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Abstract

This paper reexamines the dynamic relationship of the oil- and stock markets by

extending the original Structural vector autoregressive model (SVAR) for oil market

shocks, proposed by Kilian (2009), to include two separate measures for the stock

market, returns and volatility. This facilitates a deeper dive into the distribution of the

stock market, in addition to an exploration of the relationship between stock returns

and -volatility in response to changes in the oil market. We apply our SVAR to

both U.S. and Norwegian stock price data for a further investigation of the structural

differences between oil importers and -exporters.

Using traditional zero short-run restrictions, we find that the global oil price

disruptions decomposed by Kilian (2009) are remarkably robust. Further, we

show that inclusion of several measures representing the U.S. stock price alter the

responses of the stock market dynamics. Specifically, even though returns often are

considered the preferable measure for the stock price, volatility is equally important,

and oil market disruptions are responsible for a greater part of the variability of

volatility than returns.

Next, an analysis of the Norwegian stock market dynamics unveil different responses

than those of the U.S., suggesting structural differences between the two countries.

Oil market disruptions have overall greater explanatory power for the movements

of the Norwegian stock market. Concretely, we find a large part of the variability

of Norwegian returns to be caused by oil supply shocks. Conversely, oil-specific

demand shocks play a larger role for the U.S. stock market than that of Norway. We

postulate that economic structures, including net-imports of oil, and sector-focus in

the stock market, significantly affects the dynamics of the oil-stock price relationship

in a country.

Keywords: Structural VAR, Oil Market, Stock market, Stock Returns, Realized

Volatility, Norway, U.S.
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1 Introduction

The beginning of the 21st century has been impacted by substantial global events

resulting in an economic landscape characterized by high uncertainty and volatile

market movements, impacting both international stock markets and the price of crude

oil, e.g. the great recession of 2008 (Norges Bank, 2022). The majority of later

research based on Kilian’s (2009) Structural Vector Autoregressive model (SVAR)

has focused on stock returns and -volatility responses in isolation, subjected to the

underlying oil price shock. Conversely, a stylized fact within financial literature is

asymmetric volatility, meaning stock returns are negatively correlated with stock

volatility (Bae et al., 2007). This suggests that examining an isolated time series

might not represent the full complexities of the stock market. Given this insight, we

are motivated to contribute to the macroeconomic research on oil price dynamics

by facilitating a deeper understanding of the stock market distribution, and how this

relates to the dynamics of the oil-stock price relationship.

Hence, the primary goal of this thesis is to estimate and analyze the effects of

oil price shocks on stock market returns and -volatility, while accounting for the

aforementioned returns-volatility relationship. To this end, we build on the existing

research papers by Kilian and Park (2009) and Bastianin and Manera (2018), which

examine the impact of oil price shocks on stock market returns and -volatility,

respectively. The first objective of this thesis is therefore to reexamine the above

mentioned research papers by separately replicating their SVARs. Secondly, we

continue by investigating the responses in a combined model that accounts for the

relationship between stock returns and -volatility. Third, we will apply the combined

model to Norway, in order to explore how the oil- and stock market dynamics are

affected in an oil-exporting nation. Thus, this thesis will specifically address the

following research question 1:

“How do stock returns and volatility respond to oil price shocks in the United States

and Norway?”

1Analysis of exogenous stock market shocks, their effects on the oil market and the economy at
large, lie outside the scope of this thesis.
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2 Literature review

2.1 Oil market literature

Since the 1980s, a comprehensive body of research related to oil price shocks and

the responses of macroeconomic variables have been conducted. Early studies on oil

price shocks, e.g. Hamilton (1983), used regressions to research the effects, treating

the price of oil as exogenous while underlying causes of the shocks were unidentified.

2.1.1 Kilian (2009)

The ceteris parabus assumption that one can vary the oil price while holding other

variables fixed has later been challenged. Kilian (2009) address two complications

with previous work relying on this assumption:

• Cause and effect are not clearly defined when relating changes in the price of

oil to other macroeconomic variables, resulting in possible reverse causality,

i.e. a simultaneity problem.

• The oil price is driven by structural demand- and supply shocks who provide

different dynamics, creating both direct and indirect effects.

As a response, Kilian (2009) proposed a structural vector autoregressive model,

where he decomposed the oil price fluctuations into three underlying causes. The

first component being oil supply shocks, which are shocks to the current physical

availability of crude oil and can be defined as unpredictable innovations to global

oil production. Second, he defines shocks to aggregate demand as shocks to the

current demand for crude oil driven by real business cycle fluctuations. These are

fluctuations derived from innovations to global real economic activity. Finally, Kilian

(2009) introduced oil-specific demand shocks as shocks to the precautionary oil

demand, capturing market concerns and expectations about the future availability of

oil supply.

By introducing the underlying causes of oil price disruptions, Kilian (2009) was

able to estimate the dynamics of the contributions from each shock to the real price

of oil. He found demand shocks to play a key role when analyzing effects from
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shocks to the price of oil. Moreover, his work contributed to a renewal of existing

approaches on modeling oil price shocks, leading successor researchers to adapt his

new model when investigating stock returns, volatility and other macroeconomic

variable responses, e.g Kilian and Park (2009) and Bastianin and Manera (2018).

2.1.2 Kilian and Park (2009)

An important contribution to the research followed by Kilian (2009) was introduced

by Kilian and Park (2009). By relating U.S. stock returns to a variety of fundamental

supply and demand shocks instead of focusing on the average effects, they were able

to investigate if stock returns are impacted differently depending on the underlying

cause of the unanticipated oil price change. Kilian and Park (2009) applied the

method from Kilian (2009) using a SVAR including the three types of oil price

shocks. They added a fourth variable representing U.S. real stock returns, enabling

the authors to examine the effects of the oil price shocks on U.S. stock returns and

dividend growth.

This led the researchers to conclude that the three shocks jointly explain one fifth of

the long run variation in U.S. stock returns. Moreover, the response depended on

what shocks the returns were exposed to, where they found that supply shocks had a

lesser effect than aggregate and precautionary demand shocks (Kilian & Park, 2009).

Further they agree with previous research that most of the asset returns and price

variation come from fluctuations in the risk premia, not variation in the expected

cash flows (Kilian & Park, 2009). This implies that it would be relevant to examine

returns together with volatility, rather than dividend growth.

2.1.3 Bastianin and Manera (2018)

Bastianin and Manera (2018) investigated the response of stock price volatility related

to oil price shocks. A common assumption among researchers at the time was that

unexpected oil price changes led to negative asset returns and increased volatility

(Bastianin & Manera, 2018). Bastianin and Manera (2018) sought to investigate

whether this assumption holds when treating the oil price as endogenous. Following

Kilian’s (2009) methodology, they added a fourth augmented variable, realized

volatility, as a proxy representing the variability in the U.S. stock market. This
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enabled them to investigate stock volatility fluctuations in response to oil market

dynamics.

Bastianin and Manera (2018) were able to prove that stock volatility reacts differently

when exposed to different oil price shocks. One of their key findings was that the

U.S. stock market volatility is negligible to oil supply disruptions, while volatility

responds significantly to demand shocks. Aggregate demand fluctuations cause

an immediate reaction in volatility lasting for about six months, while oil-specific

demand affects the volatility with a periodic delay (Bastianin &Manera, 2018). Their

study is therefore another important contribution to the research by Kilian (2009) and

Kilian and Park (2009) on the link between oil price shocks and the stock market.

2.2 Financial literature

Through the capital asset pricing model, Merton (1980) found a relationship between

expected return and expected volatility of the aggregate stock market. Later evidence

from financial literature solidifies this link between stock returns and volatility

(Aït-Sahalia et al., 2013), signifying a negative correlation between the variables

where low average returns are associated with high volatility and opposite. Bae et al.

(2007) propose two explanations for this asymmetric relationship:

1. The leverage effect: When equity value drops, companies become more

leveraged since the relative value of their debt increases compared to their

equity. This leads to a riskier stock, implying increased volatility.

2. The feedback effect: When an increase in volatility raises the expected future

volatility and thereby decreases stock returns. This effect results in the same

asymmetric relationship as the leverage effect, however the causal relationship

is reversed (Bae et al., 2007).

Although the financial literature is broadly in agreement that an asymmetric

relationship should be expected when estimating the correlation between returns

and volatility (Bae et al., 2007), it appears that this does not apply to all empirical

findings. Epps (1979), suggested that high frequency observations tend to weaken

the empirical correlation between stock returns due to noise that can be incorporated

in the asset prices. This happens due to inconsistencies over time during the trading
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process of assets or when experiencing limited liquidity Aït-Sahalia et al. (2013).

The correlation between asset returns and volatility can therefore become close to

zero, instead of the negative relationship that is expected from the financial theory

(Chang et al., 2020). To circumvent the potential influence from the Epps effect when

using observations of high frequencies, researchers have attempted to estimate the

correlation using data for volatility and returns of the same asset (Aït-Sahalia et al.,

2013). The observations are by construction synchrone and can be used to further

the empirical research on the correlation between oil market shocks and the stock

market.

2.3 Other related literature

From an empirical perspective, research on the relationship between expected stock

returns and volatility in the context of oil market SVARs is relatively sparse. Jung

and Park (2011) published a closely related paper to our thesis, also extending on the

research of Kilian and Park (2009). Their paper investigates returns and volatility

of the stock market when exposed to oil price shocks, examining Norway as an oil

exporter and South Korea as an oil importer. Still, their research differs from ours

as they do not consider simultaneous reactions of stock returns and volatility in a

combined SVAR, but rather investigate the measures separately before analyzing a

conditional covariance measure to determine if the responses can be explained by a

risk-return tradeoff (Jung & Park, 2011).

Their findings imply that shocks to aggregate demand have more persistent effects

on Norway than South Korea, both when examining returns and volatility. This is

explained by the increased oil price leading to higher production costs, while also

increasing oil investments. For Norway as an oil exporter, the latter effect leads to

economic stimulus which dominates the first effect eliciting the greater response.

Oil-specific demand shocks lead to increased stock returns on impact for an oil

exporter, but the effect becomes insignificant after only one month. Volatility shows

no statistically significant responses. However, oil importers experience positive and

persistent effects for volatility when exposed to the same speculative shock, along

with a negative response for stock returns. When analyzing the conditional covariance

measure for the stock market variables, Jung and Park (2011) finds no evidence of a
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risk-return tradeoff, i.e. there are no indications of positive comovements appearing

in their data.

Further, Degiannakis et al. (2014) investigated the response of volatility subject

to structural oil market shocks based on three measures from the European stock

market index; realized, conditional and implied volatility. Their results underpinned

that stock market volatility responded to shocks in aggregate demand. However,

unlike Jung and Park (2011) they could not find any responses to oil-specific demand

shocks. Possible explanations could be that their dataset was based on an index for

the European stock market containing both oil exporters and importers, or the limited

period of available EU data extracted between 1999-2010 (Degiannakis et al., 2014).

Given their differing results, this highlights the need for sufficient time series lengths,

in addition to clearly defining and controlling for the different moments of the stock

market distribution when examining its response to oil market shocks.

3 Methodology

The structural vector autoregressive model by Kilian (2009) is based on the original

vector autoregressive model initially introduced by Sims (1980), and has since its

development been used in a wide range of empirical research focusing on the dynamic

relationships of macroeconomic variables (Kilian & Zhou, 2023).

3.1 The general SVAR with short-run recursive identification

This thesis combines the SVARs of Kilian and Park (2009) and Bastianin and Manera

(2018) to construct a vector of variables of interest, yt. This vector will include the

following variables:

Oil market variables, from Kilian (2009)):

• Global crude oil production

• Real economic activity

• The real price of oil

Stock market variables:

• Real stock returns, from Kilian and Park (2009)
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• Realized volatility, from Bastianin and Manera (2018)

Using this vector, we generate the following SVAR(24) process using monthly data:

B0yt = µ+B1yt−1 + . . .+B24yt−24 + εt, (1)

Here, B0 is the matrix of impact responses, µ represents the mean of the processes

for each variable and ε represents the structural shocks in period t. These are, by

construction, identically, independently distributed with mean, 0 and variance, 1,

resulting in a variance-covariance matrix given by the identity matrix of order k:

∑
ε = Ik, (2)

Direct estimation of (1) is not possible due to simultaneity problems. Hence, it is

common to invert B0 and estimate the resulting reduced form VAR.

k2 − k(k + 1)

2
=

2k2 − k(k + 1)

2
=

2k2 − k2 − k
2

=
k2 − k

2
=
k(k − 1)

2
(3)

B−1
0 B0yt = B−1

0 B1yt−1 + ...+B−1
0 B24yt−24 +B−1

0 εt, (4)

The impact matrix has k2 unknown parameters, while the reduced from error

covariance matrix,
∑

e only contains k(k + 1)/2 unique parameters, since the

off diagonal elements are identical by symmetry of the covariance matrix. To

solve the resulting identification problem, we therefore need to restrict exactly

k(k − 1)/2 parameters to zero. Identification allows for obtaining the impact matrix,

by calculating the reduced form VAR model and finding the covariance matrix for

the reduced form shocks,

Ikyt = A1yt−1 + ...+ A24y24−1 + et, (5)

where Ik refers to the identity matrix of order k and et now becomes a weighted

average of the structural shocks. Here Cov(e) = Σe is the reduced from covariance

matrix.
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3.1.1 Identification

In order to estimate a model that is uniquely identified and stationary, with the

purpose of performing statistical analysis as well as meaningful policy analysis, it

must satisfy two important conditions, the order- and rank conditions:

1. The order condition requires that the number of structural shocks is less or

equal to the number of time series variables included in the system (Kilian &

Lütkepohl, 2017, pp. 218–219). Satisfying this, yields a covariance matrix of

the structural shocks that is invertible.

2. The rank condition requires that the matrix defining the structural system

is of full rank, meaning all columns of the impact matrix must be linearly

independent. This ensures the uniqueness of the solution to the system (Kilian

& Lütkepohl, 2017, pp. 218–219).

If both conditions are satisfied, we are able to uniquely identify the system and use it

for economic analysis. There are several methods for satisfying these restrictions.

This paper imposes short-run zero restrictions through Cholesky decomposition as

means for structural identification. The Cholesky decomposition is a mathematical

result in matrix algebra, stating that any positive definite symmetric matrix can be

written in terms of the product of a lower triangular matrix with positive diagonal

elements and its conjugate transpose. If
∑

e = PP ’, the lower triangular matrix P is

the Cholesky decomposition of the positive definite symmetric matrix
∑

e, which is

the covariance matrix of the reduced form errors (Kilian & Lütkepohl, 2017, p. 219).

The reduced from errors are given by



e∆prod
t

ereat

eprot

ert

eRV
t


=



b11 0 0 0 0

b21 b22 0 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 0

b51 b52 b53 b54 b55





εoil supply shock
t

εaggregate demand shock
t

εoil specific demand shock
t

εother shocks to stock returns
t

εother shocks to RV
t



et = B−1
0 εt, (6)

accompanied by the variance-covariance matrix,
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∑
e = E(ete

T
t ) = E(B−1

0 εtε
T
t B

−1
0

T ) = B−1
0 E(εtε

T
t )B−1

0
T

= B−1
0

∑
εB

−1
0

T = B−1
0 IkB

−1
0

T = B−1
0 B−1

0
T . (7)

If the shocks can be made orthogonal to each other, i.e. mutually uncorrelated, we

can identify the impact matrix. Hence, by applying the Cholesky decomposition and

P = B−1
0 , we find the lower triangular Cholesky factor, which is the impact matrix.

This transformation allows for conversion of the reduced form covariance matrix into

a fully, uniquely, identified system of equations of contemporaneous effects (Kilian

& Lütkepohl, 2017, pp. 218–219).

3.1.2 Stability and stationarity

In addition to the order- and rank conditions discussed above, the model has to be

stable in order to estimate interpretable results and use them for statistical analysis.

Lack of stability may lead to misleading results, e.g. impulse responses that show

spurious cycles or never revert to its mean (Bjørnland & Thorsrud, 2015, p. 117). We

can inspect the stationarity of the individual time series, xt, by use of the Augmented

Dickey-Fuller test (see appendix A). Stationarity requires a time invariant series

(Kilian & Lütkepohl, 2017, p. 19), i.e. constant mean, constant variance and a

first order autocorrelation of the system that is independent of time, however the

autocorrelation can still depend on the lag length:

E(xt) = µ (8)

var(xt) = σ2 (9)

cov(xt, xt+h) = cov(xt, xt−h) = γh. (10)

Stationary time series are advantageous for valid inferences in time series analysis.

Nevertheless, a stable model is also necessary, and stationarity of the individual time

series does not guarantee a well behaved dynamic system. Conversely, the SVAR

model can be stable even if all time series are not individually stationary (Kilian &

Lütkepohl, 2017, p. 25). The process is stable if all the roots of the determinantal

polynomial of the VAR operator are outside the complex unit circle. By construction,

the eigenvalues of the companion form matrix are the reciprocals of the roots of the

9



VAR lag polynomial. This is equivalent to all the eigenvalues staying below 1 in

absolute value (see Appendix A). Then the system will be mean-reverting, i.e. stable

(Kilian & Lütkepohl, 2017, p. 25).

3.1.3 Imposed ordering

As a consequence of the impact matrix being lower triangular, it limits how the

variables affect each other contemporaneously (Kilian & Lütkepohl, 2017, p. 220).

Variables above can affect those below in the impact period of a shock, but the

variables below can not affect those above contemporaneously. Still, all variables

can affect each other with a lag, here we place no restrictions. It is important to

appreciate the fact that this selected ordering means that we are trying to solve a

system by imposing a solution on the system. The order in which we place the

variables therefore ends up being paramount to the relationships we estimate. It

is therefore necessary to have plausible economic justifications for any ordering

imposed in order to use the estimates for economic analysis.

With the intent of staying consistent with the literature our research is building on,

we have opted for the same ordering that was used by both Kilian and Park (2009)

and Bastianin and Manera (2018) for the oil variables and will place those above the

variables representing the stock market. Hence, the only consideration to be made

with respect to ordering is regarding the two variables representing the stock market.

We derive the stock returns and -volatility from the same initial time series, stock

prices, making the variables by constriction synchrone and they should therefore

be close to interchangeable. Returns represent overall market performance, while

volatility can be defined as the price movements of the stock market investments, and

interpreted as the dispersion in the returns themselves (Hillier et al., 2016, p. 241).

The volatility is therefore placed at the very bottom. The ordering of our five variables

of interest is as follows:

yt =



Oil production

Real economic activity

Real price of oil

Real stock returns

Realized volatility


(11)
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4 Data

To estimate the structural relationships of the SVAR, careful decisions must be made

when collecting time series for the vector of interest, yt. Historical data on oil prices

can be traced back to january 1947, yet there have been substantial changes in the

regulation of the oil price since then. E.g, the Texas Railroad Commision previously

set production limits in the U.S., leading to fixed nominal oil prices for long time

periods (Alsalman & Herrera, 2015). Kilian and Park (2009) and Bastianin and

Manera (2018) both extracted samples beginning in february 1973, presumably as

oil production heavily increased and oil prices started to fluctuate at this time. When

collecting data, we were unable to access the first year, and our full time series

therefore spans 1974:2-2021:12.

4.1 International oil market variables

The foundation of the oil market variables is based on Kilian’s (2009) seminal paper

“Not all oil price shocks are alike: Disentangling demand and supply shocks in the

crude oil market”.

4.1.1 Global oil production

Monthly time series for the global crude oil production were retrieved from

the International Energy Statistics published by the U.S. Energy Information

Administration (EIA, 2023a). Global crude oil production reported in 10 million

barrels per day is a common measure of oil supply for time series analysis. By

including lease condensate, a light liquid hydrocarbon often added into crude oil after

production (EIA, 2013), the series provides a comprehensive measure of the overall

oil market. Further, the data is processed by calculating the logarithmic values and

the first difference, expressing the data as percentage change from previous period.
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Figure 4.1: Global crude oil production including lease condensate (LTR), expressed in 10 million
barrels per day, logarithmic values and percent change from previous month.

4.1.2 Real economic activity

The index of global real economic activity is a measure for the volume of shipping

designed to capture shifts in demand for industrial commodities in global markets.

The index was first proposed by Kilian (2009), and later updated in Kilian (2019).

Kilian derived the time series from a panel of dollar-denominated global bulk dry

cargo shipping rates by computing the average growth rate of the series, removal

of inflation using U.S. CPI, and linearly detrending the real freight rate index. The

resulting index is expressed in percent deviations from trend, and monthly updates

can now be collected from the Federal Reserve Bank of St. Louis (FRED, 2023).

Figure 4.2: Index of global real economic activity in industrial commodity markets (Kilian Index,
2019 version), expressed in monthly percent deviations from trend.
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4.1.3 Real price of oil

The crude oil imported acquisition cost by refiners is given in U.S. dollars and can be

used as a measure for the real price of oil. Monthly prices in dollars per barrel are

provided by EIA (EIA, 2023b). The time series is deflated using the U.S. CPI, and

further calculated to its logarithmic value. This enables estimation of percentage

deviation from the average logarithmic oil price.

Figure 4.3: U.S. Crude oil imported acquisition cost (LTR), expressed in dollars per barrel, deflated
with U.S. CPI in logarithmic values and in percentage deviation from average.

4.2 U.S. Stock market variables

Kilian and Park (2009)) utilized the value-weighted market portfolio from the Center

for Research in Security Prices (CRSP) as measure for their stock market variable.

The index reflects the performance of the entire U.S. stock market including large-,

mid-, and small-CAP stocks (Zoll, 2013). On the other hand, Bastianin and Manera

(2018) computed a monthly measure for realized volatility using daily closing prices

for the Standard and Poor’s 500 index (S&P 500), which tracks the 500 largest U.S.

companies listed on the stock exchange (Zoll, 2013). To omit unnecessary white

noise, this thesis uses one time series for both stock market variables, which have

been downloaded from the Bloomberg terminal.

80% of the variation in the CRSP equals the entire S&P 500, while the remaining

variations are caused by mid- and small-CAP stocks (Dong, 2022). The CRSP

is slightly more volatile than the S&P 500 as small and mid-CAP stocks usually

experience more price fluctuations than large companies (Zoll, 2013), however we

were unable to access high frequency (daily) data for the CRSP. The differences

between the estimates are minimal, and with the intent of capturing the synchrone

effects in the stock market, the thesis will proceed using the S&P 500.
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Figure 4.4: (LTR) CRSP index and S&P 500 index, expressed in real returns.

4.2.1 U.S. Real stock returns

From the S&P 500 monthly closing price, we remove inflation with the U.S. CPI and

calculate the logarithmic values of the deseasonalized series. Lastly, the real returns

are computed as the percent change in monthly returns.

Figure 4.5: S&P 500 (LTR), expressed in monthly closing price, deflated with U.S. CPI in logarithmic
values and in real returns.

4.2.2 U.S. Realized volatility

To explore the relationship between stock price volatility and oil price disruptions,

there is a wide variety of volatility measures available. Since this paper is dealing

with high frequency data, to circumvent the aforementioned potential Epps effect, we

intend to estimate the returns and volatility from the same asset. The true volatility is

latent, and we therefore need to estimate it by proxy (Aït-Sahalia et al., 2013). With

the intent of staying consistent with the research of Bastianin and Manera (2018),

we construct a historical measure for the realized volatility representing the S&P

500 variability. The proxy is estimated from the same index as for stock returns,

resulting in the two sets of observations being syncrone by construction. It is worth
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noting that we have been careful during the computation process to limit potential

microstructure noise as the realized volatility estimator would then overestimate the

volatility, resulting in weaker correlation with returns (Chang et al., 2020). Following

Schwert (1989), we have computed the realized volatility as the sum of squares of

daily logarithmic returns based on daily closing prices for the S&P 500 composite

portfolio as follows,

RVt =
Nt∑
j=1

r2
j:t, (12)

where r is the daily real logarithmic returns, Nt is the number of days in the month,

j is the number of business days the stock exchange is open for trading and t is the

respective month the observation is belonging to. The resulting proxy is a strictly

positive and stationary monthly time series reflecting the volatility of the U.S. stock

market.

Figure 4.6: S&P 500 (LTR), expressed in daily USD closing prices and in realized volatility.

4.3 Norwegian stock market variables

For the Norwegian time series, we have used the Oslo Børs Benchmark Index

(OSEBX) monthly closing prices for both the real returns and realized volatility

estimates. In contrast to the S&P 500, the OSEBX index contains a selection of listed

firms on Oslo Stock Exchange, consisting of a varying number of between 50 to 70

representative companies (Euronext, 2023). Both daily and monthly data for the

index can be accessed through the Bloomberg terminal. The Norwegian real stock

returns are estimated using the same method as described above. As the OSEBX

is given in Norwegian kroner, we have used the Norwegian CPI for deflation of the
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series.

Figure 4.7: OSEBX (LTR), expressed in monthly NOK closing prices, deflated with Norwegian CPI
in logarithmic values and in real returns.

Using daily closing prices for the OSEBX, the Norwegian realized volatility is

estimated in the same manner as for the U.S. volatility.

Figure 4.8: OSEBX (LTR), expressed in daily NOK closing prices and in realized volatility.
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5 Analysis

Reiterating the objectives of this thesis, with the intent of answering the

aforementioned research question, the analysis reports, firstly, replications of the

main literature this research is building on. Secondly, a combined model for joint

empirical and economic analysis of real stock returns and realized volatility using

U.S. stock market data. Finally, an application of the model using Norwegian stock

market data, accompanied by comparable estimates from the U.S. for empirical end

economic analysis on how stock returns and -volatility are affected by underlying oil

price shocks.

5.1 Replication models

To ensure a stable and robust extension of the existing literature on oil- and stock

market shocks, before estimating a combined model, we first replicate the findings of

Kilian and Park (2009) and Bastianin and Manera (2018) separately. To examine the

average responses of each variable to the three fundamental oil market shocks, we

inspect the cumulative impulse responses of the variables.

5.1.1 Replication of Kilian & Park (2009)

To ensure robustness when extending on the research of Kilian and Park (2009), we

first replicate their model. The responses of their oil market variables are in line with

the findings of Kilian (2009), where the price of oil was negligible to supply side

shocks, while demand shocks elicited significant responses. Further, Kilian and Park

(2009) argues that the global oil market is an important fundament for the U.S. stock

market and that the responses of real stock returns may differ significantly depending

on the underlying cause.

17



Figure 5.1: Kilian and Park (2009) replication. Cumulative impulse response functions (blue) of
global oil production, real economic activity, the real oil price and real stock returns to 1-standard
deviation sized structural shocks. 1 and 2 standard deviation error bands (green). Monthly data from
1974:2 to 2006:12.

Our replication is consistent with the findings of Kilian and Park (2009), confirming

that the estimated impulse response functions (IRF) using the S&P 500 index in place

of the CRSP will not affect the trajectory of the impulse responses. The findings

show that unexpected structural shocks to oil supply have no significant effect on the

cumulative real stock returns, which can be seen from the stationary level lying within

the bootstrap standard deviation error bands. An unexpected increase in aggregate

demand motivates an instantaneous, albeit insignificant, increase in stock returns,

which persists for around a quarter. Finally, an unexpected positive precautionary

demand shock yields an instant decrease in the real stock returns which is undoubtedly

significant for 3 months2.

5.1.2 Replication of Bastianin & Manera (2018)

With the intent of estimating sound results, we next replicate the SVAR of Bastianin

and Manera (2018). The responses in their oil market variables also corroborate

the seminal findings of Kilian (2009). Further, their key findings are firstly, that

volatility of stock prices in the U.S. are unresponsive to unexpected disruptions in oil

production. Furthermore, the effects from the demand side of the oil market induces

significant responses in volatility.

2For replication of Kilian and Park (2009) using CRSP, see appendix C
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Figure 5.2: Bastianin and Manera (2018) replication. Cumulative impulse response functions (blue)
of global oil production, real economic activity, the real oil price and realized volatility to 1-standard
deviation sized structural shocks. 1 and 2 standard deviation error bands (green). Monthly data from
1974:2 to 2013:12.

In our replication model, the results reflect only minor differences compared to the

original paper. When examining the effects of U.S. stock volatility to an oil supply

shock there are no significant effects at the 1 standard deviation level. An unexpected

increase in the aggregate demand for industrial commodities leads to an evident

negative response in volatility until it turns statistically indistinguishable from zero

after about six periods. After a year, the volatility increases, and stays positive for the

rest of the horizon. For a 1 standard deviation error band, the response of volatility

to an oil-specific demand shock is negative on impact, before increasing to a positive

level after six months, lasting for about a year3.

5.2 Combination of models

5.2.1 Combined model U.S. data

To examine the responses of stock returns and volatility to oil market dynamics, we

merge the replications of Kilian and Park (2009) and Bastianin and Manera (2018)

into a combined model. This model is regressed on two sets of different time series.

The first from 1974:2 until 2006:12 with the intent of examining how the variables

change when controlling for each other, and further an extended time series ending

in 2021:12. This allows for inclusion of more information in the model, and the
3For replication of Bastianin and Manera ending in 2006:12, see appendix C
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estimates will depict more accurate structures for the current oil-and stock market

dynamics. In the following sections we interpret the estimates through empirical

and economic analysis of impulse response functions and forecast error variance

decompositions4.

5.2.1.1 Fundamental oil market shocks

Figure 5.3: Cumulative impulse response functions (blue) of global oil production, real economic
activity and the real oil price to 1-standard deviation sized structural shocks. 1 and 2 standard
deviation error bands (green). Monthly data from 1974:2 to 2006:12.

4For combined model with time series ending in 2019:12, see appendix C
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Figure 5.4: Cumulative impulse response functions (blue) of global oil production, real economic
activity and the real oil price to 1-standard deviation sized structural shocks. 1 and 2 standard
deviation error bands (green). Monthly data from 1974:2 to 2021:12.

In the primary sample, the alterations in the oil market variables are minor, indicating

that the fundamental oil market shocks are robust. When extending the dataset

until the end of 2021, the shock to aggregate demand is larger. Recalling the index

for global real economic activity (see section 4.1.2 Real Economic Activity), the

extended sample is visually more volatile. It is therefore plausible that increased

global economic unrest in recent years can explain this larger aggregate demand

shock.

5.2.1.2 Oil supply shock to U.S. stock market

Figure 5.5: Cumulative impulse response functions (blue) of real stock returns and realized volatility
subject to a 1-standard deviation sized oil supply shock. 1 and 2 standard deviation error bands
(green). Monthly data from 1974:2 to 2006:12 (top row) and 1974:2-2021:12 (bottom row).

Examining the IRFs of the stock market variables subject to an unanticipated

decrease in oil production shows insignificant responses regardless of sample length.

Unsurprisingly, this mirrors the replications above, strengthening the existing belief

of stock market variables being negligible to oil supply shocks (Kilian & Park, 2009).

Nonetheless, there seems to be tendencies of an inverse relationship between the

responses of returns and volatility in parts of the sample. The responses, albeit

insignificant, are anticipated due to existing financial literature, suggesting structural

stock market effects that imply an asymmetric link between the variables (Bae et al.,

2007). This is worth further exploration.
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5.2.1.3 Aggregate demand shock to U.S. stock market

Figure 5.6: Cumulative impulse response functions (blue) of real stock returns and realized volatility
subject to a 1-standard deviation sized aggregate demand shock. 1 and 2 standard deviation error
bands (green). Monthly data from 1974:2 to 2006:12 (top row) and 1974:2-2021:12 (bottom row).

When controlling for returns and volatility jointly in the primary sample, subjected

to an aggregate demand shock, it is prevalent that the trajectories of the impulses are

similar in trend to the separate analysis of the variables. Nonetheless, the reaction

of volatility when controlling for returns are minuscule compared to the replication

above, indicating that the effects on volatility might be less prevalent than previously

assumed by Bastianin and Manera (2018).

An extension of the series results in responses larger in magnitude, which can suggest

unequal variance in the time series, indicating a greater importance of global real

activity dynamics. Kilian and Park (2009) terminated their sample before the great

recession in 2008, excluding more recent and severe distress to the finance- and oil

markets. This crisis is endogenous to the financial system and therefore reflects

the underlying structures of the stock market. Hence, it is reasonable to presume

the extended model as a more accurate reflection of the structural dynamics of the

financial sector today.

An unanticipated boost to global real activity generates an instantaneous increase in

real stock returns, lasting for about six months, before turning negative and statistically

significant at the 1 standard deviation level, persisting to the end of the horizon.

Simultaneously, stock volatility decreases for the first half year, until it turns positive
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for the rest of the horizon, mirroring the trajectory of returns. Increases in aggregate

demand can create two simultaneous effects; firstly, an immediate stimulus to the

economy through improved business conditions, and secondly a later increase in the

real price of oil that counteracts the first effect by slowing down the economy (Kilian

& Park, 2009). This can be observed in our impulses where an economic stimulus

increases returns immediately (decreases volatility), while an oil-price increase leads

to decreased returns (increased volatility) later on.

To further explore this asymmetric relationship of returns and volatility, we recall

that increased economic activity boosts firms profits, making them less leveraged,

subsequently decreasing systematic risk and volatility instantaneously in response

to the shock (Bae et al., 2007). Opposite effects occur when the oil price increases

later. The IRFs also imply that returns turn negative before volatility turns positive,

suggesting the primary cause of the correlating movement here to be the leverage

effect.

5.2.1.4 Oil-specific demand shock to U.S. stock market

Figure 5.7: Cumulative impulse response functions (blue) of real stock returns and realized volatility
subject to a 1-standard deviation sized oil-specific demand shock. 1 and 2 standard deviation error
bands (green). Monthly data from 1974:2 to 2006:12 (top row) and 1974:2-2021:12 (bottom row).

Next, reporting the results of a precautionary demand shock on the stock market, we

notice an instant decline in stock returns on impact for the primary sample length,

corroborating the findings of Kilian and Park (2009). While there are visible changes

in the response of volatility compared to the replication above, the replication falls in
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line with the combined model when excluding the financial crisis from Bastianin and

Manera’s (2018) results (see appendix C). For an extended sample examination, the

IRFs of volatility is more similar to their results, moreover, the extended data elicits

a volatility response even greater in magnitude than the replication. Additionally, the

instantaneous decline in stock returns is now minuscule compared to the original

sample.

The extension of the information included in the SVAR yields a reversal of the signs

for the stock market variables, where volatility becomes negative, and returns turn

less negative. This suggests that the asymmetric relationship of the variables still

exists, however, elicits opposite reactions for both. A possible explanation for this

result is innovations, specifically more advanced technological equipment for oil

extraction, joined by discovery of oil reserves, enabling the U.S. to export more oil

(EIA, 2023c), which has later been coined the “shale oil revolution” (Zhou, 2020).

The impulses could therefore suggest underlying structural changes to the oil- and

stock market dynamics, where the net positive returns from firms invested in oil

outweighs the net negative returns from the remaining stock market. Alternatively,

we postulate that the dynamic shifts can be reflections of more recent distress in

the finance- and oil market sectors as explained from the real economic activity

shock. Hence, more fluctuations in the recent sample is inducing the shifts visible

in the IRFs, which is also observable in real activity response elicited by the shock

to precautionary demand. This deserves further exploration by use of more elegant

identifying restrictions and advanced models, for instance time-varying VARs (see

section 7 Future work).

Reporting the extended results, stock returns are negligible to oil-specific demand

on impact. There are slight movements in the first few months, but they are for the

most part economically ambiguous. Further, there seems to be a negative effect

around 8 months after the shock. This effect is significant until the end of the first

year followed by a positive increase in the subsequent months. When inspecting the

response of volatility on impact, a large negative effect is observed, which persists

for the first 4 months. Subsequently, the IRF hoovers above its stationary level, and

is significant in some parts of the horizon, indicating a delayed boosting effect. A

larger spike occurs around period 13, albeit short lived.
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Bastinain and Manera’s (2018) following interpretation corroborates this discovery;

Given that the precautionary demand shock in essence is a shock to the expectations

of future oil supply shortfalls, this delayed positive volatility reaction could reflect

higher macroeconomic uncertainty, thus a more volatile stock market. The feedback

effects suggest that the increased volatility further induces even higher expectations

for future volatility, and thereby decreases stock returns (Bae et al., 2007). This

can be observed from the positive volatility occurring around period 4, while stock

returns only stabilize below its stationary level around period 6. Thus, our results are

in line with the financial theory regarding the asymmetric relationship of returns and

volatility.

5.2.1.5 Forecast error variance decompositions for extended U.S. data

To deepen our understanding of the results presented so far, this paper estimates

forecast error variance decompositions (FEVD) for the extended data (for FEVD

of original time series, see appendix B). The estimates reveal how much of the

variability of stock returns and volatility, respectively, is accounted for by each of the

exogenous shocks included.
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Figure 5.9: Forecast error variance decompositions for the overall variability of U.S. real stock
returns (top) and U.S. realized volatility (bottom). Variance contribution measured in decimals and
sum to 1 at every horizon. Monthly data from 1974:2 to 2021:12.

Jointly, the oil market shocks explain 17,5% of the long run variation in stock

returns. Similar, but slightly less than the 22% previously found by Kilian and Park

(2009). Recalling that their model only contained four variables, there might be some

variation caused by volatility not accounted for, which is why their estimate might be

slightly higher. Other possible explanations could be the shift in the composition

of the stock market index, where there is an increasing focus on technology stocks

relative to energy stocks (Crowley, 2023). Alternatively, recent years have seen more

global movements caused by endogenous financial market disruptions (Norges Bank,

2022). Further, all three oil market shocks have similar explanatory powers, although

aggregate demand shocks accounts for slightly more of the variability of returns,

6,7%. Real activity disruptions directly affect all aspects of the economy, not only the

oil price, and it is therefore reasonable for it to explain more of the overall variability

for all sectors of the stock market.

Oil market disruptions explain about 25% of the long run variation in U.S. stock

volatility. Demand shocks have significantly more influence, as the oil supply shocks

only account for 2% of the variability, underpinning our above mentioned results

of stock market variables as negligible to oil supply shocks. Shocks to aggregate

demand creates the most substantial effects, and can be linked to unrest in global
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real activity dynamics as a large contributor to stock market uncertainty. Oil-specific

demand shocks essentially induce fear for future oil price increases and therefore

connects directly to stock market volatility, increasing its explanatory power over the

long run (Bastianin & Manera, 2018).

Noticeably, shocks to realized volatility explains almost as much of the variation in

returns as the three oil market shocks combined. Nevertheless, the aforementioned

research question relates to how oil market shocks affect the stock market, and

examinations of exogenous stock market shocks therefore lie outside the scope of

this thesis. Conclusively, we defer this to later research.

5.2.2 Combined model Norwegian data

With the intent of examining how stock returns and volatility responds to oil market

disruptions in Norway, we regress our model on Norwegian stock market data for

the time frame 1996:1-2021:12. To unify the new result with the U.S. findings, it is

prudent to also make a comparable sample from the U.S. starting in 1996. Exclusion

is a necessity for separating the differences caused by the shorter sample length

from those due to structural characteristics of the Norwegian and U.S. stock markets.

Notice that excluding information from the model involves removing the energy crisis

of the late 1970s in addition to several other economic events taking place in the

previous millennia (Blanchard & Gali, 2007). Caution has therefore been taken when

interpreting results. Further, we provide an analysis of how the Norwegian stock

market variables are affected compared to those of the U.S. by exploring impulse

response functions and forecast error variance decompositions produced from the

SVAR model.

5.2.2.1 Informative summary on Norwegian and U.S. markets

In the interest of fostering a deeper understanding how the market dynamics in

Norway and the U.S. has evolved over time, and their contra-distinctive features, this

paper briefly presents some of the distinct factual differences between the countries.

The U.S. is a major world economy, and has historically been an oil importer, but

due to the shale oil revolution, they have recently increased their exports of oil. Net

imports for oil peaked in 2005, and have since decreased rapidly, reaching an all time
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low with negative net imports in 2020 (EIA, 2022).

The oil sector, as part of the total value of S&P 500, has been persistently decreasing

in favor of other sectors, e.g technology, today making up only 5,3% of the index’s

total value (Crowley, 2023). Norway is a small, open economy, who’s main export is

oil, making up 60% of total Norwegian exports in 2021 (Norsk Petroleum, 2023a) and

21,3% of total GDP for the same year (Norsk Petroleum, 2023b). This is mirrored

in the main stock return index, OSEBX, which is made up of approximately 20%

oil, while other sectors account for the remaining 80% (Johansen, 2020). Although

oil is a relatively larger part of the Norwegian stock market, the index is measured

in NOK, which often acts as a dampening mechanism for the oil price, measured

in USD. Conversely, the U.S. does not have any currency softening effects, and is

therefore fully exposed to the price changes.

5.2.2.2 Fundamental oil market shocks

Figure 5.10: Cumulative impulse response functions (blue) of global oil production, real economic
activity, and the real oil price to 1-standard deviation sized structural shocks. 1 and 2 standard
deviation error bands (green). U.S. monthly data from 1996:1 to 2021:12.
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Figure 5.11: Cumulative impulse response functions (blue) of global oil production, real economic
activity, and the real oil price to 1-standard deviation sized structural shocks. 1 and 2 standard
deviation error bands (green). Norwegian monthly data from 1996:1 to 2021:12.

Reporting the IRFs for the global oil market variables, it is prevalent that the responses

subject to structural demand shocks are similar to those previously presented.

However, subjecting the variables to an unexpected oil supply disruption now yields

significant responses, unlike before. The real price of oil is persistently increased,

and real activity simultaneously reacts negatively before increasing and staying

significantly positive towards the end of the horizon. Nonetheless, a common change

for all responses is the increased width of their error bands, an unsurprising result as

excluding information elicits higher uncertainty. Reporting the differences between

the responses of the U.S. and Norway, there are no significant deviations, indicating

that the global oil market variables exhibit equal importance when examining both

stock markets. In accordance, the behavior of the oil market variables can be

interpreted as a result of their structural dynamics.
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5.2.2.3 Oil supply shock to U.S. and Norwegian stock market

Figure 5.12: Cumulative impulse response functions (blue) of real stock returns and realized volatility
subject to a 1-standard deviation sized oil supply shock. 1 and 2 standard deviation error bands
(green). Monthly data from 1996:1 to 2021:12 for the U.S. (top row) and Norway (bottom row).

Investigating the effects from the unexpected decline in the international production

of oil, there are noticeable differences compared to the earlier time frame. The stock

markets now respond significantly both in the U.S. and Norway, positing an increased

importance of supply disruptions in more recent years. This is contradictory to the

findings of Kilian (2009), where he suggests that oil price disruptions historically

have been driven solely by demand shocks when decomposing the fluctuations.

Moreover, recalling the significant response displayed by the real price of oil subject

to supply shortfalls, this can further manifest through an immediate decline and

persistent response for stock returns due to higher production costs. In line with

existing financial theory on market dynamics (Bae et al., 2007), volatility exhibits an

inversely correlated response for the extent of the horizon. This further supports the

argument of increased supply disruption effects.

Taking a closer look at the impulse responses for the U.S. stock market, the returns

display a negative reaction on impact, lasting only two months, followed by a period

of positive, statistically significant returns. However, this response is also short lived

as the impulse quickly declines to a negative level for the remaining first year. Further,

the inverse relationship with volatility is visible throughout the response horizon.

The Norwegian stock market, unlike the U.S., responds with an immediate increase
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in returns, and an inversely related negative volatility. This persists for six months,

after which, like in the U.S., the returns decrease and stay negative for the remaining

first year. Simultaneously with the decrease in Norwegian stock returns, volatility

increases and hoovers right above the steady state, but is not statistically significant

at the 1-standard deviation level.

Further, examining the economic interpretation for the immediate positive response

of Norwegian returns, a sudden supply shortfall indicates a decline in the international

availability of oil. Norway, as an oil exporter, will plausibly become a relatively larger

market player and can reap the benefit of this advantageous position. In essence, oil

invested firms listed on the Norwegian stock exchange, e.g Equinor, could experience

increased market capitalization, transmitting to the immediate increased returns

referred to in the empirical analysis.

An economic interpretation of the instantaneous drop of stock returns should take

into account the dynamic changes the U.S. oil- and stock market sectors have seen

over the previous decades. From increased exportation of oil, we would expect

higher returns as seen in Norway, however, the U.S. impulse responses tell another

story. While exports have increased since 2005 (EIA, 2022), the technology sector

has seen a greater surge of investment, making up 27,1% of the S&P 500’s market

value (Crowley, 2023), making the relative importance of the energy sector smaller

compared to other sectors on the stock market. Recalling the increased price of oil

and the lower aggregate demand that oil supply shortfalls now induce, the variation

in the stock market can be a result of increased production costs and lower sales in

other sectors e.g technology, that manifest itself through lower profits and then also

decreased returns.

Following the first six months with varying responses for Norway and the U.S., a

period of negative returns can be observed for both countries. Recalling the trajectory

of the price of oil in response to the unanticipated supply disruption, there is a

delayed, persistent increase after about six months, much larger in size than the initial

reaction. One possible explanation is the example where higher production costs

affect the U.S. returns negatively. The delayed effect seems to be of a size substantial

enough to also yield a net negative effect for Norwegian returns, accompanied by
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persistent positive volatility.

The possible explanations presented so far, speak in favor of an equity value drop,

i.e. firms become more leveraged, and as a result more risky. Therefore, the theory

supports these results of a dominant leverage effect at play in the market dynamics.

Further, this can also be observed visually in the IRFs, where volatility reacts one

period later than returns throughout most of the impulse horizon. Conclusively,

returns is the causal driver for the stock market relationship with volatility in response

to supply shortfalls for both the Norwegian and U.S. stock markets.

Given the degree in which the results presented in this section deviate from the

existing literature e.g. Kilian and Park (2009) and Bastianin and Manera (2018),

we hesitate to draw a final conclusion on the effect of supply shortfalls, but refer to

future research with more advanced models for further exploration (see section 7

Future work).

5.2.2.4 Aggregate demand shock to U.S. and Norwegian stock market

Figure 5.13: Cumulative impulse response functions (blue) of real stock returns and realized volatility
subject to a 1-standard deviation sized aggregate demand shock. 1 and 2 standard deviation error
bands (green). Monthly data from 1996:1 to 2021:12 for the U.S. (top row) and Norway (bottom row).

Earlier, we experienced that newer time series increased the effects on U.S. stock

returns and volatility when exposed to a shock to aggregate demand. Examining

the impulse responses for a sample containing data spanning 1996:1-2021:12, the

increased effects now seem even more vast. Appreciating the fact that IRFs essentially
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provides the average effects, it is unsurprising to see responses of a greater magnitude

when only using the latter part of the sample, which visually containsmoremovements,

reiterating our suspicions of unequal variance.

Reporting the U.S. stock returns response subject to an aggregate demand shock, an

immediate positive effect can be observed, persisting for approximately six months.

Norway displays a similar trajectory, albeit larger in size and shorter lasting. Similar

responses continue throughout the impulse horizon where the tendencies of the

responses are the same. Following the initial positive effect, both countries display

an extended period of negative returns for most of the remaining horizon, albeit often

insignificant. Further, volatility of stock prices show an inverse relationship to the

returns for both countries.

From an economic interpretation of the empirical results, the initial increase occurring

in both U.S. and Norwegian data can be explained by the two effects induced by

aggregate demand shocks. Immediately, increased profits as a result of improved

business conditions. Later, the increased real activity causes a higher oil price, which

translates to a delayed increase in production costs (Kilian & Park, 2009). This

results in lower profitability, and more leveraged firms, i.e. lower returns. Noticeably

the delayed effect seems smaller in Norway, as it is hovering around the steady state,

being insignificant for most of the response horizon. The occurrence of the latter

effect can yield positive returns for the oil sector, while higher production costs for

other sectors yield lower returns. The two dynamic structures seem to compete, and

might cancel each other out. Thus, Norway’s heavy investment in oil (Johansen,

2020) can be inducing the insignificant response, and also explain why the U.S. sees

a more negative response throughout.
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5.2.2.5 Oil-specific demand shock to U.S. and Norwegian stock market

Figure 5.14: Cumulative impulse response functions (blue) of real stock returns and realized volatility
subject to a 1-standard deviation sized oil-specific demand shock. 1 and 2 standard deviation error
bands (green). Monthly data from 1996:1 to 2021:12 for the U.S. (top row) and Norway (bottom row).

In light of the results provided earlier of U.S. stock returns and volatility subject to a

precautionary demand shock, the results using a shorter data length are unsurprising.

The trend of stock returns moving in a positive direction in the extended sample is also

visible when examining the latest IRF, as the immediate reaction is now positive and

clearly statistically different from zero. The volatility of stock prices is asymmetrically

related, reacting negatively on impact and persisting for approximately four months.

Further, the response of stock returns shifts between statistically positive and negative

results throughout the remaining horizon. Inspecting the empirical results of the

Norwegian model, stock return responses follow a similar trajectory to that of the

U.S., albeit smaller in magnitude. Nonetheless, returns are only significantly positive

at the 1 standard deviation level for one period, fading into insignificance for the

remaining response horizon. Volatility is still negatively correlated, but significant at

the 1 standard deviation level for the first three months.

Economically interpreting the Norwegian stock market dynamics, an increased

oil price will instantaneously generate positive returns in the oil sector, inducing

increasedwealth in the Norwegian economy given their role as an oil exporter. Further,

other sectors experience negative consequences from a price increase, decreasing

their profits and canceling out the initial wealth effect (Jung & Park, 2011). The
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Norwegian responses are corroborated by Jung and Park’s (2011) findings, suggesting

positive initial effects for an oil-exporter, later offset by increased production costs.

The Newer U.S. time series also suggests tendencies of a positive initial response,

previously explained by increased oil-exports, consequently likening their responses

more to those of Norway in recent years.

Remembering that the precautionary demand shock can be interpreted as an increase

in the expectation of future supply shortfalls, the shock essentially creates fear

(Bastianin & Manera, 2018). This also elicits a persistent negative response for real

activity six months after the occurrence of the initial precautionary demand shock.

Norway is a small open economy, and unlike the U.S., does not possess the same

market power as larger countries. They are therefore more exposed to global business

cycles (Jung & Park, 2011), which can be seen in the increased volatility from the

fourth period, albeit insignificant. Global effects therefore seem to cancel out the

negative response, explaining why the initial effect is so short lived.

5.2.2.6 Forecast error variance decompositions for Norwegian data
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Figure 5.16: Forecast error variance decompositions for the overall variability of Norwegian real
stock returns (top) and Norwegian realized volatility (bottom). Variance contribution measured in
decimals and sum to 1 at every horizon. Monthly data from 1996:1 to 2021:12.

Exploring the overall variability in the Norwegian data, the three oil price shocks

account for approximately 30% of stock returns in the long run. Supply shocks

account for 13,7% of the variation in the Norwegian stock returns. The importance

of the shock has also increased in the newer U.S. time series to 12,97% at the infinite

horizon (see appendix B). The results corroborate our analysis, indicating higher

importance of global oil supply shortfalls to stock market variables in later years.

Shocks to aggregate demand have also increased as an explanatory factor for the long

run variability in Norwegian stock returns, now by a representative 9,7%. Recalling

the assumption that increased profits as a result of improved business conditions in

the oil sector largely affects the Norwegian economy, the results seem reasonable.

Jointly, the oil market shocks explain 36,8% of the variation in the volatility of

Norwegian stock prices, distinctly larger than previously accounted for in the U.S.

The dominating oil market shock is that of aggregate demand, initially accounting

for 6,6% of the variability, moreover increasing to 18,3% in the long run. Initially,

supply shocks explain a larger portion of the variability than oil-specific demand

shocks, however as the abovementioned, delayed uncertainty effect commences in

full, they end up accounting for about the same amount of variability, 9% each.
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In total, the oil market accounts for a larger portion of the Norwegian stock market

than that of the U.S., insinuating that Norway’s vulnerability to oil market disruptions

is of a higher degree. Conclusively, exogenous shocks to returns and volatility have

greatest explanatory powers for each other. This is deferred for future research as it

is outside the scope of this thesis.

6 Conclusion

The objective of this thesis has been to investigate how stock returns and volatility

responds to oil price shocks in the United States and Norway. Inclusively, we shed

light on the relationship between oil and stock market dynamics, by controlling for

the relations between stock returns and volatility. For examination, we have adapted

the structural vector autoregressive model introduced by Kilian (2009), that allows for

disentangling the fundamental oil price disruptions. Additionally, we have extended

the model by including two variables representing the dynamics of the stock market;

real stock returns, and realized volatility. Our approach builds on replicating the

existing research papers presented by Kilian and Park (2009) and Bastianin and

Manera (2018), who examine how isolated returns- and volatility responses are

impacted by oil price shocks. Following our replications, we have merged the model

structures into one combined model, enabling an analysis accounting for the effects

on both returns and volatility.

Application of the combined model on U.S. data from 1974:2 to 2021:12 allowed

for a detailed examination of how the stock market reacted to different oil market

disruptions while also including the structural dynamics of the markets today.

Corroborated by Kilian and Park (2009) and Bastianin and Manera (2018), subject to

an unexpected supply shortfall, the findings presented show no significant responses

of neither returns nor volatility, and have minuscule explanatory powers for the

variability of the stock market variables.

Conversely, shocks to aggregate demand have the greatest explanatory power,

accounting for 6,7% and 13,5% of the long run variation of returns and volatility,

respectively. In response to an unanticipated shock, volatility decreases while both oil

price and U.S. returns instantly increase as a result of improved business conditions.
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However, a delayed cost increase from the oil price, decreases returns. A lower

equity value results in more systematic risk and leveraged firms (Bae et al., 2007).

Consequently, the leverage effect motivates a simultaneous upswing in volatility.

In contradistinction to Kilian and Park’s (2009) findings, this thesis does not report

an immediate decrease in stock returns subject to an oil-specific demand shock when

examining the extended model. On the contrary, it is insignificant, while the volatility

responds in a clearly negative manner on impact. A possible explanation is the

enablement of oil exportation, brought on by the shale oil revolution (Zhou, 2020),

allowing for U.S. oil-invested firms to capture the benefits of a higher oil price. Our

findings are further vindicated by Bastianin and Manera (2018) who find similar

tendencies, albeit smaller in size. In line with their interpretation, we postulate that

the shock to expectations of future supply shortfalls further spawn fear, inducing a

delayed increase in volatility, visible from around 4 months. The feedback effects

transmit the reaction back to returns, which is significantly negative after 8 months.

We postulate that volatility is the driver for the movements of the stock markets in

the U.S. subject to oil-specific demand shocks, rather than returns, as presumed by

Kilian and Park (2009).

Our investigation of the oil-stock price nexus in the U.S. shows that for the most part,

oil market dynamics are very robust, where demand shocks affect both the oil price

and stock price significantly, while supply shocks were considered negligible. Still,

we challenge this assumption with our findings when only examining the recent years.

Concerning the link between returns and volatility, when controlling for the variables,

they significantly alter their movements in response to the oil market shocks. Returns

have long been a commonly used measure when examining the oil and stock market

structures e.g. Kilian and Park (2009) and Alsalman and Herrera (2015), but our

findings indicate that volatility also plays a significant part when examining the

oil-stock price relationship.

We next applied our extension to Norwegian stock market data, and examined the

response based on monthly information in the interval 1996:1-2021:12. The most

unexpected result presented in this thesis is derived from subjecting Norwegian

returns and volatility to an international oil supply shortfall. Supply shocks have
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substantially higher explanatory powers for the stockmarket variability, accounting for

13,7% and 9,5%, respectively. This thesis reported an immediate positive reaction in

stock market returns, accompanied by negative volatility. We propose the movements

to be a result of Norway’s role as an oil exporter. In essence, a lower international

availability of oil increases the exporters relative market power, and Norwegian oil

invested firms therefore increase their market capitalization. Increased equity value

suggests the leverage effect as the dominating transmission mechanism for the stock

market variables in response to the shock (Bae et al., 2007). This persists for six

months, after which the impulse responses shift to the opposite reaction, depicting

a delayed effect. Our results are distinctly different from most existing research.

Considering we utilized a shorter datasample, we hesitate to draw a final conclusion,

but defer to future work examining the responses for the Norwegian stock market.

Further enhancing the tendencies of the extended model when subjecting stock market

variables to aggregate demand shocks, Norwegian stock returns react positively

on impact and volatility, negatively. The same initial boosting effect described

above applies in this instance, moreover, the aforementioned delayed cost increase

brought on by the shock, has a dual effect, where it increases returns for the oil

sector, while simultaneously decreasing returns for other sectors, justifying why the

negative returns are not statistically significant. Aggregate demand shocks have

greater explanatory powers for both returns and volatility relative to the other oil

market shocks in the initial periods, however, it is not the main driver for the long

run variability of stock returns.

Oil-specific demand shocks explain the least amount of variability in the Norwegian

stock market variables at every horizon. Volatility reacts negatively in the first three

months, following a period of positive response from the variable. Returns are

inversely related. The shock symbolized increased fear for the future, so although we

observe an initial wealth effect for the oil-focused sector, this is quickly suppressed by

increasing uncertainty affecting all sectors of the stock market (Jung & Park, 2011).

When examining the Norwegian oil- and stock market dynamics, we find significant

changes compared to the U.S., specifically, larger responses when subject to aggregate

demand and oil supply disruptions. Conversely, the Norwegian stock price does not
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react as much as the U.S. to an oil-specific demand shock and it has little explanatory

powers for the movements in Norway. Considering that Norway is an oil exporter,

with heavy oil investments, these results are expected. Our findings should serve

as a reminder that the U.S., although a major player in the world economy, is not

representative of the structural dynamics of all countries in the world when examining

the complex relationships of the oil- and stock prices.

This thesis is a contribution to the debate surrounding oil price shocks, while at

the same time unifying perspectives from financial literature with macroeconomic

research. Investigating the relations between stock returns and volatility allow for

deeper exploration of the stock market dynamics in response to oil market disruptions.

The current global economic landscape is heavily influenced by financial distress,

both in the oil- and stock markets. This paper attempts to provide a greater perception

on how the dynamic relationships behave relative to each other, by quantifying the

fluctuations we observe today. Hopefully, our thesis can motivate future research on

this topic, generating even broader understanding for the underlying oil- and stock

market structures.
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7 Future Work

A closely related exploration of the stock market dynamics to our contribution, is

application of alternative proxies for the underlying volatility of the stock market,

such as conditional or implied volatility. For instance, implied volatility is forward

looking, and could provide a deeper understanding of the expectation aspect of the

current oil price (Aït-Sahalia et al., 2013). Inclusion of an alternative measure in our

model could facilitate a broader examination of how oil price shocks impact stock

volatility. Degiannakis et al. (2014) utilized these measures to estimate the volatility

of the European stock market and applied the time series to a SVAR model subject to

oil market shocks. Separation of the moments of the stock market distribution in

a SVAR using these volatility measures could be interesting to examine for a more

comprehensive understanding of stock returns and volatility subject to oil market

disruptions.

An alternative avenue for further extension of our research, is to analyze the responses

of the variables we have defined, using alternative methods for identification, e.g.

sign restrictions as described by Kilian and Murphy (2012). We propose controlling

for both returns and volatility, as it will provide a more complete picture of the stock

market dynamics in response to oil market shocks, without the imposed immediate

restriction our model employs.

Alternatively, inclusion of both the first and second moments of the stock market

price in a Time-Varying VAR approach is interesting given the recent increase in

the variance of the aggregate demand time series. As the approach allows for the

coefficients of the VAR equations to change over time (Kilian & Lütkepohl, 2017,

p. 630), this could clarify whether the changes we found in the newest sample are a

result of structural changes to the global economy. If the latter is correct, application

of alternative representative series for aggregate demand to our approach, like the

measure developed by Hamilton (2021), is appropriate.

Going even further, Bjørnland et al. (2023) examined the complete stock market

distribution subjected to oil market shocks by examining the responses of mean,

variance, skewness and kurtosis of the S&P 500. The authors developed a Mixed
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VAR model that allows for examination of both functional and aggregate time series

jointly subject to both conventional and distributional shocks (Bjørnland et al., 2023).

Application of this model to Norwegian data could be interesting for further delving

into how the stock market dynamics differs based on whether the nation is an exporter

or importer of oil.

42



References

Aït-Sahalia, Y., Fan, J., & Li, Y. (2013). The leverage effect puzzle: Disentangling

sources of bias at high frequency. Journal of Financial Economics, 109(1),

224–249.

Alsalman, Z., & Herrera, A. M. (2015). Oil price shocks and the us stock market: Do

sign and size matter? The Energy Journal, 171–188.

Bae, J., Kim, C.-J., & Nelson, C. R. (2007). Why are stock returns and volatility

negatively correlated? Journal of Empirical Finance, 14(1), 41–58.

Bastianin, A., & Manera, M. (2018). How does stock market volatility react to oil

price shocks? Macroeconomic Dynamics, 22(3), 666–682.

Bjørnland, H. C., Chang, Y., & Cross, J. (2023). Oil and the stock market revisited:

A mixed functional var approach. Center for applied macroeconomy and

commodity prices, 3.

Bjørnland, H. C., & Thorsrud, L. A. (2015). Applied time series for macroeconomics.

Gyldendal akademisk.

Blanchard, O. J., & Gali, J. (2007). The macroeconomic effects of oil shocks: Why

are the 2000s so different from the 1970s?

Chang, P., Pienaar, E., & Gebbie, T. (2020). Using the epps effect to detect discrete

processes.

Crowley, K. (2023). Fossil fuel profits roar back, producing 10% of s&p 500 earnings.

Bloomberg.com. Retrieved May 30, 2023, from https://www.bloomberg.com/

news/articles/2023-01-25/fossil-fuel-profits-roar-back-producing-10-of-s-

p-500-earnings#xj4y7vzkg.

Degiannakis, S., Filis, G., & Kizys, R. (2014). The effects of oil price shocks on stock

market volatility: Evidence from european data. The Energy Journal, 35(1).

Dong, T. (2022). U.s. investors: Total stock market or s&p 500? ETF Central.

Retrieved March 30, 2023, from https: / /www.etfcentral .com/news/us-

investors-total-stock-market-sp-500.

EIA. (2013). EIA’s Proposed Definitions for Natural Gas Liquids. Retrieved June 14,

2013, from https://www.eia.gov/pressroom/releases/archives/2013/06/14/

43

https://www.bloomberg.com/news/articles/2023-01-25/fossil-fuel-profits-roar-back-producing-10-of-s-p-500-earnings#xj4y7vzkg
https://www.bloomberg.com/news/articles/2023-01-25/fossil-fuel-profits-roar-back-producing-10-of-s-p-500-earnings#xj4y7vzkg
https://www.bloomberg.com/news/articles/2023-01-25/fossil-fuel-profits-roar-back-producing-10-of-s-p-500-earnings#xj4y7vzkg
https://www.etfcentral.com/news/us-investors-total-stock-market-sp-500
https://www.etfcentral.com/news/us-investors-total-stock-market-sp-500
https://www.eia.gov/pressroom/releases/archives/2013/06/14/


EIA. (2022). Oil imports and exports - U.S. Energy Information Administration.

Retrieved May 30, 2023, from https://www.eia.gov/energyexplained/oil-and-

petroleum-products/imports-and-exports.php

EIA. (2023a). Petroleum and other liquids. Retrieved February 15, 2023, from

https : / /www. eia . gov / international / data /world / petroleum- and - other-

liquids / annual - petroleum - and - other - liquids - production ? pd = 5&p=

0000000000000000000000000000000000g&u=0&f=M&v=line&a=-

&i=none&vo=value&t=C&g=none&l=249--249&s=725846400000&e=

1659312000000

EIA. (2023b). U.S. Crude Oil Imported Acquisition Cost by Refiners (Dollars per

Barrel). Retrieved January 15, 2023, from https://www.eia.gov/dnav/pet/hist/

LeafHandler.ashx?n=PET&s=R1300____3&f=A

EIA. (2023c).Where our oil comes from - in depth. Retrieved May 14, 2023, from

https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-

our-oil-comes-from-in-depth.php

Euronext. (2023).OsloBørs Benchmark IndexComposition [Composition information

per 31st of march 2023]. Retrieved May 14, 2023, from https://live.euronext.

com/nb/product/indices/NO0007035327-XOSL/market-information

FRED. (2023). Index of Global Real Economic Activity (IGREA). Retrieved February

14, 2023, from https://fred.stlouisfed.org/series/IGREA

Hamilton, J. D. (1983). Oil and the macroeconomy since world war ii. Journal of

political economy, 91(2), 228–248.

Hamilton, J. D. (2021). Measuring global economic activity. Journal of Applied

Econometrics, 36(3), 293–303.

Hillier, D., Ross, S., Westerfield, R., Jaffe, J., & Jordan, B. (2016). Corporate finance,

3e. McGraw Hill.

Johansen, E. (2020). Hvor følsom er egentlig oslo børs overfor svingninger i

oljeprisen? Retrieved May 29, 2023, from https://dnbam.com/no/finance-

blog/hvor-folsom-er-egentlig-oslo-bors-overfor-svingninger-i-oljeprisen

Jung, H., & Park, C. (2011). Stock market reaction to oil price shocks: A comparison

between an oil-exporting economy and an oil-importing economy. Journal of

Economic Theory and Econometrics, 22(3).

44

https://www.eia.gov/energyexplained/oil-and-petroleum-products/imports-and-exports.php
https://www.eia.gov/energyexplained/oil-and-petroleum-products/imports-and-exports.php
https://www.eia.gov/international/data/world/petroleum-and-other-liquids/annual-petroleum-and-other-liquids-production?pd=5&p=0000000000000000000000000000000000g&u=0&f=M&v=line&a=-&i=none&vo=value&t=C&g=none&l=249--249&s=725846400000&e=1659312000000
https://www.eia.gov/international/data/world/petroleum-and-other-liquids/annual-petroleum-and-other-liquids-production?pd=5&p=0000000000000000000000000000000000g&u=0&f=M&v=line&a=-&i=none&vo=value&t=C&g=none&l=249--249&s=725846400000&e=1659312000000
https://www.eia.gov/international/data/world/petroleum-and-other-liquids/annual-petroleum-and-other-liquids-production?pd=5&p=0000000000000000000000000000000000g&u=0&f=M&v=line&a=-&i=none&vo=value&t=C&g=none&l=249--249&s=725846400000&e=1659312000000
https://www.eia.gov/international/data/world/petroleum-and-other-liquids/annual-petroleum-and-other-liquids-production?pd=5&p=0000000000000000000000000000000000g&u=0&f=M&v=line&a=-&i=none&vo=value&t=C&g=none&l=249--249&s=725846400000&e=1659312000000
https://www.eia.gov/international/data/world/petroleum-and-other-liquids/annual-petroleum-and-other-liquids-production?pd=5&p=0000000000000000000000000000000000g&u=0&f=M&v=line&a=-&i=none&vo=value&t=C&g=none&l=249--249&s=725846400000&e=1659312000000
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=R1300____3&f=A
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=R1300____3&f=A
https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-our-oil-comes-from-in-depth.php
https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-our-oil-comes-from-in-depth.php
https://live.euronext.com/nb/product/indices/NO0007035327-XOSL/market-information
https://live.euronext.com/nb/product/indices/NO0007035327-XOSL/market-information
https://fred.stlouisfed.org/series/IGREA
https://dnbam.com/no/finance-blog/hvor-folsom-er-egentlig-oslo-bors-overfor-svingninger-i-oljeprisen
https://dnbam.com/no/finance-blog/hvor-folsom-er-egentlig-oslo-bors-overfor-svingninger-i-oljeprisen


Kilian, L., & Lütkepohl, H. (2017). Structural vector autoregressive analysis.

Cambridge University Press. https://doi.org/10.1017/9781108164818

Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and

supply shocks in the crude oil market. American Economic Review, 99(3),

1053–1069.

Kilian, L. (2019). Measuring global real economic activity: Do recent critiques hold

up to scrutiny? Economics Letters, 178, 106–110.

Kilian, L., & Murphy, D. P. (2012). Why agnostic sign restrictions are not enough:

Understanding the dynamics of oilmarket varmodels. Journal of the European

Economic Association, 10(5), 1166–1188.

Kilian, L., & Park, C. (2009). The impact of oil price shocks on the us stock market.

International economic review, 50(4), 1267–1287.

Kilian, L., & Zhou, X. (2023). The econometrics of oil market var models. Essays in

honor of joon y. park: Econometric methodology in empirical applications

(pp. 65–95). Emerald Publishing Limited.

Merton, R. C. (1980). On estimating the expected return on themarket: An exploratory

investigation. Journal of financial economics, 8(4), 323–361.

Norges Bank. (2022). Financial stability report 2022: Vulnerabilities and risks.

Norsk Petroleum. (2023a). Eksport av olje og gass. Retrieved May 30, 2023, from

https://www.norskpetroleum.no/produksjon-og-eksport/eksport-av-olje-og-

gass/

Norsk Petroleum. (2023b). Statens inntekter. Retrieved May 30, 2023, from https:

//www.norskpetroleum.no/okonomi/statens-inntekter/

Schwert, G. W. (1989). Why does stock market volatility change over time? The

journal of finance, 44(5), 1115–1153.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica: journal of the

Econometric Society, 1–48.

Zhou, X. (2020). Refining the workhorse oil market model. Journal of Applied

Econometrics, 35(1), 130–140.

Zoll, A. (2013). S&p 500 or total stock market index for u.s. exposure? Retrieved

March 30, 2023, from https://www.morningstar.ca/ca/news/185437/sp-500-

or-total-stock-market-index-for-us-exposure.aspx

45

https://doi.org/10.1017/9781108164818
https://www.norskpetroleum.no/produksjon-og-eksport/eksport-av-olje-og-gass/
https://www.norskpetroleum.no/produksjon-og-eksport/eksport-av-olje-og-gass/
https://www.norskpetroleum.no/okonomi/statens-inntekter/
https://www.norskpetroleum.no/okonomi/statens-inntekter/
https://www.morningstar.ca/ca/news/185437/sp-500-or-total-stock-market-index-for-us-exposure.aspx
https://www.morningstar.ca/ca/news/185437/sp-500-or-total-stock-market-index-for-us-exposure.aspx


Appendices

Appendix A:

Stationarity, stability and lag order selection

Information Criteria

The Akaike information criterion (AIC) and the Schwarz information criterion, also

known as the Bayesian information criterion (BIC), are two different methods for

determining the lag order selection for a vector autoregressive model. Including too

few lags will omit valuable information and result in residual autocorrelation, while

including too many lags can cause unreliable parameter estimates. The intuition

behind information criteria tests are as follows; we seek to minimize the estimate, the

first term of the measurement contains the residual covariance matrix estimator and

rewards us for including extra information (see equation 1 and 2 below). Conversely,

the second term penalizes larger lag orders to avoid over-fitting (Kilian & Lütkepohl,

2017, pp. 54–55). As seen from our estimates below, the BIC generally penalizes

increased lag orders more than the AIC. We present both tests for the replications

and main models presented in our thesis.

AIC(m) = ln(det(Σ̃e(m))) +
2

T
(mK2 +K) (A.1)

BIC(m) = ln(det(Σ̃e(m))) +
log(T )

T
(mK2 +K) (A.2)

Thesemeasures, although common, are usually considered too simplistic for analyzing

the oil market as it fails to capture the rewards of delayed effects of the shocks to

the economy. It is therefore standard practice to select either 12 or 24 lags when

working with monthly data (Kilian & Lütkepohl, 2017, p. 56). This paper reassesses

and extends upon the research of Kilian and Park (2009) and Bastianin and Manera

(2018), who both opted for a 24 lag order. Hence, we have done the same.
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Table A.1: AIC and BIC test - Replication models

Kilian & Park (2009) Bastianin & Manera (2018)

Lags AIC BIC AIC BIC

1 16.1263 16.2656 16.3577 16.497

2 15.8007 16.0798 15.9616 16.2407

3 15.7808 16.2002 15.9154 16.3348

4 15.8106 16.3707 15.8256 16.3857

5 15.8156 16.5168 15.8349 16.5361

6 15.8514 16.6942 15.8504 16.6932

7 15.8773 16.8621 15.8757 16.8606

8 15.9199 17.0473 15.919 17.0463

9 15.9361 17.2064 15.9453 17.2155

10 15.9666 17.3803 15.9683 17.382

11 15.9865 17.5441 15.9776 17.5352

12 15.9895 17.6914 16.0173 17.7193

13 15.989 17.8358 16.0117 17.8585

14 16.015 18.0071 16.0051 17.998

15 16.0264 18.1642 16.0345 18.1723

16 16.065 18.349 16.0569 18.341

17 16.1158 18.5466 16.1035 18.5343

18 16.146 18.724 16.1321 18.7101

19 16.1833 18.909 16.1468 18.8725

20 16.1828 19.0567 16.1737 19.0476

21 16.1635 19.186 16.1503 19.1729

22 16.1435 19.3152 16.1466 19.3184

23 16.1746 19.496 16.1866 19.508

24 16.2396 19.7112 16.2448 19.7164

AIC and BIC tests (LTR), Kilian and Park replication, Bastianin and Manera replication
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Table A.2: AIC and BIC tests - U.S. combined models

U.S. 1974:2-2006:12 U.S. 1974:2-2021:12

Lags AIC BIC AIC BIC

1 16.9619 17.1231 18.1989 18.3201

2 16.6436 16.9665 17.8854 18.1281

3 16.6584 17.1438 17.8361 18.2006

4 16.7098 17.3581 17.8688 18.3555

5 16.7147 17.5267 17.8561 18.4652

6 16.7423 17.7185 17.8728 18.6047

7 16.7362 17.8774 17.8867 18.7417

8 16.779 18.0857 17.9012 18.8797

9 16.8187 18.2916 17.9171 19.0194

10 16.8438 18.4835 17.9346 19.1611

11 16.8414 18.6486 17.9454 19.2964

12 16.818 18.7933 17.9087 19.3845

13 16.8443 18.9884 17.9376 19.5385

14 16.8447 19.1583 17.9573 19.6837

15 16.858 19.3416 17.9696 19.8219

16 16.8703 19.5247 17.999 19.9775

17 16.9245 19.7504 18.029 20.1341

18 16.9649 19.9629 18.049 20.2809

19 17.0128 20.1837 18.0711 20.4302

20 17.0265 20.3708 18.1024 20.5892

21 17.0336 20.5521 18.1317 20.7464

22 16.9272 20.6206 18.0691 20.8121

23 16.9439 20.8129 18.0858 20.9575

24 16.9169 20.9622 18.1144 21.1152

AIC and BIC tests (LTR), U.S. combined model 1974:2-2006:12, U.S. combined model
1974:2-2021:12
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Table A.3: AIC and BIC tests - U.S. and Norway Combined models

U.S. 1996:1-1996:12 Norway 1996:1-2021:12

Lags AIC BIC AIC BIC

1 19.6803 19.9809 20.2665 20.5679

2 19.1345 19.7372 19.9937 20.5978

3 19.0742 19.9804 19.9455 20.8538

4 19.1368 20.3479 20.0204 21.2344

5 19.0965 20.6139 19.9663 21.4874

6 19.1079 20.9332 19.9795 21.8092

7 19.1701 21.3047 20.0917 22.2314

8 19.2191 21.6646 20.0684 22.5198

9 19.3253 22.083 20.1302 22.8945

10 19.4105 22.4821 20.2187 23.2977

11 19.5021 22.889 20.3122 23.7073

12 19.5243 23.2281 20.3763 24.0891

13 19.6279 23.6501 20.4824 24.5145

14 19.6683 24.0105 20.5433 24.8962

15 19.7314 24.3952 20.6177 25.293

16 19.7172 24.7042 20.6355 25.6348

17 19.7832 25.095 20.7571 26.082

18 19.8273 25.4654 20.8516 26.5037

19 19.871 25.8372 20.8639 26.8449

20 19.9266 26.2225 20.9804 27.292

21 20.0011 26.6282 20.9654 27.6091

22 19.9745 26.9346 21.0626 28.0402

23 20.0069 27.3017 21.1671 28.4803

24 20.0168 27.6479 21.1937 28.8442

AIC and BIC tests (LTR), U.S. combined model 1996:1-2021:12, Norwegian combined model
1996:1-2021:12
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Augmented Dickey-Fuller Tests

The Augmented Dickey-Fuller test is a one tailed test for examining whether the time

series included, have unit roots. Without unit roots, the data can be made stationary

and used for autoregressive analysis (Bjørnland & Thorsrud, 2015, p. 118). We

therefore perform ADF tests for all time series used in the thesis. The interpretation

is as follows; If the bar is below the stippled line, we can reject the null hypothesis of

the existence of unit roots in the time series at the critical level the line signifies

(Bjørnland & Thorsrud, 2015, pp. 118–119). We recognize that not all our time

series are stationary. Nevertheless, this is not detrimental to the model stability, as

described in the next section.

Figure A.1: ADF tests, U.S. combined model 1974:2-2006:12
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Figure A.2: ADF tests, U.S. combined model 1974:2-2021:12

Figure A.3: ADF tests, U.S. combined model 1996:1-2021:12
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Figure A.4: ADF tests, Norwegian combined model 1996:1-2021:12

Maximum eigenvalue of the companion form matrices

Even though ADF tests are useful for examining the singular variables for unit roots

at different lag orders, it is not strictly necessary for ensuring model stability. As

described in the thesis (see section 3 Methodology), we can ensure a stable model,

even in the presence of unit roots, so long as the all eigenvalues of the model’s

companion form matrix have an absolute value less than one. We therefore present

the stability examination for all SVARs reported in the thesis:

Table A.4: Maximum Eigenvalue of Companion Form Matrices

SVAR Max value

Replication of Kilian & Park (2009) 1974:2-2006:12 0.986472

Replication of Bastianin & Manera (2018) 1974:2-2013:12 0.993824

U.S. Combined model 1974:2-2006:12 0.988897

U.S. Combined model 1974:2-2021:12 0.982205

U.S. Combined model 1996:1-2021:12 0.988932

Norwegian Combined model 1996:1-2021:12 0.988858

All models used in thesis are stable and appropriate to use for economic analysis
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Appendix B:

Additional analytical tools for models presented in the thesis

Historical decompositions of the shocks

This thesis is mainly focused on interpreting IRFs and FEVDs, which both describe

the average movements in the data, representing the unconditional expectations

(Kilian & Lütkepohl, 2017, p. 116). For quantifying the historical fluctuations,

historical decompositions describe the cumulative effect of a given structural shock

on each variable at a given point in time. It can be a useful analytical tool for

examinations of which shocks caused most of the responses of the variables included

in the system during specific historical periods (Kilian & Lütkepohl, 2017, p. 116).

A noticeable response from the historical decompositions we have created, is that

in the combined model, aggregate demand shocks have a significantly negative

effect on U.S. stock returns (and positive effect on volatility) around 2008. This

implies, not surprisingly, that aggregate demand was the main driver behind the

movements of stock returns during the great recession. Further, the underlying oil

market disruptions have historically had a larger impact on the Norwegian stock

market movements than those of the U.S. More surprisingly, the oil price drop of

2014 did not significantly affect the overall stock market in Norway, even though this

was the general opinion of the public at the time.
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Figure B.1: Historical decompositions of the shocks, Kilian and Park with S&P 500 index,
1974:2-2006:12

Figure B.2: Historical decompositions of the shocks, Bastianin and Manera replication,
1974:2-2013:12
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Figure B.3: Historical decompositions of the shocks, combined model for the U.S. stock
returns, 1974:2-2006:12

Figure B.4: Historical decompositions of the shocks, combined model for the U.S. realized
volatility, 1974:2-2006:12
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Figure B.5: Historical decompositions of the shocks, combined model for the U.S. stock
returns, 1974:2-2021:12

Figure B.6: Historical decompositions of the shocks, combined model for the U.S. realized
volatility, 1974:2-2021:12
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Figure B.7: Historical decompositions of the shocks, combined model for the U.S. stock
returns, 1996:1-2021:12

Figure B.8: Historical decompositions of the shocks, combined model for the U.S. realized
volatility, 1996:1-2021:12
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Figure B.9: Historical decompositions of the shocks, combined model for Norwegian real
stock returns, 1996:1-2021:12

Figure B.10: Historical decompositions of the shocks, combined model for Norwegian
realized volatility, 1996:1-2021:12
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Forecast Error Variance Decompositions

We present forecast error variance decompositions, as described in section 5.2.1.4.

The rows in the tables below describe the FEVD for horizons 1, 2, 3, 12 and infinity,

respectively, and are measured in decimals that sum to 1 at every horizon.

Figure B.11: FEVD, Kilian & Park replication with S&P 500, 1974:2-2021:12

Table B.1: FEVD for the overall variability of U.S. real stock returns, 1974:2-2006:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

1 0.0045813 0.00004327 0.0071133 0.98826

2 0.0053612 0.00028659 0.025722 0.96863

3 0.0053649 0.0010165 0.062463 0.93116

12 0.015537 0.016837 0.085089 0.88254

∞ 0.063033 0.043495 0.11153 0.781194

FEVD,for U.S. real stock returns derived from S&P 500, 1974:2-2006:12
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Figure B.12: FEVD, Bastanin & Manera replication, 1974:2-2013:12

Table B.2: FEVD for the overall variability of U.S. stock volatility, 1974:2-2006:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

1 0.0010669 0.047406 0.0004142 0.95111

2 0.00094487 0.089576 0.0039059 0.90557

3 0.0010501 0.097984 0.0078975 0.89307

12 0.01138 0.12679 0.029518 0.83232

∞ 0.02625 0.16797 0.062342 0.74344

FEVD, U.S. stock volatility, 1974:2-2013:12
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Figure B.13: FEVD, U.S. stock returns, 1974:2-2006:12

Table B.3: FEVD for the overall variability of U.S. stock returns, 1974:2-2006:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

Volatility
shock

1 0.0054336 0.0035565 0.0047363 0.98627 0

2 0.0055571 0.0080808 0.033298 0.81763 0.13544

3 0.005518 0.008981 0.064867 0.78248 0.13815

12 0.016041 0.023413 0.080583 0.70295 0.17701

∞ 0.061442 0.055541 0.097858 0.6106 0.17456

FEVD, combined model for U.S. real stock returns, 1974:2-2006:12
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Figure B.14: FEVD, combined model U.S. volatility, 1974:2-2006:12

Table B.4: FEVD for the overall variability of U.S. stock volatility, 1974:2-2006:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Stock return
shocks

Other shock

1 0.000021771 0.00013992 0.0031198 0.028229 0.96849

2 0.0026388 0.0097008 0.0031885 0.029296 0.95518

3 0.0025992 0.0095206 0.0036604 0.031544 0.95268

12 0.030601 0.027442 0.024892 0.062366 0.8547

∞ 0.066805 0.063593 0.107 0.084301 0.6783

FEVD, combined model for U.S. realized volatility, 1974:2-2006:12
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Table B.5: FEVD for the overall variability of U.S. stock returns, 1974:2-2021:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

Volatility
shock

1 0.007224 0.00094448 0.00024365 0.99159 0

2 0.0090139 0.0013476 0.00024053 0.83986 0.14

3 0.0097181 0.018151 0.010838 0.81545 0.14954

12 0.019469 0.040825 0.019163 0.75431 0.16623

∞ 0.059228 0.06711 0.0488 0.66685 0.15802

FEVD, combined model for U.S. real stock returns, 1974:2-2021:12

Table B.6: FEVD for the overall variability of U.S. stock volatility, 1974:2-2021:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Stock return
shocks

Other shock

1 0.00063214 0.012516 0.045949 0.038556 0.90235

2 0.0013912 0.054083 0.056392 0.036852 0.85128

3 0.0013418 0.087628 0.061358 0.034985 0.81469

12 0.0081393 0.10968 0.063286 0.03867 0.78022

∞ 0.018117 0.13508 0.097198 0.059572 0.69004

FEVD, combined model for U.S. realized volatility, 1974:2-2021:12
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Figure B.15: FEVD, combined model U.S. stock returns, 1996:1-2021:12

Table B.7: FEVD for the overall variability of U.S. stock returns, 1996:1-2021:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

Volatility
shock

1 0.017973 0.0031462 0.0041832 0.9747 0

2 0.01441 0.0039456 0.025708 0.78215 0.17379

3 0.016162 0.054965 0.025552 0.73628 0.163704

12 0.04713 0.10145 0.042962 0.60047 0.20799

∞ 0.12974 0.12938 0.10874 0.40676 0.22539

FEVD, combined model for U.S. real stock returns, 1996:1-2021:12
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Figure B.16: FEVD, combined model U.S. stock volatility, 1974:2-2021:12

Table B.8: FEVD for the overall variability of U.S. stock volatility, 1996:1-2021:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Stock return
shocks

Other shock

1 0.0010092 0.025698 0.13944 0.034896 0.79896

2 0.016647 0.093348 0.1659 0.026048 0.69806

3 0.024872 0.17333 0.16944 0.023275 0.60988

12 0.043081 0.19657 0.16888 0.049585 0.54988

∞ 0.097752 0.20863 0.18452 0.076452 0.43265

FEVD, combined model for U.S. realized volatility, 1996:1-2021:12
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Table B.9: FEVD for the overall variability of Norwegian stock returns, 1996:1-
2021:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

Volatility
shock

1 0.0018726 0.0050633 0.012277 0.98079 0

2 0.010268 0.030386 0.010423 0.80503 0.14397

3 0.027909 0.068716 0.012959 0.75045 0.13997

12 0.091826 0.085742 0.017616 0.62799 0.17682

∞ 0.13748 0.097957 0.073489 0.50372 0.18736

FEVD, combined model for Norwegian stock returns, 1996:1-2021:12

Table B.10: FEVD for the overall variability of Norwegian stock volatility, 1996:1-
2021:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Stock return
shocks

Other shock

1 0.022792 0.065526 0.007608 0.18368 0.7284

2 0.020934 0.1007 0.01186 0.19535 0.67116

3 0.028457 0.11334 0.012761 0.21524 0.6382

12 0.0502 0.11727 0.02544 0.26177 0.54532

∞ 0.094731 0.18278 0.090159 0.22791 0.40442

FEVD, combined model for Norwegian realized volatility, 1996:1-2021:12
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Appendix C:

Application of alternative time series

Replication of Kilian and Park with CRSP

Kilian and Park (2009) estimates real stock returns using the monthly CRSP data.

However, to be consistent during our thesis by the use of only one price index, we have

used the S&P 500 to represent the stock market in all models. To ensure robustness

when changing the measurement, we therefore replicated the methodology from

Kilian and Park (2009) using both indices. Comparing the two shows only minor

differences.

Figure C.1: Impulse response functions, Kilian & Park replication with CRSP, 1974:2-2006:12
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Figure C.2: Historical decompositions, Kilian & Park replication with CRSP, 1974:2-2006:12

Figure C.3: FEVD, Kilian & Park replication with CRSP, 1974:2-2006:12
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Table C.1: FEVD for the overall variability of real stock returns, 1974:2-2006:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

1 0.0064856 0.00020957 0.013691 0.98545

2 0.00083093 0.0049703 0.046625 0.904757

3 0.0030442 0.0072286 0.052577 0.93715

12 0.015279 0.026003 0.068054 0.89066

∞ 0.06391 0.051209 0.10507 0.777981

FEVD, U.S. real stock returns derived from CRSP, 1974:2-2006:12

Bastianin and Manera replication ending in 2006

Bastianin and Manera (2018) used a sample containing data from 1973 lasting until

the end of 2013. In addition to replicating their paper using the original datasample,

we have also estimated an SVAR model containing data only until 2006. The reason

behind this is to enable us to compare the model with that of Kilian and Park (2009),

who only samples data until 2006. With this model we can detect whether differences

in the oil market variables between the two models, are due to the different stock

variables or simply the unequal data samples.

Figure C.4: Impulse response functions, Bastianin and Manera replication ending in 2006,
1974:2-2006:12
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Figure C.5: Historical decompositions, Bastianin and Manera replication ending in 2006,
1974:2-2006:12

Figure C.6: FEVD, Bastianin and Manera replication ending in 2006, 1974:2-2006:12
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Table C.2: FEVD for the overall variability of stock volatility, 1974:2-2006:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

1 0.0010669 0.047406 0.0004142 0.95111

2 0.00094487 0.089576 0.0039059 0.90557

3 0.0010501 0.097984 0.0078975 0.89307

12 0.01138 0.12679 0.029518 0.83232

∞ 0.02625 0.16797 0.062342 0.74344

FEVD, combined model for U.S. realized volatility ending in 2006, 1974:2-2006:12

Combined model excluding COVID-19

The COVID-19 pandemic was a large exogenous shock that affected the global

economy because governments decided to decrease activity. The shock resulted in

changes in some empirical time series analysis, and to ensure that this is not the case

for our model, we differentiate the effects from the irregular, artificial shock that

coronavirus created, to the other shocks included in our data. This, by estimating a

model based on time series ending in december 2019. From this, we found that this

model is not substantially different from the extended model included in the thesis,

insinuating that the large, global shock did not create instabilities in our data.

Figure C.7: Impulse response functions, combined model U.S. data without COVID-19,
1974:2-2019:12
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Figure C.8: Historical decompositions, combined model for U.S. stock returns without COVID-19,
1974:2-2019:12

Figure C.9: Historical decompositions, combined model for U.S. stock volatility without COVID-19,
1974:2-2019:12
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Figure C.10: FEVD, combined model for U.S. real stock returns without COVID-19, 1974:2-2019:12

Table C.3: FEVD for the overall variability of stock returns, 1974:2-2019:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Other
shocks

Volatility
shock

1 0.0016289 0.0045285 0.00019351 0.99365 0

2 0.0020636 0.0038744 0.00096331 0.84693 0.14617

3 0.0045907 0.011485 0.0070145 0.82107 0.15584

12 0.014326 0.03931 0.013902 0.76004 0.17243

∞ 0.058622 0.061168 0.043731 0.67269 0.16379

FEVD, combined model for U.S. real stock returns without COVID-19, 1974:2-2019:12
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Figure C.11: FEVD, combined model for U.S. stock volatility without COVID-19, 1974:2-2019:12

Table C.4: FEVD for the overall variability of stock volatility, 1974:2-2019:12

Percent of h-step ahead forecast error variance explained by:

Horizon Oil supply
shock

Aggregate
demand
shock

Oil-specific
demand
shock

Stock return
shocks

Other shock

1 0.00028941 0.040398 0.00516 0.026457 0.9277

2 0.00030009 0.069745 0.011479 0.02543 0.89305

3 0.00095266 0.075201 0.015594 0.024396 0.88386

12 0.010721 0.091709 0.0310131 0.027123 0.83942

∞ 0.028389 0.13135 0.057812 0.050009 0.73244

FEVD, combined model for U.S. realized volatility without COVID-19, 1974:2-2019:12
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