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ABSTRACT

In our study, we forecast realized volatility utilizing a large panel of

stocks from the S&P 500, with the inclusion of overnight returns and

earnings announcements. Our comparative analysis employs both the

heterogeneous autoregressive model and gradient boosting. Upon eval-

uation, we ascertain that the inclusion of earnings announcements

moderately enhances the precision of RV forecasting. Furthermore,

our findings suggest that the gradient-boosting methodology demon-

strates superior performance in comparison to the HAR model.

This thesis is a part of the MSc in Quantitative Finance Programme at BI

Norwegian Business School. The school takes no responsibility for the methods

used, results found, or conclusions drawn.
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1 Introduction and Motivation

“Prediction is very difficult, especially if it is about the future” (Niels Bohr).

In our research, we explore the potential of earnings announcements (EA) and

overnight (ON) returns to enhance the prediction of realized volatility (RV). Given

that earnings are announced in advance and typically released before the market

opens or after it closes, we posit that they can increase the accuracy of forecasts,

particularly in the periods immediately preceding and following the earnings an-

nouncement. To more effectively capture this effect, we propose that incorporating

the squared ON log return will enhance the traditional academic definition of RV,

resulting in forecasts of greater practical utility. Refer to Equation (29) for the

RV measure used in our study. Our examination utilizes two cutting-edge models:

the linear heterogeneous autoregressive (HAR) model, and the gradient boosting

(GB) model, Light Gradient Boosting Machine (LightGBM).

We perform an in-sample analysis and compare the out-of-sample (OOS) per-

formance of RV at different horizons on a large panel of individual stocks in the

S&P 500. Our dataset includes intraday prices from both regular and extended

hours, spanning January 3, 2005, to September 21, 2022. Compared to linear mod-

els, GB exhibits a superior ability to discern interaction effects and nonlinearities.

Furthermore, we posit that the introduction of large-scale data will significantly

enhance performance, with the impact being exponentially greater in a GB con-

text compared to a panel regression setting. This hypothesis is supported by its

demonstrated efficiency in handling big data, a claim substantiated by studies

such as those by Bollerslev et al. (2018) and Li and Tang (2022). As a result, it

has the potential to outperform the linear HAR model. We extend the analysis by

conducting additional feature selection and engineering, based on stylized facts of

RV and some empirical findings.

The volatility of financial markets and assets, usually defined as fluctuations in

asset prices, holds major importance for financial market participants. This im-

portance is evident for asset and risk managers, arbitrageurs, market makers,

traders, insurers, and option pricing, among others. Quantitative asset managers

use expected volatility for position sizing and other risk measures such as VaR

and CVaR, which are crucial for position sizing to avoid potential leverage disas-

ters. An example of such a disaster is Long-Term Capital Management (LTCM),

a highly leveraged hedge fund led by Myron Scholes and Robert C. Merton (both

Nobel laureates in Economics in 1997), which focused on convergence arbitrage.

Despite their initial excellent performance, they underestimated the risk of wors-
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ening mispricing, equatable to downside volatility risk. The 1997 Asian financial

crisis and the onset of the 1998 Russian financial crisis led to a flight to liquidity,

causing huge losses and a dramatic increase in their net leverage ratio. Ultimately,

they could not meet their liabilities and were bailed out by a total of 14 banks

for a total of $3.6 billion (Kabir & Hassan, 2005). For more information on this

topic, the reader may refer to “When Genius Failed - The Rise and Fall of Long-

Term Capital Management” (Lowenstein, 2001). Fundamental asset managers

weigh risk against potential reward. Much of the finance literature is based on

the notion of higher risk, higher reward (e.g., CAPM), although recent evidence

challenges this theory. Accurate forecasting of expected volatility over the life

of an option is essential for options arbitrage. The list of examples is extensive,

underscoring the clear importance of volatility. Measures of volatility are crucial

ex-post, but often more so ex-ante. Therefore, we need forward-looking estimates

of RV, representing the actual volatility experienced by an asset over a given pe-

riod.

The derivatives market, particularly options pricing, motivates our thesis. This

vast and complex market involves the trading of financial instruments that derive

their value from an underlying asset. Such instruments include futures contracts,

options contracts, swaps, and more complex derivatives, like exotic options. The

size of the derivatives market has seen significant growth in recent years; the Bank

for International Settlements (BIS) estimated its notional size to be $632 trillion

in 2022, with a gross market value of $18.3 trillion (Bank for International Settle-

ments, 2022). This growth can be attributed to several factors: the need for risk

management by financial institutions, the increasing demand for hedging strate-

gies by investors, and the advent of new financial instruments that allow for more

efficient risk transfer.

The history of volatility forecasting research is extensive, encompassing a vari-

ety of models. Initial forecasts of volatility often relied on implied volatility or

assumed constant volatility, using either the sample average or a moving average

of historic volatility. Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) models (Bollerslev, 1986) and stochastic volatility models were among

the first rigorous methods for modeling RV, with GARCH models shown to ef-

fectively capture volatility clustering in the data. The HAR model (Corsi, 2009),

a parsimonious linear model easily estimated by OLS, came later. Due to their

accuracy and simplicity, HAR and its extensions are among the most widely used

models for forecasting RV today. They successfully capture the persistence often

seen in volatility data.
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Options pricing relies on the RV experienced throughout the entire day. The stan-

dard academic definition, however, is calculated using data from regular trading

hours and does not capture the volatility observed in extended market hours. We

construct a slightly different measure of RV that we believe possesses a better

capability to capture the true underlying daily distribution. This is achieved by

incorporating the squared ON log return into the RV measure. To our knowl-

edge, there is scant literature using this same procedure. Furthermore, we posit

that another crucial aspect of volatility forecasting has been overlooked. Days of

EA are well-known to cause fluctuations in stock prices. Earnings are generally

announced during extended hours, so we believe our newly proposed measure of

volatility will more effectively capture this effect. We include dummy variables

for days of announcements, which are known to market participants months in

advance, to assist the model in learning its impact.

Machine learning has seen tremendous growth over the past decade, resulting

in the emergence of many promising models. Some authors have explored its use

in forecasting volatility; however, most research has focused on neural networks,

random forests, and regularization and variable selection techniques. Currently,

there is limited literature on how GB performs in RV forecasting. Although the

signal-to-noise ratio (SNR) in volatility data is high, we believe it is important to

investigate further, as GB is known to perform well with most data, especially at

capturing nonlinearities that HAR-type models do not adequately capture. We

specifically compare all models in a panel modeling setting, which provides us

with a large sample of 2,086,068 observations. As GB is known to perform excep-

tionally well with large-scale data, it may be effective in such a panel modeling

setting. Therefore, we believe that GB can outperform the simple and widely used

HAR-type models. Our original contribution to the literature is threefold: We

incorporate EA and offer a detailed analysis; We compare the RV forecasting per-

formance of LightGBM (LGBM) with the simple HAR model; We apply the first

and second points using a large dataset of individual stocks in a panel modeling

setting, using a slightly different RV measure that incorporates ON information,

along with additional feature selection and engineering.

The thesis is organized as follows: Section 2 provides an overview of the related

literature and theory. Section 3 elaborates on our hypotheses and methodology.

Section 4 outlines our data collection and cleaning procedures, as well as our ap-

proach to feature engineering and selection. In Section 5, we present our data

analysis. Section 6 describes the models used in our study. Section 7 presents the

in-sample results, while Section 8 details the pseudo-OOS results. Finally, Section
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9 concludes our thesis.

2 Literature Review and Theory

In this section, we outline a significant portion of the empirical evidence on volatil-

ity and provide a brief history and theoretical framework of volatility modeling.

2.1 Empirical Evidence of Volatility

There have been several well-documented empirical observations regarding RV

over the years. By RV, we mean a measure of volatility using high-frequency

intraday returns as opposed to close-to-close returns or similar measures. Specif-

ically, RV is quantified as the squared sum of all intraday log returns at a chosen

sampling frequency. For additional details, please refer to Section (3.2). A com-

prehensive outline of these findings can be found in the works of Cont (2001) and

Masset (2011). These observed statistical properties, known as stylized empirical

facts, demonstrate that although asset prices evolve randomly, they consistently

share certain statistical characteristics. To summarize, these are: Volatility is

non-constant and exhibits long memory; The distribution of volatility is fat-tailed;

Shocks are typically followed by aftershocks; Volatility is often negatively corre-

lated with returns; Trading volume shows a correlation with volatility; Volatility

measured at different frequencies carries distinct information content.

2.1.1 Long Memory

Despite many simple models assuming constant volatility, the evidence clearly

shows that volatility varies over time (Akgiray, 1989; Castanias, 1979; Fama,

1965; Turner & Weigel, 1992). Volatility also exhibits clustering and long memory

characteristics. Clustering is a positive correlation between current volatility and

its lagged values, a phenomenon also referred to as autocorrelation. Long memory,

in essence, indicates that autocorrelation of volatility persists across numerous

lags. This particular observation remains remarkably stable across various asset

classes and time periods and is considered a typical manifestation of volatility

clustering (Teyssière & Kirman, 2007). GARCH models were among the first to

capture this phenomenon (Baillie & Bollerslev, 1992; Engle & Rosenberg, 1995).

The eventual diminishment of autocorrelation to zero for extended lags provides

evidence of mean-reverting volatility (Masset, 2011).

4



2.1.2 Leptokurtic Distribution

Early evidence of fat tails in financial data can be found in the works of Mandelbrot

(1963) and Fama (1965). For a comprehensive overview of research on fat tails in

finance, refer to Rachev (2003).

2.1.3 Shocks and Aftershocks

Typically, shocks are followed by aftershocks. H. Liu and Loewenstein (2009)

states that the probability of another crash may increase following a crash. Early

evidence supporting the clustering of extreme moves is presented in Turner and

Weigel (1992).

2.1.4 The “Leverage” Effect

Volatility often exhibits a negative correlation with returns, though the under-

lying cause of this effect is not fully understood. Two dominant theories have

been proposed to explain this phenomenon: the “financial leverage hypothesis”

and the “volatility feedback hypothesis”. The financial leverage hypothesis posits

that when the value of a stock declines, its debt-to-equity ratio rises, which in turn

increases the perceived risk of the company and leads to higher return volatility

(Black, 1976; Christie, 1982). Conversely, the volatility feedback hypothesis sug-

gests that volatility itself can trigger a risk premium. Accordingly, when stock

markets become more volatile, stock prices should decrease to increase expected

stock returns (Campbell & Hentschel, 1991; French et al., 1987; Pindyck, 1983;

Poterba & Summers, 1984). While the financial leverage hypothesis may explain

this phenomenon at a firm level, its applicability falters when considering the phe-

nomenon at an index level. This difficulty in reconciling the theory with empirical

observations likely accounts for its limited support (Hibbert et al., 2008). How-

ever, empirical evidence appears to favor the financial leverage hypothesis over the

volatility feedback hypothesis (Bollerslev, 2006; Masset, 2011). In light of these

observations, Hibbert et al. (2008) proposed a new theory based on behavioral

arguments. This theory suggests that irrational investors could be the root cause

of asymmetry in stock markets.

2.1.5 Volume/Volatility Correlation

It is well established that trading volume exhibits a positive correlation with

volatility (Alsubaie & Najand, 2009; Chuang et al., 2009; Karpoff, 1987). Louhichi

(2011) found that a significant portion of the volatility persistence can be ex-

plained by volume. However, whether volume possesses any predictive power

remains uncertain.
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2.1.6 Asymmetry in Time Scales

Different frequencies carry different informational content. For instance, low

volatility at a longer time horizon is generally followed by low volatility at shorter

time horizons. Conversely, high volatility at a long time horizon does not neces-

sarily translate into high volatility at shorter time horizons. This phenomenon,

referred to as “asymmetric vertical dependence” (Gençay et al., 2010), is also

known as volatility cascade.

2.2 Models and Measures of Volatility

Various models have been proposed in the literature, each with its own benefits

and drawbacks. Among model-free measures are historical volatility (HV) and

RV, while model-based measures include methods such as GARCH and HAR.

Other measures are derived from model-based option prices. In this section, we

introduce some of the most significant contributions to the literature.

2.2.1 Historical Volatility

The term “volatility” has been in use for many decades, but its application has

grown exponentially with increased computing power and the integration of com-

puters into financial markets. Traditionally, HV was utilized, which is essentially

the sample standard deviation as seen in Equation (3). The standard definition

of the (unbiased) sample variance is as follows

σ2 =

∑T
t=1 (rt − r̄)2

T − 1
, (1)

where T represents the number of returns, rt corresponds to each value of the

logarithmic returns, and r̄ is the average log return. Log returns are computed as

follows

rt = ln(Pt/Pt−1) = ln(Pt)− ln(Pt−1) = pt − pt−1. (2)

Correspondingly, volatility (the sample standard deviation) is defined as the square

root of the variance

σ =

√∑T
t=1 (rt − r̄)2

T − 1
. (3)

Typically, the calculated measure is adjusted to a common period, such as daily,

monthly, or yearly (annualized). Assuming independent and identically distributed

(iid) returns, variance scales with time while volatility scales with the square root

of time. It is a common practice to assume 252 trading days per year. HV is

typically calculated using close-to-close (daily) returns before annualizing, to pro-

duce a comparable measure across assets and data frequencies, even though the
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assumption of iid returns is flawed. While HV is retrospective in nature, the need

for more precise and forward-looking estimates of volatility has increased drasti-

cally, for reasons explained in the introduction. This necessitates the calculation

of implied volatility (IV).

2.2.2 Implied Volatility

Following the work of Black and Scholes (1973), and that of Merton (1973), the

well-known Black-Scholes (BS) or Black-Scholes-Merton (BSM) model was pro-

posed. This model is used for pricing European call-and-put options, also known

as vanilla options. This model assumes that the asset price follows an expo-

nential/geometric Brownian motion (GBM) described by the following stochastic

differential equation (SDE)

dSt = µStdt+ σStdWt. (4)

The analytical solution to this SDE, derived using “Itô’s formula”, is

St = S0 exp

[(
µ− σ2

2

)
t+ σWt

]
, (5)

which is particularly useful for simulating asset prices. The BS equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (6)

is a parabolic partial differential equation (PDE). Solving this PDE yields the BS

formula, an explicit formula for pricing European calls and puts that takes five

inputs (six if the asset pays dividends). The value is given by

V = f(r, τ, S,K, σ), (7)

where τ = T − t (Hull, 2015). The future RV over the life of the option (σ) is the

only parameter that cannot be directly observed in the market. The function f

is monotonically increasing in σ, implying that, by the inverse function theorem,

there will be at most one value of σ corresponding to a specific value of V . As-

suming an inverse function of f , denoted g = f−1, we have σV̄ = g(V̄ , ·). Here,

σV̄ represents the IV derived from the BS formula. While there are numerous

other measures of IV, the one obtained from the BS formula is most commonly

used. Unless stated otherwise, “IV” refers to BS IV as above. Thus, for options

trading in the market, it is possible to infer the IV - a market expectation for

the volatility of the underlying over the life of the option. This can be calculated

using a root-finding technique like the Newton-Raphson method (see, e.g., Ypma

7



(1995)) by solving

f(σV̄ , ·)− V̄ = 0, (8)

(Orlando & Taglialatela, 2017). As such, IV serves as a market-implied (forward-

looking) estimate and is widely employed as a measure of expected volatility

beyond its application in option pricing. The VIX, a volatility index that reflects

the expectation of the stock market regarding volatility in the S&P 500 over the

next month (30-day period), is based on S&P 500 index options. Quoted as an

annualized standard deviation, it provides an estimate of the implied volatility

(“VIX Index”, 2023). IV and measures like the VIX are well-recognized for their

fairly accurate forecasts of volatility.

2.2.3 Stochastic Volatility

Stochastic volatility (SV) models have been in existence for a considerable amount

of time. Some of the earliest papers on SV focused on discrete-time models, were

authored by econometricians, and were specifically designed for risk management.

Today, SV is almost always associated with continuous-time models, which are

more applicable to financial mathematics and options pricing. The key feature

of an SV model is that the variance of the process is itself randomly distributed

(Shephard, 2005). Some of the more prominent SV models in current use include

the Heston model (Heston, 1993), the SABR model (Hagan et al., 2002), and the

Hull-White model (Hull & White, 1987). The Heston model is defined as

dSt = µStdt+
√
νtStdW

S
t

dνt = κ(θ − νt)dt+ ξ
√
νtdW

ν
t .

(9)

This model assumes that the asset follows the stochastic process outlined in the

first line, while the instantaneous variance given in the second line follows a Feller

square-root process, also known as a CIR process (Cox et al., 1985). This is an

extension of the Vasicek model (Vasicek, 1977). The Wiener processes have a

correlation coefficient denoted by ρ. The initial variance is represented by ν0, the

long-run variance by θ, the rate at which the instantaneous variance νt mean-

reverts to θ by κ, and the volatility of volatility (referred to as “vol of vol”) by

ξ. SV models typically capture features such as volatility clustering and mean

reversion.

2.2.4 Local Volatility

Local volatility (LV) models are generalizations of the BS model. Unlike in the

BS model, where the volatility is constant, volatility in the LV model is a function
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of both time and the asset price (Dupire, 1994),

dSt = r(t)Stdt+ σ(St, t)StdWt. (10)

LV models are useful for options pricing and capturing the entire volatility surface

across different maturities and strikes. Derman et al. (1996) states that the BS

measure of σ is a sort of global measure of volatility, in contrast to LV, where it

depends on a specific state in the model. Subsequent developments include local

stochastic volatility (LSV) models (Ren et al., 2007) and path-dependent volatility

(PDV) models (Foschi & Pascucci, 2008), which aim to capture the benefits of

both LV and SV models. In LSV models, the volatility is modeled as a function

of time, asset price, and an additional stochastic process. PDV models, on the

other hand, model the volatility based on the asset price path.

2.2.5 ARCH and GARCH

In the early 1980s, the autoregressive conditional heteroscedasticity (ARCH) model

was proposed (Engle, 1982). This discrete-time model features time-varying, al-

though deterministic, volatility. ARCH is especially useful when the variance of

the error in a time-series model follows an autoregressive (AR) model. AR(p)

denotes an AR model of order p (p lags off its own previous values). It is defined

as follows

yt = µ+

p∑
i=1

ϕiyt−i + ut, (11)

where ut is white noise with a mean of 0 and constant variance σ2. ARCH(q)

denotes an ARCH model of order q (q lags off its own previous values). It is

defined as follows

yt = β0 +
n∑

i=1

βixi,t + ut, ut ∼ N (0, ht)

ht = α0 +

q∑
i=1

αiu
2
t−i.

(12)

The first equation is the mean equation while the second equation is the variance

equation. The mean equation could be specified as an AR, ARMA, or MA model.

Here, ut now follows an AR(q) process with mean 0 and non-constant variance

σ2
t , also called ht in the literature. ARCH requires ai ≥ 0 ∀i ∈ 0, . . . , q, as the

variance has to be non-negative by definition. Engle used ARCH to model the

variance of UK inflation. The model significantly improved the forecast compared

to a least squares model due to the presence of “ARCH effects” (squared residuals

exhibit autocorrelation) in the variance. Hence, ARCH can be effectively used to

9



forecast volatility, and it quickly gained traction.

Four years later, the generalized ARCH (GARCH) model was introduced (Boller-

slev, 1986). It overcomes many of the problems associated with ARCH, such as

determining the lag length q (which might be very large) and limiting possible

violations of non-negativity constraints. GARCH extends ARCH by allowing de-

pendence on its own previous lags in the variance equation. Thus, GARCH is

like an ARMA model for the variance equation. An ARMA model also includes a

moving average (MA) part, being lags of the errors. An MA(q) (q lags of its own

errors) is defined as follows

yt = µ+

q∑
i=1

θiut−i + ut, (13)

where ut is white noise with a mean of 0 and constant variance σ2. ARMA(p, q)

denotes an ARMA model of order (p, q) (p lags of its own previous values and q

lags of the errors). It is defined as follows

yt = µ+

p∑
i=1

ϕiyt−i +

q∑
j=1

θjut−j + ut, (14)

where ut is white noise with a mean of 0 and constant variance σ2. There are

many extensions of ARMA, such as ARIMA and ARFIMA, etc. GARCH(p, q)

denotes a GARCH model of order (p, q) (p lags of its own previous values and q

lags of the errors). It is defined as follows

yt = β0 +
n∑

i=1

βixi,t + ut, ut ∼ N (0, σ2
t )

σ2
t = α0 +

q∑
i=1

αiu
2
t−i +

p∑
j=1

βjσ
2
t−j.

(15)

ut now follows an ARMA(p, q) process with a mean of 0 and non-constant variance

σ2
t . A GARCH(1,1) can be written as an infinite order ARCH model and is

generally sufficient to capture volatility clustering, mean-reversion, and fat tails

in the data, although it is symmetric. An example of a GARCH(1,1) model with

mean equation AR(1) is an AR(1)-GARCH(1,1) model given by

yt = µ+ ϕyt−1 + ut, ut ∼ N (0, σ2
t )

σ2
t = α0 + α1u

2
t−1 + β1σ

2
t−1.

(16)
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GARCH is a more parsimonious model than ARCH, thus less risk of overfit-

ting. It is usually estimated by maximum likelihood estimation (MLE). There are

many extensions of GARCH, such as GJR-GARCH/TGARCH, AGARCH, and

EGARCH (asymmetric and able to capture leverage effects). Alternatively, the

errors may be assumed to follow a student-t or skew-t distribution, as opposed to

a normal distribution.

2.2.6 SMA and EWMA

Possibly the simplest method for forecasting volatility (other than a naive forecast

of the current value or simply predicting the mean) is a rolling or moving average

(to be distinguished from moving average models mentioned earlier). Two such

models are the simple moving average (SMA) and the exponential moving average

(EWMA or EMA), as seen in RiskMetrics (1996). The SMA takes a simple rolling

mean (giving equal weights to each observation) over a pre-determined number of

periods. SMA for realized volatility (SMA-RV) is defined as follows

σt =

√√√√ 1

M

M∑
j=1

r2t−j. (17)

With daily log returns, it is common to set M = 20 (using the RV over the

previous month), and further annualize by multiplying with
√
252. σt can be in-

terpreted as an estimate made at t−1 of the volatility over the next day, week, or

month (a relatively short forecast). It is re-estimated as new observations come

in. Each observation has a weight of 1/M , and for small values ofM , the estimate

is very sensitive to recent observations. For M = 1, the current value is predicted

(naive). For M = T , the whole sample is used, and the estimate becomes the

unconditional volatility.

EWMA gives more weight to newer observations and lesser weight to older ones

(using all the observations with exponentially decaying weights, also called smooth-

ing). EWMA for realized volatility (EWMA-RV) is supported by RiskMetrics. It

is written recursively as

σt =
√
λσ2

t−1 + (1− λ)r2t−1, (18)

assuming an infinite amount of data (which holds approximately for large T ).

0 < λ < 1 is the smoothing parameter and is typically set around 0.06. The

simple EWMA model does not capture mean-reversion or leverage effects but is

generally a fairly accurate forecast for short horizons.
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2.2.7 HAR

Subsequently, heterogeneous AR (HAR) models were introduced (Corsi, 2009),

specifically termed the HAR model of RV (HAR-RV). This model was designed

to additively capture the volatility cascade across various time periods. In simula-

tions, it successfully replicated many empirical properties found in financial data.

The parsimonious model is typically used with high-frequency data (HFD). For

the context of our paper, we define HFD as data that occurs more frequently than

once per trading day. One of its notable features is the capability to capture long

memory (persistence) even though the model itself does not possess true long-

memory properties. As features, it incorporates RV over different time horizons

and is defined as follows

RV
(d)
t+1d = µ+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ut+1d. (19)

This specifically represents a HAR(3)-RV model due to its three RV terms (here-

after referred to simply as HAR). The HAR model can be easily estimated using

OLS and is generally regarded as one of the superior models overall. Several ex-

tensions of the HAR model, which capture leverage effects, jumps, etc., have been

proposed.

2.2.8 Machine Learning

Recently, more complex machine learning (ML) techniques have gained momen-

tum, although the number of studies remains limited. Varian (2014) discussed

the need for ML models to process the ever-increasing big data, which requires

enhanced data manipulation tools, such as variable selection due to an increased

number of potential predictors, and the capability to handle flexible/complex re-

lationships often accommodated by big data. Some papers have explored regular-

ization and variable selection using Lasso. Audrino and Knaus (2016) challenged

the HAR model by testing multiple lags (1-100) and applying a Lasso penalty to

identify the most relevant lags through shrinkage. They found that their Lasso-

HAR performed equivalently to the HAR model OOS. Caporin and Poli (2017)

researched the role of textual data and its impact on volatility forecasting, with

a particular focus on news stories (sentiment). Within the penalized regression

framework, they found that including such news-related variables improves fore-

casts. Audrino et al. (2020) conducted a study with a similar focus on Google

searches of financial keywords, yielding similar results. Luong and Dokuchaev

(2018) utilized the Random Forest (RF) algorithm, documenting improvements

with the proposed model on HFD, especially during highly volatile periods.
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Mittnik et al. (2015) employed GB (componentwise) for monthly forecasts, includ-

ing other financial and macroeconomic variables, outperforming commonly used

benchmarks including GARCH. They argued that risk drivers affect volatility in a

nonlinear fashion and that external economic variables significantly contribute to

individual stock volatility. Teller et al. (2022) explored the XGBoost algorithm,

demonstrating that it outperforms both HAR and LSTM (Long Short-Term Mem-

ory) models for one-step-ahead predictions. For longer horizons, XGBoost with

linear base learners outperformed nonlinear specifications, indicating the presence

of nonlinearities are more prevalent short-term. Z. Liu (2022) used more than 100

features and built an ensemble model of five ML models (including GB), provid-

ing robust and superior OOS R2 results. Giordani (2021) introduced a new ML

model, “boosting of smooth additive regression trees” (SMARTboost), which out-

performed XGBoost and OLS across all horizons, particularly at longer horizons

as the effective sample size decreases. These forecasts were conducted on global

equity indices. Other authors exploring GB include Ding et al. (2022) and Wing-

Yi Chio et al. (2022). Several authors have delved into neural networks (NN), a

part of deep learning (DL), such as Bucci (2020), Donaldson and Kamstra (1997),

Fernandes et al. (2014), Hillebrand and Medeiros (2010) and Rahimikia and Poon

(2020). Some of the most recent papers comparing various ML models include

Christensen et al. (2021) and Li and Tang (2022).

We wish to highlight the unique aspects of our study: we consider a full-day

RV measure that incorporates ON information while aiming to improve forecasts

using EA. Furthermore, we have a large panel of stocks that we forecast using

both linear HAR models and GB models.

3 Hypotheses and Methodology

In this section, we define our hypotheses and methodology for answering the

research question.

3.1 Hypotheses

We investigate the impact of EA and OR within the context of RV forecasting,

hypothesizing that the integration of these elements could enhance forecast ac-

curacy. Earnings, known well in advance and typically released in pre-market or

after-hours, could augment forecasts, especially in the days surrounding an EA.

To more effectively capture this effect, we incorporate the squared ON log return

in the RV measure, detailed in Equation (29). We anticipate this new measure

will refine the traditional academic RV definition and yield more practically appli-
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cable forecasts. Moreover, this measure can function as a comprehensive, full-day

measure of RV, enhancing its relevance in options pricing.

To validate our hypotheses, we employ the HAR model and LGBM, applying

them to a panel of individual stocks in the S&P 500. We favor GB methods due

to their adeptness at capturing potential interaction effects and nonlinearities.

We also posit that the integration of large-scale data could significantly improve

performance - potentially exponentially so in a GB setting compared to a panel

regression setting - given its proficiency with big data. This hypothesis is sub-

stantiated by several academic studies, including Bollerslev et al. (2018) and Li

and Tang (2022). Consequently, GB might outperform the HAR model.

3.2 Methodology

The first step involves constructing the RV measure for all stocks. We assume that

the data-generating process (DGP) is defined by the continuous-time stochastic

process as shown in Equation 20, where µ represents the drift term, σ denotes the

diffusion, W is a standard BM, and N is the process of the number of jumps with

jump size Ji,

pt = p0 +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s) +

N(t)∑
i=1

Ji. (20)

The daily quadratic variation (QV) is given by Equation (21), where the first term

is the daily integrated variance (the square root of it is the integrated volatility)

and the second term is the jump component (Teller et al., 2022),

QV
(d)
t =

∫ t

t−1

σ2(s)ds+

N(t)∑
i=N(t−1)+1

J2
i . (21)

From this, we derive the realized variance estimator as shown in Equation 22,

which holds for m → ∞ (Barndorff-Nielsen & Shephard, 2002). Here, t denotes

the day defined in one-unit increments while j represents the jth observation of

that day, and each day has a frequency of m.

RVar
(d)
t =

m∑
j=1

r2t,j. (22)

Consequently, the jth intraday log return can be represented as follows

rt,j = pt−1+ j
m
− pt−1+ j−1

m
. (23)
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We can obtain the RV over different periods such as weekly (M = 5), monthly

(M = 20), etc., by applying the simple moving average (SMA) to each daily RV

over the corresponding period, as illustrated in Equation 24, where p denotes the

period

RV
(p)
t =

1

M

(
RV

(d)
t +RV

(d)
t−1d + · · ·+RV

(d)
t−(N−1)d

)
. (24)

For GB, we utilize a 50/30/20 split for the train, validation, and test samples,

whereas, for OLS, an 80/20 division is applied to the train and test samples. This

approach ensures that the models are trained on ample data, including the GFC,

validated on a substantial sample, and tested on a sizable yet challenging sam-

ple that includes the Covid-19 crash. During the training and validation stages,

hyperparameter optimization is performed for each model to prevent overfitting

and identify the most generalizable model. A limitation, however, is that our

training data includes a highly volatile period (GFC), while the validation set

does not, which makes forecasting on a test set containing a highly volatile period

(Covid-19) more challenging. Nonetheless, we must work with the data available

to us, and such information would not be known ex-ante in a real-time forecast-

ing scenario. Initially, we test all models using the same features; that is, when

employing the HAR model, we include only the same features in the GB model.

Subsequently, both models are augmented with the same additional features. Fi-

nally, we retain the benchmark model as is and augment only the GB model for

comparison. That is, we will carry out additional feature selection from other

sources and feature engineering with the data already collected.

We begin by defining and training all models, exploring Shapley additive ex-

planations (SHAP values) for LGBM on the full sample, whereas for pooled OLS,

we present the individual coefficients, t-statistics, and significance levels. SHAP

values are considered the best method for measuring feature importance in tree-

based boosting models (Lundberg et al., 2018). The hyperparameters we tune

using the validation set include the number of leaves (NOL), learning rate (LR),

feature fraction (FF), minimum gain to split (MGTS), extra trees (ET), L1 regu-

larization (L1), and L2 regularization (L2). We employ L1 (Mean Absolute Error

or MAE) as the loss function to enhance robustness to outliers and mitigate over-

fitting (compared to, for example, L2 loss or Mean Squared Error (MSE)) and is

defined as

MAE =
1

n

n∑
i=1

|yi − ŷi| . (25)

In fact, we conducted forecasts with L2 loss which yielded poorer results, and

Huber loss, which returned similar results to L1 but was more computationally
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demanding. These results were consistent for both RMSPE and MAPE.

The last 20% of our data is our “true” (pseudo) OOS test set, containing a “bad”

state (Covid-crash). This ensures the models are tested in both a calmer period

(pre-Covid and post-Covid) and a turmoil period (intra-Covid). To determine

which models perform the best, we compare two measures of model fit, root mean

square percentage error (RMSPE)

RMSPE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi
yi

)2

, (26)

and mean absolute percentage error (MAPE)

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

. (27)

It is important to note that all models are estimated using the logarithm of the

RV variables (the convention in the literature), denoted as log(RVt). Specifically,

we take the logarithm of the three RV variables with horizons h = 1, 5, 20.

4 Data Set and Feature Engineering- and -Selection

4.1 Data Collection

The main data set (individual stock prices) was obtained from FirstRate Data

and is known as the S&P 500 Historical Intraday Prices Bundle (FirstRate Data,

2023). It includes open, high, low, close, and volume (OHLCV) data, with volume

measured in terms of the number of shares traded, spanning from January 3, 2005,

to October 21, 2022. The data is available in 1-minute, 5-minute, 15-minute, 30-

minute, and 1-hour intervals. Our data set only includes bars when there is

trading volume, so any gaps in the bars can be attributed to periods with zero

volumes traded. All data has been adjusted for dividends and splits, although

complete information on dividends (date and dividend amount) and splits (date

and split ratio) is included. For future reference, we have defined the time periods

as illustrated in Table (1).
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Time-period definition Acronym Start time - End time Hours

Pre-market PM 04:00-08:00 4.0

Normal pre-market NPM 08:00-09:30 1.5

Regular hours RH 09:30-16:00 6.5

After-hours AH 16:00-20:00 4.0

Full trading day FTD 04:00-20:00 16.0

No trading NT 20:00-04:00 8.0

Overnight ON 16:00-09:30 17.5

Table 1: Our definition of the different time periods.

Furthermore, we define PM and AH as extended hours, which are also included in

the dataset. PM and NPM can alternatively be referred to as PM alone (04:00-

09:30). The OR is typically defined as the close-to-open return, while the RH

return corresponds to the open-to-close return (and the daily return corresponds

to the close-to-close return). The data set encompasses the component stocks of

the S&P 500 as of September 21, 2022, as well as those previously included in the

S&P 500 that were in existence during the sample time frame of the data.

We acquired daily OHLC values for the VIX index, VVIX index, MOVE index,

S&P 500 index, the US Dollar index, and Crude Oil for the same period from

Yahoo Finance (2023). Much like the VIX index, the MOVE index represents

a measure of volatility in the US bond market, specifically for Treasuries. The

VVIX index tracks the volatility of the VIX index itself, effectively measuring the

vol of vol on the S&P 500. The US Dollar index (DXY) gauges the value of the US

Dollar relative to a select group of foreign currencies, which include (in descending

order of weight) the EUR, JPY, GBP, CAD, SEK, and CHF. Additionally, we

obtained the earnings dates for all US stocks filed with the SEC dating back to

1994 from EarningsDates (2023).

4.2 Data Cleaning

We were initially provided with a total of 668 unique stocks. To ensure robustness,

we excluded any stocks that had fewer than 3750 days of intraday HFD, which

is equivalent to approximately 15 years of data, assuming 250 trading days per

year. This left us with a selection of 499 stocks. Further, when we limited our

data to only those stocks for which we have earnings announcement (EA) data,

our sample size was reduced to 478 stocks.

In the absence of microstructure noise, it would be optimal to sample as fre-
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quently as possible. However, in the presence of microstructure noise, increasing

the frequency leads to a decrease in bias but an increase in variance. Conse-

quently, it becomes necessary to optimize the bias-variance trade-off (Aı̈t-Sahalia

et al., 2005; Andersen et al., 2011). Several studies suggest that using a sub-

sampling and averaging procedure is optimal. Yet, our approach deviated from

this recommendation; we utilized the 5-minute data acquired to build all features.

This method aligns with most of the relevant literature (Andersen et al., 2011;

Ghysels & Sinko, 2011; L. Y. Liu et al., 2015). Shorter data sampling frequencies,

such as 1-minute, may be too noisy due to microstructure noise, while longer data

sampling frequencies, like 1 hour, may be too imprecise for optimal forecasting

performance. During RH (from 09:30 to 16:00), there will be 12 × 6.5 = 78 5-

minute observations used to construct the daily RV. The daily RH RV can be

computed by squaring Equation (22)

RV
(RH,d)
t =

√√√√m=78∑
j=1

r2t,j. (28)

Our methodology diverges from the traditional approach. The academic definition

of RV
(d)
t (RV

(RH,d)
t ) focuses exclusively on the volatility that occurs during RH,

thereby neglecting the full-day volatility. By slightly modifying this measure to

include ON fluctuations, we can construct a more comprehensive measure of daily

RV. This new measure is defined as follows

RV
(RHON,d)
t =

√√√√m=78∑
j=1

r2t,j + on2
t . (29)

In this context, on2
t = log

(
1 + (P

(o)
t /P

(c)
t−1 − 1)

)2

represents the square of the ON

log return (specifically, the square of the close-to-open log return), where P
(o)
t is

the opening price on day t and P
(c)
t−1 is the closing price on day t−1. We introduce

a new term, RHON (RH plus ON), to denote this modified period utilized to build

the RV measure. This measure has been explored by authors such as Bollerslev

et al. (2018) and Hansen and Lunde (2005). Alternatively, one could consider the

FTD dynamics, from PM, through RH, to AH (i.e., 04:00-20:00), an approach

which, to our knowledge, has not yet been researched. This does omit potential

trading in dark pools outside these hours, but such trading is likely minimal

and often executed for non-informational reasons (noise). For FTD, there would

theoretically be 12×16 = 192 such observations. However, due to limited trading

activity in the extended hours for many stocks, the actual number of 5-minute

observations utilized to build the daily RV measure would likely be fewer, but still
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higher than those for RH and RHON. We define this new measure as follows

RV
(FTD,d)
t =

√√√√m=192∑
j=1

r2t,j. (30)

For all measures, we calculate the weekly (w) and monthly (m) RV by following

the usual SMA approach as in Equation (24).

4.3 Feature Engineering

We began by constructing all the volatility measures as defined above (RH, RHON,

and FTD) for h = 1, 5, 20, resulting in a total of nine distinct variables. Addi-

tionally, we computed the same types of features using the absolute value in lieu

of squared log returns, as described in Forsberg and Ghysels (2007). According to

several statistical tests, they found that absolute returns correlate more strongly

with volatility than returns do, a trend observed across various assets and time

periods. The primary advantage of absolute returns, as they argue, is their resis-

tance to outliers. Instead of using the term “RV” for these measures, we denote

them as “RAV” (realized absolute volatility). Subsequently, we turned our atten-

tion to the NPM volatility and calculated both RV and RAV based on data from

NPM (08:00-09:30) for h = 1, 5, 20. Empirical studies suggest that PM volatil-

ity possesses predictive power for next-day volatility (C.-H. Chen et al., 2012;

Zhu et al., 2017). As we are employing the L-HAR model as our benchmark, we

computed truncated log returns as follows

r
(p)−
t = min

(
0, r

(p)
t

)
, (31)

where r
(p)
t is the mean log return over the period, calculated as r

(p)
t = 1

h

∑h
i=1 rt−i+1,

for h = 1, 5, 20. The L-HAR model is further described in Section (6.1).

We calculate 1-day ON returns (non-log) as an additional feature, using close-to-

open prices. Moreover, we truncate these returns using both the min and the max

operator, to obtain three distinct ON return features (the “symmetric”/regular

return, the “negative part”, and the “positive part”). Similarly, during RH, we

incorporate a feature containing the RH symmetric return and another for the

RH positive part of the return.

Following the methodology outlined in Mei et al. (2017) we construct measures
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for realized kurtosis (RK)

RK
(d)
t =

m
∑m

j=1 r
4
t,j

(RV 2
t )

2
, (32)

and realized skewness (RS)

RS
(d)
t =

√
m

∑m
j=1 r

3
t,j

(RVt
2)3/2

. (33)

The authors ascertain that both RK and RS significantly and negatively impact

future volatility. Neither is beneficial for short-term forecasting; however, both

enhance forecasting at mid- and long-term horizons, with RS proving more useful.

Consequently, we have incorporated features only for h = 5 and h = 20, employ-

ing the SMA approach as previously described.

Furthermore, we attempt to capture the changes in RV. To accomplish this, we

calculate the realized quarticity (RQ) as

RQ
(d)
t =

m

3

m∑
j=1

r4t,j, (34)

which serves as a measure of 1-day vol of vol (Corsi et al., 2008). For h = 5

and h = 20, we adopt a different approach, calculating the rolling h-day stan-

dard deviation of the RV. Consequently, we obtain three vol of vol measures, one

for each horizon. To gauge the daily (Dollar) volume, we construct a feature by

multiplying the daily volume during RH with the volume weighted average price

(VWAP) during the same period.

Additionally, we construct three features to capture the short-term mean, medium-

term mean, and long-term mean, utilizing an exponentially weighted moving av-

erage (EWMA) of the 1-day RV during RH. We apply different decay rates for

each feature, corresponding to an effective sample size (center-of-mass or CoM) of

50, 250, and 1,250 trading days, respectively. The computation is done as follows

ExpRV
CoM(λ)
t =

h∑
i=1

e−iλ

e−λ + e−2λ + . . .+ e−hλ
RVt+1−i, (35)

where CoM(λ) = e−λ/
(
1− e−λ

)
and λ is the decay rate, defined as λ = log(1 +

1/CoM). For an extensive explanation and application, see Bollerslev et al.

(2018).
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Lastly, given our focus on EA and its impact on RV in a separate discussion

of this thesis, it was necessary to introduce some indicator variables (dummies) to

capture this effect. To achieve this, we incorporated a dummy variable for the day

of EA, one and two days prior to EA, as well as one and two days following EA.

As h = 5 and h = 20 will not significantly utilize any of these dummy variables,

we created additional features to allow the model to anticipate, 5 and 20 days

prior to EA, that an EA will fall within the prediction horizon.

4.4 Feature Selection

As previously mentioned regarding data collection, we obtained supplementary

data from Yahoo Finance. With the VIX and VVIX, we aim to gauge the volatil-

ity of the S&P 500 and the volatility of the VIX itself, respectively. These can

be viewed as “global” risk measures. According to the “Risk Everywhere” paper

(Bollerslev et al., 2018), the authors demonstrate that such global risk factors en-

compass information not entirely captured by the asset-specific features. Through

the MOVE index, we intend to represent the volatility within the crucial US Trea-

sury market. We incorporate the daily closing values of VIX, VVIX, and MOVE

as features, as well as the 1-day, 5-day, and 20-day percentage changes in these in-

dices. Reinforcing the Risk Everywhere argument, we calculate the 1-day, 5-day,

and 20-day volatility of the Crude Oil price, the Dollar index (DXY), and the

S&P 500 index utilizing daily data. To our knowledge, no authors have included

MOVE, VVIX, or DXY in RV forecasting, although the authors of Risk Every-

where included a feature similar to MOVE (US 10-year) and DXY (USD/EUR).

With daily data, calculating intraday RV is not feasible, necessitating a different

approach. Range-based estimators are common, relying on measures such as the

high and low prices of a given day (Alizadeh et al., 2002). We compute this as

follows

RV LDR
t = log(Hight)− log(Lowt), (36)

In this equation, the log difference between the high and low price of the day (log

daily range or LDR) serves as our measure of volatility.

Finally, we include the closing level of the S&P 500 index, the 1-day return of

the index, and the drawdown of the index as additional features. The drawdown

of the index was calculated using the following equation

DDt = min

(
0,
Vt −max (V1:t)

max (V1:t)

)
, (37)
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where V denotes the index level.

Our finalized panel data set comprises 2,086,068 daily observations (rows) span-

ning 76 features (columns), amounting to a total of 158,541,168 data points. The

original dataset was substantially larger - roughly 78 times the current row count,

or 162,713,304 rows, totaling 12,691,637,712 data points - as we transformed 5-

minute data into daily measures. To manage each stock in the panel, we devised

two features: “idcat” (categorical ID using the ticker) and “idval” (numeric ID).

Depending on the model employed, one of these was utilized in the panel for

forecasting.

5 Data Analysis

5.1 Volatility Measure

Figure (1) illustrates how our proposed new measure of volatility RV
(RHON,d)
t

behaves differently compared to the traditional academic definition RV
(RH,d)
t , and

the FTD definition RV
(FTD,d)
t . A larger portion of the distribution is situated at

higher values of 1-day RV as compared to RH, though it remains lower than

FTD. This is not surprising, as we incorporate an additional squared log return

into the traditional measure, which, by definition, will exceed RH (unless the ON

log return is 0). We posit that this measure is more capable of capturing daily

actual uncertainty, as standard RV measures tend to underestimate volatility by

excluding close-to-open information. Furthermore, we hypothesize that a model

employing the new measure will yield greater benefits from the inclusion of EA

dummy variables, as earnings are typically released in PM or AH. The RHON

measure, in this case, can effectively capture such ON return volatility.
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Figure 1: Kernel Distribution and Cumulative Density Function of 1-day RV for
three measures of volatility. x-axis truncated at 100% RV. Average values of the
S&P 500 stocks.

Although we do not undertake a detailed examination of the FTD measure in this

study, we perceive the potential for future analysis. One primary drawback is that

the measure combines two disparate processes: RH trading and extended-hour

trading, which could potentially be quite different. Regardless of this theoretical

shortcoming, empirical evidence may determine its potential for RV forecasting,

particularly in attempting to capture the full daily distribution of RV.

5.2 Earnings Announcements

As shown in Figures (2) and (3), RV around EA experiences a systematic increase

a few days prior to the announcement, peaks on the day of the announcement,

and gradually decreases afterward. The rate of decrease post-announcement is

slower than the increase preceding it, remaining elevated for over 20 days post-

announcement. All volatility measures show a notable increase in mean (median)

volatility of approximately 13-16pp (6-9pp), or about 40-50% (20-40%).
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Figure 2: EA and its impact on mean 1-day annualized RV of the S&P 500 stocks.
Illustrated for three different measures of volatility, from 20 days prior to the EA
until 20 days after the EA.

Figure 3: EA and its impact on median 1-day annualized RV of the S&P 500
stocks. Illustrated for three different measures of volatility, from 20 days prior to
the EA until 20 days after the EA.

We found it intriguing that the RH measure displayed substantial movement, as

illustrated in Figures (2) and (3). While some researchers forecasting RV omit

the first and last minutes of each trading day (refer to Stoll and Whaley (1990)),

we opted not to adopt this methodology. This led us to question if this could be

attributed to highly volatile trading during the first and last minutes of trading

days surrounding EA. To investigate this, we formulated another RH measure,

“RHcut”, which excludes the first and last 10 minutes of trading. Intriguingly,

the RHcut measure still exhibits similar levels of movement. As a result, we infer

that this could be a consequence of a shift in prices that prompts a volatility surge
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from close to open (ON), with high volatility persisting throughout the trading

day following the release. Refer to Figure (4).

Figure 4: EA and its impact on mean 1-day annualized RV of the S&P 500 stocks.
Illustrated for two different measures of RV during RH (“RHcut” excluding the
first and last 10 minutes of trading and RH), from 20 days prior to the EA until
20 days after the EA.

Observing Figures (5) and (6), a similar pattern is exhibited for both high-

volatility (HV) and low-volatility (LV) stocks. Nevertheless, HV stocks appear

to demonstrate a more significant percentage increase on EA days compared to

LV stocks, suggesting the volatility of RV is substantially higher for HV stocks.

Furthermore, LV stocks commence their rise earlier and maintain heightened lev-

els for a longer duration. Our conjecture is that HV stocks often share some of

the following characteristics: naturally uncertain, complex to analyze, and lower

liquidity. This could lead to more pronounced upside or downside surprises on

EA days, and higher trading volume due to increased buying or selling pressure.

Interestingly, the mean 1-day annualized RV appears greater for the RHON mea-

sure than the FTD measure for HV stocks. We posit that this could be attributed

to frequent earnings surprises in HV stocks and the construction of the RHON

measure, which includes a 17.5-hour ON return window, in contrast to multiple

smaller return windows in the FTD measure.
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Figure 5: EA and its impact on 95th quantile 1-day annualized RV of the S&P
500 stocks. Illustrated for three different measures of volatility, from 20 days prior
to the EA until 20 days after the EA.

Figure 6: EA and its impact on 5th quantile 1-day annualized RV of the S&P 500
stocks. Illustrated for three different measures of volatility, from 20 days prior to
the EA until 20 days after the EA.

One might hypothesize that the mean or median 1-day RV could be higher on days

of EA, yet, due to certain factors, it might be lower than the mean or median

over longer time horizons (that is, exhibiting low volatility in the days preceding

the EA). However, upon examination of the mean and median RV as displayed in

Figure (7), it becomes apparent that volatility is elevated on EA days across all

time horizons.
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Figure 7: Mean and median RV of the S&P 500 stocks. Illustrated at the different
time horizons using our proposed measure of volatility, RHON.

Interestingly, Figures (8) and (9) demonstrate significant disparities among indi-

vidual stocks. Our interpretation is that some stocks benefit more when control-

ling for EA, especially at the shorter horizons. Yet, even at the 20-day horizon,

the mean value for most stocks appears to be influenced. Our analysis reveals

that the mean (median) RV in RHON for days with EA is higher for 83% (85%)

of stocks compared to non-EA days at the 1-day horizon, 85% (86%) at the 5-day

horizon, and 91% (92%) at the 20-day horizon.

Figure 8: Differences in the mean RV on days of EA versus non-EA days among
the S&P 500 stocks are illustrated at the different time horizons utilizing our
proposed measure of volatility, RHON. The red dotted line represents the mean
of these differences, while the black dotted line signifies zero mean difference,
suggesting that volatility remains unaffected by EA.
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Figure 9: Differences in the median RV on days of EA versus non-EA days among
the S&P 500 stocks are illustrated at the different time horizons utilizing our
proposed measure of volatility, RHON. The red dotted line represents the mean
of these differences, while the black dotted line signifies zero mean difference,
suggesting that volatility remains unaffected by EA.

Table (2), (3), and (4) detail regression statistics on EA at the 1-day, 5-day, and

20-day horizons, respectively. As anticipated, the variables “earn” (day of EA),

“1bef” and “2bef” (one and two days before EA) all display positive coefficients

and are statistically significant. The variables “1aft” and “2aft” (one and two

days after EA) have negative coefficients and are also significant. This aligns with

the previous illustrations of the impact of EA on RV. Unsurprisingly, “earn” has

the highest t-statistic and the highest coefficient. The coefficient of 0.1996 implies

that, on days of EA, RV increases by approximately 20% compared to non-EA

days, when holding all other variables constant. At the 5- and 20-day horizon, we

still see positive coefficients that are highly significant, suggesting that including

these variables is likely to adjust the RV prediction upwards.

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

earn 0.1996 15.5541 0.0000 0.0128 0.1744 0.2247

1bef 0.0627 8.1040 0.0000 0.0077 0.0475 0.0778

2bef 0.0212 3.0997 0.0019 0.0068 0.0078 0.0346

1aft -0.0169 -2.1398 0.0324 0.0079 -0.0323 -0.0014

2aft -0.0882 -10.8117 0.0000 0.0082 -0.1042 -0.0722

Table 2: Pooled OLS regression results on EA features at the 1-day horizon. Using
the full sample and our RHON measure with Driscoll-Kraay (HAC or Newey-West
type correction for panel data) covariance estimator. Shown for 95% confidence
interval. Estimated using the EL-HAR model described in Equation (39).
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

earn5 0.1324 12.2841 0.0000 0.0108 0.1113 0.1536

Table 3: Pooled OLS regression results on EA features at the 5-day horizon. Using
the full sample and our RHON measure with Driscoll-Kraay (HAC or Newey-West
type correction for panel data) covariance estimator. Shown for 95% confidence
interval. Estimated using the EL-HAR model described in Equation (39).

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

earn20 0.0935 8.8014 0.0000 0.0106 0.0727 0.1143

Table 4: Pooled OLS regression results on EA features at the 20-day horizon. Us-
ing the full sample and our RHON measure with Driscoll-Kraay (HAC or Newey-
West type correction for panel data) covariance estimator. Shown for 95% confi-
dence interval. Estimated using the EL-HAR model described in Equation (39).

6 Models

6.1 OLS

The traditional OLS-based HAR model by Corsi, which is both simple and ac-

curate, effectively captures the long memory in volatility data - refer to Equa-

tion (19). The extension that includes leverage effects by Corsi and Renò (2012)

(known as the leverage HAR or L-HAR model), is widely acknowledged as one of

the best-performing models. We use it as our benchmark model, which is defined

as follows

RV
(L-HAR,h)
t+h = µ+

∑
h=1,5,20

β(h)RV
(h)
t +

∑
h=1,5,20

γ(h)r
(h)−
t + ut+h. (38)

Next, we augment the L-HAR model with EA to create the “EL-HAR” model

RV
(EL-HAR,h)
t+h = RV

(L-HAR,h)
t+h + ψ(h)EA

(h)
t . (39)

For h = 1 we include a total of five dummies: one for the day of the EA, one for

each of the two preceding days to the EA, and one for each of the two following

days after the EA. However, for h = 5 (h = 20) we only include one dummy

each, containing ones for the four (19) days leading up to the EA as well as the

day of EA. Additionally, we refer to the model that follows the structure of the

EL-HAR model but incorporates RAV features instead of the typical RV features

as “EL-HAR-RAV”.
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We further extend the EL-HAR model to include the short, medium, and long-

term exponential mean RV, which we term “EL-HAR-ExpSML” (ExpSML stands

for exponential short, medium, and long-term mean). The model is defined as

follows

RV
(EL-HAR-ExpSML,h)
t+h = RV

(EL-HAR,h)
t+h +

∑
h=50,250,1250

λ(h)ExpMean
(h)
t . (40)

Next, we experiment with the EL-HAR-ExpSML model extended with closing

values and 5-day percentage changes in VIX, VVIX, and MOVE. This extended

model is denoted as “EL-HAR-ExpSML-RE” (RE stands for risk everywhere). It

is defined as follows

RV
(EL-HAR-ExpSML-RE,h)
t+h = RV

(EL-HAR-ExpSML,h)
t+h + β(1)VIXt

+ β(2)VVIXt + β(3)MOVEt

+ β(4)VIX5d chg.
t + β(5)VVIX5d chg.

t + β(6)MOVE5d chg.
t .

(41)

Finally, “Model X” is used to refer to the model that incorporates all of the

features discussed in Section (4).

6.2 Gradient Boosting

6.2.1 Boosting and Gradient Boosting in General

Two methods for aggregating predictions from different models are bagging (boot-

strap aggregating) (Breiman, 1996) and boosting (Freund & Schapire, 1997).

While boosting combines predictions from multiple models, bagging combines

predictions from several instances of the same model. Bagging decreases varia-

tion and aids in avoiding overfitting by averaging multiple predictions. It does

not, however, resolve issues related to bias. In contrast, boosting prioritizes the

models that perform better on the training data in order to reduce bias by itera-

tively modifying the weights (weighted average) of several models.

The bias-variance trade-off can be decomposed as follows (Hastie et al., 2009).

One can estimate f̂(X) of f(X), with Y as the target variable and X as the

features. The squared prediction error can be expressed as

Error(x) = E
[
(Y − f̂(x))2

]
= (E[f̂(x)]− f(x))2 + E

[
(f̂(x)− E[f̂(x)])2

]
+ σ2

e

= Bias2+Variance + Irreducible Error.

(42)
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This expression assumes there is a relationship Y = f(X)+ϵ, where ϵ ∼ N (0, σϵ).

The model cannot reduce the irreducible error. Ideally, given the true model and

infinite data, the bias and variance could be reduced to zero. However, in practice,

the focus lies on optimizing this bias-variance trade-off.

The foundational principle behind GB is to repeatedly train a series of mod-

els, with each one aiming to address the shortcomings of the previous (Friedman,

2001). At each iteration, the gradient (i.e., the slope of the error function) of the

loss function L(y, f(x)) with respect to the previous predictions of the model is

calculated. The new model is then fitted with this gradient and added to the

ensemble of models. Gradient-boosted decision trees (GBDT) provide a practical

approach that can be employed for both classification (GBCT) and regression

(GBRT) problems. In this thesis, we will be using GBRT. Some of the loss func-

tions for regression include squared error (L2), absolute error (L1), and Huber.

Both L1 and Huber are more robust to outliers.

GB proves especially beneficial when dealing with high-dimensional data, non-

linearities, and interaction effects. The algorithm operates by iteratively adding

weak learners to the model. Each learner is trained to anticipate the residual

errors of the preceding model. This process gradually reduces the errors of the

model over multiple rounds, thereby enhancing its overall performance.

Figure 10: GB architecture (Deng et al., 2021).

One of the primary benefits of GB is its adaptability. GB does not perform feature

selection directly, but less relevant features tend to be naturally de-emphasized

over iterations in the weak learners. The frequency with which a feature is used

in the ensemble and the subsequent reduction in loss typically indicates its rele-

vance. Given the complexity of the model and the nonlinear relations between the
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features and the target variable, GB might be more challenging to comprehend

than HAR models. However, techniques such as feature importance analysis and

partial dependence plots can help in understanding and interpreting the behavior

of the model (Greenwell et al., 2018). GB can approximate nonlinear relationships

between features and the target variable, as any arbitrary function can be used as

a model in the ensemble. Hence, GB can handle complex data comprising non-

linear patterns. GB can also model feature interactions, where the impact of one

feature on the target variable depends on the value of another feature. This is ac-

complished by integrating feature-feature interactions in the weak learner models.

GB is capable of processing inputs with both continuous and discrete variables.

Weak learner models can use regression trees to divide the feature space for con-

tinuous variables, while decision trees or other techniques can be employed for

splits depending on the categories of discrete variables. Nevertheless, there are

some potential drawbacks worth noting. The algorithm can overfit the training

data due to several reasons such as using too many iterations (number of trees),

not employing a validation set, a complex model (high number of features), high

tree depth, or if the learning rate is set too high. Also, it can be time-consuming

and computationally expensive, particularly for large datasets. For additional

information, see Bentéjac et al. (2021) and Hastie et al. (2009).

6.2.2 Light Gradient Boosting Machine (LightGBM)

LGBM is a GB algorithm developed by Microsoft in 2016 (Ke et al., 2017). It

shares many benefits with Xtreme Gradient Boosting (XGBoost), which was de-

veloped in 2014 (T. Chen & Guestrin, 2016), but it offers improved speed with

little to no compromise on accuracy (Bentéjac et al., 2021). LGBM employs a

leaf-wise (or best-first) approach to growing its trees. See Figure (11).

Figure 11: LGBM tree growth representation (LightGBM, 2023a).

In contrast, XGBoost uses a level-wise (or depth-wise) approach for tree growth,

as illustrated in Figure (12).
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Figure 12: XGBoost tree growth representation (LightGBM, 2023b).

7 In-Sample Results

This section presents the feature importance and Shapley Additive Explanations

(SHAP values) on the full sample for LGBM, along with the individual coeffi-

cients, t-stats, and significance levels for pooled OLS. SHAP values are widely

acknowledged as the optimal method for measuring feature importance in tree-

based boosting models (Lundberg et al., 2018). In the following SHAP plots,

features are ordered according to their importance, from highest (top) to lowest

(bottom). Due to space constraints, only the top 20 features are presented. This

section presents only the values for h = 20, whereas the values for h = 1 and

h = 5 are included in the appendix. All comments in this section are based on

the SHAP values. Pooled OLS results are ranked from lowest to highest p-value.

Diligent readers may interpret the pooled OLS results independently.

The feature ranking of the L-HAR model in Figure (13) appears realistic, with

the RV lags ranking as the top features. As anticipated, higher values of the RV

lags increase the prediction, while lower values decrease it. In line with empirical

evidence, lower values of leverage features increase the prediction. Higher values

of leverage features seem to slightly reduce the forecasted RV. Upon introducing

EA as seen in Figure (14), the impact of leverage features on the model output

diminishes, and the importance of the EA feature surpasses them. The EL-HAR-

RAV model, as illustrated in Figure (15), displays results very similar to those

of the EL-HAR, except that the RAV feature at h = 5 now possesses the great-

est feature importance compared to h = 20 for the RV feature in the EL-HAR

model. Notable differences are observed in the EL-HAR-ExpSML model upon

adding expanding means, see Figure (16). The short-term expanding mean (50

days) emerges as the most important feature. The medium-term expanding mean

also holds substantial importance, ranking above the EA feature. In contrast,

the long-term expanding mean appears to hold lesser importance. In the EL-

HAR-ExpSML-RE model, there are no significant differences, although some of
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the “risk everywhere” features climb above the leverage features, among others.

See Figure (17) for an illustration. Model X reveals an interesting observation,

as seen in Figure (18). Notably, the EA feature now ranks as the second most

important feature. Aside from this, the feature ranking remains fairly consistent,

with no major surprises.

Figure 13: L-HAR: LGBM SHAP values at h = 20

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.1587 22.4084 0.0000 0.0071 0.1448 0.1726

rvrhon5 0.1640 9.2171 0.0000 0.0178 0.1291 0.1989

rvrhon20 0.4373 21.5808 0.0000 0.0203 0.3976 0.4771

rhrneg1 -1.2421 -11.0078 0.0000 0.1128 -1.4632 -1.0209

rhrneg20 -7.5614 -6.3637 0.0000 1.1882 -9.8903 -5.2326

rhrneg5 -3.4150 -6.2883 0.0000 0.5431 -4.4794 -2.3506

Table 5: L-HAR: Pooled OLS results at h = 20
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Figure 14: EL-HAR: LGBM SHAP values at h = 20

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.1576 22.3045 0.0000 0.0071 0.1437 0.1714

rvrhon5 0.1496 8.3970 0.0000 0.0178 0.1147 0.1845

rvrhon20 0.4516 22.7346 0.0000 0.0199 0.4127 0.4906

rhrneg1 -1.2333 -11.0132 0.0000 0.1120 -1.4527 -1.0138

earn20 0.0816 7.3681 0.0000 0.0111 0.0599 0.1033

rhrneg5 -3.6200 -6.8504 0.0000 0.5284 -4.6557 -2.5843

rhrneg20 -7.4278 -6.3158 0.0000 1.1761 -9.7329 -5.1227

Table 6: EL-HAR: Pooled OLS results at h = 20

Figure 15: EL-HAR-RAV: LGBM SHAP values at h = 20
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

ravrhon1 0.4757 12.0191 0.0000 0.0396 0.3982 0.5533

ravrhon20 2.1023 14.4481 0.0000 0.1455 1.8171 2.3875

rhrneg1 -0.9015 -7.8397 0.0000 0.1150 -1.1269 -0.6761

earn20 0.0837 7.5137 0.0000 0.0111 0.0619 0.1055

rhrneg5 -3.5427 -6.7701 0.0000 0.5233 -4.5684 -2.5171

ravrhon5 0.7143 5.2093 0.0000 0.1371 0.4455 0.9831

rhrneg20 -4.7032 -3.9848 0.0001 1.1803 -7.0166 -2.3899

Table 7: EL-HAR-RAV: Pooled OLS results at h = 20

Figure 16: EL-HAR-ExpSML: LGBM SHAP values at h = 20
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.1561 21.9873 0.0000 0.0071 0.1422 0.1700

rvrhon5 0.1498 8.4170 0.0000 0.0178 0.1149 0.1847

rvrhon20 0.4308 20.9644 0.0000 0.0206 0.3906 0.4711

rhrneg1 -1.1617 -10.6285 0.0000 0.1093 -1.3759 -0.9475

earn20 0.0818 7.4139 0.0000 0.0110 0.0602 0.1034

rhrneg5 -3.4802 -6.4732 0.0000 0.5376 -4.5339 -2.4264

rhrneg20 -7.2997 -6.4032 0.0000 1.1400 -9.5340 -5.0653

rvrh1EWMAs 0.0308 2.3318 0.0197 0.0132 0.0049 0.0568

rvrh1EWMAl 0.0281 2.1690 0.0301 0.0129 0.0027 0.0534

rvrh1EWMAm 0.0178 0.8123 0.4166 0.0220 -0.0252 0.0609

Table 8: EL-HAR-ExpSML: Pooled OLS results at h = 20

Figure 17: EL-HAR-ExpSML-RE: LGBM SHAP values at h = 20
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.1382 24.9220 0.0000 0.0055 0.1273 0.1490

rvrhon5 0.1455 8.9636 0.0000 0.0162 0.1136 0.1773

rvrhon20 0.4067 24.1425 0.0000 0.0168 0.3737 0.4398

rhrneg1 -0.9454 -8.9540 0.0000 0.1056 -1.1523 -0.7385

earn20 0.0846 8.0021 0.0000 0.0106 0.0639 0.1053

rhrneg20 -7.5771 -6.1194 0.0000 1.2382 -10.0040 -5.1503

rhrneg5 -2.4787 -5.1599 0.0000 0.4804 -3.4202 -1.5372

rvrh1EWMAl 0.0600 5.0437 0.0000 0.0119 0.0367 0.0834

rvrh1EWMAs 0.0434 3.3721 0.0007 0.0129 0.0182 0.0686

movec 0.0015 3.1325 0.0017 0.0005 0.0005 0.0024

vixchg5 0.1907 3.0838 0.0020 0.0618 0.0695 0.3119

movechg5 -0.1157 -1.6376 0.1015 0.0707 -0.2543 0.0228

vvixc -0.0011 -1.5035 0.1327 0.0007 -0.0025 0.0003

rvrh1EWMAm -0.0191 -0.8988 0.3687 0.0212 -0.0606 0.0225

vvixchg5 -0.0332 -0.4263 0.6699 0.0779 -0.1860 0.1195

vixc -0.0063 -0.0444 0.9646 0.1426 -0.2859 0.2732

Table 9: EL-HAR-ExpSML-RE: Pooled OLS results at h = 20
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Figure 18: Model X: LGBM SHAP values at h = 20
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.1297 8.8358 0.0000 0.0147 0.1009 0.1585

rk5 -0.0119 -8.9875 0.0000 0.0013 -0.0144 -0.0093

rvrhon20 0.3554 8.1800 0.0000 0.0435 0.2703 0.4406

earn20 0.0821 7.5243 0.0000 0.0109 0.0607 0.1035

rvrhon5 0.3000 6.9754 0.0000 0.0430 0.2157 0.3843

rvftd1 0.0748 5.1536 0.0000 0.0145 0.0463 0.1032

rvrv5 -0.0173 -5.1001 0.0000 0.0034 -0.0239 -0.0106

rvrv20 -0.0088 -4.2793 0.0000 0.0021 -0.0129 -0.0048

rk20 -0.0103 -4.2591 0.0000 0.0024 -0.0150 -0.0055

rs5 -0.0153 -3.6601 0.0003 0.0042 -0.0235 -0.0071

vprh -0.0000 -3.3628 0.0008 0.0000 -0.0000 -0.0000

rvrh1 -0.0947 -2.7293 0.0063 0.0347 -0.1627 -0.0267

rs20 0.0236 2.5689 0.0102 0.0092 0.0056 0.0416

rvnpm20 0.0288 2.2471 0.0246 0.0128 0.0037 0.0539

rvrh1EWMAl 0.0220 1.7788 0.0753 0.0124 -0.0022 0.0463

rvnpm5 -0.0191 -1.5647 0.1177 0.0122 -0.0429 0.0048

vvixc -0.0016 -1.5402 0.1235 0.0010 -0.0036 0.0004

rvrh1EWMAm 0.0358 1.5343 0.1250 0.0233 -0.0099 0.0815

rvnpm1 -0.0070 -1.4542 0.1459 0.0048 -0.0163 0.0024

movec 0.0007 1.2688 0.2045 0.0005 -0.0004 0.0018

Table 10: Model X: Pooled OLS results at h = 20

8 Pseudo-Out-of-Sample Results

In this section, we evaluate the performance (accuracy) of each model on the

pseudo-OOS test set. Table (11) compares the performance of OLS and LGBM

using only the L-HAR features, as detailed in (38). LGBM has an OLS/LGBM

ratio of around 1.08-1.10 for RMSPE and 1.06-1.08 for MAPE across all three

horizons, suggesting that the OLS error is approximately 8-10% (6-8%) higher for

RMSPE (MAPE). Including EA, as shown in Table (12), results in lower errors

for both OLS and LGBM compared to the L-HAR model, though the ratios

remain largely the same. Thus, both models appear equally adept at handling

EA features. The EL-HAR-RAV model, presented in Table (13), offers substantial

improvements over the previous two models. We suspect this is due to absolute

returns being less sensitive to jumps, which are quite prevalent in our test sample

for individual stocks during the Covid-19 crisis. The OLS/LGBM is ratio nearing

1, indicating that OLS has seen a significant relative improvement. Further, the
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EL-HAR-ExpSML model presented in Table (14) performs similarly to EL-HAR,

slightly better for OLS across all horizons, but worse for LGBM at the 1- and

5-day horizon, with some improvement at the 20-day horizon. Upon adding the

RE features, as presented in Table (15), minor changes occur for LGBM while

OLS has a fairly large reduction, especially at the medium and long horizon.

Our final model, Model X, presented in Table (16), shows a marked improvement

over the benchmark models. Nonetheless, OLS and LGBM perform on a more

comparable level, with a ratio close to 1 at the 1- and 5-day horizon. LGBM

performs significantly better at the 20-day horizon, with a ratio above 1.05 for both

measures. Comparing the OLS benchmark OLS-BM using L-HAR with Model X

using LGBM, we see ratios of 1.12-1.20, indicating a significant reduction.

L-HAR

OLS-BM LGBM-BM OLS-BM/LGBM-BM

h RMSPE MAPE RMSPE MAPE RMSPE MAPE

1 33.1070 25.3887 30.7413 24.0130 1.0770 1.0573

5 27.7009 21.1544 25.2968 19.5862 1.0950 1.0801

20 28.0788 21.6773 25.7795 20.0281 1.0892 1.0823

Table 11: LHS: mean results using pooled OLS. Middle: mean results using
LGBM. RHS: OLS over LGBM. “BM” means benchmark.

EL-HAR

OLS LGBM OLS/LGBM OLS-BM/LGBM

h RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

1 33.0772 25.3536 30.7204 23.9882 1.0767 1.0569 1.0777 1.0584

5 27.5154 20.9461 25.0722 19.3972 1.0974 1.0799 1.1048 1.0906

20 27.6339 21.1882 25.4200 19.5966 1.0871 1.0812 1.1046 1.1062

Table 12: LHS: mean results using pooled OLS and LGBM. RHS: OLS over
LGBM and benchmark OLS over LGBM. Extended with “earn”, “1bef”, “2bef”,
“1aft”, “2aft” for h = 1, “earn5” for h = 5, and “earn20” for h = 20.
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EL-HAR-RAV

OLS LGBM OLS/LGBM OLS-BM/LGBM

h RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

1 30.7606 24.1381 29.4323 23.1116 1.0451 1.0444 1.1249 1.0985

5 25.1526 19.7218 24.0675 18.6719 1.0451 1.0562 1.1510 1.1330

20 25.9314 20.2748 25.0184 19.1621 1.0365 1.0581 1.1223 1.1313

Table 13: LHS: mean results using pooled OLS and LGBM. RHS: OLS over
LGBM and benchmark OLS over LGBM. Extended with “earn”, “1bef”, “2bef”,
“1aft”, “2aft” for h = 1, “earn5” for h = 5, and “earn20” for h = 20. The “RAV”
means that the RAV features have replaced the RV features for all horizons.

EL-HAR-ExpSML

OLS LGBM OLS/LGBM OLS-BM/LGBM

h RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

1 32.9705 25.2983 30.9682 24.2302 1.0647 1.0441 1.0691 1.0478

5 27.3292 20.8244 25.2705 19.5013 1.0815 1.0678 1.0962 1.0848

20 27.2611 20.9220 24.9711 19.1345 1.0917 1.0934 1.1245 1.1329

Table 14: LHS: mean results using pooled OLS and LGBM. RHS: OLS over LGBM
and benchmark OLS over LGBM. Extended with “earn”, “1bef”, “2bef”, “1aft”,
“2aft” for h = 1, “earn5” for h = 5, and “earn20” for h = 20. The “ExpSML”
means it includes expanding mean at the short, medium, and long-term horizons.

EL-HAR-ExpSML-RE

OLS LGBM OLS/LGBM OLS-BM/LGBM

h RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

1 32.3823 25.0247 30.7742 24.0199 1.0523 1.0418 1.0758 1.0570

5 26.1004 20.0762 25.0420 19.4908 1.0423 1.0300 1.1062 1.0854

20 26.0749 20.2284 25.5606 20.2295 1.0201 0.9999 1.0985 1.0716

Table 15: LHS: mean results using pooled OLS and LGBM. RHS: OLS over
LGBM and benchmark OLS over LGBM. Extended with “earn”, “1bef”, “2bef”,
“1aft”, “2aft” for h = 1, “earn5” for h = 5, and “earn20” for h = 20. The
“ExpSML” means it includes expanding mean at the short, medium, and long-
term horizons, while the “RE” (“risk everywhere”) means it includes closing values
of VIX, VVIX, and MOVE, as well as 5-day percentage changes in VIX, VVIX,
and MOVE.
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Model X

OLS LGBM OLS/LGBM OLS-BM/LGBM

h RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

1 29.1688 22.9527 28.6941 22.6201 1.0165 1.0147 1.1538 1.1224

5 24.2692 18.8849 23.7802 18.4282 1.0206 1.0248 1.1649 1.1479

20 24.7981 19.3069 23.5183 18.1060 1.0544 1.0663 1.1939 1.1972

Table 16: LHS: mean results using pooled OLS and LGBM. RHS: OLS over
LGBM and benchmark OLS over LGBM. Extended with “earn”, “1bef”, “2bef”,
“1aft”, “2aft” for h = 1, “earn5” for h = 5, and “earn20” for h = 20, and includes
all other variables mentioned in Section (4).

9 Conclusion

In summary, our research underscores the potential of EA and OR in enhancing

RV forecasting. Our approach integrated the squared overnight log return into

the RV definition, aiming for more practically applicable forecasts via a full-day

RV measure. This was done within a panel modeling context, utilizing extensions

of the linear HAR model and its GB counterparts. With a dataset comprising 478

stocks and 2,086,068 daily observations, we investigated the issue via in-sample

analysis and compared the pseudo-OOS results of both linear HAR models and

GB models. Additional feature engineering and selection were performed to aug-

ment the models for further comparison and robustness testing.

Our data analysis reveals that the empirical distribution of our proposed full-

day RV measure differs significantly from the academic intraday RV measure. A

larger portion of the distribution is located at higher RV values, indicating sig-

nificant ON volatility. We observed heightened volatility a few days before the

announcement, a major volatility spike on the day of EA, and gradually declining

yet elevated volatility post-EA. Moreover, HV stocks seem to exhibit much larger

volatility spikes than LV stocks. Pooled OLS regression results confirm that all

included EA features are highly significant and have reasonable coefficients cor-

responding with the rest of the analysis. Our study also highlighted substantial

individual differences in the response of stock volatility to EA. Importantly, we

found that EA days feature a volatility spike from close to open (ON), with high

volatility persisting throughout the trading day following the release.

Moving forward, we outlined all models tested in detail and described the underly-

ing theory of GB before presenting all in-sample results and pseudo-OOS results.

GB is able to increase forecasting performance by around 5-10% compared to
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the pooled OLS model with slight variations depending on which features are in-

cluded. Model X, our best-performing model, sees a 12-20% improvement for both

OLS and LGBM depending on the horizon. LGBM has the greatest relative per-

formance against OLS looking at the L-HAR and EL-HAR model. Interestingly,

the inclusion of EA dummy variables improves overall forecasting performance

moderately, but to a lower degree than, e.g., simply substituting RAV for RV. We

suspect this to be the case as we measure the mean of the total mean error of the

individual stocks, where most days do not have an announcement (typically four

per year), thus the total error will not be reduced that much. It could be that

the model error is much lower on the days of EA and approximately unaffected

otherwise, which will only reduce the total error slightly. The error reduction from

including EA features is greater for longer forecasting horizons.

From the six models tested, the consensus seems to be that LGBM consistently

outperforms OLS by approximately the same margin, regardless of the included

features, albeit slightly more for less complex models. OLS behaves reasonably

well to all included features, potentially due to limited nonlinearities and noise.

While LGBM may be able to extract some additional performance unreachable

by OLS, transitioning from a simple to a more complex model may not offer any

additional relative improvement. The most complex model, Model X, achieved

considerably lower model error than, for instance, L-HAR, which held true for

both OLS and LGBM. The other models displayed varied results across horizons

and model types (OLS or LGBM), but the simple EL-HAR-RAV model seems

promising for both OLS and LGBM. In other words, using absolute values rather

than squared values yielded significant improvements.

Several questions remain unanswered. First and foremost, focusing on days of

EA and the model error on those days will give a better understanding of the

use of EA features for short-term forecasting. Further, it would be intriguing to

ascertain the extent of nonlinearities existing between different features, such as

through the use of partial dependence plots. Examining the effects of interactions

would also present another compelling aspect to investigate. Finally, it could be

interesting to look at the FTD measure of volatility. The RHON measure ignores

the volatility in prices in extended hours if the ON return is 0, although there may

have been considerable extended-hour volatility. The FTD measure will capture

such extended hour volatility and may show empirical improvements compared to

the RHON measure used.

To conclude, our original contribution to the literature is threefold: We incor-
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porate EA and offer a detailed analysis; We compare the RV forecasting perfor-

mance of LightGBM (LGBM) with the simple HAR model; We apply the first

and second points using a large dataset of individual stocks in a panel modeling

setting, using a slightly different RV measure that incorporates ON information,

along with additional feature selection and engineering.
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APPENDIX

GBRT Algorithm

GBRT Algorithm - Text:

1. Initially, a base model is trained using the data.

2. The residuals of this base model, which are the discrepancies between pre-

dicted and actual values, are computed.

3. A subsequent model is then trained to predict these residuals.

4. After calculating the residuals of this second model, a third model is trained

to predict these residuals.

5. This process is repeated until either a predetermined number of models have

been trained or a certain performance level has been reached.

6. The predictions of each individual model are then aggregated to provide a

forecast for a new instance.

7. The contribution of each model to the final prediction is determined by the

learning rate parameter. Although smaller learning rates may require more

models to be trained, they could enhance the generalization performance of

the model.

GBRT Algorithm - Mathematical Notation:

1. Initialize f0(x) = argminγ

∑N
i=1 L (yi, γ).

2. For m = 1 to M :

(a) For i = 1, 2, . . . , N compute

rim = −
[
∂L (yi, f (xi))

∂f (xi)

]
f=fm−1

.

(b) Fit a regression tree to the targets rim giving terminal regions Rjm, j =

1, 2, . . . , Jm.

(c) For j = 1, 2, . . . , Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ) .

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI (x ∈ Rjm).
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3. Output f̂(x) = fM(x).

For additional information, refer to Bentéjac et al. (2021) and Hastie et al. (2009).

Data Analysis

As illustrated in Figures (19) and (20), we observe both high and persistent auto-

correlation. RV (RAV) starts with an autocorrelation of approximately 0.6 (0.8),

which gradually decreases to around 0.2-0.3 (0.4) after 50 lags. While the different

RV measures display slightly varied initial autocorrelations and persistence, the

RAV measures follow similar patterns. As for the PACFs, depicted in Figures (21)

and (22), they die off after around 10 lags. The Figures (23), (24), (25), and (26)

show the ACF and PACF values of RV and RAV in NPM. Although the initial

values are much lower, there appears to be persistence.

Figure 19: Mean ACF of 1-day RV of the S&P 500 stocks with 5% and 95%
confidence intervals. Illustrated for the three different measures of volatility.

Figure 20: Mean ACF of 1-day RAV of the S&P 500 stocks with 5% and 95%
confidence intervals. Illustrated for the three different measures of volatility.
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Figure 21: Mean PACF of 1-day RV of the S&P 500 stocks with 5% and 95%
confidence intervals. Illustrated for the three different measures of volatility.

Figure 22: Mean PACF of 1-day RAV of the S&P 500 stocks with 5% and 95%
confidence intervals. Illustrated for the three different measures of volatility.

Figure 23: Mean ACF of 1-day RV in NPM of the S&P 500 stocks with 5% and
95% confidence intervals. Illustrated for the three different measures of volatility.
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Figure 24: Mean ACF of 1-day RAV in NPM of the S&P 500 stocks with 5% and
95% confidence intervals. Illustrated for the three different measures of volatility.

Figure 25: Mean PACF of 1-day RV in NPM of the S&P 500 stocks with 5% and
95% confidence intervals. Illustrated for the three different measures of volatility.

49



Figure 26: Mean PACF of 1-day RAV in NPM of the S&P 500 stocks with 5% and
95% confidence intervals. Illustrated for the three different measures of volatility.
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Optimized Hyperparameters

L-HAR

h LR NOL FF MGTS ET L1 L2

1 0.0268 37 0.5671 3.4790 False 2.4755 0.5768

5 0.0976 56 0.6139 7.3811 False 2.0705 1.8768

20 0.0947 100 0.5605 0.5216 False 2.9736 1.1286

EL-HAR

h LR NOL FF MGTS ET L1 L2

1 0.0203 25 0.6838 2.2439 False 2.5049 2.7925

5 0.0318 27 0.6637 5.7496 False 1.7602 1.5126

20 0.0807 42 0.5958 5.2029 False 0.5517 2.4881

EL-HAR-RAV

h LR NOL FF MGTS ET L1 L2

1 0.0947 38 0.2349 2.1811 False 0.2014 1.5318

5 0.0080 30 0.3899 6.9888 False 2.1324 1.2498

20 0.0929 85 0.1985 2.5075 False 2.7267 0.8100

EL-HAR-ExpSML

h LR NOL FF MGTS ET L1 L2

1 0.0333 37 0.5620 7.8879 False 1.2262 0.9031

5 0.0821 78 0.3890 0.0341 False 1.0592 2.5254

20 0.0496 60 0.3614 1.4624 False 1.4770 0.6262

EL-HAR-ExpSML-RE

h LR NOL FF MGTS ET L1 L2

1 0.0422 23 0.9346 5.4343 True 6.6332 2.6914

5 0.0116 11 0.3293 0.6725 False 6.7039 4.1805

20 0.0533 96 0.4268 7.1572 False 7.7923 6.5040

Model X

h LR NOL FF MGTS ET L1 L2

1 0.0052 93 0.1162 4.8425 True 0.0500 9.5052

5 0.0775 24 0.5198 3.1218 True 4.3597 4.0184

20 0.0198 163 0.2542 8.6695 True 8.6043 3.9358

Table 17: Hyperparameters for all LGBM models. Abbreviations: LR: learning
rate; NOL: number of leaves; FF: feature fraction; MGTS: minimum gain to split;
ET: extra trees; L1: (lambda) L1 regularization; L2: (lambda) L2 regularization.
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SHAP Values and OLS Results

L-HAR

Figure 27: L-HAR: LGBM SHAP values at h = 1

Figure 28: L-HAR: LGBM SHAP values at h = 5

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.2745 32.4660 0.0000 0.0085 0.2579 0.2910

rvrhon5 0.2286 20.5882 0.0000 0.0111 0.2069 0.2504

rvrhon20 0.3489 28.9699 0.0000 0.0120 0.3253 0.3725

rhrneg1 -2.3493 -13.0623 0.0000 0.1799 -2.7018 -1.9968

rhrneg20 -5.6524 -7.0603 0.0000 0.8006 -7.2216 -4.0833

rhrneg5 -3.5975 -6.9961 0.0000 0.5142 -4.6053 -2.5896

Table 18: L-HAR: Pooled OLS results at h = 1
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.2126 32.8708 0.0000 0.0065 0.1999 0.2252

rvrhon5 0.1985 14.5501 0.0000 0.0136 0.1717 0.2252

rvrhon20 0.4036 26.6716 0.0000 0.0151 0.3740 0.4333

rhrneg1 -1.7169 -13.6173 0.0000 0.1261 -1.9640 -1.4698

rhrneg20 -7.6408 -7.8503 0.0000 0.9733 -9.5485 -5.7332

rhrneg5 -3.3081 -5.6421 0.0000 0.5863 -4.4573 -2.1589

Table 19: L-HAR: Pooled OLS results at h = 5

EL-HAR

Figure 29: EL-HAR: LGBM SHAP values at h = 1
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Figure 30: EL-HAR: LGBM SHAP values at h = 5

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.2737 32.4607 0.0000 0.0084 0.2572 0.2903

rvrhon5 0.2294 20.7175 0.0000 0.0111 0.2077 0.2511

rvrhon20 0.3485 29.0432 0.0000 0.0120 0.3250 0.3721

rhrneg1 -2.3449 -13.0578 0.0000 0.1796 -2.6969 -1.9930

earn 0.1643 13.1056 0.0000 0.0125 0.1398 0.1889

2aft -0.0917 -10.6532 0.0000 0.0086 -0.1085 -0.0748

rhrneg20 -5.6741 -7.0815 0.0000 0.8012 -7.2445 -4.1036

rhrneg5 -3.6195 -7.0481 0.0000 0.5135 -4.6260 -2.6130

1bef 0.0556 6.4909 0.0000 0.0086 0.0388 0.0724

1aft -0.0235 -2.8513 0.0044 0.0082 -0.0397 -0.0074

2bef 0.0171 2.2509 0.0244 0.0076 0.0022 0.0320

Table 20: EL-HAR: Pooled OLS results at h = 1
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.2129 32.9801 0.0000 0.0065 0.2003 0.2256

rvrhon5 0.1937 14.0921 0.0000 0.0137 0.1668 0.2207

rvrhon20 0.4056 26.8864 0.0000 0.0151 0.3760 0.4351

rhrneg1 -1.7070 -13.6527 0.0000 0.1250 -1.9520 -1.4619

earn5 0.1086 9.7913 0.0000 0.0111 0.0868 0.1303

rhrneg20 -7.8236 -8.0166 0.0000 0.9759 -9.7364 -5.9108

rhrneg5 -3.3537 -5.6989 0.0000 0.5885 -4.5071 -2.2003

Table 21: EL-HAR: Pooled OLS results at h = 5

EL-HAR-RAV

Figure 31: EL-HAR-RAV: LGBM SHAP values at h = 1
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Figure 32: EL-HAR-RAV: LGBM SHAP values at h = 5

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

ravrhon1 1.2955 27.9516 0.0000 0.0463 1.2046 1.3863

ravrhon5 1.1186 17.4266 0.0000 0.0642 0.9928 1.2444

ravrhon20 1.2375 16.9460 0.0000 0.0730 1.0943 1.3806

rhrneg1 -1.7060 -10.0520 0.0000 0.1697 -2.0386 -1.3733

earn 0.1788 14.6019 0.0000 0.0122 0.1548 0.2028

1bef 0.0677 8.3268 0.0000 0.0081 0.0518 0.0837

2aft -0.0584 -7.7935 0.0000 0.0075 -0.0731 -0.0437

rhrneg5 -2.8320 -6.3357 0.0000 0.4470 -3.7081 -1.9559

2bef 0.0298 4.1323 0.0000 0.0072 0.0157 0.0440

rhrneg20 -2.6724 -4.0127 0.0001 0.6660 -3.9777 -1.3671

1aft 0.0112 1.5142 0.1300 0.0074 -0.0033 0.0256

Table 22: EL-HAR-RAV: Pooled OLS results at h = 1

56



Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

ravrhon1 0.8350 22.4794 0.0000 0.0371 0.7622 0.9078

ravrhon5 0.9913 10.3000 0.0000 0.0962 0.8027 1.1799

ravrhon20 1.6815 16.1119 0.0000 0.1044 1.4770 1.8861

rhrneg1 -1.2442 -10.2247 0.0000 0.1217 -1.4827 -1.0057

earn5 0.1227 10.9348 0.0000 0.0112 0.1007 0.1446

rhrneg20 -4.8256 -5.2096 0.0000 0.9263 -6.6411 -3.0101

rhrneg5 -2.9049 -5.1744 0.0000 0.5614 -4.0053 -1.8046

Table 23: EL-HAR-RAV: Pooled OLS results at h = 5

EL-HAR-ExpSML

Figure 33: EL-HAR-ExpSML: LGBM SHAP values at h = 1

57



Figure 34: EL-HAR-ExpSML: LGBM SHAP values at h = 5

Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.2730 32.2374 0.0000 0.0085 0.2564 0.2896

rvrhon5 0.2295 20.6975 0.0000 0.0111 0.2078 0.2512

rvrhon20 0.3391 27.7384 0.0000 0.0122 0.3151 0.3630

rhrneg1 -2.3148 -12.8124 0.0000 0.1807 -2.6689 -1.9607

earn 0.1652 13.1440 0.0000 0.0126 0.1405 0.1898

2aft -0.0904 -10.5007 0.0000 0.0086 -0.1073 -0.0736

rhrneg20 -5.6324 -7.1095 0.0000 0.7922 -7.1852 -4.0797

rhrneg5 -3.5525 -6.8500 0.0000 0.5186 -4.5690 -2.5360

1bef 0.0562 6.5839 0.0000 0.0085 0.0395 0.0730

1aft -0.0223 -2.6883 0.0072 0.0083 -0.0385 -0.0060

rvrh1EWMAm 0.0282 2.5882 0.0096 0.0109 0.0068 0.0496

2bef 0.0177 2.3318 0.0197 0.0076 0.0028 0.0326

rvrh1EWMAs 0.0057 0.7906 0.4292 0.0073 -0.0085 0.0200

rvrh1EWMAl 0.0014 0.2151 0.8297 0.0065 -0.0113 0.0141

Table 24: EL-HAR-ExpSML: Pooled OLS results at h = 1
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.2119 32.4643 0.0000 0.0065 0.1991 0.2247

rvrhon5 0.1938 14.0404 0.0000 0.0138 0.1668 0.2209

rvrhon20 0.3915 25.1866 0.0000 0.0155 0.3610 0.4219

rhrneg1 -1.6603 -13.3852 0.0000 0.1240 -1.9034 -1.4172

earn5 0.1094 9.8694 0.0000 0.0111 0.0877 0.1311

rhrneg20 -7.7488 -8.0591 0.0000 0.9615 -9.6334 -5.8643

rhrneg5 -3.2574 -5.4896 0.0000 0.5934 -4.4204 -2.0944

rvrh1EWMAs 0.0160 1.6584 0.0972 0.0097 -0.0029 0.0349

rvrh1EWMAl 0.0139 1.5484 0.1215 0.0090 -0.0037 0.0315

rvrh1EWMAm 0.0229 1.5012 0.1333 0.0152 -0.0070 0.0527

Table 25: EL-HAR-ExpSML: Pooled OLS results at h = 5
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EL-HAR-ExpSML-RE

Figure 35: EL-HAR-ExpSML-RE: LGBM SHAP values at h = 1
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Figure 36: EL-HAR-ExpSML-RE: LGBM SHAP values at h = 5
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.2339 32.2909 0.0000 0.0072 0.2197 0.2481

earn 0.1715 14.0034 0.0000 0.0122 0.1475 0.1955

rhrneg1 -1.8848 -10.2955 0.0000 0.1831 -2.2436 -1.5260

2aft -0.0820 -12.3027 0.0000 0.0067 -0.0951 -0.0690

rvrhon5 0.2115 18.4695 0.0000 0.0115 0.1891 0.2340

rvrhon20 0.3264 32.5329 0.0000 0.0100 0.3067 0.3461

vixc 0.5922 8.2621 0.0000 0.0717 0.4517 0.7327

1bef 0.0610 7.8303 0.0000 0.0078 0.0458 0.0763

vixchg5 0.2904 7.5733 0.0000 0.0383 0.2153 0.3656

rhrneg20 -4.8688 -4.8129 0.0000 1.0116 -6.8515 -2.8861

rvrh1EWMAl 0.0281 4.5431 0.0000 0.0062 0.0160 0.0403

2bef 0.0231 3.4068 0.0007 0.0068 0.0098 0.0364

rhrneg5 -1.4720 -3.0584 0.0022 0.4813 -2.4154 -0.5287

rvrh1EWMAs 0.0184 2.2900 0.0220 0.0081 0.0027 0.0342

vvixchg5 -0.0807 -1.6087 0.1077 0.0501 -0.1789 0.0176

1aft -0.0087 -1.2773 0.2015 0.0068 -0.0220 0.0046

movec 0.0002 1.2143 0.2246 0.0002 -0.0001 0.0006

rvrh1EWMAm 0.0055 0.4820 0.6298 0.0115 -0.0170 0.0281

vvixc -0.0000 -0.1308 0.8959 0.0004 -0.0007 0.0007

movechg5 0.0021 0.0552 0.9560 0.0376 -0.0716 0.0757

Table 26: EL-HAR-ExpSML-RE: Pooled OLS results at h = 1
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon1 0.1821 35.3842 0.0000 0.0051 0.1720 0.1922

rvrhon5 0.1823 13.8983 0.0000 0.0131 0.1566 0.2081

rvrhon20 0.3717 28.2744 0.0000 0.0131 0.3459 0.3974

rhrneg1 -1.3030 -10.2779 0.0000 0.1268 -1.5515 -1.0545

earn5 0.1140 10.6350 0.0000 0.0107 0.0930 0.1350

rhrneg20 -7.3551 -6.3755 0.0000 1.1536 -9.6162 -5.0940

vixchg5 0.2448 4.9661 0.0000 0.0493 0.1482 0.3413

rvrh1EWMAl 0.0422 4.9334 0.0000 0.0086 0.0254 0.0590

vixc 0.3944 4.1453 0.0000 0.0951 0.2079 0.5808

rhrneg5 -1.6532 -3.2116 0.0013 0.5148 -2.6621 -0.6443

rvrh1EWMAs 0.0285 2.8831 0.0039 0.0099 0.0091 0.0478

movec 0.0006 2.1339 0.0329 0.0003 0.0001 0.0012

movechg5 -0.0845 -1.7564 0.0790 0.0481 -0.1788 0.0098

vvixchg5 -0.0583 -0.9212 0.3569 0.0632 -0.1822 0.0657

vvixc -0.0005 -0.8726 0.3829 0.0005 -0.0015 0.0006

rvrh1EWMAm -0.0049 -0.3171 0.7512 0.0153 -0.0349 0.0252

Table 27: EL-HAR-ExpSML-RE: Pooled OLS results at h = 5

63



Model X

Figure 37: Model X: LGBM SHAP values at h = 1
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Figure 38: Model X: LGBM SHAP values at h = 5
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

rvrhon5 0.3918 10.7180 0.0000 0.0366 0.3202 0.4635

rk5 -0.0166 -15.0597 0.0000 0.0011 -0.0188 -0.0145

rvrhon1 0.2197 10.3538 0.0000 0.0212 0.1781 0.2613

rvrhon20 0.2623 9.0325 0.0000 0.0290 0.2054 0.3193

vprh 0.0000 9.7742 0.0000 0.0000 0.0000 0.0000

rvftd1 0.2372 6.3488 0.0000 0.0374 0.1639 0.3104

rvrv20 -0.0091 -5.7537 0.0000 0.0016 -0.0122 -0.0060

rs5 -0.0169 -4.9473 0.0000 0.0034 -0.0237 -0.0102

rvrv5 -0.0165 -4.9444 0.0000 0.0033 -0.0231 -0.0100

rvrh1 -0.2112 -4.6490 0.0000 0.0454 -0.3002 -0.1221

SPc -0.0000 -3.8145 0.0001 0.0000 -0.0000 -0.0000

vixchg20 0.0980 3.0990 0.0019 0.0316 0.0360 0.1599

rvrh1EWMAm 0.0303 2.2043 0.0275 0.0137 0.0034 0.0572

rvnpm20 0.0227 2.0428 0.0411 0.0111 0.0009 0.0444

rk20 -0.0028 -2.0140 0.0440 0.0014 -0.0055 -0.0001

rvnpm5 -0.0200 -1.8434 0.0653 0.0108 -0.0412 0.0013

rvnpm1 -0.0102 -1.6700 0.0949 0.0061 -0.0222 0.0018

rvrh5 -0.0712 -1.4007 0.1613 0.0508 -0.1708 0.0284

rvftd5 0.0435 1.3284 0.1840 0.0327 -0.0207 0.1077

rvftd20 0.0395 1.0437 0.2966 0.0379 -0.0347 0.1137

Table 28: Model X: Pooled OLS results at h = 1
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Coef. t-stat p-val Std. Err. Low. CI. Upp. CI.

earn5 0.1169 10.6473 0.0000 0.0110 0.0954 0.1384

rvrhon5 0.3524 9.0201 0.0000 0.0391 0.2758 0.4290

rvrhon20 0.3156 8.6060 0.0000 0.0367 0.2437 0.3875

rvrhon1 0.1696 10.7528 0.0000 0.0158 0.1387 0.2005

rk5 -0.0154 -13.9622 0.0000 0.0011 -0.0175 -0.0132

rvrv20 -0.0100 -5.5211 0.0000 0.0018 -0.0136 -0.0065

rvftd1 0.1273 5.4672 0.0000 0.0233 0.0817 0.1729

rvrv5 -0.0174 -5.1057 0.0000 0.0034 -0.0241 -0.0107

rs5 -0.0139 -3.6916 0.0002 0.0038 -0.0214 -0.0065

rvrh1 -0.1328 -3.4344 0.0006 0.0387 -0.2086 -0.0570

rk20 -0.0056 -3.0945 0.0020 0.0018 -0.0091 -0.0020

rvnpm20 0.0281 2.3343 0.0196 0.0121 0.0045 0.0518

vixchg20 0.0926 2.2181 0.0265 0.0418 0.0108 0.1745

rvrh1EWMAm 0.0320 1.7047 0.0882 0.0188 -0.0048 0.0688

SPc -0.0000 -1.6663 0.0956 0.0000 -0.0000 0.0000

rvnpm1 -0.0082 -1.6349 0.1021 0.0050 -0.0180 0.0016

rvnpm5 -0.0193 -1.5937 0.1110 0.0121 -0.0431 0.0044

rvrh1EWMAl 0.0125 1.4010 0.1612 0.0089 -0.0050 0.0301

rvftd5 0.0365 1.2031 0.2289 0.0304 -0.0230 0.0960

movec 0.0003 0.9602 0.3370 0.0004 -0.0004 0.0011

Table 29: Model X: Pooled OLS results at h = 5

Data Description

Ticker Start End Total days Years # Trading days

A 2005-01-03 2022-10-21 6,500 17.80 4,483

AAP 2005-01-03 2022-10-21 6,500 17.80 4,483

AAPL 2005-01-03 2022-10-21 6,500 17.80 4,483

ABC 2005-01-03 2022-10-21 6,500 17.80 4,483

ABMD 2005-01-03 2022-10-21 6,500 17.80 4,481

ABT 2005-01-03 2022-10-21 6,500 17.80 4,483

ADBE 2005-01-03 2022-10-21 6,500 17.80 4,483

ADI 2005-01-03 2022-10-21 6,500 17.80 4,483

ADM 2005-01-03 2022-10-21 6,500 17.80 4,483

ADP 2005-01-03 2022-10-21 6,500 17.80 4,483

ADSK 2005-01-03 2022-10-21 6,500 17.80 4,483

AEE 2005-01-03 2022-10-21 6,500 17.80 4,483

AEP 2005-01-03 2022-10-21 6,500 17.80 4,483

AES 2005-01-03 2022-10-21 6,500 17.80 4,483

AFL 2005-01-03 2022-10-21 6,500 17.80 4,483

AIG 2005-01-03 2022-10-21 6,500 17.80 4,483

AIZ 2005-01-03 2022-10-21 6,500 17.80 4,483

AJG 2005-01-03 2022-10-21 6,500 17.80 4,483

AKAM 2005-01-03 2022-10-21 6,500 17.80 4,483

ALB 2005-01-03 2022-10-21 6,500 17.80 4,483

ALGN 2007-05-01 2022-10-21 5,652 15.47 3,899

ALK 2005-01-03 2022-10-21 6,500 17.80 4,483

ALL 2005-01-03 2022-10-21 6,500 17.80 4,483

AMAT 2005-01-03 2022-10-21 6,500 17.80 4,483

AMD 2005-01-03 2022-10-21 6,500 17.80 4,483
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AME 2005-01-03 2022-10-21 6,500 17.80 4,483

AMG 2005-01-03 2022-10-21 6,500 17.80 4,483

AMGN 2005-01-03 2022-10-21 6,500 17.80 4,483

AMP 2005-10-03 2022-10-21 6,227 17.05 4,294

AMZN 2005-01-03 2022-10-21 6,500 17.80 4,483

AN 2005-01-03 2022-10-21 6,500 17.80 4,483

ANF 2005-01-03 2022-10-21 6,500 17.80 4,483

ANSS 2005-01-03 2022-10-21 6,500 17.80 4,483

AON 2007-04-30 2022-10-21 5,653 15.48 3,899

AOS 2007-04-02 2022-10-21 5,681 15.55 3,919

APA 2005-01-03 2022-10-21 6,500 17.80 4,483

APD 2005-01-03 2022-10-21 6,500 17.80 4,483

APH 2005-01-03 2022-10-21 6,500 17.80 4,483

ARE 2005-01-03 2022-10-21 6,500 17.80 4,483

ASH 2005-01-03 2022-10-21 6,500 17.80 4,483

ATGE 2007-05-01 2022-10-21 5,652 15.47 3,898

ATI 2005-01-03 2022-10-21 6,500 17.80 4,483

ATO 2005-01-03 2022-10-21 6,500 17.80 4,483

ATVI 2007-04-30 2022-10-21 5,653 15.48 3,880

AVB 2005-01-03 2022-10-21 6,500 17.80 4,483

AVY 2005-01-03 2022-10-21 6,500 17.80 4,483

AXP 2005-01-03 2022-10-21 6,500 17.80 4,483

AYI 2005-01-03 2022-10-21 6,500 17.80 4,483

AZO 2005-01-03 2022-10-21 6,500 17.80 4,483

BA 2005-01-03 2022-10-21 6,500 17.80 4,483

BAC 2005-01-03 2022-10-21 6,500 17.80 4,483

BALL 2005-01-03 2022-10-21 6,500 17.80 4,483

BAX 2005-01-03 2022-10-21 6,500 17.80 4,483

BBBY 2005-01-03 2022-10-21 6,500 17.80 4,483

BBWI 2007-04-27 2022-10-21 5,656 15.49 3,900

BBY 2005-01-03 2022-10-21 6,500 17.80 4,483

BC 2005-01-03 2022-10-21 6,500 17.80 4,483

BDX 2005-01-03 2022-10-21 6,500 17.80 4,483

BEN 2005-01-03 2022-10-21 6,500 17.80 4,483

BIG 2006-09-01 2022-10-21 5,894 16.14 4,063

BIIB 2005-01-03 2022-10-21 6,500 17.80 4,482

BIO 2007-05-08 2022-10-21 5,645 15.46 3,894

BK 2007-07-02 2022-10-21 5,590 15.30 3,856

BKNG 2007-04-30 2022-10-21 5,653 15.48 3,899

BLK 2005-01-03 2022-10-21 6,500 17.80 4,483

BMY 2005-01-03 2022-10-21 6,500 17.80 4,483

BR 2007-05-01 2022-10-21 5,652 15.47 3,899

BRO 2007-01-03 2022-10-21 5,770 15.80 3,980

BSX 2005-01-03 2022-10-21 6,500 17.80 4,483

BWA 2005-01-03 2022-10-21 6,500 17.80 4,483

BXP 2005-01-03 2022-10-21 6,500 17.80 4,483

CAG 2005-01-03 2022-10-21 6,500 17.80 4,483

CAH 2005-01-03 2022-10-21 6,500 17.80 4,483

CAR 2006-09-05 2022-10-21 5,890 16.13 4,062

CAT 2005-01-03 2022-10-21 6,500 17.80 4,483

CCI 2005-01-03 2022-10-21 6,500 17.80 4,483

CCK 2005-01-03 2022-10-21 6,500 17.80 4,483

CCL 2005-01-03 2022-10-21 6,500 17.80 4,483

CDNS 2005-10-31 2022-10-21 6,199 16.97 4,274

CE 2005-03-01 2022-10-21 6,443 17.64 4,444

CF 2005-10-03 2022-10-21 6,227 17.05 4,294

CHD 2004-01-02 2022-10-21 6,867 18.80 4,735

CHRW 2006-01-03 2022-10-21 6,135 16.80 4,231

CI 2004-01-02 2022-10-21 6,867 18.80 4,735

CIEN 2006-12-01 2022-10-21 5,803 15.89 4,000

CINF 2004-01-02 2022-10-21 6,867 18.80 4,735

CL 2004-01-02 2022-10-21 6,867 18.80 4,735

CLF 2004-01-02 2022-10-21 6,867 18.80 4,735

CLX 2004-01-02 2022-10-21 6,867 18.80 4,735

CMA 2004-01-02 2022-10-21 6,867 18.80 4,735

CMCSA 2004-01-02 2022-10-21 6,867 18.80 4,735

CME 2004-01-02 2022-10-21 6,867 18.80 4,735

CMG 2006-01-26 2022-10-21 6,112 16.73 4,215

CMI 2004-01-02 2022-10-21 6,867 18.80 4,735

CMS 2004-01-02 2022-10-21 6,867 18.80 4,735

CNC 2004-01-02 2022-10-21 6,867 18.80 4,735

CNP 2004-01-02 2022-10-21 6,867 18.80 4,735

CNX 2004-01-02 2022-10-21 6,867 18.80 4,735

COF 2004-01-02 2022-10-21 6,867 18.80 4,735

COO 2004-01-02 2022-10-21 6,867 18.80 4,735

COP 2004-01-02 2022-10-21 6,867 18.80 4,735

COST 2007-04-30 2022-10-21 5,653 15.48 3,900

CPB 2004-01-02 2022-10-21 6,867 18.80 4,735

CPRT 2004-01-02 2022-10-21 6,867 18.80 4,735

CPT 2007-01-03 2022-10-21 5,770 15.80 3,980

CRL 2007-01-03 2022-10-21 5,770 15.80 3,980
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CRM 2004-06-23 2022-10-21 6,694 18.33 4,617

CSCO 2004-01-02 2022-10-21 6,867 18.80 4,735

CSX 2004-01-02 2022-10-21 6,867 18.80 4,735

CTAS 2004-01-02 2022-10-21 6,867 18.80 4,735

CTRA 2007-04-27 2022-10-21 5,656 15.49 3,878

CTSH 2004-01-02 2022-10-21 6,867 18.80 4,735

CVS 2004-01-02 2022-10-21 6,867 18.80 4,735

CVX 2004-01-02 2022-10-21 6,867 18.80 4,735

D 2005-01-03 2022-10-21 6,500 17.80 4,483

DAL 2007-05-16 2022-10-21 5,637 15.43 3,888

DDS 2005-01-03 2022-10-21 6,500 17.80 4,483

DE 2005-01-03 2022-10-21 6,500 17.80 4,483

DFS 2007-07-02 2022-10-21 5,590 15.30 3,856

DGX 2005-01-03 2022-10-21 6,500 17.80 4,483

DHI 2005-01-03 2022-10-21 6,500 17.80 4,483

DHR 2005-01-03 2022-10-21 6,500 17.80 4,483

DIS 2005-01-03 2022-10-21 6,500 17.80 4,483

DISH 2005-01-03 2022-10-21 6,500 17.80 4,483

DLR 2005-01-03 2022-10-21 6,500 17.80 4,483

DLTR 2007-04-27 2022-10-21 5,656 15.49 3,901

DLX 2005-01-03 2022-10-21 6,500 17.80 4,483

DOV 2005-01-03 2022-10-21 6,500 17.80 4,483

DPZ 2005-01-03 2022-10-21 6,500 17.80 4,483

DRE 2005-01-03 2022-09-30 6,479 17.74 4,468

DRI 2005-01-03 2022-10-21 6,500 17.80 4,483

DTE 2005-01-03 2022-10-21 6,500 17.80 4,483

DVA 2005-01-03 2022-10-21 6,500 17.80 4,483

DVN 2005-01-03 2022-10-21 6,500 17.80 4,483

DXCM 2005-05-02 2022-10-21 6,381 17.47 4,400

EA 2007-04-30 2022-10-21 5,653 15.48 3,899

EBAY 2005-01-03 2022-10-21 6,500 17.80 4,483

ECL 2005-01-03 2022-10-21 6,500 17.80 4,483

ED 2005-01-03 2022-10-21 6,500 17.80 4,483

EFX 2005-01-03 2022-10-21 6,500 17.80 4,483

EIX 2007-04-30 2022-10-21 5,653 15.48 3,900

EL 2005-01-03 2022-10-21 6,500 17.80 4,483

EMN 2005-01-03 2022-10-21 6,500 17.80 4,483

EMR 2005-01-03 2022-10-21 6,500 17.80 4,483

EOG 2005-01-03 2022-10-21 6,500 17.80 4,483

EQIX 2005-01-03 2022-10-21 6,500 17.80 4,483

EQR 2005-01-03 2022-10-21 6,500 17.80 4,483

EQT 2005-01-03 2022-10-21 6,500 17.80 4,483

ESS 2005-01-03 2022-10-21 6,500 17.80 4,483

ETR 2005-01-03 2022-10-21 6,500 17.80 4,483

EW 2005-01-03 2022-10-21 6,500 17.80 4,483

EXC 2005-01-03 2022-10-21 6,500 17.80 4,483

EXPD 2005-06-06 2022-10-21 6,346 17.37 4,377

EXPE 2005-08-09 2022-10-21 6,282 17.20 4,332

EXR 2005-01-03 2022-10-21 6,500 17.80 4,483

F 2005-01-03 2022-10-21 6,500 17.80 4,483

FAST 2005-01-03 2022-10-21 6,500 17.80 4,483

FCX 2005-01-03 2022-10-21 6,500 17.80 4,483

FDS 2007-05-01 2022-10-21 5,652 15.47 3,899

FDX 2005-01-03 2022-10-21 6,500 17.80 4,483

FE 2005-01-03 2022-10-21 6,500 17.80 4,483

FFIV 2005-01-03 2022-10-21 6,500 17.80 4,483

FHN 2005-01-03 2022-10-21 6,500 17.80 4,483

FIS 2006-02-01 2022-10-21 6,106 16.72 4,211

FISV 2005-01-03 2022-10-21 6,500 17.80 4,483

FL 2005-01-03 2022-10-21 6,500 17.80 4,483

FLEX 2005-01-03 2022-10-21 6,500 17.80 4,483

FLR 2005-01-03 2022-10-21 6,500 17.80 4,483

FLS 2005-01-03 2022-10-21 6,500 17.80 4,483

FMC 2005-01-03 2022-10-21 6,500 17.80 4,483

FOSL 2005-01-03 2022-10-21 6,500 17.80 4,483

FOX 2007-04-30 2022-10-21 5,653 15.48 3,878

FRT 2005-01-03 2022-10-21 6,500 17.80 4,483

FSLR 2006-11-17 2022-10-21 5,817 15.93 4,009

GD 2005-01-03 2022-10-21 6,500 17.80 4,483

GE 2005-01-03 2022-10-21 6,500 17.80 4,483

GHC 2007-05-16 2022-10-21 5,637 15.43 3,887

GILD 2005-01-03 2022-10-21 6,500 17.80 4,483

GIS 2005-01-03 2022-10-21 6,500 17.80 4,483

GL 2007-05-01 2022-10-21 5,652 15.47 3,897

GLW 2005-01-03 2022-10-21 6,500 17.80 4,483

GME 2005-10-10 2022-10-21 6,220 17.03 4,289

GNW 2005-01-03 2022-10-21 6,500 17.80 4,483

GOOG 2005-01-03 2022-10-21 6,500 17.80 4,483

GOOGL 2007-04-27 2022-10-21 5,656 15.49 3,878

GPC 2005-01-03 2022-10-21 6,500 17.80 4,483

GPN 2005-01-03 2022-10-21 6,500 17.80 4,483
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GPS 2005-01-03 2022-10-21 6,500 17.80 4,483

GRMN 2005-01-03 2022-10-21 6,500 17.80 4,483

GS 2005-01-03 2022-10-21 6,500 17.80 4,483

GT 2005-01-03 2022-10-21 6,500 17.80 4,483

GWW 2005-01-03 2022-10-21 6,500 17.80 4,483

HAL 2005-01-03 2022-10-21 6,500 17.80 4,483

HAS 2005-01-03 2022-10-21 6,500 17.80 4,483

HBI 2006-09-06 2022-10-21 5,889 16.12 4,061

HD 2005-01-03 2022-10-21 6,500 17.80 4,483

HES 2007-04-27 2022-10-21 5,656 15.49 3,901

HIG 2005-01-03 2022-10-21 6,500 17.80 4,483

HOG 2006-09-01 2022-10-21 5,894 16.14 4,063

HOLX 2005-01-03 2022-10-21 6,500 17.80 4,483

HON 2005-01-03 2022-10-21 6,500 17.80 4,483

HP 2005-01-03 2022-10-21 6,500 17.80 4,483

HPQ 2005-01-03 2022-10-21 6,500 17.80 4,483

HRB 2005-01-03 2022-10-21 6,500 17.80 4,483

HRL 2005-01-03 2022-10-21 6,500 17.80 4,483

HSIC 2005-01-03 2022-10-21 6,500 17.80 4,483

HST 2006-04-18 2022-10-21 6,030 16.51 4,159

HSY 2005-01-03 2022-10-21 6,500 17.80 4,483

HUM 2005-01-03 2022-10-21 6,500 17.80 4,483

IBM 2005-01-03 2022-10-21 6,500 17.80 4,483

ICE 2005-11-16 2022-10-21 6,183 16.93 4,262

IDXX 2005-01-03 2022-10-21 6,500 17.80 4,483

IEX 2005-01-03 2022-10-21 6,500 17.80 4,483

IFF 2005-01-03 2022-10-21 6,500 17.80 4,483

ILMN 2005-01-03 2022-10-21 6,500 17.80 4,483

INCY 2005-01-03 2022-10-21 6,500 17.80 4,483

INTC 2005-01-03 2022-10-21 6,500 17.80 4,483

INTU 2005-01-03 2022-10-21 6,500 17.80 4,483

IP 2005-01-03 2022-10-21 6,500 17.80 4,483

IPG 2005-01-03 2022-10-21 6,500 17.80 4,483

IPGP 2006-12-13 2022-10-21 5,791 15.85 3,992

IRM 2005-01-03 2022-10-21 6,500 17.80 4,483

ISRG 2006-06-01 2022-10-21 5,986 16.39 4,128

IT 2005-01-03 2022-10-21 6,500 17.80 4,483

ITT 2007-05-01 2022-10-21 5,652 15.47 3,899

ITW 2007-04-30 2022-10-21 5,653 15.48 3,900

J 2007-05-02 2022-10-21 5,651 15.47 3,897

JBHT 2005-01-03 2022-10-21 6,500 17.80 4,483

JBL 2005-01-03 2022-10-21 6,500 17.80 4,483

JCI 2005-01-03 2022-10-21 6,500 17.80 4,483

JEF 2007-04-24 2022-10-21 5,659 15.49 3,904

JKHY 2005-01-03 2022-10-21 6,500 17.80 4,483

JNJ 2005-01-03 2022-10-21 6,500 17.80 4,483

JPM 2005-01-03 2022-10-21 6,500 17.80 4,483

JWN 2005-01-03 2022-10-21 6,500 17.80 4,483

K 2005-01-03 2022-10-21 6,500 17.80 4,483

KBH 2005-01-03 2022-10-21 6,500 17.80 4,483

KEY 2005-01-03 2022-10-21 6,500 17.80 4,483

KIM 2005-01-03 2022-10-21 6,500 17.80 4,483

KLAC 2005-01-03 2022-10-21 6,500 17.80 4,483

KMB 2005-01-03 2022-10-21 6,500 17.80 4,483

KMX 2005-01-03 2022-10-21 6,500 17.80 4,483

KO 2005-01-03 2022-10-21 6,500 17.80 4,483

KR 2005-01-03 2022-10-21 6,500 17.80 4,483

KSS 2005-01-03 2022-10-21 6,500 17.80 4,483

L 2007-04-27 2022-10-21 5,656 15.49 3,878

LBTYK 2005-09-08 2022-10-21 6,252 17.12 4,311

LDOS 2007-04-27 2022-10-21 5,656 15.49 3,900

LEG 2005-01-03 2022-10-21 6,500 17.80 4,483

LEN 2005-01-03 2022-10-21 6,500 17.80 4,483

LH 2005-01-03 2022-10-21 6,500 17.80 4,483

LHX 2007-05-01 2022-10-21 5,652 15.47 3,898

LKQ 2007-04-27 2022-10-21 5,656 15.49 3,900

LLY 2005-01-03 2022-10-21 6,500 17.80 4,483

LMT 2005-01-03 2022-10-21 6,500 17.80 4,483

LNC 2005-01-03 2022-10-21 6,500 17.80 4,483

LNT 2005-01-03 2022-10-21 6,500 17.80 4,483

LOW 2005-01-03 2022-10-21 6,500 17.80 4,483

LRCX 2005-01-03 2022-10-21 6,500 17.80 4,483

LUMN 2007-04-30 2022-10-21 5,653 15.48 3,899

LUV 2005-01-03 2022-10-21 6,500 17.80 4,483

LVS 2007-04-27 2022-10-21 5,656 15.49 3,901

LYV 2006-01-03 2022-10-21 6,135 16.80 4,231

M 2007-06-01 2022-10-21 5,621 15.39 3,877

MA 2006-05-25 2022-10-21 5,993 16.41 4,132

MAA 2005-01-03 2022-10-21 6,500 17.80 4,483

MAC 2005-01-03 2022-10-21 6,500 17.80 4,483

MAR 2005-01-03 2022-10-21 6,500 17.80 4,483
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MAS 2005-01-03 2022-10-21 6,500 17.80 4,483

MAT 2005-01-03 2022-10-21 6,500 17.80 4,483

MBI 2005-01-03 2022-10-21 6,500 17.80 4,483

MCD 2005-01-03 2022-10-21 6,500 17.80 4,483

MCHP 2005-01-03 2022-10-21 6,500 17.80 4,483

MCK 2005-01-03 2022-10-21 6,500 17.80 4,483

MCO 2005-01-03 2022-10-21 6,500 17.80 4,483

MDLZ 2007-04-30 2022-10-21 5,653 15.48 3,899

MDT 2005-01-03 2022-10-21 6,500 17.80 4,483

MET 2005-01-03 2022-10-21 6,500 17.80 4,483

MGM 2005-06-01 2022-10-21 6,351 17.39 4,380

MHK 2005-01-03 2022-10-21 6,500 17.80 4,483

MKC 2005-01-03 2022-10-21 6,500 17.80 4,483

MKTX 2005-01-03 2022-10-21 6,500 17.80 4,483

MLM 2007-04-30 2022-10-21 5,653 15.48 3,900

MMC 2005-01-03 2022-10-21 6,500 17.80 4,483

MMM 2005-01-03 2022-10-21 6,500 17.80 4,483

MNST 2005-01-03 2022-10-21 6,500 17.80 4,483

MO 2005-01-03 2022-10-21 6,500 17.80 4,483

MOH 2007-01-03 2022-10-21 5,770 15.80 3,980

MPWR 2007-01-03 2022-10-21 5,770 15.80 3,980

MRK 2005-01-03 2022-10-21 6,500 17.80 4,483

MRO 2005-01-03 2022-10-21 6,500 17.80 4,483

MRVL 2005-01-03 2022-10-21 6,500 17.80 4,483

MS 2006-03-01 2022-10-21 6,078 16.64 4,192

MSCI 2007-11-15 2022-10-21 5,454 14.93 3,760

MSFT 2005-01-03 2022-10-21 6,500 17.80 4,483

MTB 2005-01-03 2022-10-21 6,500 17.80 4,483

MTD 2005-01-03 2022-10-21 6,500 17.80 4,483

MTW 2005-01-03 2022-10-21 6,500 17.80 4,483

MU 2005-01-03 2022-10-21 6,500 17.80 4,483

MUR 2005-01-03 2022-10-21 6,500 17.80 4,483

NBR 2005-11-03 2022-10-21 6,196 16.96 4,271

NDAQ 2005-02-10 2022-10-21 6,462 17.69 4,456

NDSN 2007-01-03 2022-10-21 5,770 15.80 3,980

NEE 2007-04-30 2022-10-21 5,653 15.48 3,899

NEM 2005-01-03 2022-10-21 6,500 17.80 4,483

NFLX 2005-01-03 2022-10-21 6,500 17.80 4,483

NI 2005-01-03 2022-10-21 6,500 17.80 4,483

NKE 2005-01-03 2022-10-21 6,500 17.80 4,483

NKTR 2005-01-03 2022-10-21 6,500 17.80 4,482

NLOK 2007-04-27 2022-10-21 5,656 15.49 3,900

NOC 2005-01-03 2022-10-21 6,500 17.80 4,483

NOV 2005-03-15 2022-10-21 6,429 17.60 4,434

NRG 2005-01-03 2022-10-21 6,500 17.80 4,483

NSC 2005-01-03 2022-10-21 6,500 17.80 4,483

NTAP 2005-01-03 2022-10-21 6,500 17.80 4,483

NUE 2005-01-03 2022-10-21 6,500 17.80 4,483

NVDA 2005-01-03 2022-10-21 6,500 17.80 4,483

NWL 2005-01-03 2022-10-21 6,500 17.80 4,483

NYT 2005-01-03 2022-10-21 6,500 17.80 4,483

ODFL 2005-01-03 2022-10-21 6,500 17.80 4,483

ODP 2005-01-03 2022-10-21 6,500 17.80 4,483

OI 2005-01-03 2022-10-21 6,500 17.80 4,483

OKE 2005-01-03 2022-10-21 6,500 17.80 4,483

OMC 2005-01-03 2022-10-21 6,500 17.80 4,483

ORCL 2005-01-03 2022-10-21 6,500 17.80 4,483

ORLY 2005-01-03 2022-10-21 6,500 17.80 4,483

OXY 2005-01-03 2022-10-21 6,500 17.80 4,483

PAR 2007-05-16 2022-10-21 5,637 15.43 3,884

PARA 2007-04-30 2022-10-21 5,653 15.48 3,899

PAYX 2005-06-06 2022-10-21 6,346 17.37 4,377

PBI 2005-01-03 2022-10-21 6,500 17.80 4,483

PCAR 2005-01-03 2022-10-21 6,500 17.80 4,483

PCG 2005-01-03 2022-10-21 6,500 17.80 4,483

PDCO 2005-01-03 2022-10-21 6,500 17.80 4,483

PEAK 2007-04-30 2022-10-21 5,653 15.48 3,880

PEG 2005-01-03 2022-10-21 6,500 17.80 4,483

PENN 2007-01-03 2022-10-21 5,770 15.80 3,980

PEP 2005-01-03 2022-10-21 6,500 17.80 4,483

PFE 2005-01-03 2022-10-21 6,500 17.80 4,483

PFG 2005-01-03 2022-10-21 6,500 17.80 4,483

PG 2005-01-03 2022-10-21 6,500 17.80 4,483

PGR 2007-04-26 2022-10-21 5,657 15.49 3,902

PH 2005-01-03 2022-10-21 6,500 17.80 4,483

PHM 2005-01-03 2022-10-21 6,500 17.80 4,483

PKG 2005-01-03 2022-10-21 6,500 17.80 4,483

PKI 2005-01-03 2022-10-21 6,500 17.80 4,483

PLD 2007-04-27 2022-10-21 5,656 15.49 3,901

PNC 2005-01-03 2022-10-21 6,500 17.80 4,483

PNW 2005-01-03 2022-10-21 6,500 17.80 4,483
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POOL 2005-01-03 2022-10-21 6,500 17.80 4,483

PPG 2005-01-03 2022-10-21 6,500 17.80 4,483

PPL 2005-01-03 2022-10-21 6,500 17.80 4,483

PRGO 2005-01-03 2022-10-21 6,500 17.80 4,483

PRU 2005-01-03 2022-10-21 6,500 17.80 4,483

PSA 2005-01-03 2022-10-21 6,500 17.80 4,483

PTC 2007-04-27 2022-10-21 5,656 15.49 3,901

PVH 2005-01-03 2022-10-21 6,500 17.80 4,483

PWR 2005-01-03 2022-10-21 6,500 17.80 4,483

PXD 2005-01-03 2022-10-21 6,500 17.80 4,483

QCOM 2005-01-03 2022-10-21 6,500 17.80 4,483

R 2005-01-03 2022-10-21 6,500 17.80 4,483

RCL 2005-01-03 2022-10-21 6,500 17.80 4,483

RE 2005-01-03 2022-10-21 6,500 17.80 4,483

REG 2005-01-03 2022-10-21 6,500 17.80 4,483

REGN 2005-01-03 2022-10-21 6,500 17.80 4,483

RF 2005-01-03 2022-10-21 6,500 17.80 4,483

RHI 2005-01-03 2022-10-21 6,500 17.80 4,483

RJF 2005-01-03 2022-10-21 6,500 17.80 4,483

RL 2005-01-03 2022-10-21 6,500 17.80 4,483

RMD 2005-01-03 2022-10-21 6,500 17.80 4,483

ROK 2005-01-03 2022-10-21 6,500 17.80 4,483

ROL 2005-01-03 2022-10-21 6,500 17.80 4,483

ROP 2007-04-30 2022-10-21 5,653 15.48 3,900

ROST 2005-01-03 2022-10-21 6,500 17.80 4,483

RRC 2005-01-03 2022-10-21 6,500 17.80 4,483

RSG 2005-01-03 2022-10-21 6,500 17.80 4,483

RTX 2007-04-27 2022-10-21 5,656 15.49 3,900

SANM 2007-04-30 2022-10-21 5,653 15.48 3,881

SBAC 2005-01-03 2022-10-21 6,500 17.80 4,483

SBUX 2005-01-03 2022-10-21 6,500 17.80 4,483

SEE 2005-01-03 2022-10-21 6,500 17.80 4,483

SHW 2005-01-03 2022-10-21 6,500 17.80 4,483

SIG 2005-01-03 2022-10-21 6,500 17.80 4,483

SIRI 2005-01-03 2022-10-21 6,500 17.80 4,483

SITC 2007-05-01 2022-10-21 5,652 15.47 3,898

SIVB 2006-03-01 2022-10-21 6,078 16.64 4,192

SJM 2005-01-03 2022-10-21 6,500 17.80 4,483

SLB 2005-01-03 2022-10-21 6,500 17.80 4,483

SLG 2005-01-03 2022-10-21 6,500 17.80 4,483

SNA 2005-01-03 2022-10-21 6,500 17.80 4,483

SNPS 2005-01-03 2022-10-21 6,500 17.80 4,483

SO 2005-01-03 2022-10-21 6,500 17.80 4,483

SPG 2005-01-03 2022-10-21 6,500 17.80 4,483

SPGI 2007-04-27 2022-10-21 5,656 15.49 3,900

SRCL 2005-01-03 2022-10-21 6,500 17.80 4,483

SRE 2005-01-03 2022-10-21 6,500 17.80 4,483

SSP 2005-01-03 2022-10-21 6,500 17.80 4,483

STT 2005-01-03 2022-10-21 6,500 17.80 4,483

STX 2005-01-03 2022-10-21 6,500 17.80 4,483

STZ 2005-01-03 2022-10-21 6,500 17.80 4,483

SWK 2005-01-03 2022-10-21 6,500 17.80 4,483

SWKS 2005-01-03 2022-10-21 6,500 17.80 4,483

SWN 2005-01-03 2022-10-21 6,500 17.80 4,483

SYK 2005-01-03 2022-10-21 6,500 17.80 4,483

SYY 2005-01-03 2022-10-21 6,500 17.80 4,483

T 2006-01-03 2022-10-21 6,135 16.80 4,231

TAP 2005-03-01 2022-10-21 6,443 17.64 4,444

TDC 2007-10-01 2022-10-21 5,499 15.06 3,793

TDG 2006-03-15 2022-10-21 6,064 16.60 4,182

TDY 2007-01-03 2022-10-21 5,770 15.80 3,980

TECH 2007-01-03 2022-10-21 5,770 15.80 3,980

TER 2005-01-03 2022-10-21 6,500 17.80 4,483

TEX 2005-01-03 2022-10-21 6,500 17.80 4,483

TFC 2007-04-30 2022-10-21 5,653 15.48 3,877

TFX 2005-01-03 2022-10-21 6,500 17.80 4,483

TGNA 2007-04-30 2022-10-21 5,653 15.48 3,899

TGT 2005-01-03 2022-10-21 6,500 17.80 4,483

THC 2005-01-03 2022-10-21 6,500 17.80 4,483

TJX 2005-01-03 2022-10-21 6,500 17.80 4,483

TMO 2005-01-03 2022-10-21 6,500 17.80 4,483

TMUS 2007-05-16 2022-10-21 5,637 15.43 3,887

TPR 2007-04-27 2022-10-21 5,656 15.49 3,900

TRMB 2007-01-03 2022-10-21 5,770 15.80 3,980

TROW 2005-01-03 2022-10-21 6,500 17.80 4,483

TRV 2007-02-27 2022-10-21 5,715 15.65 3,943

TSCO 2005-01-03 2022-10-21 6,500 17.80 4,483

TSN 2005-01-03 2022-10-21 6,500 17.80 4,483

TT 2007-04-30 2022-10-21 5,653 15.48 3,882

TTWO 2005-01-03 2022-10-21 6,500 17.80 4,483

TUP 2005-01-03 2022-10-21 6,500 17.80 4,483
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TXN 2005-01-03 2022-10-21 6,500 17.80 4,483

TXT 2005-01-03 2022-10-21 6,500 17.80 4,483

TYL 2007-01-03 2022-10-21 5,770 15.80 3,980

UAA 2007-05-14 2022-10-21 5,639 15.44 3,889

UDR 2005-01-03 2022-10-21 6,500 17.80 4,483

UHS 2005-01-03 2022-10-21 6,500 17.80 4,483

ULTA 2007-10-25 2022-10-21 5,475 14.99 3,775

UNH 2005-01-03 2022-10-21 6,500 17.80 4,483

UNM 2005-01-03 2022-10-21 6,500 17.80 4,483

UNP 2005-01-03 2022-10-21 6,500 17.80 4,483

UPS 2005-01-03 2022-10-21 6,500 17.80 4,483

URBN 2005-01-03 2022-10-21 6,500 17.80 4,483

URI 2005-01-03 2022-10-21 6,500 17.80 4,483

USB 2005-01-03 2022-10-21 6,500 17.80 4,483

VFC 2005-01-03 2022-10-21 6,500 17.80 4,483

VIAV 2007-04-27 2022-10-21 5,656 15.49 3,879

VLO 2005-01-03 2022-10-21 6,500 17.80 4,483

VMC 2007-11-19 2022-10-21 5,450 14.92 3,758

VNO 2005-01-03 2022-10-21 6,500 17.80 4,483

VRSN 2005-01-03 2022-10-21 6,500 17.80 4,483

VRTX 2005-01-03 2022-10-21 6,500 17.80 4,483

VTR 2005-01-03 2022-10-21 6,500 17.80 4,483

VZ 2005-01-03 2022-10-21 6,500 17.80 4,483

WAB 2005-01-03 2022-10-21 6,500 17.80 4,483

WAT 2005-01-03 2022-10-21 6,500 17.80 4,483

WDC 2005-01-03 2022-10-21 6,500 17.80 4,483

WEC 2005-01-03 2022-10-21 6,500 17.80 4,483

WELL 2007-04-30 2022-10-21 5,653 15.48 3,880

WFC 2005-01-03 2022-10-21 6,500 17.80 4,483

WHR 2005-01-03 2022-10-21 6,500 17.80 4,483

WM 2007-04-30 2022-10-21 5,653 15.48 3,900

WMB 2005-01-03 2022-10-21 6,500 17.80 4,483

WMT 2005-01-03 2022-10-21 6,500 17.80 4,483

WOR 2005-01-03 2022-10-21 6,500 17.80 4,483

WRB 2007-04-27 2022-10-21 5,656 15.49 3,900

WST 2007-01-03 2022-10-21 5,770 15.80 3,980

WU 2006-10-02 2022-10-21 5,863 16.05 4,043

WY 2005-01-03 2022-10-21 6,500 17.80 4,483

WYNN 2005-01-03 2022-10-21 6,500 17.80 4,483

X 2005-01-03 2022-10-21 6,500 17.80 4,483

XEL 2005-01-03 2022-10-21 6,500 17.80 4,483

XOM 2005-01-03 2022-10-21 6,500 17.80 4,483

XRAY 2005-01-03 2022-10-21 6,500 17.80 4,483

XRX 2005-01-03 2022-10-21 6,500 17.80 4,483

YUM 2005-01-03 2022-10-21 6,500 17.80 4,483

ZBH 2007-04-30 2022-10-21 5,653 15.48 3,899

ZBRA 2005-01-03 2022-10-21 6,500 17.80 4,483

ZION 2005-01-03 2022-10-21 6,500 17.80 4,483

Table 30: Data description of all 478 stocks included in the final panel data set.
Illustrated are the data sample start and end dates, the number of days and years,
and the number of trading days, respectively.
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