provide

any advantage in price discovery, and investors can use the NAV as an indicator

of the true value of the underlying.

On the other hand, finding that the surprises significantly impact premiums

post-Covid has two significant implications. First, it implies that ETF and NAV

are quicker to depart from each other during periods characterized by uncertainty

and more volatility. The apparent price discrepancy is due to ETF price and

NAV showing different sensitivities to fundamental shocks. As a consequence, the

efficiency of the bond ETF market is negatively impacted. However, assuming

that the premiums partially originate from price discovery and that the NAV

typically trails the ETF, bond ETFs can provide investors with insights into the

intrinsic value of the underlying securities.

It is important to acknowledge some limitations of our results. First, we

cannot conclusively state that federal funds surprises are the sole drivers of ETF
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premiums. We capitalize on a reduced-form model, not a formal structural model

derived from theory. Hence, we cannot give any firm conclusions about causality.

Second, our model measures daily changes in premiums, potentially excluding a

comprehensive measurement of the shocks we analyze. We premised our approach

on the assumption that, given the illiquidity of the underlying bonds, the APs

take time to arbitrage, causing persistent premiums. However, the results suggest

that the arbitrage process often goes quicker than our model can capture. Our

analysis can suffer from biased results since we cannot pinpoint the exact time of

the shocks.

The last point also forms our first suggestion for future research. The frequency

of the data we apply can lead to missed observed impacts. For that reason, it

would be beneficial to replicate this study using high-frequency data. Doing so

would allow a more precise time-estimation of the surprises and better capture

the initial impact of the surprises on NAV and ETF prices around these surprises.

A further suggestion would be to investigate the channels through which

FOMC announcements impact bond ETFs and the price discrepancies. We have

seen that on these days, the surprising federal fund rate changes have a muted

impact on both ETF and NAV, which we associate with the FOMC announce-

ments impacting bond ETFs in various ways. Hence, it would be interesting to

investigate these further.
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Appendix A

List of ETFs

Table A.1: List of ETFs in Sample - Part 1

Ticker Rating Name Sponsor
AUM 2012

(in mil) (Rank)

AUM 2022

(in mil) (Rank)

Investment Grade

AGG Investment Grade iShares Core U.S. Aggregate Bond ETF BlackRock 15 135 (4) 82 827 (1)

BND Investment Grade Vanguard Total Bond Market ETF Vanguard 16 495 (3) 81 864 (2)

VCIT Investment Grade Vanguard Intermediate-Term Corporate Bond ETF Vanguard 2 260 (19) 42 114 (3)

VCSH Investment Grade Vanguard Short-Term Corporate Bond ETF Vanguard 3 352 (14) 41 149 (4)

BSV Investment Grade Vanguard Short-Term Bond ETF Vanguard 8 287 (9) 38 558 (5)

LQD Investment Grade iShares iBoxx $ Investment Grade Corporate Bond ETF BlackRock 21 968 (2) 34 242 (6)

TIP Investment Grade iShares TIPS Bond ETF BlackRock 22 833 (1) 30 362 (7)

MUB Investment Grade iShares National Muni Bond ETF BlackRock 3 007 (16) 27 448 (8)

SHY Investment Grade iShares 1-3 Year Treasury Bond ETF BlackRock 9 846 (7) 25 023 (9)

MBB Investment Grade iShares MBS ETF BlackRock 5 338 (10) 22 266 (10)

IGSB Investment Grade iShares 1-5 Year Investment Grade Corporate Bond ETF BlackRock 9 394 (8) 21 765 (11)

TLT Investment Grade iShares 20+ Year Treasury Bond ETF BlackRock 3 343 (15) 21 576 (12)

IEF Investment Grade iShares 7-10 Year Treasury Bond ETF BlackRock 4 754 (12) 19 836 (13)

BIL Investment Grade SPDR Bloomberg 1-3 Month T-Bill ETF SSGA 1 258 (22) 19 273 (14)

SHV Investment Grade iShares Short Treasury Bond ETF BlackRock 2 501 (18) 19 010 (15)

SCHP Investment Grade Schwab U.S. TIPS ETF Schwab 466 (40) 16 846 (16)

VGSH Investment Grade Vanguard Short-Term Treasury ETF Vanguard 184 (56) 15 125 (17)

VMBS Investment Grade Vanguard Mortgage-Backed Securities ETF Vanguard 210 (52) 14 363 (19)

BIV Investment Grade Vanguard Intermediate-Term Bond ETF Vanguard 3 570 (13) 12 846 (20)

STIP Investment Grade iShares 0-5 Year TIPS Bond ETF BlackRock 344 (44) 11 749 (21)

IEI Investment Grade iShares 3-7 Year Treasury Bond ETF BlackRock 2 653 (17) 11 169 (22)

VGIT Investment Grade Vanguard Intermediate-Term Treasury ETF Vanguard 114 (61) 10 340 (23)

IGIB Investment Grade iShares 5-10 Year Investment Grade Corporate Bond ETF BlackRock 5 021 (11) 10 077 (24)

SCHO Investment Grade Schwab Short-Term U.S. Treasury ETF Schwab 219 (51) 9 106 (25)

FLOT Investment Grade iShares Floating Rate Bond ETF BlackRock 204 (53) 9 053 (26)

SUB Investment Grade iShares Short-Term National Muni Bond ETF BlackRock 548 (37) 8 496 (27)

SCHZ Investment Grade Schwab U.S. Aggregate Bond ETF Schwab 289 (47) 7 563 (28)

SPSB Investment Grade SPDR Portfolio Short Term Corporate Bond ETF SSGA 1 098 (24) 7 479 (29)

USIG Investment Grade iShares Broad USD Investment Grade Corporate Bond ETF BlackRock 1 287 (21) 6 731 (31)
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Table A.2: List of ETFs in Sample - Part 2

Ticker Rating Name Sponsor
AUM 2012

(in mil) (Rank)

AUM 2022

(in mil) (Rank)

Investment Grade

SCHR Investment Grade Schwab Intermediate-Term U.S. Treasury ETF Schwab 183 (57) 6 473 (32)

SPAB Investment Grade SPDR Portfolio Aggregate Bond ETF SSGA 514 (39) 6 371 (33)

SPIB Investment Grade SPDR Portfolio Intermediate Term Corporate Bond ETF SSGA 284 (48) 5 603 (34)

SPTL Investment Grade SPDR Portfolio Long Term Treasury ETF SSGA 54 (65) 5 558 (35)

SHM Investment Grade SPDR Nuveen Bloomberg Short Term Municipal Bond ETF SSGA 1 558 (20) 4 827 (36)

BLV Investment Grade Vanguard Long-Term Bond ETF Vanguard 702 (33) 4 595 (38)

VCLT Investment Grade Vanguard Long-Term Corporate Bond ETF Vanguard 857 (28) 4 565 (39)

CWB Investment Grade SPDR Bloomberg Convertible Securities ETF SSGA 825 (29) 4 512 (40)

TFI Investment Grade SPDR Nuveen Bloomberg Municipal Bond ETF SSGA 1 136 (23) 3 947 (41)

SPTI Investment Grade SPDR Portfolio Intermediate Term Treasury ETF SSGA 195 (54) 3 822 (42)

VGLT Investment Grade Vanguard Long-Term Treasury ETF Vanguard 73 (64) 3 780 (43)

TLH Investment Grade iShares 10-20 Year Treasury Bond ETF BlackRock 556 (36) 3 527 (44)

SPIP Investment Grade SPDR Portfolio TIPS ETF SSGA 708 (32) 2 954 (46)

GVI Investment Grade iShares Intermediate Government/Credit Bond ETF BlackRock 820 (30) 2 471 (47)

PZA Investment Grade Invesco National AMT-Free Municipal Bond ETF Invesco 769 (31) 2 118 (48)

TDTT Investment Grade FlexShares iBoxx 3-Year Target Duration TIPS Index Fund FlexShares 358 (43) 2 016 (49)

BAB Investment Grade Invesco Taxable Municipal Bond ETF Invesco 972 (26) 1 850 (51)

ITM Investment Grade VanEck Intermediate Muni ETF VanEck 514 (38) 1 745 (52)

IGLB Investment Grade iShares 10+ Year Investment Grade Corporate Bond ETF BlackRock 302 (46) 1 576 (53)

STPZ Investment Grade PIMCO 1-5 Year US TIPS Index ETF PIMCO 991 (25) 1 422 (55)

EDV Investment Grade Vanguard Extended Duration Treasury ETF Vanguard 189 (55) 1 289 (56)

MUNI Investment Grade PIMCO Intermediate Municipal Bond Active ETF PIMCO 161 (59) 796 (58)

TDTF Investment Grade FlexShares iBoxx 5-Year Target Duration TIPS Index Fund FlexShares 241 (50) 736 (59)

SPLB Investment Grade SPDR Portfolio Long Term Corporate Bond ETF SSGA 98 (63) 692 (60)

LTPZ Investment Grade PIMCO 15+ Year US TIPS Index ETF PIMCO 308 (45) 690 (61)

CORP Investment Grade PIMCO Investment Grade Corporate Bond Index ETF PIMCO 246 (49) 687 (62)

AGZ Investment Grade iShares Agency Bond ETF BlackRock 381 (42) 641 (63)

ZROZ Investment Grade PIMCO 25+ Year Zero Coupon US Treasury Index ETF PIMCO 118 (60) 476 (64)

PLW Investment Grade Invesco 1-30 Laddered Treasury ETF Invesco 166 (58) 472 (65)

High Yield

HYG High Yield iShares iBoxx $ High Yield Corporate Bond ETF BlackRock 14 949 (5) 15 110 (18)

JNK High Yield SPDR Bloomberg High Yield Bond ETF SSGA 11 523 (6) 7 478 (30)

BKLN High Yield Invesco Senior Loan ETF Invesco 624 (35) 4 629 (37)

HYD High Yield VanEck High Yield Muni ETF VanEck 668 (34) 3 134 (45)

HYMB High Yield SPDR Nuveen Bloomberg High Yield Municipal Bond ETF SSGA 108 (62) 1 856 (50)

HYS High Yield PIMCO 0-5 Year High Yield Corporate Bond Index ETF PIMCO 392 (41) 1 470 (54)

PHB High Yield Invesco Fundamental High Yield® Corporate Bond ETF Invesco 885 (27) 798 (57)
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Appendix B

Additional Descriptive Statistics

Table B.1: Descriptive statistics ∆Premium, |∆Premium|, Premium, |Premium|.
For FOMC and Non-FOMC Days as well as Pre-Covid and Post-Covid (in bps)

Variable Count Mean Std Min 25% 50% 75% Max

FOMC Days

∆Premium 5590 1.25 17.96 -179.45 -4.87 0.62 6.82 140.46

|∆Premium| 5590 10.80 14.40 0.00 2.29 5.82 13.24 179.45

Premium 5590 6.94 25.53 -333.73 -1.48 4.69 14.11 242.54

|Premium| 5590 15.79 21.23 0.00 3.51 8.81 19.57 333.73

Non-FOMC Days

∆Premium 171405 -0.06 15.61 -307.04 -5.40 0.00 5.24 484.35

|∆Premium| 171405 9.32 12.52 0.00 2.04 5.32 11.68 484.35

Premium 171405 5.50 23.55 -583.10 -1.35 3.94 12.26 396.00

|Premium| 171405 13.99 19.73 0.00 3.08 7.67 17.13 583.10

Pre-Covid

∆Premium 133250 -0.03 15.12 -284.38 -5.56 0.00 5.50 374.46

|∆Premium| 133250 9.28 11.94 0.00 2.22 5.53 11.78 374.46

Premium 133250 5.99 24.82 -583.09 -1.40 4.40 13.15 396.00

|Premium| 133250 14.74 20.84 0.00 3.29 8.13 17.97 583.09

Post-Covid

∆Premium 43745 0.01 17.31 -307.04 -4.87 0.00 4.72 484.35

|∆Premium| 43745 9.64 14.38 0.00 1.76 4.81 11.51 484.35

Premium 43745 4.18 19.46 -417.92 -1.26 3.27 9.91 164.33

|Premium| 43745 11.91 15.94 0.00 2.61 6.62 14.76 417.92
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Table B.2: Descriptive statistics Surprise and |Surprise|. Both for FOMC and
Non-FOMC Days (in bps)

Variable Count Mean Std Min 25% 50% 75% Max

FOMC Days

Surprise 86 -0.06 1.53 -5.77 -0.26 0.00 0.00 4.50

|Surprise| 86 0.80 1.29 0.00 0.00 0.26 0.98 5.77

Non-FOMC Days

Surprise 2637 0.01 0.66 -10.00 0.00 0.00 0.00 15.47

|Surprise| 2637 0.26 0.61 0.00 0.00 0.00 0.35 15.47
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