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Abstract 

This thesis conducts a rigorous examination of the potential for Variational 

Autoencoder (VAE)-derived latent embeddings to enhance the performance of 

classification algorithms when assessing business risk profiles from accounting 

data, specifically focusing on the Norwegian context. The study compares the 

performance of classifiers using VAE latent embeddings against those utilizing 

original or balanced training sets directly. Generally, it was found that, with the 

exception of Logistic Regression in certain experimental settings, the performance 

of classifiers using VAE latent embeddings was somewhat inferior. This outcome 

suggests that the dimensionality reduction process inherent to VAE may induce a 

degree of predictive power loss. 

However, VAE latent embeddings were observed to bolster the performance 

of Logistic Regression by effectively capturing complex, high-dimensional 

relationships within a compressed, lower-dimensional space. This process reduced 

noise, identified non-linear relationships, and introduced a beneficial regularization 

effect, which may enhance the generalizability of the Logistic Regression model. 

Furthermore, an increase in the dimensionality of the latent space up to a 

certain threshold improved the performance of classifiers, beyond which a decline 

was observed, indicating an optimal dimensionality  for these datasets. The 

application of under-sampling or over-sampling techniques to the training sets 

generally led to decreased classifier performance, particularly for Extreme Gradient 

Boosting and Multi-Layer Perceptron, with Logistic Regression as an exception in 

certain contexts. 

Notably, for the Norwegian dataset, the Extreme Gradient Boosting 

classifier often demonstrated superior performance when utilizing raw training sets. 

These findings provide valuable insights into the capabilities and limitations of 

VAE in assessing business risk profiles and underscore the need for further research 

in this promising field. 

 

 

 

 

 

 

Keywords: Variational Autoencoder, Bankruptcy Prediction, Machine Learning, 

Latent Embeddings, Norwegian Data Set.  
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Introduction 

Motivation and Research Questions 

The utilization of bankruptcy prediction models is multifarious and 

encompasses a vast array of clientele. The capability to evaluate the robustness and 

potential hazards of targeted entities is of paramount interest to banks, investors, 

and credit institutions (Baesens et al., 2003). Furthermore, public organizations are 

also invested in such models. Both the Central Bank of Norway and the Financial 

Supervisory Authority of Norway utilize bankruptcy models to gauge the financial 

well-being of corporations. The models need to satisfy the requirements for 

interpretability of the models. It is one of the reasons the models such as decision 

trees and logistic regression so widely used in bankruptcy prediction models. 

As the ramifications of the 2008 financial crisis continue to be felt, the need 

for models to anticipate bankruptcy has become increasingly acute. This is 

consistent with the findings of (Agarwal & Taffler, 2008), who observed a surge in 

interest in the evaluation of credit market risk. The insolvency of a company is a 

matter of tremendous concern for its proprietors, government authorities, and other 

relevant parties within the national economy (McKee & Lensberg, 2002). The 

domino effect of bankruptcies that ensued in the aftermath of the global financial 

crisis can be compared to what happened during the COVID-19 pandemic 

(Reinhart, 2022).  

The emergence of the Basel II further highlighted the importance of 

bankruptcy modelling. It requires the banks to maintain a capital reserve equal to at 

least 8% of their weighted assets.  It also allowed banks to measure the company’s 

risk of bankruptcy by using their internal models (de Andrés et al., 2012). This 

reserve ratio increased by 2.5% in Basel III, which is further expected to increase 

in Basel IV set to take effect from 2025 (Nordea, 2021).  The better the models are 

at identifying bankruptcy, the faster the authorities can react to the threats ensued 

by these bankruptcies. It is therefore of the utmost importance for authorities to 

closely monitor the financial health of Norwegian companies and monitor the risks 

associated with company bankruptcies. 

In the realm of predicting bankruptcy using financial statement data, 

Beaver's study (1966) was among the pioneers. This early research relied heavily 

on calculating financial ratios and comparing them against pre-determined cut-off 

thresholds. At the core of such studies, bankruptcy classification problems were 
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interpreted as binary classification problems (Barboza et al., 2017). Given the 

binary nature of bankruptcy outputs, certain models were deemed more suitable 

than others. Most of these bankruptcy prediction models were crafted utilizing 

statistical methods such as univariate statistical methods, multiple discriminant 

analysis (Altman, 1968), and logit (Ohlson, 1980) and probit (Zmijewski, 1984) 

analyses. Nevertheless, these methods grappled with certain limiting assumptions 

such as linearity, normality, and independence of predictor or input variables 

(Karels & Prakash, 1987; Balcaen & Ooghe, 2006; Yeh et al., 2014), reducing their 

effectiveness. Further, the use of a rigid function in these models posed challenges 

in capturing the complex and intricate relationships characteristic of financial 

systems, due to the inherent assumptions of these statistical methods. Over time, 

the development of machine learning and computational capabilities has enabled us 

to utilize more sophisticated methods for solving classification problems.  

Variational autoencoder is a type of generative model that was introduced 

by Kingma and Welling (2013). VAEs leverage variational inference techniques to 

learn the parameters of the model and perform efficient optimization. Best known 

for its generative capability and the ability to learn a lower-dimensional latent space 

representation of the input data, numerous research has been done to examine its 

performance in learning meaning full representations and classification problem 

(Xu et al., 2017; Connor et al., 2021). Recently, Mancisidor et al. (2021) shows that 

VAE can capture the risk profile of customers. This motivates us to use this 

generative model in predicting bankruptcies. The innovative aspect of our thesis, 

when compared with extant literature, resides in the utilization of VAE model-

derived latent embeddings as inputs for classification algorithms. The main 

objective of this exploration is to discern whether the VAE can effectively 

comprehend the risk profile of companies based on their respective accounting data. 

By leveraging three distinct datasets, deploying four separate classification 

methodologies, and assessing a variety of parameters, we meticulously examine if 

the VAE can effectively construct valuable representations from raw accounting 

data, thereby augmenting the classifier's performance. It is noteworthy to mention 

that, to the best of our understanding, there is a dearth of research that scrutinizes 

the efficacy of VAE latent embeddings when used as inputs for classification 

algorithms, particularly within the context of Norwegian companies. 

This uncharted territory of research has led us to formulate the central 

question that this thesis seeks to answer: 



 

Page 3 

Can Variational Autoencoder-derived latent embeddings enhance the 

performance of classification algorithms in assessing business risk profiles from 

accounting data, specifically in the Norwegian context? 

Overview of The Sections 

This thesis consists of seven sections. In the following section, we will delve 

into the literature surrounding bankruptcy prediction and highlight a recent study 

that explores the use of machine learning techniques for this purpose. It also 

provides an overview of the Variational Autoencoder (VAE) and its application in 

anomaly detection, especially bankruptcy prediction. Section three outlines the 

methodology employed in the analysis. Section four offers an in-depth examination 

of the data utilized in this analysis, including the derivation of the variables of 

interest and their transformation into the final data sets. Section five presents the 

results of the analysis. Section six delves into the limitations of our study and 

suggests potential avenues for further research. In the final section, we will 

summarize the main research questions, highlight the key findings of our analysis 

and suggest the implications of our results for future research.  
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Literature Review 

Bankruptcy prediction refers to the practice of identifying companies that 

are likely to face financial difficulties and ultimately declare bankruptcy. This 

process typically involves the examination of various financial and non-financial 

indicators to evaluate a company's financial stability and determine its risk of 

defaulting on its debts (Altinn, 2021). Bankruptcy prediction models are usually 

based on statistical techniques and employ financial ratios, accounting data, and 

other relevant information to calculate the likelihood of a company facing financial 

distress. These models can be utilized by investors, creditors, and other stakeholders 

to make knowledgeable decisions about the companies they have dealings with, and 

by policymakers to monitor and regulate the overall health of the economy. 

Table 1 

Summaries of Papers in the Literature Review 

Section Author(s) Year Title 

Earliest Works in 

Bankruptcy 

Prediction 

Barboza et al. 2017 Machine Learning Models and Bankruptcy 

Prediction. 

Earliest Adaptations Fitzpatrick 1931 A Comparison of Ratios of Successful 

Industrial Enterprises with Those of Failed 

Companies 

Earliest Adaptations Horrigan 1968 A Short History of Financial Ratio Analysis 

Earliest Adaptations Smith & 

Winakor 

1935 Changes in the Financial Structure of 

Unsuccessful Industrial Corporations 

Earliest Adaptations Chudson 1945 The Pattern of Corporate Financial Structure 

Earliest Adaptations Jackendoff 1962 A Study of Published Industry Financial and 

Operating Ratios 

Earliest Adaptations Treacy & Carey 2000 Credit Risk Rating Systems at Large US 

Banks 

Beaver’s Univariate 

Model 

Beaver 1966 Financial Ratios as Predictors of Failure 

Altman Z-Score Altman 1968 Financial Ratios, Discriminant Analysis, and 

the Prediction of Corporate Bankruptcy 

Ohlson O-Score Ohlson 1980 Financial Ratios and the Probabilistic 

Prediction of Bankruptcy 

Ohlson O-Score Upneja & 

Dalbor 

2001 An Examination of Capital Structure in the 

Restaurant Industry 

Ohlson O-Score Hillegeist et al. 2004 Assessing the Probability of Bankruptcy 

Ohlson O-Score Muzır & Çağlar 2009 The Accuracy of Financial Distress 

Prediction Models in Turkey: A Comparative 

Investigation with Simple Model Proposals 

Ohlson O-Score Diakomihalis 2012 The Accuracy of Altman’s Models in 

Predicting Hotel Bankruptcy 

Ohlson O-Score Begley, Ming & 

Watts 

1996 Bankruptcy classification errors in the 1980s: 

An empirical analysis of Altman’s and 

Ohlson’s models 
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Table 1 

Summaries of Papers in the Literature Review 

Section Author(s) Year Title 

Ensemble Learning Opitz & Maclin 1999 Popular Ensemble Methods: An Empirical 

Study 

Ensemble Learning Polikar 2006 Ensemble Based Systems in Decision 

Making 

Ensemble Learning Dasarathy & 

Sheela 

1979 A Composite Classifier System Design: 

Concepts and Methodology 

Ensemble Learning Hansen & 

Salamon 

1990 Neural Network Ensembles 

Ensemble Learning Schapire 1990 A Decision-Theoretic Generalization of On-

Line Learning and an Application to Boosting 

Ensemble Learning Freund & 

Schapire 

1997 A Decision-Theoretic Generalization of On-

Line Learning and an Application to Boosting 

Ensemble Learning Wolpert 1992 Stacked generalization  

Ensemble Learning Breiman 1996 Bagging Predictors 

Ensemble Learning Ho 1998 The Random Subspace Method for 

Constructing Decision Forests 

Ensemble Learning Breiman 2001 Random Forests 

Ensemble Learning Tanaka et al. 2016 Random Forests-Based Early Warning 

System for Bank Failures 

Ensemble Learning Joshi et al. 2018 A Bankruptcy Prediction Model Using 

Random Forest 

Ensemble Learning Prusak 2018 Review of Research into Enterprise 

Bankruptcy Prediction in Selected Central 

and Eastern European Countries 

Ensemble Learning Friedman 2001 Greedy Function Approximation: A Gradient 

Boosting Machine 

Ensemble Learning Wyrobek & 

Kluza 

2018 Efficiency of Gradient Boosting Decision 

Trees Technique in Polish Companies’ 

Bankruptcy Prediction 

Ensemble Learning Quynh & 

Phuong 

2020 Improving the Bankruptcy Prediction by 

Combining Some Classification Models 

Ensemble Learning Chen & 

Guestrin 

2016 XGBoost 

Ensemble Learning Breiman et al. 2017 Classification and Regression Trees 

Ensemble Learning Zięba et al. 2016 Ensemble Boosted Trees with Synthetic 

Features Generation in Application to 

Bankruptcy Prediction 

Ensemble Learning Carmona et al. 2019 Predicting Failure in the U.S. Banking Sector: 

An Extreme Gradient Boosting Approach 

 Pawełek 2019 Extreme Gradient Boosting Method in the 

Prediction of Company Bankruptcy 

Neural Networks McCulloch & 

Walter 

1943 A Logical Calculus of the Ideas Immanent in 

Nervous Activity 

Neural Networks Rosenblatt 1958 The Perceptron: A Probabilistic Model for 

Information Storage and Organization in the 

Brain 

Neural networks Minsky & 

Papert 

1969 Perceptron’s – An Introduction to 

Computational Geometry 

Neural Networks Hopfield 1982 Neural Networks and Physical Systems with 

Emergent Collective Computational Abilities 
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Table 1 

Summaries of Papers in the Literature Review 

Section Author(s) Year Title 

Neural Networks Schmidhuber & 

Hochreiter 

1997 Bankruptcy Classification Errors in the 

1980s: An Empirical Analysis of Altman’s 

and Ohlson’s Models 

Neural Networks Fukushima 1980 Neocognitron: A self-organizing neural 

network model for a mechanism of pattern 

recognition unaffected by shift in position 

Neural Networks Lecun et al. 1998 Gradient-based Learning Applied to 

Document Recognition 

Neural Networks Odom & Sharda 1990 A Neural Network Model for Bankruptcy 

Prediction 

Neural Networks Bell et al. 1990 Neural Nets Versus Logistic Regression: A 

Comparison of Each Model’s Ability to 

predict Commercial Bank Failures 

Neural Networks Wilson & 

Sharda 

1994 Bankruptcy Prediction Using Neural 

Networks 

Neural Networks Atiya 2001 Bankruptcy Prediction for Credit Risk Using 

Neural Networks: A Survey and New Results 

Neural Networks Kim & Kang 2010 Ensemble with Neural Networks for 

Bankruptcy Prediction 

Neural Networks Mai et al. 2019 Deep Learning Models for Bankruptcy 

Prediction using Textual Disclosures 

Neural Networks Salchenberger 

et al. 

1992 Neural Networks: A New Tool for Predicting 

Thrift Failures 

Neural Networks Barniv et al. 2002 Predicting Bankruptcy Resolution 

Neural Networks Kim & Ahn 2012 A Corporate Credit Rating Model Using 

multi-Class Support Vector Machines with an 

Ordinal Pairwise Partitioning Approach 

Neural Networks Chung & Tam 1993 A Comparative Analysis of Inductive-

Learning Algorithms 

Neural Networks Coats & Fant 1993 Recognizing Financial Distress Patterns 

Using a Neural Network Tool 

Neural Networks Lee et al. 2005 A Comparison of Supervised and 

Unsupervised Neural Networks in Predicting 

Bankruptcy of Korean Firms 

Neural Networks Chen 2011 Predicting Corporate Financial Distress 

Based on Integration of Decision Tree 

Classification and Logistic Regression 

Neural Networks Öcal et al. 2015 Predicting Financial Failure Using Decision 

Tree Algorithms: An Empirical Test on the 

Manufacturing Industry at Borsa Istanbul 

Neural Networks du Jardin 2010 Predicting Bankruptcy Using Neural 

Networks and Other Classification Methods: 

The Influence of Variable Selection 

Techniques on Model Accuracy 

Neural Networks Zhao et al. 2015 Investigation and Improvement of Multi-

layer Perceptron Neural Networks for Credit 

Scoring 

Neural Networks Tsai & Wu 2008 Using Neural Network Ensembles for 

Bankruptcy Prediction and Credit Scoring 
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Table 1 

Summaries of Papers in the Literature Review 

Section Author(s) Year Title 

Neural Networks Hosaka 2019 Bankruptcy Prediction Using Imaged 

Financial Ratios and Convolutional Neural 

Networks 

Autoencoder LeCun & 

Fogelman-

Soulié 

1987 Connectionist Learning Models 

Autoencoder Hinton & 

Zemel 

1993 Autoencoders, Minimum Description Length 

and Helmholtz Free Energy 

 Hinton & 

Salakhutdinov 

2006 Reducing the Dimensionality of Data with 

Neural Networks 

Autoencoder Xu et al. 2019 Adversarially Approximated Autoencoder 

for Image Generation and Manipulation 

Autoencoder Liou et al. 2014 Autoencoder for Words 

Autoencoder Zhou & 

Paffenroth 

2017 Anomaly Detection with Robust Deep 

Autoencoders 

Autoencoder Zhuang et al. 2015 Supervised Representation Learning: 

Transfer Learning with Deep Autoencoders 

Autoencoder Vincent et al. 2008 Extracting and Composing Robust Features 

with Denoising Autoencoders 

Autoencoder Makhzani & 

Frey 

2013 k-Sparse Autoencoders 

Autoencoder Makhzani et al. 2015 Adversarial Autoencoders 

Autoencoder Sakurada & 

Yairi 

2014 Anomaly Detection Using Autoencoders with 

Nonlinear Dimensionality Reduction 

Autoencoder Pumsirirat & 

Yan 

2018 Credit Card Fraud Detection using Deep 

Learning based on Auto-Encoder and 

Restricted Boltzmann Machine 

Autoencoder Soui et al. 2019 Bankruptcy Prediction Using Stacked Auto-

Encoders 

Variational 

Autoencoder 

Kingma & 

Welling 

2013 Auto-Encoding Variational Bayes 

Variational 

Autoencoder 

An & Cho 2015 Variational Autoencoder Based Anomaly 

Detection Using Reconstruction Probability 

Variational 

Autoencoder 

Xu et al. 2018 Unsupervised Anomaly Detection via 

Variational Auto-Encoder for Seasonal KPIs 

in Web Applications 

Variational 

Autoencoder 

Cozzatti et al. 2022 Variational Autoencoders for Anomaly 

Detection in Respiratory Sounds 

Variational 

Autoencoder 

Mancisidor et 

al. 

2018 Segment-Based Credit Scoring Using Latent 

Clusters in the Variational 

Variational 

Autoencoder 

Mancisidor et 

al. 

2021 Learning latent representations of bank 

customers with the Variational Autoencoder 

Norway: Local 

Adaptations 

Smogeli 1987 Dokumentasjonsnotat SEBRA 

Norway: Local 

Adaptations 

Bernhardsen 2001 Working Paper: A Model of Bankruptcy 

Prediction. Norges Bank 

Norway: Local 

Adaptations 

Bernhardsen & 

Larsen 

2007 Modellering av kredittrisiko i 

foretakssektoren - Videreutvikling av 

SEBRA-modellen 
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Table 1 

Summaries of Papers in the Literature Review 

Section Author(s) Year Title 

Conclusion Ravi Kumar & 

Ravi 

2007 Bankruptcy Prediction in Banks and Firms 

via Statistical and Intelligent Techniques – A 

Review 

Conclusion Kirkos 2012 Assessing Methodologies for Intelligent 

Bankruptcy Prediction 

Earliest Works in Bankruptcy Prediction 

Bankruptcy prediction models, as stated by Barboza et al. (2017), are 

believed to have a significant impact on various stakeholders in the financial 

industry. Banks, investors, managers, rating agencies, and distressed businesses all 

stand to benefit from these models, as they can use them to make more informed 

decisions and potentially mitigate losses. The need for accurate bankruptcy 

prediction models is further justified by the high costs associated with inaccurate 

diagnoses of bankruptcy. An inaccurate diagnosis can lead to a loss of credibility 

and trust among investors and other stakeholders, whilst failing to identify a 

company that is actually at risk can lead to significant financial losses. 

Earliest Adaptations 

The underlying reasons for business failures have been the subject of 

extensive discourse and investigation for centuries with ratio analysis standing at 

the crux of the issue (Horrigan, 1968). Prior to the development of sophisticated 

models, financial institutions' evaluations of credit risk on corporate loans were 

largely based on subjective judgments that relied on a few key variables, such as 

leverage, collateral, and earnings. The traditional approach for risk assessment is 

using credit scoring models to evaluate the creditworthiness of a company and 

predict its likelihood of defaulting on its loans (Treacy & Carey, 2000). 

During the interval spanning 1930 to 1965, scholarly literature on the 

subject was relatively scant. Early analyses of ratios were undertaken during this 

period; however, they failed to yield any substantial discoveries with regard to 

predicting bankruptcy (Fitzpatrick, 1931; Smith & Winakor, 1935; Chudson, 1945; 

Jackendoff, 1962). These univariate studies focused on financial ratios, comparing 

the financial performance of successful firms to that of failed firms. They 

discovered that the working capital to total assets ratio was a salient indicator of 

financial performance. 
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Beaver’s Univariate Model 

Next, Beaver's univariate model (1966) used financial ratios as a means of 

forecasting corporate failure. The research conducted by Beaver discovered that a 

combination of four financial ratios were most efficacious in predicting bankruptcy: 

the current ratio, acid-test ratio, working capital to total assets ratio, and net profit 

to net worth ratio. The study also found that these financial ratios were more 

effective in predicting bankruptcy for smaller firms rather than larger ones. The 

study was also one of the first to use univariate statistical analysis to examine the 

relationship between each financial ratio and the outcome (bankruptcy or non-

bankruptcy) which is a simple but effective approach. Although Beaver's findings 

were a beacon of light in the field of bankruptcy prediction, illuminating the 

importance of financial ratios, there are many limitations with Beaver’s approach. 

Firstly, the study only used a small number of financial ratios, which may not be 

sufficient to fully capture the financial condition of a company. Next, the study only 

used univariate statistical analysis, which only considers the relationship between a 

single variable and bankruptcy. Multivariate analysis, which considers the 

relationship between multiple financial ratios and the outcome, would likely 

provide more accurate predictions.  

Altman Z-Score 

Altman's (1968) study introduced the first multivariate model for 

bankruptcy prediction. He examined the financial ratios of publicly held 

manufacturing companies that have filed for bankruptcy and compared them to a 

sample of financially healthy companies. Through the use of discriminant analysis, 

Altman was able to develop a five-factor model to predict the bankruptcy of those 

firms. He proposed Z-score, also known as the Altman Z-score, which is a variation 

of the traditional statistic based on five financial ratios. The five ratios include 

working capital and total assets ( ), retained earnings and total assets ( ), 

earnings before interest and taxes and total assets ( ), market value of equity and 

book value of total liabilities ( ), and sales and total assets ( ). The original Z-

score formula is as follow: 

 

 The aforementioned function generates a Z-score that serves as an indicator 

of the projected financial stability of an organization. It follows that an elevated Z-

score implies a diminished likelihood of insolvency, while a reduced Z-score 
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signals an amplified probability of insolvency. Additionally, Altman suggests an 

upper limit for the Z-score set at 2.67 and a lower limit set at 1.81, with the goal of 

curtailing the incidence of misclassifications. A datum exhibiting a Z-score 

surpassing the higher limit is categorized as financially solvent, whereas a datum 

with a Z-score falling beneath the lower limit is designated as insolvent. A Z-score 

residing within these specified limits implies ambiguity in respect to its financial 

classification. 

The model demonstrates strong predictive capabilities for predicting 

bankruptcy within one year, however, its accuracy diminishes as the forecast 

horizon increases. The model yields 79% accuracy for one-year horizon out-of-

sample data. Overall, the paper has a significant impact on the field of bankruptcy 

prediction. Since its publication, a wide range of new models have been developed, 

such as logistic regression, neural networks, and decision tree models, and many of 

these have been applied in various fields and industries, such as banking, healthcare, 

and retail. 

Ohlson O-Score 

Ohlson (1980) published a paper on bankruptcy prediction which proposed 

a new model known as the Ohlson's O-Score model. Unlike traditional models 

which simply classified companies as bankrupt or non-bankrupt, this model 

estimates the probability of bankruptcy for a company using a combination of 

financial ratios and a logistic regression model. The formula of the model is as 

follows: 

where: 

• SIZE refers to the natural log of total assets divided by the GNP price-level 

index. 

• TLTA refers to total liabilities divided by total assets. 

• WCTA refers to working capital divided by total assets. 

• CLCA refers to current liabilities divided by current assets. 

• OENEG is a binary variable that equals 1 if total liabilities exceed total 

assets, and 0 otherwise. 

• NITA refers to net income divided by total assets. 

• FUTL refers to funds provided by operations divided by total liabilities. 

• CHIN refers to the natural log of the absolute change in net income. 
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The model also takes into account the uncertainty of the predictions and the 

correlation between the predictors by using principal component analysis. The 

model yields 85% accuracy for one-year horizon out-of-sample data. The Ohlson's 

O-Score model has been considered an important contribution to the field of 

bankruptcy prediction as it offers a more realistic and robust approach by taking 

into account uncertainty and correlation.   

It has been observed that a plethora of research studies have sought to 

replicate earlier investigations utilizing discriminant analysis and logistic 

regression owing to their relative ease of implementation (Upneja & Dalbor, 2001; 

Hillegeist et al., 2004; Muzır & Çağlar, 2009; Diakomihalis, 2012). Despite this, 

Begley, Ming and Watts (1996) posited that the models established by Altman 

(1968) and Ohlson (1980) had become obsolete. As such, they advocated for the 

development of more advanced modelling techniques to assess default risk. 

Machine Learning in Bankruptcy Prediction 

Ensemble Learning 

Ensemble learning is a machine learning technique that combines multiple 

models to create a stronger and more accurate predictive model (Opitz & Maclin, 

1999; Polikar, 2006). By aggregating the predictions of diverse models, ensemble 

learning harnesses the collective wisdom to improve overall performance, increase 

stability, and reduce overfitting. It leverages different algorithms, data subsets, or 

training methods to enhance the model's capabilities, making it a valuable tool for 

various tasks such as classification, regression, and anomaly detection. 

The seminal work that arguably introduced the concept of ensemble systems 

can be attributed to Dasarathy and Sheela (1979). They pioneered the innovative 

idea of using ensemble systems in a strategic divide-and-conquer manner by 

segmenting the feature space utilizing two or more classifiers. More than a decade 

later, the insightful work by Hansen and Salamon (1990) elucidated the 

characteristic of variance reduction inherent to ensemble systems. Furthermore, 

they convincingly demonstrated that the generalization performance of a neural 

network could be significantly enhanced through the use of an ensemble composed 

of similarly structured neural networks. 

The three primary ensemble learning methods encompass bagging, 

stacking, and boosting. Schapire (1990) demonstrated that a robust classifier could 

be created from the probably approximately correct (PAC) concept through the 



 

Page 12 

integration of weaker classifiers, a process he dubbed as "boosting". It is significant 

to note that boosting laid the groundwork for the AdaBoost family of algorithms 

(Freund & Schapire, 1997). These algorithms not only gained significant traction 

but also arguably became one of the most extensively used machine learning 

algorithms in recent history. Wolpert (1992) conceptualized stacking, a 

methodology otherwise denoted as stacked generalization. The technique demands 

the training of a model to synthesize the predictions emanating from an array of 

disparate learning algorithms. Initially, the ensemble of algorithms is trained using 

the given dataset. Following this, a combiner algorithm, also classified as the final 

estimator, is tutored to generate the conclusive prediction. This is accomplished 

either by employing all the predictions from the combiner algorithms as 

supplementary inputs or by harnessing cross-validated predictions from the base 

estimators, an approach which serves to forestall overfitting. The bagging algorithm 

was proposed by Breiman (1996). The methodology stipulates the creation of 

bootstrapped samples and the subsequent application of a regression or 

classification algorithm to each individual sample. In the sphere of classification 

tasks, the class that either secures the maximum votes or achieves the highest 

average class probability is selected as the resultant output. In this operation, the 

concept of aggregation assumes a pivotal role, specifically during the process of 

assimilating predictions from a multitude of learners. 

In his seminal work, Ho (1998) proposed the innovative concept of the 

random subspace method. This technique is predicated on the establishment of 

diverse models, each carefully tailored to a randomly selected subspace of the input 

features. Expanding on this groundwork, Breiman (2001) put forth the idea of the 

Random Forest (RF). This method, both versatile and robust, is employed in 

numerous machine learning applications, particularly classification and regression 

tasks. Random forest constitutes a form of ensemble learning that deftly 

amalgamates principles of bagging and random feature subsets. The technique has 

found considerable application in a plethora of research, notably in bankruptcy 

prediction studies (Tanaka et al., 2016; Joshi et al., 2018; Prusak, 2018). 

Subsequently, Friedman (2001) devised gradient boosting, a potent machine 

learning methodology applicable to both regression and classification problems. 

This approach generates a prediction model in the guise of an ensemble of weak 

prediction models, generally manifesting as decision trees. Gradient boosting stands 

as one of the most effective and potent machine learning methodologies, 
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constructing trees in a sequential order, where each succeeding tree attempts to 

rectify the errors of its predecessor. This method uses aggressive pre-pruning 

techniques to keep trees shallow, typically limiting their depth to between one and 

five layers. This approach not only economizes memory but also allows each tree 

to generate optimal projections for a subset of the data. Consequently, the 

augmentation of additional trees enhances the model's performance. Analogous to 

random forest, gradient boosting has also seen extensive utilization in bankruptcy 

research (Wyrobek & Kluza, 2018; Quynh & Phuong, 2020). 

Following these advancements, Chen and Guestrin (2016) unveiled 

Extreme Gradient Boosting (XGB), a methodology that quickly ascended to 

prominence due to its exceptional performance and scalability. XGB builds on the 

foundational principles of gradient boosting by sequentially integrating weak 

learners into the ensemble, whilst simultaneously minimizing a loss function 

through gradient descent. Moreover, XGB utilizes binary classification and 

regression trees as its fundamental weak learners (Breiman et al., 2017). To avoid 

overfitting, XGB employs regularization techniques of L1 and L2 (Lasso 

Regression and Ridge Regression, respectively). The application of this model in 

bankruptcy prediction studies is documented widely in academic literature (Zięba 

et al., 2016; Carmona et al., 2019; Pawełek, 2019). 

Neural Networks  

Neural networks, also known as Artificial Neural Networks (ANNs), are a 

class of machine learning models that are based on the structure and function of the 

human brain. The concept of neural networks was first introduced by researchers 

such as McCulloch and Walter (1943), who sought to create mathematical models 

of the human brain's ability to process and analyze information. Since its inception, 

numerous research and models have been built upon it (Rosenblatt, 1958; Minsky 

& Papert, 1969). Hopfield (1982) introduced the first Recurrent Neural Networks 

(RNNs) in his journal paper. His idea was then expanded upon by Schmidhuber and 

Hochreiter (1997) with their renowned long short-term memory model. The model 

was designed to overcome the limitations of traditional RNNs in modeling long-

term dependencies in sequential data. Traditional RNNs have difficulty in learning 

long-term dependencies because the gradients that are used to update the network's 

weights during training can vanish or explode as they are propagated through time. 

Fukushima (1980) introduce Neocognitron, an improved neural networks model, 
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which can be trained to recognize patterns based on learning. As a further 

development of this concept, Lecun et al. (1998) proposed a convolution network 

model, or LeNet-5 in their paper, which capable of recognizing handwritten digits 

and was trained on the MNIST data set. The model’s architecture consists of two 

sets of convolutional and pooling layers, followed by two fully connected layers. 

The architecture is designed to extract features from the input image, and then use 

these features to classify the image into one of several possible classes. 

The use of neural networks for bankruptcy predictions can trace back it roots 

to the studies (Odom & Sharda, 1990; Bell et al., 1990). As the field advanced, 

numerous studies have explored various approaches, techniques, and data sources, 

providing valuable insights into the potential of neural networks in enhancing 

bankruptcy prediction models (Wilson & Sharda, 1994; Atiya, 2001; Kim & Kang, 

2010; Mai et al., 2019). However, during the nascent years there were several 

concerns regarding the NNs. Some of the concerns included overfitting of the model 

to the data, interpretability of the models, finding optimal architecture of the 

network, and the high computational cost (Salchenberger et al., 1992; Barniv et al., 

2002; Kim & Ahn, 2012). 

The performance of neural networks has been compared with traditional 

statistical methods is various studies (Chung & Tam, 1993; Coats & Fant, 1993; 

Lee et al., 2005). Several studies have shown better results for the AI models 

compared to the statistical methods mentioned above (Chen, 2011; Öcal et al., 

2015). du Jardin (2010) uses neural network for predicting bankruptcy on a French 

bankruptcy dataset. The results of the study showed that the neural networks 

combined with a robust variable selection method gives better results. (Zhao et al., 

2015) used multi-layer perceptron neural network to build a high accuracy 

automated credit system with an accuracy of 87 percent. Tsai and Wu (2008) 

studied the results of single and ensemble neural network classifier. The study 

showed that the ensemble neural network classifier was not able to produce better 

results than the best model of single neural network classifier for problems relating 

to binary classification. The success of neural network in the domains of bankruptcy 

prediction and credit scoring has encouraged novel approaches for the creating 

better models for the binary classification problems. In an interesting study 

(Hosaka, 2019) used the financial statement of Japanese listed companies and 

transformed the financial ratio data into grayscale image to make it better suited as 

an input for the convolutional neural network. 
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Autoencoder 

An autoencoder is a type of neural network that was developed in the 1980s 

and has been widely utilized for unsupervised feature learning and dimensionality 

reduction (LeCun & Fogelman-Soulié, 1987; Hinton & Zemel, 1993; Hinton & 

Salakhutdinov, 2006). The fundamental concept behind autoencoder is to learn a 

compressed and low-dimensional representation of the data, known as the 

bottleneck or latent representation, by training a neural network to reconstruct the 

input data. The inception of autoencoder was motivated by the aspiration to learn 

useful representations of the data that can be applied to various tasks such as 

compression, denoising, and generation. The impact of autoencoder has been 

substantial in the field of machine learning and deep learning. Autoencoders have 

been extensively utilized for unsupervised feature learning and dimensionality 

reduction and have been employed in various applications such as image generation 

(Xu et al., 2019), text generation (Liou et al., 2014), anomaly detection (Zhou & 

Paffenroth, 2017), and representation learning (Zhuang et al., 2015). There are 

numerous variations of autoencoder to enhance the original version including 

denoising autoencoder, sparse autoencoder, adversarial autoencoder, and 

convolutional autoencoder (Vincent et al., 2008; Makhzani & Frey, 2013; 

Makhzani et al., 2015). In the field of anomaly detection, there has been a profuse 

amount of research on the topic, with promising results in anomaly image 

recognition and credit fraud (Sakurada & Yairi, 2014; Zhou & Paffenroth, 2017; 

Pumsirirat & Yan, 2018). However, there has been limited research on the 

application of deep learning algorithms in the prediction of bankruptcy (Soui et al., 

2019). Despite its efficacy in the detection of anomalies, a primary shortcoming of 

the traditional autoencoder model is its inability to discern variations that deviate 

from its training data, owing to the discontinuity of its learned latent space.  

Variational Autoencoder 

One of the key shortcomings of traditional autoencoders pertains to the 

characteristics of their latent space, the lower-dimensional space where the encoded 

representations of the input data are situated. Specifically, traditional autoencoders 

generate a latent space that is both discrete and unstructured. This means that the 

placement and organization of data points within this space do not follow any 

discernible or cohesive pattern, which can subsequently affect the autoencoder's 

ability to effectively learn and generate new data. Moreover, the absence of a robust 
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probabilistic framework in traditional autoencoders hampers their capacity to 

handle uncertainty, variability, and complexity inherent in data. As such, whilst 

traditional autoencoders are undoubtedly effective in tasks related to feature 

extraction and dimensionality reduction, their applicability may be restricted when 

it comes to more complex unsupervised learning scenarios, especially those 

demanding a well-defined, probabilistic treatment of data. 

Kingma & Welling (2013) proposed the Variational Autoencoder (VAE) as 

a variation of the original model. A key attribute of the VAE model is its continuous 

latent space, enabling seamless sampling and interpolation. This feature is 

extremely important in identifying patterns that deviate from the norm, which is a 

key aspect of anomaly detection. VAE can model uncertainty in the data by learning 

a probabilistic latent representation. Additionally, they can handle missing data by 

inferring the missing data from the learned probabilistic latent representation. 

Besides that, due to its generative capability, they can generate new data from the 

learned distribution. Similar to autoencoder, there are several studies using VAE 

for anomaly detection (An & Cho, 2015; Xu et al., 2018; Cozzatti et al., 2022), but 

to the best of our knowledge, there is no research for bankruptcy prediction. Recent 

research papers by Mancisidor et al. (2018; 2021) have shown the potential of using 

VAE for bankruptcy prediction. Using real data sets from three different regions, 

including Norway, Finnish, and Kaggle, the authors show that with the use of 

Weight of Evidence, it is possible to steer the configurations of the latent space, 

allowing the clusters of the data naturally reveal themselves. 

Norway: Local Adaptations 

In 1987, the Norwegian Central Bank established a comprehensive database 

of financial data for Norwegian firms known as SEBRA (Smogeli, 1987). Building 

upon this resource, they developed an accounting-based model for predicting 

corporate bankruptcy, known as the SEBRA model. This model takes a holistic 

approach to evaluating the credit and default risk of Norwegian banks and financial 

institutions, utilizing 12 key accounting variables from the SEBRA data set. Widely 

adopted in the Norwegian market as a means of assessing the stability and risk of 

companies and financial institutions, the SEBRA model was the first to employ 

logistic regression in the Norwegian market and has since become a benchmark for 

credit risk evaluation in the financial industry. In response to evolving financial 
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conditions, Norges Bank updated and refined the SEBRA model in 2007 to improve 

its accuracy and effectiveness (Bernhardsen 2001; Bernhardsen & Larsen, 2007). 

Conclusion 

This section has succinctly reviewed the literature pertaining to bankruptcy 

prediction. The field has undergone significant advancement since the advent of 

Beaver's univariate model. With the rapid advancement of machine learning, 

particularly deep learning, new models have emerged for detecting bankruptcy 

(Ravi Kumar & Ravi, 2007; Kirkos, 2012). Numerous research has demonstrated 

the ability of deep generative models to identify anomalies; however, the 

application of deep learning model for bankruptcy prediction is still limited.  

Drawing inspiration from the work of Mancisidor (2018, 2021), this thesis aims to 

contribute to the literature by applying Variational Autoencoder models to the 

prediction of bankruptcy in Norway.  
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Methodology 

Variational Autoencoder 

Variational Inference 

Variational Inference is a technique used to approximate the posterior 

distribution of latent variables given observed data. In many cases, the true posterior 

distribution  is intractable to compute directly. Variational Inference offers 

a way to approximate this posterior by posing the problem as an optimization task.  

Variational Inference introduces a family of simpler distributions, called the 

variational family which are parameterized by variational parameters. These 

distributions are designed to be tractable, making the inference problem more 

manageable. The goal of variational inference is to find the best approximation to 

the true posterior distribution within the chosen variational family (Hinton & Van 

Camp, 1993). This is done by minimizing the Kullback-Leibler (KL) divergence 

between the variational distribution and the true posterior distribution. The KL 

divergence measures the dissimilarity between two distributions and is minimized 

when they are similar. Note that KL divergence is always non-negative. 

Mathematically, let  be the variational distribution and be the true 

posterior distribution given observed data . The variational inference problem can 

be formulated as follows: 

 

Unfortunately, directly optimizing this KL divergence is still intractable. However, 

we can reformulate it as the maximization of the evidence lower bound (ELBO). 

The ELBO is a lower bound on the log-likelihood of the data and is given by: 

 

Maximizing the ELBO is equivalent to minimizing the KL divergence, and 

it provides an effective way to perform variational inference. By optimizing the 

variational parameters of  , we can find an approximation that closely matches 

the true posterior distribution . A derivation of ELBO is given in the 

upcoming section.  
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Deriving ELBO 

Figure 2 

Graphical Presentation of VAE Architecture 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 demonstrates the components of a VAE. The encoder of a VAE 

gives an approximate posterior distribution , which in our derivation is 

parametrised by the weights denoted as . Thus, the encoder can be denoted more 

precisely as . The decoder portion of the VAE yields a likelihood 

distribution , it takes a sample from the latent distribution and maps it back 

to the original input space. The decoder is also implemented using a neural network 

with weights collectively which in our derivation is denoted as . So, we denote the 

decoder as .  

The external generation of , which follows a standard normal distribution 

denoted as , is a result of an approach commonly referred to as the 

“reparameterization trick”. This is integral in Variational Autoencoder where the 

objective is to compute gradients through stochastic operations to optimize the 

parameters of the encoder using optimization techniques such as gradient descent 

and backpropagation. Notably, the conventional means do not permit this, as the 

sampling operation is inherently non-deterministic and consequently non-

differentiable. The reparameterization trick offers an innovative solution to this 

predicament. Instead of directly sampling from the distribution , we 

generate  from a standard normal distribution, and subsequently derive  using a 

deterministic function that incorporates  as a component ( ). This 

approach facilitates the inclusion of the sampling operation in the computational 
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graph, which renders backpropagation through this operation feasible because it’s 

fully differentiable with respect to  and . Consequently, this promotes the 

successful application of gradient descent and backpropagation optimization 

methods in the training process of the VAE. 

The goal of the decoder is to reconstruct the original input data from the 

sampled latent variables. It takes a sample from the latent space and generates a 

distribution over the input space. This distribution represents the likelihood of 

generating the original data point given the latent variables. During training, the 

VAE model aims to learn the parameters  and  in such a way that the generated 

data closely matches the original data. This is achieved by maximizing a lower 

bound on the log-likelihood of the data, which is the ELBO. The ELBO consists of 

two terms: the reconstruction loss, which measures how well the decoder 

reconstructs the input data, and the KL divergence between the approximate 

posterior and a prior distribution over the latent variables. The latter term 

encourages the learned latent distribution to be close to the prior distribution. 

Here we assume that  is the company data/evidence like ROA, Profit 

margin, P/E ratio etc. and,  is the latent variable. Furthermore,  is the evidence 

probability, and the  would be the prior probability. The posterior probability 

would then be given as, and  would be the likelihood probability. Note that 

the KL divergence is always non-negative since: 

 

The KL divergence between the approximate and the real posterior distributions is 

given by: 

 

(1) 

The Bayes’ Theorem, which is a systematic method for revising beliefs in light of 

new data or information, is given by: 

 

• : This is called the posterior probability. It represents the updated 

probability of the hypothesis  being true given the observed evidence . 

Essentially, after we observe evidence x, we use Bayes’ theorem to update 

our belief about the likelihood of hypothesis . 
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• : This is called the likelihood. It is the probability of observing the 

evidence  given that the hypothesis  is true. This quantifies the 

compatibility of the evidence with the given hypothesis. 

• : This is called the prior probability. It is the probability of the 

hypothesis  before observing the evidence. It represents our initial belief 

about the likelihood of the hypothesis before we have observed any 

evidence. 

• : This is the marginal probability of the evidence , also known as the 

evidence term. It represents the total probability of observing the evidence, 

across all possible hypotheses. 

Applying Bayes’ Theorem to the equation (1) we get: 

 
(2) 

This can be broken down using laws of logarithms, giving: 

 
(3) 

Distributing the integrand will gives us: 

 (4) 

In the above, we note that  is a constant and can therefore be pulled out of 

the second integral above, and since  is a probability distribution it 

integrates to 1, further simplifying as: 

 (5) 

Carrying integral over to the other side of the inequality and applying the rule of 

algorithm we get: 

 (6) 

 

(7) 

Writing the right-hand side as an expectation we get: 

 (8) 

 (9) 

From equation (6) it follows that: 

 (10) 
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The right-hand side of the equation is the evidence lower bound also called 

variational lower bound. The term is intuitive as it bounds the likelihood of the data 

which is the term that we are trying to maximise. This term works as a proxy for 

maximising the log probability of the data which is the core idea behind variational 

inference. The Kullback-Leibler term  in ELBO is a 

regulariser as it acts as a constraint on the form of approximate posterior. 

We can obtain a closed form for the loss function if we choose a gaussian 

representation for the latent prior  and the approximate posterior, . In 

addition to yielding a closed form loss function, the gaussian model enforces a form 

of regularization in which the approximate posterior has variation or spread. We 

choose: 

 

and 

 

then KL in ELBO becomes: 

 

With simplifying the above term further by evaluating in log, and further 

simplifying we get the expression show in expectation ( ): 

 

Since 

 

we receive, 

 

By applying  to the expression in expectation brackets we 

simplify further and get, 

 

Taking  and , 22stima, 
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From ELBO given in equation (10). The objective to be maximised can be given 

as: 

 

where  and  are parameters of approximate distribution , and  is the index of 

the latent vector . 

The objective function can be given as: 

 

where J is the dimension of the latent vector z, and  is the number of samples 

drawn through re-parametrization trick. This objective function is maximised 

during the training. To get the loss function we take the negative of this term: 

 

The VAE is thus trained to get the optimal network parameters that 

minimise : 

 

Architecture 

In this thesis, we use tanh activations in all hidden layers, linear and sigmoid 

activations in the µ output layer for the encoder and decoder respectively, and linear 

activations in all log σ layers. Mathematically, tanh activation can be represented 

as: 

 

whilst the sigmoid function is defined as: 

 

and linear activation function simply means: 

 

The MLP models are trained with the ‘Adam’ optimizer (Kingma, 2014) 

using constant 0.01 learning rate. Adam, short for Adaptive Moment Estimation, is 

an algorithm for gradient-based optimization that adapts the learning rate for each 

of the weights in the model, which often leads to more efficient learning. 
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We test three different  dimensions. The specific  dimensions vary depend 

on the dataset in use. The hidden layer size also varies depend on the dataset in use. 

The VAE we tested for the Norwegian data set, the Taiwanese data set and Polish 

data set are shown in Table 3. 

Table 3 

Summary of Tested Architectures 

Architecture ID z dimension Neurons 

N1 20 45 

N2 25 45 

N3 30 45 

T1 30 70 

T2 45 70 

T3 60 70 

P1 20 50 

P2 30 50 

P3 40 50 

Classification Algorithms 

Logistic Regression 

The  application of Logistic Regression (LR) for default prediction with a 

novel set of  financial ratios as inputs was first introduced by (Ohlson, 1980). 

Logistic regression is a statistical method used to model the relationship between a 

dependent variable and one or more independent variables. The dependent variable 

in Logistic Regression is a binary variable, meaning it can take on one of two 

values, such as “success” or “failure.” The independent variables, also known as 

predictors, can be any type of variable, such as continuous, categorical, or a 

combination of both. Whilst the models like Multivariate Discriminate Analysis 

when used for default prediction as in (Altman, 1968) generate a score that is then 

used for classifying, whereas Logistic Regression is the probability of the default. 

The Logistic Regression model is based on the sigmoid function: 

 

that maps any input value to a value between 0 and 1.  

Let us denote our input feature vector as where  is the 

number of features. Each feature is associated with a weight or coefficient, denoted 

as . The bias term is denoted as . The Logistic Regression 
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model predicts the probability of the outcome variable  belonging to class ,  

denoted as . This probability is modelled using the sigmoid function, 

which maps any real-valued input to the range : 

 

The Logistic Regression model assumes that the outcome variable follows a 

Bernoulli distribution. Therefore, the probability of the outcome belonging to class 

 can be computed as: 

 

During the training phase, the logistic regression model aims to find the optimal 

values for  and  that maximize the likelihood of the observed data. This is 

typically done by minimizing the negative log-likelihood (or equivalently 

maximizing the log-likelihood): 

 

Here  represents the number of training examples,  is the feature vector of the 

 example, and  is the corresponding true class label i.e., 0 or 1. The 

optimization process, such as gradient descent, is then used to update the values of 

 and  iteratively, minimizing the loss function. This allows the logistic regression 

model to learn the optimal decision boundary that separates the two classes in the 

feature space. 

The Logistic Regression model can be used for binary and multiclass 

classification problems (Escalona-Morán et al., 2015). In binary classification, the 

model is used to predict the probability of one of two outcomes. In multiclass 

classification, the model is used to predict the probability of one of more than two 

outcomes. One of the benefits of Logistic Regression is that it is relatively simple 

to implement and interpret. The model can be fit using maximum likelihood 

estimation, and the coefficients of the independent variables can be used to estimate 

the effect Of each variable on the outcome. Additionally, Logistic Regression can 

be regularized to prevent overfitting, improving the model’s performance.  

Random Forest Classifier 

In a Random Forest, many decision tree classifiers are built using two 

elements of randomness. Firstly, every tree is trained on a bootstrap replicate of the 

initial dataset and a random subset of independent variables, which bolsters the 

model’s diversity and resilience. The other aspect of randomness is attribute 
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sampling. At each node split, a subset of the input variables is randomly selected to 

find the optimal split.  The value proposed by Breiman (2001) to be given to this 

parameter is:  

 

where  is the number of inputs. The final classification is determined by majority 

voting among the decision trees. By introducing randomness in both the training 

samples and feature space, Random Forest aims to enhance generalization 

performance by reducing variance whilst maintaining or slightly increasing bias. 

Each internal node of the tree represents a test on an input feature, and each leaf 

node represents a prediction. The decision tree grows by repeatedly splitting the 

data based on the feature that maximizes impurity reduction. 

Figure 4 

Diagram of Random Decision Forest 

 

Random Forest has multiple benefits compared to individual decision trees. 

Firstly, it is less susceptible to overfitting due to the model’s variance being 

minimized by averaging numerous trees. Furthermore, the model enhances 

precision by decreasing the bias. Random Forest can process both categorical and 

numerical variables, and it is capable of dealing with missing information and 

outliers. Lastly, the model possesses inherent feature selection, enabling it to 

manage high-dimensional data by selecting the most pertinent features for 

predictions. One of the advantages of Random Forest is that it functions reasonably 

well with default parameters (Fernández-Delgado et al., 2014). However, we can 

tune the quantity of random attributes selected for each split, and parameters that 
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control the depth of the decision tree. Normally, decision trees in a Random Forest 

grow until each leaf is pure, which could result in excessively large trees. To prevent 

this, the tree’s growth can be restricted by establishing a maximum depth or 

necessitating a minimum number of instances per node before or after a split. In 

pursuit of the optimal model, we adopted a grid search strategy. This involved 

testing myriad combinations of parameters using a five-fold cross-validation 

technique, and subsequently deploying the most effective parameters for final result 

generation. 

The 'number of 27stimateors' parameter dictates the quantity of trees in the 

forest. We trialled three options: 100, 300, and 500. Each value was assessed to 

evaluate the model’s performance with differing quantities of decision trees. The 

intention was to strike a balance between possessing an ample number of trees for 

adequately discerning data patterns, and circumventing unduly extensive forests 

that may result in augmented computational burden and heightened risk of 

overfitting. The ‘maximum depth’ parameter constrains the maximum depth of each 

tree. We experimented with three depth tiers: 4, 6, and 8. Imposing limits on the 

depth of our trees ensures that the model does not overfit the training data, thereby 

enhancing generalization to unseen data. The ‘criterion’ parameter refers to the 

function utilized to ascertain the quality of a split. We considered two types of 

criteria: ‘Gini’ and ‘Entropy’. The Gini impurity quantifies the probability of 

incorrect classification of a randomly selected element if it was randomly labelled 

in accordance with the label distribution in the subset. Conversely, Entropy is a 

metric of information gain that directs towards the most homogeneous branches. 

The final parameter, 'maximum features', determines the number of features to 

consider when searching for the most effective split. We elected to test three 

methods: ‘auto’, ‘sqrt’, and ‘log2’. ‘Auto’ simply considers all features, ‘sqrt’ uses 

the square root of the total number of features, and ‘log2’ employs the base-2 

logarithm of the number of features. The concept behind using fewer features is to 

introduce a degree of randomness into individual tree creation and enhance model 

robustness by reducing the variance. 

Through the use of grid search, we methodically tested all combinations of 

these parameter values – a total of 54 combinations – in order to pinpoint the set 

that yields the best performance as per a specified scoring metric. This 

comprehensive process facilitated the maximization of the Random Forest model’s 

performance. 
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Table 5 

Grid Search for Optimal Parameters in Random Forest Classification Model 

Number of Estimators 100, 300, 500 

Maximum Depth 4, 6, 8 

Criterion Gini, Entropy 

Maximum Feature Auto, Sqrt, Log2 

Extreme Gradient Boosting 

Extreme Gradient Boosting is a model that falls under the category of 

decision tree-based machine learning methodologies. Decision trees are intuitive 

and straightforward supervised machine learning techniques that can tackle both 

regression and classification problems. In the context of classification, a single 

decision tree segregates an observation based on predefined conditions or “if-else” 

rules. These trees typically have a root node, internal nodes, branches, and leaf 

nodes. The internal nodes represent a test or condition on a specific attribute, the 

branches reflect the outcome of that test, and leaf nodes illustrate the class label. 

Compared to many other machine learning strategies used for predictive 

analysis, decision tree-based approaches often boast superior predictive power. The 

decision tree model structure brings several advantages, especially pertinent to our 

analysis. For instance, these models can inherently handle missing values, as they 

can learn branch directions for missing values during training. Moreover, due to 

their inherent structure, decision tree-based models are generally more robust to 

multicollinearity than models like generalized linear models that assume feature 

independence. This robustness makes them an intriguing choice when we 

incorporate sentiment variables that could be somewhat interrelated. However, 

there are some downsides.  

XGB is built on the principle of boosting, a technique applied when 

constructing multiple trees. Boosting aims to enhance the model using insights from 

previously built trees. By combining numerous individual trees, we can derive a 

single, consensus prediction, significantly enhancing accuracy but sacrificing some 

interpretability. Decision tree-based models, such as XGB, can be difficult to 

interpret, particularly in terms of understanding the individual effects of 

explanatory variables. 

Specifically, when building subsequent trees, the method uses residuals 

from the previous tree. Each tree is built sequentially, leading to diminishing 

residuals as more trees are added. The model is trained on the unexplained variance 
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in the dataset, allowing the model to improve in areas where it previously 

underperformed. In essence, by combining multiple weak learners (individual 

trees), we can create a unified, robust learner. The enhancements incorporated in 

XGB include a regularization term to prevent overfitting and a second-degree 

approximation to boost performance relative to standard gradient boosting 

machines. Akin to gradient boosting machines, weights 
iw  are assigned to each 

observation i . These weights are then used in L2 norm regularization, a technique 

akin to the least squares method, which aims to discourage model complexity by 

penalizing models in proportion to the square root of the sum of the weights w .The 

second-degree approximation simplifies the existing objective function proposed 

by Friedman et al. (2000). This simplification not only reduces computation time 

but also improves prediction accuracy (Chen & Guestrin, 2016). 

Figure 6 

Diagram of Extreme Gradient Boosting 

 

Analogous to the Random Forest Classifier, we employed a grid search 

technique for optimizing the XGB model. The hyperparameters under investigation 

included the number of estimators, the maximum depth, and the learning rate. The 

number of estimators parameter in XGB classifier designates the count of gradient 

boosted trees. The options for this study included 100, 300, and 500. The quantity 

of trees is a pivotal parameter, as insufficient trees may lead to underfitting, whilst 

an excessive number could precipitate overfitting and extended training duration. 

Our goal, therefore, was to ascertain an optimal equilibrium. The maximum depth 
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parameter signifies the maximum depth of each tree. This parameter was varied 

across three tiers which are 4, 6, and 8. The tree’s maximum depth influences the 

model’s complexity. A deeper tree can encapsulate more intricate patterns, 

potentially resulting in overfitting, whilst a shallow tree may fail to capture vital 

patterns, leading to underfitting. Finally, the learning rate parameter determines the 

step size shrinkage applied at each update, functioning as a form of regularization. 

This was varied across three levels which are 0.1, 0.05, and 0.01. A smaller learning 

rate necessitates additional boosting rounds, which can empower the model to 

discern more complex patterns. However, it also augments the risk of overfitting 

and computational burden.  

In total, we tested 27 different combinations of parameters the find the best 

candidate to generate the final results. Our approach to parameter optimization 

ensured a rigorous and systematic exploration of the hyperparameter space, 

resulting in a finely tuned and robust XGB classification model. 

Table 7 

Grid Search for Optimal Parameters in XGB Classification Model 

Number of Estimators 100, 300, 500 

Maximum Depth 4, 6, 8 

Learning Rate 0.1, 0.05, 0.01 

Multi-layers Perceptron 

The fundamental constituent of a Multi-layers Perceptron (MLP) is a 

neuron, or a node. Each neuron processes a set of inputs and generates an output. 

Neurons are organized into layers, which include an input layer, one or more hidden 

layers, and an output layer. The input layer receives the raw input from the dataset, 

with each node in this layer corresponding to one feature in the dataset. This is 

followed by the hidden layers, wherein each node performs computations on the 

data passed from the previous layer and forwards the result to the subsequent layer. 

These computations are dictated by parameters or weights that the network acquires 

during training. Finally, the output layer generates the result of the network’s 

computations. The quantity of nodes in this layer is equivalent to the number of 

possible outputs. 

Each neuron performs a simple computation. First, each input is multiplied 

by a weight. The results are then summed, and a bias term is added to the sum. This 

value is then passed through an activation function, which produces the neuron’s 

output. If we denote the inputs to a neuron as , the wights as 
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, the bias as , and the activation function as , then the output of the 

neuron, , can be computed as: 

 

Training a neural network involves iteratively adjusting the weights and 

biases to minimize the difference between the network’s predictions and the actual 

data. This is typically done using gradient descent, where the weights and biases 

are adjusted in the direction that most decrease the error. In the case of a 

classification task, such as bankruptcy prediction, the output layer would have two 

neurons representing the two possible classes (bankrupt or not bankrupt). The 

activation function for the output layer is typically the softmax function, 

 

which produces a probability distribution over the possible classes. The softmax 

function essentially applies the standard exponential function to each element, 

denoted as , of the input vector, represented as . It then normalizes these values 

by dividing each one by the total sum of these exponentials. This normalization 

process guarantees that the sum of all components of the output vector, represented 

as , is equal to 1. This is essentially a way of transforming the outputs into 

probabilities of the input belonging to each class, which is why it is particularly 

useful in multi-class classification problems. Given the inputs, the network is then 

trained to maximize the probability of the correct class. 

In bankruptcy prediction, the goal is to classify companies into two 

categories: those that will go bankrupt and those that will not, based on various 

financial indicators. This is a binary classification problem, which is a common use 

case for neural networks. The input to the network would be the financial indicators 

for a company. The network would then learn patterns in these indicators that 

predict bankruptcy. For instance, one might learn that a high debt-to-equity ratio 

and declining profits are indicative of bankruptcy. The network’s output would be 

the company’s probability of going bankrupt. The network’s weights and biases 

would be adjusted during training to minimize the difference between these 

predicted probabilities and the actual outcomes. 

Since we are using VAE latent embeddings as input for the MLP there are 

a few factors to consider: 

• Quality of the latent embeddings: If the VAE is well-trained, it should learn 

a useful latent space where similar data points are close together, and 
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different data points are further apart. In this scenario, the MLP could 

potentially perform better on the latent embeddings than on the original 

data, especially if the original data is very high-dimensional. High-

dimensional data can suffer from the “curse of dimensionality,” where the 

data becomes sparse and it’s hard for a model to learn meaningful patterns. 

The latent embeddings could alleviate this issue by providing a more 

compact, dense representation of the data. 

• Loss of information: Compression of data into a lower-dimensional space 

usually involves some loss of information. This is particularly true if the 

original data is very high-dimensional and complex. The lost information 

might be irrelevant noise, but it could also be useful information for your 

prediction task. If that’s the case, then the MLP might perform worse on the 

latent embeddings than it would on the original data. 

• Overfitting: MLPs with multiple hidden layers have the capacity to model 

complex, non-linear relationships, but they can also be overfit to the training 

data, especially when the amount of data is small relative to the complexity 

of the model. Using lower-dimensional embeddings can help to mitigate this 

issue, by reducing the complexity of the input space and hence the capacity 

of the model. 

Figure 8 

Graphical Presentation of Multi-Layer Perceptron for Binary Classification  

 

Within the scope of this thesis, a Multi-layer Perceptron Classifier was 

utilized, composed of three hidden layers (Figure 8). The Rectified Linear Units 
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(ReLU) function was selected as the activation function for these hidden layers due 

to its efficiency and effectiveness in training deep neural networks. Introduced by 

Hahnloser et al. (2000), ReLU is given by the formula: 

 

For the output layer, the sigmoid activation function was employed to 

ensure output values fall within the range of 0 to 1, facilitating their interpretation 

as probabilities. L2 regularization, with a strength of 0.001, was applied as a 

preventive measure against overfitting by adding a penalty term to the loss function 

proportional to the magnitude of the coefficients. The Adam optimizer was chosen 

for the task of minimizing the loss function due to its efficient memory usage and 

suitability for problems with large amounts of data or parameters. The training 

process was conducted over a total of 500 epochs to enable adequate learning while 

preventing excessive computational costs.   

Sampling techniques 

Class imbalance constitutes a prevalent issue in machine learning, 

characterized by unequal representation of classes (Provost & Fawcett, 2001; 

Elrahman & Abraham, 2014; Pirizadeh et al., 2021). Predominantly, machine 

learning algorithms are architected to minimize the overall error rate. Consequently, 

in the presence of class imbalance, these algorithms may exhibit a bias towards the 

majority class, often compromising the performance on the minority class. This 

phenomenon manifests prominently in our chosen application, where a model could 

ostensibly achieve an accuracy rate of 98% by categorically predicting every 

instance as class A (non-bankrupt) yet fail to discern any instances of class B 

(bankrupt), which constitutes the primary objective of our model. 

Sampling methods, considered as preprocessing techniques in machine 

learning, are employed to manage the challenges posed by class imbalance. These 

techniques operate by altering the training dataset to balance the distribution of 

minority and majority classes. The two principal types of sampling techniques are 

under-sampling and over-sampling. 

Under-sampling functions by reducing the number of samples from the 

majority class to balance the dataset, whereas over-sampling augments the number 

of samples in the minority class. In situations of severe class imbalance, over-

sampling is often the favoured choice. Nonetheless, both methodologies are 

associated with potential drawbacks (Elrahman & Abraham, 2014). Under-
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sampling might inadvertently eliminate important patterns, potentially resulting in 

a loss of valuable information. On the other hand, over-sampling could give rise to 

overfitting and impose an additional computational burden. Therefore, it is crucial 

to carefully choose and apply these methods, taking into consideration the specific 

characteristics and requirements of the given problem. 

Synthetic Minority Over-sampling Technique 

 Chawla et al. (2002) addressed the issue of class imbalance by proposing 

the Synthetic Minority Over-sampling Technique (SMOTE), a method that 

generates synthetic examples rather than merely duplicating instances. By doing 

this, SMOTE enables the identification of more distinctive regions in the feature 

space of the minority class. This not only optimizes classifier performance but also 

shifts the learning bias towards the minority class. 

The procedure for synthesizing new samples can be explicated as follows. 

Initially, a random sample, denoted as , is chosen from the minority class. 

Subsequently, the K-closest neighbours to , all belonging to the same minority 

category, are determined. The Euclidean distance is used for this process due to its 

simplicity and effectiveness. The Euclidean distance between two points, say  and 

, in an n-dimensional space is calculated as: 

 

After calculating the distances, we sort them in ascending order. The first K 

instances in this sorted list are the K-nearest neighbours of . From these K-closest 

instances, one is chosen at random, with this chosen instance being denoted as , 

where k represents the rank of the selected neighbour. Following this, a linear 

interpolation between  and  is executed, leading to the generation of a new 

synthetic sample, designated as , utilizing the formula:  

 

Here,  symbolizes a uniformly distributed random variable within the 

range of . This sequence of operations is iteratively carried out until the total 

count of synthetic samples and the instances in the minority class equals the count 

of instances in the majority class. 

In the context of a bankruptcy prediction model, Synthetic Minority Over-

sampling Technique (SMOTE) is applied by first identifying bankrupt companies 
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as instances of the minority class. Following this, SMOTE is utilized to generate 

synthetic examples of this class. The output is a dataset with a balanced class 

distribution, which is anticipated to yield a model more proficient at predicting 

bankruptcies. 

A critical aspect of the application of SMOTE is its restricted use only on 

the training subset of the data, as opposed to the entire dataset. The order of this 

operation is of utmost importance. Were we to oversample prior to partitioning the 

data, we could inadvertently introduce identical instances in both the training and 

testing subsets. This could lead to overestimation of model performance due to a 

phenomenon known as information leakage. Hence, the prescribed procedure 

entails initially separating the data into training and testing sets. Post this 

segregation, SMOTE is applied solely on the training set. Adherence to this 

methodology assures an accurate validation process when evaluating the model, as 

it negates the chance of replicating identical instances across both subsets (Oreški, 

2014). 

Random Under-Sampling 

Random Under-Sampling (RUS) serves as a technique that employs under-

sampling. It aims to establish a balanced class distribution by decreasing the 

quantity of instances in the majority class. Notably, RUS has proven instrumental 

in tackling issues associated with class imbalance in diverse domains. In certain 

instances, it is utilized conjointly with other methodologies to enhance model 

performance (Hasanin & Khoshgoftaar, 2018; Hasanin et al., 2019) 

Although the implementation of RUS is more straightforward and 

expeditious compared to SMOTE, it has an inherent disadvantage. Particularly, it 

poses the risk of disregarding valuable data, as it eliminates instances from the 

majority class indiscriminately (Dittman et al., 2014). The randomization aspect in 

under-sampling is critical to the modus operandi of the method, and its subsequent 

impact on the model. In the procedure of RUS, instances from the majority class 

are randomly selected and eliminated until the number of instances in the majority 

class equals those in the minority class. 

Within the theoretical framework of a model predicting corporate 

bankruptcy, it is expected that non-insolvent enterprises will constitute the 

preponderant class. Consequently, instances from this predominant class would be 

subjected to stochastic elimination. Drawing a parallel with the utilization of 
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SMOTE, it becomes essential to restrict the application of RUS exclusively to the 

training dataset. This is to thwart any possible leakage of data, ensuring the integrity 

of the predictive model. 

Performance Metrics 

It is vital to choose a bankruptcy prediction model for an accurate out of 

sample prediction power. In this study, we assess the out-of-sample prediction 

performance of various models by splitting the data into training and testing 

datasets. we randomly partition the dataset, assigning 80% as the training set and 

the remaining 20% as the testing set. This approach has been commonly used in 

prior research (Doumpos et al., 2017; du Jardin, 2016). We evaluate each model's 

prediction ability using metrics such as out-of-sample area under the receiver 

operating characteristic curve (AUC), H-measure and KS score. 

Area Under Receiver Operating Characteristic Curve 

Receiver Operating Characteristic curve (ROC) along with the accuracy is 

the most commonly used measure to assess the performance of prediction model 

(Marqués et al., 2012). ROC curve is a graphical representation that showcases the 

performance of a classification model at various classification thresholds. It plots 

the true positive rate (TPR) against the false positive rate (FPR) at different 

thresholds, thereby displaying the trade-off between sensitivity (TPR) and 

specificity (1 - FPR). 

Figure 9 

Visualisation of ROC Curve 
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As demonstrate in Figure 9, the ROC curve represents all possible 

classification thresholds, demonstrating how these thresholds influence both the 

TPR and FPR.  

One of the main advantages of an ROC curve is that it allows the users to 

choose the trade-off between sensitivity and specificity based on the model's 

specific objectives. However, increasing the sensitivity of the model will often 

decrease its specificity, and vice versa. Another advantage of ROC curves is their 

usefulness when dealing with imbalanced datasets and uneven classification error 

costs. ROC curves are not sensitive to changes in class distribution, which means 

that they stay constant even when the ratio of negative to positive observations in 

the data changes. 

AUC, or the Area Under the ROC Curve, is a widely used metric to assess 

the overall discriminatory power of a model (Bradley, 1997). The metric arises from 

the ROC curve, measuring the model's ability to correctly classify positive and 

negative observations. The AUC value ranges between 0 and 1, with 1 indicating a 

perfect model and 0.5 representing a model whose performance is no better than 

random chance.  

A model with an AUC of 1 will have an optimal point in the upper-left 

corner of the ROC space, reflecting a 100% TPR and 100% TNR. On the other 

hand, an AUC of 0.5 corresponds to a model that predicts positive and negative 

classes at the same rate as random guessing. A model with an AUC of 0.75 suggests 

that it has a reasonable ability to differentiate between classes. 

We can calculate the AUC curve on the basis of integrating the areas of small 

trapezoidal bins from the ROC curve. That is to say: 

 

where: 

 

and, 

 

•  denotes Area Under the Curve (AUC) at a specific threshold (T). 

It quantifies the overall performance of the binary classifier. 

•  denotes each individual trapezoid under the ROC curve. 

• denotes the true positive rate at threshold T. 

• denotes the False positive rate at threshold T. 
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• denotes the width of each trapezoid, calculated as the difference in 

the false positive rate between the current and next threshold. 

• denotes the average height of each trapezoid, calculated as the 

average of the true positive rates at the current and next threshold. 

AUC is a widely adopted metric in bankruptcy prediction and financial 

markets. This preference comes from the fact that AUC is robust to imbalanced 

data, which is common in scenarios like bankruptcy prediction where the 

distribution of companies that go bankrupt versus those that don't is uneven. 

Therefore, in addition to balanced accuracy, AUC proves to be a useful performance 

measure for imbalanced classification problems. 

When dealing with rare events like bankruptcy, relying solely on 

classification accuracy can be misleading. This is because accuracy assumes equal 

costs for both false positives and false negatives. However, the consequences of 

false negatives are usually more severe than false positives. Whilst it is possible to 

assign a higher cost to false negatives in certain cases, this cost structure remains 

specific to the context (du Jardin, 2016). Additionally, decision-makers often 

require more than a binary bankruptcy prediction. 

The probability of bankruptcy can be valuable for constructing credit 

portfolios or determining loan interest rates (Hillegeist et al., 2004). Therefore, 

AUC provides a more flexible performance measure by utilizing the ROC curve. 

The ROC curve illustrates the trade-off between the false positive rate and the true 

positive rate across different decision criteria or cutoff probabilities. AUC 

represents the area under this curve and allows for evaluating a model's overall 

performance without assuming a specific cost structure. Typically, the AUC score 

ranges from 0.5 to 1, where 0.5 indicates random assignment of class labels and 1 

suggests perfect classification. 

H-Measure 

The H-Measure, introduced by Hand (2009), is a widely utilized 

performance measure for classifiers. It aims to address the cost of misclassification 

without necessitating fixed values. This measure emerged as an improvement over 

traditional methods, specifically addressing the limitations of the AUC method by 

incorporating the costs associated with different types of misclassification errors. 

The H-measure is defined by the following formula: 
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In this formula, the loss values for a distribution of scoring points derive 

from a monotonous distribution. The H-measure values range between 0 and 1, with 

higher values indicating the model's enhanced discriminatory power. 

Ideally, with known costs, finding the optimal threshold would render the 

problem as simple as summarizing a standard confusion matrix. However, in real-

world scenarios such as medical diagnostic systems, precise cost values often 

remain unknown. The severity of future misclassification depends on varying 

treatment options. To manage such circumstances, the H-Measure computes an 

expectation over a distribution of potential cost values. Researchers are advised to 

select a distribution, similar to a Bayesian prior, based on their understanding of the 

problem at hand. A standard default distribution is also recommended for typical 

measurement, with a specific form of the beta distribution proposed for this 

purpose. 

The method has been generalized to accommodate scenarios with unknown 

class sizes. Furthermore, as Buja et al. (2005) demonstrated, selecting different cost 

distributions is akin to using distinct loss functions for estimating class membership 

probabilities in classifiers. This suggests that minimizing log-loss for a neural 

network and squared error loss for a random forest might be driven by unique 

motivations. 

In essence, the H-Measure serves as an alternative metric quantifying the 

predictive capability or discriminatory power of classification models. It evaluates 

a model's ability to differentiate between different classes. Traditional metrics such 

as the AUC, despite their popularity, grapple with inherent inconsistency issues due 

to variations in the proportions of true positive and true negative rates. By 

computing the potential loss incurred through incorrect classifications, the H-

Measure effectively quantifies the cost or penalty of misclassification. It offers a 

more nuanced performance measure than merely tallying correct or incorrect 

predictions. 

One crucial feature of the H-measure is its dependence on the proportion of 

entities classified into each class. If a model skews towards one class, the H-

Measure reflects this imbalance, thereby encouraging balanced classification. This 

aspect sets it apart from other metrics that often overlook class distribution. The H-

Measure is especially beneficial when dealing with imbalanced datasets like 
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bankruptcy datasets, where one class of observations greatly outnumbers the other. 

In such instances, a model may achieve misleadingly high accuracy if it primarily 

classifies observations as the majority class. By focusing on the potential loss from 

misclassifications and accounting for the proportions of class predictions, the H-

Measure provides a robust and insightful method to assess model performance. It 

is particularly effective when handling class imbalances or when misclassification 

costs are significant. 

Kolmogorov-Smirnov 

The Kolmogorov-Smirnov (KS) test is a powerful statistical method used to 

assess the similarity between two probability distributions or to test whether a 

sample follows a specific distribution (Liu, 2018). It is a nonparametric test, 

meaning that it does not rely on any assumptions about the underlying distribution 

of the data. The KS was originally introduced as an adherence hypothesis test for 

distribution fitting to data. For binary classification problems it is used as a 

dissimilarity metric for evaluating the classifier’s discriminant power measuring the 

distance that is represented by the scores given for the two cumulative distribution 

functions (CDFs). 

Let us consider the case where we have two samples, each obtained from a 

different population. We want to determine if these two populations are 

significantly different from each other. The KS test allows us to compare the CDFs 

of the two samples. 

The CDF of a random variable  is defined as the probability that  takes 

on a value less than or equal to a given value . Mathematically, it can be 

represented as: 

 

Similarly, for a random variable , the CDF is denoted as . The KS test 

assesses the maximum absolute difference between the two CDFs, which is known 

as the KS statistic : 

 

The KS test quantifies the probability of obtaining a KS statistic as extreme as  or 

more extreme, assuming that the two samples come from the same distribution. If 

the p-value is below a predetermined significance level (e.g., 0.05), we reject the 

null hypothesis, indicating that the two populations differ significantly.  
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The KS test also has applications as a goodness-of-fit test. In this scenario, 

we have only one random sample, and we want to assess whether it follows a 

specific distribution. We compare the empirical CDF (ECDF) of the sample to the 

expected CDF of the hypothesized distribution. The ECDF is constructed by 

ordering the observed values and assigning a probability of  to each observation, 

where  is the rank of the observation and  is the sample size. The KS test statistic 

is calculated as: 

 

Here  represents the ECDF of the sample, and  is the expected 

CDF based on the hypothesized distribution. A low p-value suggests that the sample 

does not conform well to the assumed distribution. 

The KS test is used as a metric to evaluate the differences in distribution 

between bankrupt and non-bankrupt companies for individual financial variables, 

aiding in feature selection. On the other hand, the ROC curve and AUC-ROC assess 

the performance of the overall bankruptcy prediction model, considering the 

combination of multiple variables and the classification threshold. The ROC curve 

provides a visual representation of the model's discriminatory power, whilst the 

AUC-ROC summarizes its performance in a single metric. 

Development Methodology 

Each of the three datasets was bifurcated into two distinct subsets: a training 

set accounting for 80% of the data, and a testing set constituting the residual 20%. 

This conventional 80 to 20 partition was implemented to facilitate robust model 

learning whilst reserving a substantial segment of the data for assessing the models' 

generalization capabilities. 

Figure 10 

Data Preparation Flowchart: Sampling and Splitting (80/20 Ratio) 
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During the resampling process, three alternatives were examined. The first 

alternative entailed retaining the original training set. To assess the classifiers' 

robustness and ability to handle class imbalance, two different data balancing 

methods, Random Under Sampling (RUS) and Synthetic Minority Over-sampling 

Technique (SMOTE), were utilized (Figure 10). These techniques were employed 

on the training data before the training of the classifiers. The second alternative was 

to implement RUS on the training set, and the third involved the application of 

SMOTE. 

Four distinct classifiers were selected for this study, specifically, the 

Random Forest Classifier (RFC), Extreme Gradient Boosting Classifier (XGBC), 

Multilayer Perceptron Classifier (MLPC), and Logistic Regression Classifier 

(LRC). Each of these classifiers was trained on the unprocessed training data for 

each dataset. To enhance the rigour of the study, the hyperparameters of the RFC 

and XGBC were optimized through the application of a grid search, coupled with 

five-fold cross-validation. Subsequent to their training, the classifiers were 

evaluated on the unprocessed test set (Figure 11). 

Moreover, the training data was subjected to a Variational Autoencoder 

(VAE) to generate embedded representations. These encoded data representations 

were then employed to train the aforementioned quartet of classifiers (RFC, XGBC, 

MLPC, and LRC). Post-training, these classifiers were tested on the encoded test 

data to ascertain their performance. 

Figure 11 

Classifier Workflow: Training and Prediction 
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Additionally, to probe the influence of model complexity on performance, 

the experiment was also conducted employing three distinct hidden layer sizes for 

VAE. This step enables an understanding of how variations in model complexity 

impact the performance of the classifiers on the encoded data. 

Experiment & Reproducibility 

To manage the inherent variability that may arise during the data 

partitioning, sampling, training processes, and subsequent visualization, we 

deployed the use of a random state or seed. This is a common practice in machine 

learning to ensure that the randomness within stochastic processes is consistent and 

reproducible across different runs or even different machines. Setting a specific 

random state allows us to replicate our results later with precision, providing for 

both consistency in our work and facilitating peer review and independent 

verification of our results. This ensures the robustness of our findings and enhances 

the transparency and integrity of our research process. 

To augment the dependability of the obtained outcomes, the 

experimentation was implemented on four distinct occasions to collate 

comprehensive statistical data on the performance metrics of the model. For each 

experimental iteration, a unique seed was employed to control the initialization and 

ensure the randomness of the trials. The overarching objective of this 

methodological approach was to extract a deepened understanding of the models' 

variability and consistency, which are essential parameters in assessing their 

reliability and predictability.  
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Data 

In this thesis, we make use of three separate data sets, each encompassing 

bankruptcy information from distinct geographical territories. 

• The 'Norwegian Bankruptcy Data set' is the first of these data sets. It is a 

comprehensive compilation of data extracted from two key sources: the 

Orbis Database and the Brønnøysund Register Centre (Brreg) in Norway. 

• The second data set is the 'Taiwanese Bankruptcy Data Set.' This data set 

was procured from the UCI Machine Learning Repository, a renowned 

source for high-quality, pre-processed data sets. 

• Lastly, we utilize the 'Polish Bankruptcy Data set,' which, similar to the 

Taiwanese Bankruptcy Data set, has been retrieved from the UCI Machine 

Learning Repository. 

These three data sets collectively offer a broad and diverse range of insights 

into bankruptcy trends across various national economies, providing a robust 

foundation for our analysis in this thesis. 

Data Source and Acquisition 

Norwegian Data Set 

The primary data set under discussion pertains to annual financial statistics 

and is henceforth referred to as the 'Annual Accounting Data set.' It encompasses a 

range of accounting data derived from the period between 2016 and 2021, inclusive, 

for all enterprises formally registered within the territorial jurisdiction of Norway. 

This invaluable information has been sourced from the renowned Orbis Database. 

Considering the global reach of the Orbis Database, which features data from 

corporations across the globe, specific parameters were established to focus our 

search. Our extraction criteria were designed to filter out companies based solely in 

Norway, including both active and inactive corporations spanning the years from 

2016 to 2021. Additionally, to further refine our data, we strategically excluded 

enterprises within the financial institution and insurance sectors. A crucial aspect to 

consider is the intrinsic constraint within the Orbis database concerning the quantity 

of company data downloadable in a single instance. As we augment the volume of 

attributes selected for download, the permissible allowance decreases 

proportionately. Consequently, our strategy involved downloading only the most 

vital information, as outlined in Table 12, and subsequently recomputing relevant 
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ratios based on this downloaded data. Moreover, due to the restriction on the 

number of companies that can be downloaded at any given time, we engineered an 

automatic scraper tool. This tool is designed to streamline the data extraction 

process and amalgamate the data post extraction. Our downloaded data set is a 

comprehensive compilation comprising 1,274,594 active companies and 1,451,567 

inactive companies across 26 distinct features. The attributes largely include 

standard accounting figures and key financial ratios, providing a holistic view of 

the corporate landscape in Norway during the specified period. 

Table 12 

Accounting variables in downloaded data set 

Variable Description 

v1 Operating revenue (Turnover) 

v2 P/L before tax 

v3 P/L for period (Net income) 

v4 Cashflow 

v5 Total assets 

v6 Shareholders’ funds 

v7 ROCE using P/L before tax 

v8 Solvency ratio (Asset based) 

v9 Number of employees 

v10 Fixed assets 

v11 Tangible fixed assets 

v12 Current assets 

v13 Cash and cash equivalents 

v14 Current liabilities 

v15 Net inventory 

v16 EBITDA margin 

v17 EBIT margin 

v18 Interest cover 

v19 Stock turnover 

v20 Collection period (days) 

v21 Credit period 

v22 R&D expenses/Operating revenue 

v23 Liquidity ratio 

v24 Gearing 

v25 Average cost of employee 

v26 Working capital per employee 

The secondary data set in our study pertains to bankruptcy data procured 

from the Brønnøysund Register Centre (Brreg) in Norway. This particular data set 

encapsulates a comprehensive record of 28097 Norwegian companies that declared 

bankruptcy during the period from 2018 to 2022. It provides detailed information 

about each bankrupt company, including the official name of the company, its 
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unique organization number, the corresponding industry codes, and the precise date 

on which bankruptcy proceedings were initiated (Appendix 1). 

The time frame of 2016 to 2021 for Orbis data set was initially chosen for 

two principal reasons. First, this period encompasses the most recent data available 

at the time of our research, ensuring relevance and timeliness. Second, and equally 

important, Norwegian law stipulates that information concerning bankrupt 

companies is only publicly accessible for a period of five years. Consequently, the 

choice of this specific timeframe enhances the breadth and depth of our study, as it 

allows for the inclusion of bankruptcy data from Brreg. 

Taiwanese Data Set 

The Taiwanese Bankruptcy Prediction data set is a comprehensive 

collection of data aimed at predicting company bankruptcies (UCI Machine 

Learning Repository, n.d.-a). The data set was compiled from the Taiwan Economic 

Journal for the years 1999 to 2009, with company bankruptcy defined based on the 

business regulations of the Taiwan Stock Exchange. The data set is characterized 

as multivariate, with a total of 6,819 instances and 96 attributes, all of which are 

integers. It is primarily aimed at tasks involving classification and contains no 

missing values. The attributes in the data set represent a variety of financial metrics 

and ratios, including cost of interest-bearing debt, cash reinvestment ratio, current 

ratio, interest expenses to total revenue, total liability to equity ratio, and many 

others. Each attribute is represented by a code from X1 to X95 (Appendix 2). The 

first attribute is the class label, serving as the indicator of whether the company 

went bankrupt or not. 

The data set was sourced from Deron Liang and Chih-Fong Tsai of the 

National Central University, Taiwan. It was used in a study titled "Financial Ratios 

and Corporate Governance Indicators in Bankruptcy Prediction: A Comprehensive 

Study", published in the European Journal of Operational Research (2016). 

Polish Data Set 

The Polish Companies Bankruptcy Data Set is a multivariate data set created 

for the purpose of predicting the bankruptcy of Polish companies (UCI Machine 

Learning Repository, n.d.-b). It was sourced from the Emerging Markets 

Information Service, a database that provides information on emerging markets 

worldwide. The data set provides information from the years 2000 to 2012 for 

bankrupt companies, and from 2007 to 2013 for companies that were still operating 
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during the evaluation period. The data set includes 43,405 instances, each 

characterized by 64 attributes, and the data does contain missing values (Appendix 

3). These attributes include various financial ratios such as net profit to total assets, 

total liabilities to total assets, working capital to total assets, and many more. Each 

instance also has a class label that indicates the bankruptcy status of the company 

after a five-year forecasting period. 

This data set was created and donated by Sebastian Tomczak from the 

Department of Operations Research at the Wrocław University of Science and 

Technology in Poland. The data has been used in research, such as in the paper 

"Ensemble Boosted Trees with Synthetic Features Generation in Application to 

Bankruptcy Prediction" published in Expert Systems with Applications (Zięba et 

al., 2016). 

Pre-processing and feature engineering 

Norwegian Data Set 

Upon acquiring the data from Orbis, our initial task was to eliminate all 

observations with absent operating revenue values. The rationale for this decision 

is twofold: such a void often implies that the company either had not been 

established during the specific year or had declared bankruptcy. Consequently, 

when operating revenue is recorded as not available, other columnar values are 

typically absent as well, reflecting the company's inactivity or nonexistence. This 

procedure is consistent with the data representation standards of the Orbis Database. 

To initiate this process, the first step involves transforming the data from its wide 

format to a long format, whereby we extract the year information from the column 

names in the wide format. Let us consider an example of a company, denoted as 

Company A, which has six columns representing operating revenue data spanning 

from 2016 to 2021. This transformation will result in six separate observations for 

Company A, each containing two columns: year and operating revenue. By 

adopting this approach, we gain the ability to eliminate any years where the 

operating revenue data is not available, thereby ensuring the integrity and 

completeness of the data set. 
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Table 13 

Additional accounting variables 

Variable Description Formula 

v27 Acid test ratio  

v28 Net working capital  

v29 Net working capital turnover ratio  

v30 Asset turnover ratio  

v31 Fixed asset ratio  

v32 Proprietary ratio  

v33 Current ratio to fixed asset ratio  

v34 Earning margin  

v35 Cash flow margin  

v36 Gross margin  

v37 ROE using P/L before tax  

v38 ROA using P/L before tax  

v39 ROE using net income  

v40 ROA using net income  

v41 Capital employed  

v42 ROCE using net income  

v43 Current ratio  

v44 Total liabilities  

v45 Solvency ratio (liability based)  

v46 Shareholder liquidity ratio  

v47 Net assets turnover  

v48 Fixed assets turnover  

v49 Shareholder funds per employee  

v50 Profit per employee  

v51 Operating revenue per employee  
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Following the aforementioned procedure, we have addressed the issue 

pertaining to the absence of values in the remaining columns. Within both the 

accounting variables and the financial ratios, we encountered instances where data 

were missing, which posed a significant challenge to our analysis. To tackle this 

problem, we opted to assign a value of zero to all the missing data points, employing 

a direct and effective strategy to enhance the comprehensiveness of the data set. 

However, this approach introduces a predicament. The act of imputing zeros to the 

missing data points can potentially oversimplify the intricacies of the data set, 

leading to erroneous interpretations. Despite the associated risk, this method 

represents a necessary and expedient solution to effectively handle the issue of 

missing data, thereby ensuring the overall integrity and usability of the data set for 

subsequent analysis. 

The subsequent phase of our research entails the computation of relevant 

accounting ratios. As previously noted, due to limitations in downloading a large 

number of companies simultaneously, additional computations were required on 

our part. Consequently, we undertook the task of identifying missing accounting 

variables and calculating supplementary accounting ratios based on these variables. 

The calculations for the new accounting variables are illustrated in Table 13. In 

cases where the denominator of a ratio is zero, we assign a value of zero to that 

particular feature. Through this meticulous process, our data set has been 

augmented with a comprehensive set of 28 diverse features. These encompassing 

features encompass a wide range of accounting ratios and variables, serving as the 

foundation for our modelling process and significantly enhancing the robustness 

and reliability of our subsequent analyses. 

Next, we proceeded with the integration of our enhanced data set with 

bankruptcy data obtained from the Brønnøysund Register Centre (Brreg). First, let 

us define the ground truth class: 

 

The integration was achieved by utilizing organization numbers as the 

primary identifier, ensuring a precise matching between the data sets. Through this 

v52 Total assets per employee  

v53 Total employee costs  

v54 Costs of employee to operating revenue ratio  
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integration process, we established a new binary column within the data set, which 

serves as a predictive indicator of bankruptcy. In this column, a value of '1' is 

assigned to the most recent year's observation if the company is listed as bankrupt 

in the Brreg dataset and the year of bankruptcy differs from the final year of 

available accounting data. If these conditions are not met, the observation is 

assigned a value of '0'. Furthermore, we elected to exclude observations wherein 

the bankruptcy year corresponds with the final year of available accounting data. It 

is noteworthy that we adopted this methodology as opposed to employing the 

"succeeding year" criteria for the allocation of bankruptcy labels to organizations. 

This decision stemmed from the intricacies associated with bankruptcy procedures. 

A salient challenge is the unpredictable timing of bankruptcy declarations, 

which can be influenced by an array of factors such as the duration of bankruptcy 

proceedings and administrative delays in the recordation of bankruptcies in 

statistical databases. As elucidated by the studies of Bernhardsen (2001), 

Wahlstrøm and Helland (2016), and Hjelseth and Raknerud (2016), there is often a 

temporal gap of one or two years, or sometimes even more, between the approval 

of the last set of financial accounts and the formal declaration of bankruptcy. 

Moreover, historical data from the aforementioned studies indicate that a minimum 

of 85% of insolvent firms officially declare bankruptcy within a two-year timespan. 

By incorporating this lag into our model, we endeavor to achieve a more accurate 

depiction of the bankruptcy status of firms, thereby accounting for any 

discrepancies or delays that may occur during the documentation of bankruptcy 

events. 

Table 14 

Bankruptcy Statistics by Year 

Year Total 

Observations 

Total 

Bankruptcies 

Bankruptcy Ratio 

2016 221940 573 0.003 

2017 275396 560 0.002 

2018 298871 645 0.002 

2019 324317 4,382 0.014 

2020 334629 3,505 0.010 

2021 346365 2500 0.007 

At this juncture, our data set comprises 1,801,518 observations. However, 

the data set reveals a relatively low incidence of bankruptcies from 2016 to 2018. 

Upon cross-validation with the Brreg bankruptcy data and the Orbis database, it 

was observed that a substantial number of corporations within the Brreg data set 
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did not have corresponding accounting data in the Orbis database for the years 2016, 

2017, and 2018. Consequently, this results in significant class imbalances for these 

particular years. Given this scenario, we decided to exclude these years from the 

final data set due to the inherent discrepancies and the potential skew they may 

introduce in the modelling process. Furthermore, we also chose to exclude the year 

2021. This decision was predicated on the fact that our bankruptcy label data from 

Brreg only extends up to the year 2022. As per the previously discussed delays in 

bankruptcy declarations, the bankruptcy label for the year 2022 will not encompass 

an adequate representation of actual bankrupt corporations for the accounting data 

year of 2021. This approach is consistent with the methodology employed by 

Bernhardsen and Larsen (2007), further validating our data inclusion criteria. After 

these adjustments, the final data set comprises 658,946 observations. This refined 

data set not only ensures improved data quality, increasing the potential for more 

precise and meaningful analysis, but also provides a more manageable size for 

computational processing. Moreover, this selected period presents a unique 

opportunity for exploration, as it coincides with the timeline during which 

Norwegian businesses grappled with the policies implemented during COVID-19 

pandemic (Ursin et al., 2020). 

The final step in processing the dataset is to standardize the data to a mean 

of 0 and a standard deviation of 1 using the following formula: 

 

where  represents an individual data point,  is the mean of the data,  is the 

standard deviation, and   represents the output. 

Standardization is a critical preprocessing step when dealing with variables 

that have different units of measurement or scales. In our case, we decided to use 

both accounting variables and accounting ratios as input features. These two types 

of data operate on different scales, with accounting variables often taking on much 

larger values than ratios. Consequently, without standardization, variables with 

larger values could unduly influence the model, causing unstable learning. By 

standardizing, we are effectively rescaling our data to have a uniform scale, thereby 

ensuring all input features contribute equally to the final decision function. This 

step prevents any single feature from dominating the others due to its scale, thus 

allowing for a more balanced and accurate model performance. 
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Polish Data Set and Taiwanese Data Set 

The data sets procured from the UCI Machine Learning Repository is 

already meticulously structured, thereby eliminating the need for additional feature 

engineering steps. Our intervention was limited to the removal of duplicate 

observations within the data. Following our established protocol, we addressed 

missing values by substituting them with a value of '0'. This consistent approach to 

handling missing data ensures uniformity across all data sets utilized in this thesis, 

facilitating a seamless comparative analysis. Lastly, similar to the Norwegian data 

set, we also perform scaling on the variables for these two data sets. 

Data Quality Assessment 

From Table 15, we observe a significant variation in the dataset size and 

bankruptcy ratio. This heterogeneity provides us with a unique opportunity to 

rigorously examine the impact of VAE latent embeddings on the performance of 

the selected classifiers. Such a variance within our dataset acts as a catalyst for a 

more comprehensive evaluation of our models, allowing us to discern how these 

classifiers react to differing conditions and data characteristics. 

Table 15 

Summary of Final Data Sets 

Data Set Prediction 

Horizon 

Total 

Observations 

Bankruptcy Ratio 

Norwegian 12 months 658,946 0.012 

Taiwanese 12 months 6,819 0.032 

Polish 12 months 43,004 0.048 

As depicted in Appendices 4, 5, and 6, there is evidence of multicollinearity 

in the Norwegian dataset, with somewhat more pronounced multicollinearity 

observed in the Taiwanese and Polish datasets. However, it is important to note that 

whilst multicollinearity can present challenges in some statistical analyses, it is not 

necessarily problematic in the context of the machine learning algorithms we 

employ in this study. The algorithms we utilize, logistic regression, random forest, 

XGB, and multi-layer perceptron, are generally robust to multicollinearity. 

Therefore, whilst we acknowledge the presence of multicollinearity in our datasets, 

we do not expect it to adversely affect the results of our machine learning models. 
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Results 

In this section, outcomes derived from three distinct datasets are delineated. 

The structuring of these results is primarily organized by the dataset employed and 

the sampling techniques implemented. The term "VAE latent embeddings" is 

utilized to denote the latent representations procured through the use of the training 

dataset. The "raw training set" signifies the unaltered training dataset, whereas the 

"balanced training set" refers to the training dataset that has undergone balancing 

via the Synthetic Minority Over-sampling Technique (SMOTE) or the random 

under-sampling approach.   

Norwegian Data Set 

Without Rebalancing: Using Original Data 

Table 16 

Performance Measure – Norwegian Data Set Using VAE latent embeddings 

Classifier z AUC H-Measure KS 

LR 20 
0.7619 

(0.7537 – 0.7701) 

0.2047 

(0.1912 – 0.2182) 

0.4053 

(0.3870 – 0.4236) 

LR 25 
0.7639 

(0.7594 – 0.7685) 

0.2108 

(0.2033 – 0.2183) 

0.4153 

(0.4039 – 0.4267) 

LR 30 
0.7692 

(0.7590 – 0.7795) 

0.2160 

(0.2006 – 0.2314) 

0.4205 

(0.4020 – 0.4390) 

RF 20 
0.7620 

(0.7566 – 0.7673) 

0.2508 

(0.2420 – 0.2595) 

0.4160 

(0.4084 – 0.4237) 

RF 25 
0.7615 

(0.7579 – 0.7651) 

0.2553 

(0.2501 – 0.2605) 

0.4143 

(0.4051 – 0.4235) 

RF 30 
0.7664 

(0.7583 – 0.7745) 

0.2597 

(0.2445 – 0.2749) 

0.4227 

(0.4069 – 0.4385) 

XGB 20 
0.7936 

(0.7893 – 0.7979) 

0.2548 

(0.2508 – 0.2588) 

0.4492 

(0.4453 – 0.4531) 

XGB 25 
0.7992 

(0.7958 – 0.8025) 

0.2693 

(0.2631 – 0.2756) 

0.4588 

(0.4495 – 0.4680) 

XGB 30 
0.8027 

(0.7911 – 0.8143) 

0.2762 

(0.2549 – 0.2976) 

0.4643 

(0.4493 – 0.4792) 

MLP 20 
0.7976 

(0.7928 – 0.8025) 

0.2616 

(0.2551 -0.2681) 

0.4692 

(0.4533 – 0.4717) 

MLP 25 
0.8011 

(0.7978 – 0.8044) 

0.2691 

(0.2630 – 0.2752) 

0.4719 

(0.4656 – 0.4782) 

MLP 30 
0.8044 

(0.7949 – 0.8140) 

0.2787 

(0.2630 – 0.2943) 

0.4742 

(0.4598 -0.4886) 
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Table 17 

Performance Measure – Norwegian Data Set Using Raw Train Set 

Classifier AUC H-Measure KS 

LR 
0.7378 

(0.7320 – 0.7435) 

0.1710 

(0.1632 – 0.1787) 

0.3601 

(0.3516 – 0.3687) 

RF 
0.8157 

(0.8113 – 0.8201) 

0.3530 

(0.3438 – 0.3622) 

0.5100 

(0.5032 – 0.5168) 

XGB 
0.8671 

(0.8635 – 0.8706) 

0.4008 

(0.3901 – 0.4116) 

0.5683 

(0.5577 – 0.5790) 

MLP 
0.8068 

(0.7959 – 0.8176) 

0.3057 

(0.2892 – 0.3223) 

0.4771 

(0.4562 – 0.4979) 

Table 16 delineates the performance metrics derived from the classifiers that 

employed latent embeddings from VAE trained on the original data. Concurrently, 

Table 17 outlines the results obtained from classifiers that utilized raw accounting 

data. For the dataset pertaining to Norway, there is a notable escalation in the AUC 

score for every classifier barring LR. A similar trend is observable for the H-

measure and KS statistics. Furthermore, an increase in the performance of all 

classifiers is evident as the dimensionality of  escalates. It appears that the 

dimension reduction process employed by VAE leads to information loss, resulting 

in the learned latent representations exhibiting lesser predictive prowess compared 

to the raw data. The most efficacious model in this experimental setting proved to 

be the XGB model. 

With Rebalancing: Random Under-Sampling 

Table 18 

Performance Measure – Norwegian Data Set Using VAE latent embeddings 

Classifier z AUC H-Measure KS 

LR 20 
0.7539 

(0.7467 – 0.7612) 

0.1886 

(0.1789 – 0.1982) 

0.3915 

(0.3825 – 0.4005) 

LR 25 
0.7564 

(0.7495 – 0.7633) 

0.1892 

(0.1816 – 0.1969) 

0.3982 

(0.3937 – 0.4026) 

LR 30 
0.7557 

(0.7399 – 0.7716) 

0.1883 

(0.1615 – 0.2152) 

0.3992 

(0.3694 – 0.4291) 

RF 20 
0.7899 

(0.7817 – 0.7981) 

0.2490 

(0.2322 – 0.2658) 

0.4451 

(0.4282 – 0.4620) 

RF 25 
0.7901 

(0.7798 – 0.8005) 

0.2482 

(0.2280 – 0.2684) 

0.4469 

(0.4255 – 0.4682) 

RF 30 
0.7913 

(0.7792 – 0.8034) 

0.2492 

(0.2270 – 0.2715) 

0.4485 

(0.4270 – 0.4700) 

XGB 20 
0.7770 

(0.7691 – 0.7850) 

0.2218 

(0.2068 – 0.2637) 

0.4266 

(0.4085 – 0.4448) 
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XGB 25 
0.7789 

(0.7643 – 0.7936) 

0.2252 

(0.2019 – 0.2486) 

0.4308 

(0.4025 – 0.4592) 

XGB 30 
0.7799 

(0.7689 – 0.7909) 

0.2231 

(0.2035 – 0.2426) 

0.4311 

(0.4123 – 0.4500) 

MLP 20 
0.7837 

(0.7759 – 0.7916) 

0.2344 

(0.2211 – 0.2476) 

0.4459 

(0.4295 – 0.4623) 

MLP 25 
0.7834 

(0.7809 – 0.7859) 

0.2330 

(0.2258 – 0.2403) 

0.4447 

(0.4403 – 0.4490) 

MLP 30 
0.7873 

(0.7749 – 0.7998) 

0.2411 

(0.2191 – 0.2630) 

0.4513 

(0.4290 – 0.4735) 

 

Table 19 

Performance Measure – Norwegian Data Set Using Balanced Train Set 

Classifier AUC H-Measure KS 

LR 
0.7576 

(0.7519 – 0.7632) 

0.1956 

(0.1887 – 0.2025) 

0.3970 

(0.3898 – 0.4042) 

RF 
0.8580 

(0.8565 – 0.8595) 

0.3759 

(0.3725 – 0.3793) 

0.5555 

(0.5505 – 0.5605) 

XGB 
0.8563 

(0.8534 – 0.8592) 

0.3707 

(0.3616 – 0.3798) 

0.5490 

(0.5468 – 0.5511) 

MLP 
0.7848 

(0.7704 – 0.7992) 

0.2397 

(0.2128 – 0.2666) 

0.4569 

(0.4326 – 0.4811) 

Table 18 illustrates the performance indicators drawn from the classifiers 

utilizing latent embeddings from VAE trained on under-sampled data. In contrast, 

Table 19 demonstrates the outcomes from classifiers utilizing under-sampled data 

directly. A comparable pattern is discernible when using an under-sampled training 

set. The performance metrics indicate that the use of latent embeddings leads to 

diminished performance across all classifiers, excluding LR, where the 

performance utilizing latent embeddings surpasses that of using the under-sampled 

training set. Mirroring the usage of the original training set, there is an observed 

enhancement in the performance of the classifiers as the dimensionality of  

increases. The most efficacious model in this experimental environment is the RF 

model. The application of random under-sampling to the training set results in a 

decrease in performance for both the XGB and MLP models in both experimental 

settings compared to using data without rebalancing. 

With Rebalancing: SMOTE 

Table 20 

Performance Measure – Norwegian Data Set Using VAE latent embeddings 

Classifier z AUC H-measure KS 
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LR 20 
0.7710 

(0.7641 – 0.7780) 

0.2159 

(0.2065 – 0.2252) 

0.4274 

(0.4156 – 0.4393) 

LR 25 
0.7677 

(0.7606 – 0.7749) 

0.2129 

(0.2018 – 0.2240) 

0.4188 

(0.4062 – 0.4313) 

LR 30 
0.7732 

(0.7627 – 0.7837) 

0.2198 

(0.2078 – 0.2318) 

0.4294 

(0.4116 – 0.4473) 

RF 20 
0.7862 

(0.7797 – 0.7927) 

0.2631 

(0.2521 – 0.2742) 

0.4378 

(0.4248 – 0.4509) 

RF 25 
0.7863 

(0.7817 – 0.7908) 

0.2656 

(0.2556 – 0.2755) 

0.4423 

(0.4346 – 0.4501) 

RF 30 
0.7885 

(0.7847 – 0.7923) 

0.2679 

(0.2629 – 0.2729) 

0.4433 

(0.4323 – 0.4544) 

XGB 20 
0.7882 

(0.7824 – 0.7940) 

0.2525 

(0.2401 – 0.2650) 

0.4440 

(0.4321 – 0.4559) 

XGB 25 
0.7871 

(0.7801 – 0.7941) 

0.2525 

(0.2407 – 0.2644) 

0.4467 

(0.4319 – 0.4615) 

XGB 30 
0.7876 

(0.7826 – 0.7926) 

0.2563 

(0.2499 – 0.2627) 

0.4413 

(0.4342 – 0.4484) 

MLP 20 
0.7806 

(0.7692 – 0.7919) 

0.2491 

(0.2309 – 0.2674) 

0.4332 

(0.4141 – 0.4523) 

MLP 25 
0.7783 

(0.7718 – 0.7848) 

0.2487 

(0.2399 – 0.2574) 

0.4230 

(0.4125 – 0.4335) 

MLP 30 
0.7783 

(0.7735 – 0.7831) 

0.2515 

(0.2481 – 0.2548) 

0.4214 

(0.4118 – 0.4310) 

 

Table 21 

Performance Measure – Norwegian Data Set Using Balanced Train Set 

Classifier AUC H-Measure KS 

LR 
0.7542 

(0.7485 – 0.7600) 

0.1904 

(0.1815 – 0.1992) 

0.3889 

(0.3765 – 0.4012) 

RF 
0.8381 

(0.8360 – 0.8402) 

0.3532 

(0.3458 – 0.3605) 

0.5314 

(0.5252 – 0.5376) 

XGB 
0.8221 

(0.8187 – 0.8255) 

0.3054 

(0.2977 – 0.3131) 

0.4877 

(0.4800 – 0.4955) 

MLP 
0.7801 

(0.7717 – 0.7885) 

0.2564 

(0.2446 – 0.2681) 

0.4296 

(0.4157 – 0.4435) 

Table 20 conveys the performance metrics derived from the classifiers using 

latent embeddings from VAE trained on over-sampled data. Concurrently, Table 21 

details the outcomes from classifiers that have employed over-sampled data. The 

results mirror the outcomes observed when the training set is rebalanced using 

random under-sampling. Specifically, the performance of classifiers leveraging 

VAE latent embeddings is found to be inferior compared to those utilizing the 

rebalanced training set, with the exception of LR. Additionally, the performance of 

classifiers is noted to improve as the dimensionality of  increases, while the 
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performance of both XGB and MLP models declines when compared to the usage 

of data without rebalancing.  

The latent space for these three experimental scenarios can be viewed in 

Appendices 7, 8, and 9.  

Taiwanese Data Set 

Without Rebalancing: Using Original Data 

Table 22 

Performance Measure – Taiwanese Data Set Using VAE latent embeddings 

Classifier z AUC H-Measure KS 

LR 30 
0.9130 

(0.8894 – 0.9366) 

0.5847 

(0.5080 – 0.6613) 

0.7143 

(0.6544 – 0.7741) 

LR 45 
0.9144 

(0.8961 – 0.9327) 

0.5947 

(0.5274 – 0.6621) 

0.7247 

(0.6732 – 0.7761) 

LR 60 
0.9138 

(0.8940 – 0.9335) 

0.5942 

(0.5230 – 0.6653) 

0.7167 

(0.6633 – 0.7700) 

RF 30 
0.9107 

(0.8876 – 0.9338) 

0.5883 

(0.5082 – 0.6683) 

0.7207 

(0.6772 – 0.7642) 

RF 45 
0.9122 

(0.8841 – 0.9404) 

0.6112 

(0.5237 – 0.6988) 

0.7425 

(0.6941 – 0.7909) 

RF 60 
0.9180 

(0.900 – 0.9359) 

0.5840 

(0.5324 – 0.6357) 

0.7332 

(0.7089 – 0.7575) 

XGB 30 
0.8910 

(0.8506 – 0.9313) 

0.5478 

(0.4483 – 0.6474) 

0.6933 

(0.6139 – 0.7727) 

XGB 45 
0.9185 

(0.8972 – 0.9398) 

0.5927 

(0.5124 – 0.6731) 

0.7288 

(0.6805 – 0.7772) 

XGB 60 
0.9095 

(0.8848 – 0.9342) 

0.5627 

(0.4979 – 0.6275) 

0.6905 

(0.6358 – 0.7453) 

MLP 30 
0.8525 

(0.8038 – 0.9012) 

0.4535 

(0.3789 – 0.5281) 

0.6043 

(0.5226 – 0.6860) 

MLP 45 
0.8531 

(0.8172 – 0.8891) 

0.4428 

(0.3600 – 0.5256) 

0.6013 

(0.5292 – 0.6735) 

MLP 60 
0.8370 

(0.7932 – 0.8809) 

0.4485 

(0.3785 – 0.5184) 

0.5728 

(0.5034 – 0.6422) 

 

Table 23 

Performance Measure – Taiwanese Data Set Using Raw Train Set 

Classifier AUC H-Measure KS 

LR 
0.8974 

(0.8791 – 0.9158) 

0.5686 

(0.5158 – 0.6214) 

0.7078 

(0.6628 – 0.7528) 

RF 
0.9324 

(0.9129 – 0.9519) 

0.6367 

(0.5772 – 0.6962) 

0.7471 

(0.6937 – 0.8006) 

XGB 
0.9290 

(0.9148 – 0.9431) 

0.6559 

(0.6158 – 0.6960) 

0.7578 

(0.7294 – 0.7836) 
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MLP 
0.8507 

(0.8139 – 0.8875) 

0.4906 

(0.4436 – 0.5376) 

0.6338 

(0.5954 – 0.6722) 

Table 22 elucidates the performance metrics derived from the classifiers that 

used latent embeddings from VAE trained on original data, while Table 23 

represents the outcomes from classifiers that leveraged raw accounting data for the 

Taiwanese dataset. As with the Norwegian dataset, it is observed that the learned 

latent representations  exhibit lower performance than when using the raw training 

set, with the exception of LR. Intriguingly, in this experiment, the performance of 

the classifiers improves as the dimensionality of  increases from 30 to 45, but it 

diminishes when the dimensionality of  further escalates from 45 to 60. The RF 

model emerged as the most effective model in this experimental context. 

With Rebalancing: Random Under-Sampling 

Table 24 

Performance Measure – Taiwanese Data Set Using VAE latent embeddings 

Classifier z AUC H-Measure KS 

LR 30 
0.9128 

(0.8903 – 0.9354) 

0.5698 

(0.5047 – 0.6348) 

0.7105 

(0.6611 – 0.7600) 

LR 45 
0.9176 

(0.8990 – 0.9362) 

0.5757 

(0.5106 – 0.6407) 

0.7064 

(0.6610 – 0.7518) 

LR 60 
0.9177 

(0.8976 – 0.9378) 

0.5745 

(0.5030 – 0.6460) 

0.7186 

(0.6640 – 0.7732) 

RF 30 
0.9092 

(0.8865 – 0.9319) 

0.5647 

(0.5102 – 0.6192) 

0.7018 

(0.6506 – 0.7530) 

RF 45 
0.9142 

(0.8922 – 0.9362) 

0.5667 

(0.4991 – 0.6342) 

0.7020 

(0.6463 – 0.7577) 

RF 60 
0.9161 

(0.8971 – 0.9352) 

0.5844 

(0.5249 – 0.6439) 

0.7172 

(0.6568 – 0.7776) 

XGB 30 
0.8989 

(0.8737 – 0.9241) 

0.5412 

(0.4668 – 0.6155) 

0.6972 

(0.6243 – 0.7701) 

XGB 45 
0.9074 

(0.8941 – 0.9207) 

0.5430 

(0.5099 – 0.5761) 

0.6940 

(0.6526 – 0.7354) 

XGB 60 
0.9071 

(0.8912 – 0.9229) 

0.5628 

(0.5194 – 0.6062) 

0.7016 

(0.6568 – 0.7464) 

MLP 30 
0.8852 

(0.8561 – 0.9142) 

0.5099 

(0.4419 – 0.5779) 

0.6893 

(0.6263 – 0.7523) 

MLP 45 
0.8895 

(0.8671 – 0.9119) 

0.5216 

(0.4564 – 0.5858) 

0.6967 

(0.6737 – 0.7197) 

MLP 60 
0.8841 

(0.8617 – 0.9064) 

0.5017 

(0.4469 – 0.5565) 

0.6718 

(0.6345 – 0.7091) 
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Table 25 

Performance Measure – Taiwanese Data Set Using Balanced Train Set 

Classifier AUC H-measure KS 

LR 
0.8937 

(0.8645 – 0.9230) 

0.5358 

(0.4639 – 0.6077) 

0.6741 

(0.6044 – 0.7438) 

RF 
0.9343 

(0.9236 – 0.9451) 

0.6326 

(0.6064 – 0.6588) 

0.7558 

(0.7359 – 0.7756) 

XGB 
0.9225 

(0.9148 – 0.9301) 

0.5937 

(0.5646 – 0.6227) 

0.7291 

(0.7050 – 0.7532) 

MLP 
0.8990 

(0.8773 – 0.9207) 

0.5463 

(0.4842 – 0.6084) 

0.7055 

(0.6491 – 0.7618) 

The implementation of random under-sampling to the training set resulted 

in an enhancement in the performance of all classifiers, both when using latent 

embeddings from VAE and when using the balanced training set, with the exception 

of XGB, where the performance remained relatively static (Table 24 and Table 25). 

Contrary to previous experiments, the H-measure and KS statistics exhibited a 

slight increase for RF and XGB when the dimensionality of the latent representation 

 was augmented from 45 to 60. However, the AUC score continued to decline. 

With Rebalancing: SMOTE 

Table 26 

Performance Measure – Taiwanese Data Set Using VAE latent embeddings 

Classifier z AUC H-Measure KS 

LR 30 
0.8946 

(0.8758 – 0.9134) 

0.5612 

(0.5093 – 0.6130) 

0.6837 

(0.6397 – 0.7276) 

LR 45 
0.8843 

(0.8533 – 0.9153) 

0.5549 

(0.4700 – 0.6398) 

0.6809 

(0.6123 – 0.7495) 

LR 60 
0.8995 

(0.8785 – 0.9206) 

0.5542 

(0.5037 – 0.6048) 

0.6828 

(0.6375 – 0.7281) 

RF 30 
0.8996 

(0.8666 – 0.9307) 

0.5501 

(0.4848 – 0.6154) 

0.6838 

(0.6182 – 0.7494) 

RF 45 
0.8979 

(0.8631 – 0.9327) 

0.5670 

(0.4762 – 0.6414) 

0.6775 

(0.6251 – 0.7298) 

RF 60 
0.9071 

(0.8806 – 0.9336) 

0.5670 

(0.4960 – 0.6379) 

0.6913 

(0.6361 – 0.7466) 

XGB 30 
0.8975 

(0.8797 – 0.9153) 

0.5400 

(0.4917 – 0.5883) 

0.6619 

(0.6026 – 0.7212) 

XGB 45 
0.9027 

(0.8757 – 0.9298) 

0.5497 

(0.4692 – 0.6301) 

0.6854 

(0.6319 – 0.7389) 

XGB 60 
0.9034 

(0.8714 – 0.9354) 

0.5815 

(0.4934 – 0.6697) 

0.6949 

(0.6116 – 0.7781) 

MLP 30 
0.8638 

(0.8478 – 0.8797) 

0.4940 

(0.4605 – 0.5274) 

0.6520 

(0.6152 – 0.6889) 
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MLP 45 
0.8503 

(0.8248 – 0.8758) 

0.4648 

(0.4006 – 0.5290) 

0.5980 

(0.5357 – 0.6602) 

MLP 60 
0.8439 

(0.8131 – 0.8747) 

0.4631 

(0.3990 – 0.5272) 

0.5996 

(0.5326 – 0.6667) 

 

Table 27 

Performance Measure – Taiwanese Data Set Using Balanced Train Set 

Classifier AUC H-Measure KS 

LR 
0.8824 

(0.8512 – 0.9136) 

0.5499 

(0.4895 – 0.6103) 

0.6721 

(0.6214 – 0.7228) 

RF 
0.9317 

(0.9172 – 0.9462) 

0.6242 

(0.5736 – 0.6749) 

0.7421 

(0.7165 – 0.7677) 

XGB 
0.9222 

(0.9042 – 0.9402) 

0.6063 

(0.5580 – 0.6547) 

0.7298 

(0.7004 – 0.7593) 

MLP 
0.8328 

(0.7921 – 0.8736) 

0.4771 

(0.4429 – 0.5112) 

0.6170 

(0.5697 – 0.6643) 

In the concluding experiment conducted on the Taiwanese dataset, we 

observe a pattern analogous to previous experiments, wherein the performance of 

classifiers employing VAE latent embeddings is found to be inferior compared to 

those directly utilizing the balanced training set, with the exceptions of LR and MLP 

(Table 26 and Table 27). In this particular experiment, the performance of LR, RF, 

and XGB improved with an increase in the dimensionality of the latent 

representation , while the performance of MLP declined as the dimensionality of 

 increased. The best model in this experiment is RF.  

The visual representation of the learned latent space can be examined in 

Appendices 10, 11, and 12. 

Polish Data Set 

Without Rebalancing: Using Original Data 

Table 28 

Performance Measure – Polish Data Set Using VAE latent embeddings 

Classifier z AUC H-Measure KS 

LR 20 
0.6768 

(0.6705 – 0.6830) 

0.1131 

(0.1014 – 0.1247) 

0.2650 

(0.2548 – 0.2753) 

LR 30 
0.6960 

(0.6798 – 0.7122) 

0.1364 

(0.1151 – 0.1576) 

0.3062 

(0.2776 – 0.3348) 

LR 40 
0.6865 

(0.6773 – 0.6957) 

0.1261 

(0.1160 – 0.1361) 

0.2930 

(0.2830 – 0.3031) 

RF 20 
0.7130 

(0.6974 – 0.7287) 

0.1446 

(0.1272 – 0.1875) 

0.3525 

(0.2941 – 0.3563) 
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RF 30 
0.7277 

(0.7097 – 0.7457) 

0.1629 

(0.1384 – 0.1875) 

0.3475 

(0.3102 – 0.3849) 

RF 40 
0.7234 

(0.6988 – 0.7480) 

0.1601 

(0.1307 – 0.1895) 

0.3429 

(0.2949 – 0.3910) 

XGB 20 
0.7053 

(0.6798 – 0.7308) 

0.1381 

(0.1076 – 0.1686) 

0.3146 

(0.2714 – 0.3578) 

XGB 30 
0.7281 

(0.7138 – 0.7423) 

0.1681 

(0.1513 – 0.1849) 

0.3553 

(0.3361 – 0.3746) 

XGB 40 
0.7281 

(0.7059 – 0.7504) 

0.1675 

(0.1410 – 0.1940) 

0.3506 

(0.3127 – 0.3884) 

MLP 20 
0.7105 

(0.6947 – 0.7264) 

0.1472 

(0.1347 – 0.1597) 

0.3321 

(0.3100 – 0.3543) 

MLP 30 
0.7173 

(0.6971 – 0.7374) 

0.1621 

(0.1431 – 0.1812) 

0.3427 

(0.3064 – 0.3789) 

MLP 40 
0.7121 

(0.700 – 0.7243) 

0.1546 

(0.1405 – 0.1688) 

0.3267 

(0.2962 – 0.3572) 

 

Table 29 

Performance Measure – Polish Data Set Using Raw Train Set 

Classifier AUC H-Measure KS 

LR 
0.6472 

(0.6564 – 0.6920) 

0.1154 

(0.0895 – 0.1412) 

0.2584 

(0.2316 – 0.2851) 

RF 
0.9092 

(0.9000 – 0.9183) 

0.5512 

(0.5330 – 0.5695) 

0.6638 

(0.6434 – 0.6842) 

XGB 
0.9761 

(0.9735 – 0.9787) 

0.7836 

(0.7755 – 0.7918) 

0.8398 

(0.8316 – 0.8480) 

MLP 
0.8287 

(0.8182 – 0.8391) 

0.3720 

(0.3634 – 0.3806) 

0.5350 

(0.5240 – 0.5461) 

Tables 28 and 29 reveal that the XGB classifier, when employing the raw 

training set, surpasses the performance of all other classifiers. As for the 

dimensionality of the latent representation , it is observed that the performance of 

all classifiers escalates when the dimension of  increases from 20 to 30, but it 

experiences a slight decrease when  further escalates from 30 to 40. In terms of the 

performance of the VAE latent embeddings, it is noted that their application yields 

significantly lower performance than when the raw training set is used for training 

the classifiers. However, in the case of LR, there is an enhancement in performance. 

With Rebalancing: Random Under-Sampling 

Table 30 

Performance Measure – Polish Data Set Using VAE latent embeddings 

Classifier z AUC H-Measure KS 
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LR 20 
0.6691 

(0.6819 – 0.7162) 

0.1320 

(0.1110 – 0.1530) 

0.3100 

(0.2883 – 0.3316) 

LR 30 
0.6997 

(0.6877 – 0.7117) 

0.1307 

(0.1202 – 0.1411) 

0.3057 

(0.2906 – 0.3208) 

LR 40 
0.7106 

(0.6978 – 0.7235) 

0.1453 

(0.1322 – 0.1585) 

0.331 

(0.3199 – 0.3462) 

RF 20 
0.7293 

(0.7106 – 0.7480) 

0.1626 

(0.1392 – 0.1859) 

0.3513 

(0.3206 – 0.3819) 

RF 30 
0.7323 

(0.7176 – 0.7470) 

0.1709 

(0.1503 – 0.1916) 

0.3520 

(0.3145 – 0.3895) 

RF 40 
0.7369 

(0.7246 – 0.7492) 

0.1733 

(0.1560 – 0.1907) 

0.3699 

(0.3389 – 0.4008) 

XGB 20 
0.7252 

(0.7055 – 0.7448) 

0.1529 

(0.1321 – 0.1863) 

0.3467 

(0.3101 – 0.3832) 

XGB 30 
0.7321 

(0.7199 – 0.7444) 

0.1668 

(0.1484 – 0.1853) 

0.3527 

(0.3290 – 0.3764) 

XGB 40 
0.7326 

(0.7157 – 0.7494) 

0.1661 

(0.1441 – 0.1882) 

0.3576 

(0.3241 – 0.3911) 

MLP 20 
0.7318 

(0.7149 – 0.7486) 

0.1709 

(0.1460 – 0.1959) 

0.3633 

(0.3305 – 0.3961) 

MLP 30 
0.7205 

(0.7058 – 0.7353) 

0.1589 

(0.1359 – 0.1819) 

0.3531 

(0.3286 – 0.3776) 

MLP 40 
0.7186 

(0.7005 – 0.7367) 

0.1525 

(0.1297 – 0.1752) 

0.3531 

(0.3291 – 0.3770) 

 

Table 31 

Performance Measure – Polish Data Set Using Balanced Train Set 

Classifier AUC H-Measure KS 

LR 
0.7451 

(0.7321 – 0.7581) 

0.1927 

(0.1776 – 0.2077) 

0.3814 

(0.3669 – 0.3960) 

RF 
0.8890 

(0.8729 – 0.9051) 

0.4693 

(0.4258 – 0.5129) 

0.6220 

(0.5945 – 0.6495) 

XGB 
0.9592 

(0.9558 – 0.9625) 

0.6915 

(0.6731 – 0.7099) 

0.7794 

(0.7661 – 0.7927) 

MLP 
0.8149 

(0.8035 – 0.8262) 

0.3111 

(0.2955 – 0.3266) 

0.5127 

(0.4944 – 0.5310) 

In this experimental setting, it is rather surprising to find that the 

performance of LR utilizing VAE latent embeddings is inferior compared to its 

performance when using a balanced training set (Table 30 and Table 31). The 

application of random under-sampling to the training set leads to a decline in the 

performance of all classifiers when compared to the previous experiment, with the 

sole exception of LR. While there is an observed improvement in prediction 

accuracy when VAE latent embeddings are employed to train the classifiers 
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relative to the previous experiment, the overall performance remains significantly 

lower than when the raw training set is used. 

With Rebalancing: SMOTE 

Table 32 

Performance Measure – Polish Data Set Using VAE latent embeddings 

Classifier z AUC H-measure KS 

LR 20 
0.7071 

(0.6877 – 0.7264) 

0.1459 

(0.1292 – 0.1626) 

0.3181 

(0.2878 – 0.3484) 

LR 30 
0.7132 

(0.6889 – 0.7376) 

0.1555 

(0.1329 – 0.1781) 

0.3323 

(0.3023 – 0.3623) 

LR 40 
0.7164 

(0.6964 – 0.7364) 

0.1604 

(0.1381 – 0.1826) 

0.3416 

(0.3094 – 0.3738) 

RF 20 
0.7249 

(0.7078 – 0.7411) 

0.1640 

(0.1475 – 0.1805) 

0.3459 

(0.3177 – 0.3741) 

RF 30 
0.7261 

(0.7144 – 0.7378) 

0.1661 

(0.1523 – 0.1798) 

0.3465 

(0.3285 – 0.3645) 

RF 40 
0.7295 

(0.7157 – 0.7433) 

0.1694 

(0.1504 – 0.1883) 

0.3559 

(0.3346 – 0.3772) 

XGB 20 
0.7045 

(0.6924 – 0.7167) 

0.1413 

(0.1246 – 0.1581) 

0.3180 

(0.3053 – 0.3307) 

XGB 30 
0.7089 

(0.7051 – 0.7126) 

0.1433 

(0.1384 – 0.1482) 

0.3191 

(0.3037 – 0.3345) 

XGB 40 
0.6965 

(0.6813 – 0.7116) 

0.1317 

(0.1169 – 0.1464) 

0.3044 

(0.2980 – 0.3108) 

MLP 20 
0.6926 

(0.6808 – 0.7042) 

0.1362 

(0.1255 – 0.1469) 

0.3109 

(0.2956 – 0.3262) 

MLP 30 
0.7039 

(0.6939 – 0.7139) 

0.1496 

(0.1376 – 0.1616) 

0.3256 

(0.2967 – 0.3545) 

MLP 40 
0.6939 

(0.6858 – 0.7013) 

0.1427 

(0.1319 – 0.1535) 

0.3089 

(0.3031 – 0.3146) 

 

Table 33 

Performance Measure – Polish Data Set Using Balanced Train Set 

Classifier AUC H-Measure KS 

LR 
0.7372 

(0.7219 – 0.7526) 

0.1923 

(0.1742 – 0.2104) 

0.3750 

(0.3589 – 0.3911) 

RF 
0.8684 

(0.8572 – 0.8795) 

0.4105 

(0.3794 – 0.4417) 

0.5899 

(0.5756 – 0.6042) 

XGB 
0.9681 

(0.9637 – 0.9724) 

0.7528 

(0.7406 – 0.7650) 

0.8143 

(0.8057 – 0.8229) 

MLP 
0.8473 

(0.8310 – 0.8636) 

0.4345 

(0.4113 – 0.4576) 

0.5742 

(0.5513 – 0.5971) 

In the final experiment, the outcomes bear similarity to those of the random 

under-sampling experiment, as exhibited in Tables 32 and 33. The sole 
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distinguishing aspect in this instance is that the Synthetic Minority Over-sampling 

Technique (SMOTE) bolsters the performance of the Multilayer Perceptron (MLP) 

classifier when trained with the balanced training set. However, the performance of 

the MLP classifier trained with Variational Autoencoder (VAE) latent embeddings 

is noted to be inferior to that of the previous experiments. Additionally, an increase 

in performance across classifiers is observed when the dimensionality of the latent 

representation  rises from 20 to 30, with a slight decrease noted when the  

dimension further increases from 30 to 40. The best classifier in this experiment is 

XGB for using balanced train set and RF for using VAE latent embeddings. 

Visualizations of the VAE latent embeddings can be accessed in 

Appendices 13, 14, and 15. 

Summarizing results 

Throughout the course of this investigation, it was consistently observed 

that classifiers' performance, when utilizing VAE latent embeddings, was generally 

inferior to those leveraging the original or balanced training sets directly. This held 

true with the singular exception of LR in specific experimental contexts. This 

pattern implies that the dimensionality reduction process undertaken by the VAE 

might induce some degree of predictive power loss. One hypothesis to explain the 

improved performance of LR when using VAE latent embeddings is that VAE are 

capable of capturing intricate, high-dimensional relationships within a compressed, 

lower-dimensional space. Consequently, these models can effectively filter noise 

and identify non-linear relationships in the data, a capability not inherent to LR. 

Furthermore, the process of learning a lower-dimensional representation may 

introduce a regularization effect, which can aid in the prevention of overfitting. This 

effect could potentially enhance the generalizability of the LR model, yielding 

improved performance on unseen data. 

The performance of classifiers was observed to escalate as the 

dimensionality of the latent space increased, albeit only up to a certain threshold. 

Beyond this point, a decrement in performance was noted, implying the existence 

of an optimal dimensionality  for these data sets. A hypothesis to explain the 

existence of an optimal dimensionality for , the latent space of the VAE, lies in the 

delicate equilibrium between information preservation and reduction of noise or 

data redundancy. As the dimensionality of  escalates, the VAE is granted enhanced 

capacity to encode intricate, high-dimensional data. This increased complexity, to 
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a certain extent, can boost the model's performance by enabling it to perceive more 

subtle correlations within the data. However, beyond this optimal threshold, any 

further augmentation in dimensionality may lead to the introduction of unnecessary 

complexity that begins to undermine performance. This is because the VAE may 

start to overfit the data noise, capturing random fluctuations that do not generalize 

well to unseen data. Essentially, the model may learn to represent specificities 

intrinsic to the training data that do not bear relevance to the overall data-generating 

process. Therefore, there is an optimal dimensionality of  at which the model 

optimally balances the trade-off between capturing salient data patterns and 

avoiding overfitting to noise. 

When under-sampling or over-sampling techniques were applied to the 

training set, an overall decline in classifier performance was noted, particularly for 

XGB and MLP. However, LR emerged as an exception in certain contexts, 

exhibiting improved performance when employing latent embeddings. 

With respect to the Taiwanese dataset, the RF classifier consistently proved 

to be the most effective model across various experimental configurations. On the 

contrary, for the Norwegian and Polish datasets, the XGB classifier often 

demonstrated superior performance relative to other classifiers when utilizing the 

raw training set. 
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Discussion 

Limitations 

The focus of this thesis is on the application of Variational Autoencoder 

(VAE) latent embeddings to train classifiers for bankruptcy prediction. While this 

focus has offered novel insights, it has also necessitated certain constraints which 

represent the limitations of this study. First, the computational resources available 

for this research were insufficient to facilitate the exhaustive exploration of all 

potential parameters of the VAE. As a result, the study could not fully explore the 

impact of different VAE configurations on the classifiers' performance. 

The data preprocessing procedure employed in this study was basic and 

consisted mainly of replacing missing values with zeroes and removing duplicate 

entries. More sophisticated preprocessing methodologies, such as the removal of 

low variance features or the imputation of missing values with mean values, were 

not utilized. The impact of these alternative preprocessing techniques on classifier 

performance remains an open question. 

In this study, the techniques of Synthetic Minority Over-sampling 

Technique or Random Under-Sampling were used to address the issue of class 

imbalances within the data. However, these methods may not always be the most 

effective approach for all datasets or classification tasks. Other techniques, such as 

SMOTETomek, SMOTEENN, or the generation of synthetic data using VAEs, may 

offer superior results but were not considered in this study. 

Lastly, our findings suggest the existence of an optimal dimensionality for 

the latent space within these datasets. However, the changes in classifier 

performance associated with increasing dimensionality were minimal, and the 

standard deviation of the metrics was relatively large in comparison to these 

changes. This observation points to a complex, non-linear relationship between 

dimensionality and classifier performance, which was not thoroughly explored in 

this thesis. 

Further research 

Building upon the findings of this study, a plethora of promising avenues 

for further research are apparent. The task of optimizing the use of VAE in business 

risk assessment is particularly pertinent when considering the use of accounting 

data. One crucial aspect that came to the fore is the significant impact of VAE 
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parameters, notably the dimensionality of the latent space, on classifier 

performance. This suggests that future research could benefit from allocating more 

extensive computational resources for a more comprehensive exploration of 

potential parameters. This would enable researchers to identify optimal settings for 

various types of accounting data. 

Our preprocessing strategy was relatively simple, involving the replacement 

of missing values with zeros and the removal of duplications. However, the 

adoption of more sophisticated preprocessing techniques, such as advanced 

imputation of missing values or the elimination of low-variance features, could 

potentially enhance the performance of classifiers trained with VAE latent 

embeddings. This warrants further investigation. 

The study also demonstrated that the application of under-sampling or over-

sampling techniques to the training set often led to decreased classifier 

performance. This finding invites the exploration of alternative methods for 

handling class imbalances, including advanced techniques like SMOTETomek, 

SMOTEENN, or the generation of synthetic data using VAEs. 

The concept of an optimal dimensionality  for the latent space emerged 

from our findings, with classifier performance decreasing beyond a certain 

threshold. This indicates a need for further research to pinpoint this optimal 

dimensionality for different types of data and classifiers. 

Moreover, the unique performance of logistic regression in certain contexts, 

particularly its improved performance with the use of latent embeddings, calls for 

an investigation into why this occurs and whether it extends to other types of 

classifiers. 

Finally, the geographical focus of this study was on the Norwegian context. 

However, examining other geographic or industry contexts could yield valuable 

insights into the consistency of these findings across different business 

environments. By investigating these areas, future research can continue to refine 

our understanding of how VAEs can be harnessed to enhance classifier performance 

in business risk assessment.  
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Conclusion 

Our primary research question revolved around the evaluation of VAE 

latent embeddings in training classifiers for bankruptcy prediction. The exploration 

was carried out using three distinct datasets and the performance of classifiers was 

compared when trained on VAE latent embeddings versus the original or balanced 

training sets. 

Our key findings revealed that the performance of classifiers using VAE 

latent embeddings was generally not as robust as those trained directly on the 

original or balanced datasets. However, exceptions were observed, especially with 

Logistic Regression, which demonstrated improved performance in certain 

experimental settings. We observed distinct patterns of classifier performance 

across datasets, with the Random Forest classifier performing optimally on the 

Taiwanese dataset, while the Extreme Gradient Boosting classifier demonstrated 

superior performance on the Norwegian and Polish datasets when using the raw 

training set. An intriguing finding was the impact of the dimensionality of latent 

representations  on classifier performance, with an increase in the dimensionality 

of  enhancing performance up to a point, beyond which a decrease was observed. 

This suggests the existence of an optimal dimensionality for these datasets. 

The implications of class imbalances were also examined. The use of under-

sampling or over-sampling techniques generally led to a decrease in classifier 

performance, particularly in the case of Extreme Gradient Boosting and Multi-layer 

Perceptron. Again, Logistic Regression emerged as an exception, showing 

improved performance with VAE latent embeddings in certain settings. 

While our research provides substantial insights, it also acknowledges 

inherent limitations, particularly in relation to VAE parameter exploration and data 

preprocessing techniques due to computational constraints. 

These findings have significant implications for future research. Further 

studies could delve into a more comprehensive exploration of VAE parameters, 

more sophisticated data preprocessing techniques, and alternative methods to 

handle class imbalances. The observed performance of classifiers trained on VAE 

latent embeddings also opens up promising avenues for their application in 

bankruptcy prediction. In conclusion, the research has not only contributed valuable 

insights to the field of bankruptcy prediction using VAE latent embeddings but has 

also paved the way for future research, thereby highlighting the potential for further 

advancements in this area.  
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Appendices 

Appendix 1  

Variables in Brreg Data Set  

Organization Number Industry Code 2 

Name Industry Code 2 Description 

Business Address Industry Code 3 

Business Address Postal Code Industry Code 3 Description 

Business Address City Bankruptcy Opened 

Mailing Address Grounds for Bankruptcy 

Mailing Address Postal Code Role Type 

Mailing Address City Chief Executive Officer 

Organization Type CEO Date of Birth 

Industry Code Board Leader/Chair 

Industry Code Description Board Leader/Chair Date of Birth 

 

Appendix 2 

Variables in Taiwanese Data Set 

Variable Description 

Y Class Label 

X1 ROA(C) Before Interest and Depreciation Before Interest: Return on 

Total Assets(C) 

X2 ROA(A) Before Interest and % After Tax: Return on Total Assets(A) 

X3 ROA(B) Before Interest and Depreciation After Tax: Return on Total 

Assets(B) 

X4 Operating Gross Margin: Gross Profit/Net Sales 

X5 Realized Sales Gross Margin: Realized Gross Profit/Net Sales 

X6 Operating Profit Rate: Operating Income/Net Sales 

X7 Pre-Tax Net Interest Rate: Pre-Tax Income/Net Sales 

X8 After-Tax Net Interest Rate: Net Income/Net Sales 

X9 Non-Industry Income and Expenditure/Revenue: Net Non-Operating 

Income Ratio 

X10 Continuous Interest Rate (After Tax): Net Income-Exclude Disposal 

Gain or Loss/Net Sales 

X11 Operating Expense Rate: Operating Expenses/Net Sales 

X12 Research And Development Expense Rate: (Research and 

Development Expenses)/Net Sales 

X13 Cash Flow Rate: Cash Flow from Operating/Current Liabilities 
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Appendix 2 

Variables in Taiwanese Data Set 

Variable Description 

X14 Interest-Bearing Debt Interest Rate: Interest-Bearing Debt/Equity 

X15 Tax Rate (A): Effective Tax Rate 

X16 Net Value per Share (B): Book Value per Share(B) 

X17 Net Value per Share (A): Book Value per Share(A) 

X18 Net Value per Share (C): Book Value per Share(C) 

X19 Persistent Eps in The Last Four Seasons: Eps-Net Income 

X20 Cash Flow per Share 

X21 Revenue per Share (Yuan ¥): Sales per Share 

X22 Operating Profit per Share (Yuan ¥): Operating Income per Share 

X23 Per Share Net Profit Before Tax (Yuan ¥): Pretax Income per Share 

X24 Realized Sales Gross Profit Growth Rate 

X25 Operating Profit Growth Rate: Operating Income Growth 

X26 After-Tax Net Profit Growth Rate: Net Income Growth 

X27 Regular Net Profit Growth Rate: Continuing Operating Income After 

Tax Growth 

X28 Continuous Net Profit Growth Rate: Net Income-Excluding Disposal 

Gain or Loss Growth 

X29 Total Asset Growth Rate: Total Asset Growth 

X30 Net Value Growth Rate: Total Equity Growth 

X31 Total Asset Return Growth Rate Ratio: Return on Total Asset Growth 

X32 Cash Reinvestment %: Cash Reinvestment Ratio 

X33 Current Ratio 

X34 Quick Ratio: Acid Test 

X35 Interest Expense Ratio: Interest Expenses/Total Revenue 

X36 Total Debt/Total Net Worth: Total Liability/Equity Ratio 

X37 Debt Ratio %: Liability/Total Assets 

X38 Net Worth/Assets: Equity/Total Assets 

X39 Long-Term Fund Suitability Ratio (A): (Long-Term 

Liability+Equity)/Fixed Assets 

X40 Borrowing Dependency: Cost of Interest-Bearing Debt 

X41 Contingent Liabilities/Net Worth: Contingent Liability/Equity 

X42 Operating Profit/Paid-In Capital: Operating Income/Capital 

X43 Net Profit Before Tax/Paid-In Capital: Pretax Income/Capital 

X44 Inventory And Accounts Receivable/Net Value: (Inventory+Accounts 

Receivables)/Equity 
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Appendix 2 

Variables in Taiwanese Data Set 

Variable Description 

X45 Total Asset Turnover 

X46 Accounts Receivable Turnover 

X47 Average Collection Days: Days Receivable Outstanding 

X48 Inventory Turnover Rate (Times) 

X49 Fixed Assets Turnover Frequency 

X50 Net Worth Turnover Rate (Times): Equity Turnover 

X51 Revenue per Person: Sales per Employee 

X52 Operating Profit per Person: Operation Income per Employee 

X53 Allocation Rate per Person: Fixed Assets per Employee 

X54 Working Capital to Total Assets 

X55 Quick Assets/Total Assets 

X56 Current Assets/Total Assets 

X57 Cash/Total Assets 

X58 Quick Assets/Current Liability 

X59 Cash/Current Liability 

X60 Current Liability to Assets 

X61 Operating Funds to Liability 

X62 Inventory/Working Capital 

X63 Inventory/Current Liability 

X64 Current Liabilities/Liability 

X65 Working Capital/Equity 

X66 Current Liabilities/Equity 

X67 Long-Term Liability to Current Assets 

X68 Retained Earnings to Total Assets 

X69 Total Income/Total Expense 

X70 Total Expense/Assets 

X71 Current Asset Turnover Rate: Current Assets to Sales 

X72 Quick Asset Turnover Rate: Quick Assets to Sales 

X73 Working Capital Turnover Rate: Working Capital to Sales 

X74 Cash Turnover Rate: Cash to Sales 

X75 Cash Flow to Sales 

X76 Fixed Assets to Assets 

X77 Current Liability to Liability 

X78 Current Liability to Equity 

X79 Equity to Long-Term Liability 
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Appendix 2 

Variables in Taiwanese Data Set 

Variable Description 

X80 Cash Flow to Total Assets 

X81 Cash Flow to Liability 

X82 CFO to Assets 

X83 Cash Flow to Equity 

X84 Current Liability to Current Assets 

X85 Liability-Assets Flag: 1 If Total Liability Exceeds Total Assets, 0 

Otherwise 

X86 Net Income to Total Assets 

X87 Total Assets to GNP Price 

X88 No-Credit Interval 

X89 Gross Profit to Sales 

X90 Net Income to Stockholder's Equity 

X91 Liability Tt Equity 

X92 Degree of Financial Leverage (DFL) 

X93 Interest Coverage Ratio (Interest Expense to EBIT) 

X94 Net Income Flag: 1 If Net Income Is Negative for The Last Two Years, 

0 Otherwise 

X95 Equity to Liability 

 

Appendix 3 

Variables in Polish Data Set 

Variable Description 

X1 Net Profit / Total Assets 

X2 Total Liabilities / Total Assets 

X34 Working Capital / Total Assets 

X4 Current Assets / Short-Term Liabilities 

X5 [(Cash + Short-Term Securities + Receivables - Short-Term Liabilities) / 

(Operating Expenses - Depreciation)] * 365 

X6 Retained Earnings / Total Assets 

X7 EBIT / Total Assets 

X8 Book Value of Equity / Total Liabilities  

X9 Sales / Total Assets 

X10 Equity / Total Assets 

X11 (Gross Profit + Extraordinary Items + Financial Expenses) / Total Assets 
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Appendix 3 

Variables in Polish Data Set 

Variable Description 

X12 Gross Profit / Short-Term Liabilities 

X13 (Gross Profit + Depreciation) / Sales 

X14 (Gross Profit + Interest) / Total Assets 

X15 (Total Liabilities * 365) / (Gross Profit + Depreciation) 

X16 (Gross Profit + Depreciation) / Total Liabilities 

X17 Total Assets / Total Liabilities 

X18 Gross Profit / Total Assets 

X19 Gross Profit / Sales 

X20 (Inventory * 365) / Sales 

X21 Sales (N) / Sales (N-1) 

X22 Profit on Operating Activities / Total Assets 

X23 Net Profit / Sales 

X24 Gross Profit (In 3 Years) / Total Assets 

X25 (Equity - Share Capital) / Total Assets 

X26 (Net Profit + Depreciation) / Total Liabilities 

X27 Profit on Operating Activities / Financial Expenses 

X28 Working Capital / Fixed Assets 

X29 Logarithm of Total Assets 

X30 (Total Liabilities - Cash) / Sales 

X31 (Gross Profit + Interest) / Sales 

X32 (Current Liabilities * 365) / Cost of Products Sold 

X33 Operating Expenses / Short-Term Liabilities 

X34 Operating Expenses / Total Liabilities 

X35 Profit on Sales / Total Assets 

X36 Total Sales / Total Assets 

X37 (Current Assets - Inventories) / Long-Term Liabilities 

X38 Constant Capital / Total Assets 

X39 Profit on Sales / Sales  

X40 (Current Assets - Inventory - Receivables) / Short-Term Liabilities 

X41 Total Liabilities / ((Profit on Operating Activities + Depreciation) * 

(12/365)) 

X42 Profit on Operating Activities / Sales 

X43 Rotation Receivables + Inventory Turnover in Days 

X44 (Receivables * 365) / Sales 

X45 Net Profit / Inventory 
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Appendix 3 

Variables in Polish Data Set 

Variable Description 

X46 (Current Assets - Inventory) / Short-Term Liabilities 

X47 (Inventory * 365) / Cost of Products Sold 

X48 EBITDA (Profit on Operating Activities - Depreciation) / Total Assets 

X49 EBITDA (Profit on Operating Activities - Depreciation) / Sales 

X50 Current Assets / Total Liabilities 

X51 Short-Term Liabilities / Total Assets 

X52 (Short-Term Liabilities * 365) / Cost of Products Sold) 

X53 Equity / Fixed Assets 

X54 Constant Capital / Fixed Assets 

X55 Working Capital 

X57 (Sales - Cost of Products Sold) / Sales 

X58 Total Costs /Total Sales 

X59 Long-Term Liabilities / Equity 

X60 Sales / Inventory 

X61 Sales / Receivables 

X62 (Short-Term Liabilities *365) / Sales 

X63 Sales / Short-Term Liabilities 

X64 Sales / Fixed Assets 
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Appendix 4 

Correlation Matrix Heatmap for Norwegian Data Set 

 

 

Appendix 5 

Correlation Matrix Heatmap for Taiwanese Data Set 
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Appendix 6 

Correlation Matrix Heatmap for Polish Data Set 

 

 

Appendix 7 

Latent Representation of Norwegian Data Set using Original Data  
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 
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Appendix 8 

Latent Representation of Norwegian Data Set using Under-Sampling Train 

Set   

z LR RF XGB MLP 
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality 

reduction is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles 

associated with each data point, as determined by the corresponding classifier. The 'viridis' color scale 

(van der Walt & Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 

 

Appendix 9 

Latent Representation of Norwegian Data Set using SMOTE Train Set   

z LR RF XGB MLP 
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 

 



 

Page 95 

Appendix 10 

Latent Representation of Taiwanese Data Set using Original Data 
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 
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Latent Representation of Taiwanese Data Set using Under-Sampling Train Set   
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 
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Appendix 12 

Latent Representation of Taiwanese Data Set using SMOTE Train Set   
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 
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Latent Representation of Polish Data Set using Original Data  
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 
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Appendix 14 

Latent Representation of Polish Data Set using Under-Sampling Train Set   
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 
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Latent Representation of Taiwanese Data Set using SMOTE Train Set   
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Note. This visualization is derived from  obtained through the trained VAE. Dimensionality reduction 

is achieved via t-SNE (van der Maaten & Hinton, 2008). The colors represent the risk profiles associated 

with each data point, as determined by the corresponding classifier. The 'viridis' color scale (van der Walt 

& Smith, 2015) is employed, with yellower shades indicating a higher risk of bankruptcy. 
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