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Abstract

We present a new stylized fact about the link between uncertainty and the term struc-

ture of interest rates: Unexpectedly heightened uncertainty elicits a lower, steeper, and

�atter yield curve. This result is established through a Yields-Macro model that includes

dynamic Nelson-Siegel factors of U.S. Treasury yields, and accounts for endogenous feed

back with observable measures of uncertainty, monetary policy, and macroeconomic ag-

gregates. It is also robust to three distinct measures of uncertainty pertaining to the

�nancial sector, the macroeconomy and economic policy. An e�cient Bayesian algorithm

for estimating the class of Yields-Macro models is also developed.
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1 Introduction

The term structure of interest rates (also known as the yield curve) refers to the range of

bond yields at di�erent terms to maturity. Financial market participants and central bankers

pay close attention to the term structure for several reasons. First, the Federal Funds Rate

represents the instantaneous rate of return on overnight lending, making short-term yields

closely connected to monetary policy. Second, long-term interest rates re�ect information

about market expectations of future monetary actions (Hansen et al., 2019). Thirdly, the

slope of the yield curve, i.e., the di�erence between long- and short-term rates, provides a

robust leading indicator of future macroeconomic activity (Estrella and Hardouvelis, 1991).

In this paper we investigate how the term structure reacts to unexpectedly heightened uncer-

tainty of various forms. Our investigation is motivated by the desire of market participants and

policy makers to understand the drivers of yield curve dynamics, together with a vast litera-

ture that �nds various types of uncertainty have notoriously contractive macroeconomic e�ects

(e.g., Bloom, 2009; Mumtaz and Zanetti, 2013; Jurado et al., 2015), and a burgeoning liter-

ature exploring how uncertainty impacts the term structure (Castelnuovo, 2019; Tillmann,

2020; Hansen et al., 2019; Shang, 2022).1 Using local projections regressions, Castelnuovo

(2019) �nds that heightened �nancial uncertainty reduces both short- and long-term interest

rates. Tillmann (2020) and Shang (2022) use distinct term-structure models with uncertainty

interactions to independently show that high uncertainty about monetary policy decreases the

central banks ability to impact the term structure.

We di�er from these recent studies in two ways. First, we propose the use of a conceptu-

ally simple Yields-Macro (YM) model to examine the e�ects of uncertainty shocks on the

yield curve while controlling for broader macroeconomic dynamics. Originally proposed by

Diebold et al. (2006), the YM model decomposes the associated yield curve into level, slope,

1Castelnuovo (2022) provides a recent review of the literature on the economic e�ects of uncertainty shocks.
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and curvature factors using a dynamic Nelson-Seigel representation (Diebold et al., 2006).2

Dynamic interactions between these factors, uncertainty, monetary policy, and the broader

macroeconomy are jointly modeled with a structural vector autoregression (SVAR) model.

Controlling for simultaneity in this nexus is potentially important given the aforementioned

literature on uncertainty shocks. Second, we study the e�ects of multiple three distinct types

of uncertainty: the �nancial uncertainty measure of Ludvigson et al. (2021), the macroeco-

nomic uncertainty measure of Jurado et al. (2015), and, the U.S. economic policy uncertainty

(EPU) measure of Baker et al. (2016). Each of these uncertainties have been shown to have

signi�cant macroeconomic e�ects in a variety of empirical studies. Exploring whether these

uncertainties elicit similar of di�erent yield curve dynamics therefore has important theoret-

ical consequences. In this sense, the paper is also related to very recent studies on the use

of structural macroeconomic models to examine the e�ects of uncertainty on the yield curve

(Amisano and Tristani, 2023; Bianchi et al., 2023; Leippold and Matthys, 2022). We view

these study as complementary in that we use a relatively agnostic and simple econometric

model to examine these uncertainty e�ects. At the very least our results provide a set of

stylized facts that can be used to evaluate the �t of structural models with both uncertainty

and the term structure of interest rates.

Our main general insight is that unexpectedly heightened uncertainty elicits a temporary

reduction in all three yield curve factors, resulting in a lower, steeper and �atter yield curve.

The reduced yield curve level and slope factors are found to be consistent with theories of

expectations about the future path of interest rates and output (Estrella, 2005), and are also

in line with what �nancial practitioners refer to as a `Bull Steepening' of the yield curve, i.e., a

situation in which short-term interest rates fall faster than long-term rates.3 The �nding that

higher uncertainty elicits a credible decrease in the curvature factor re�ects a relative decline

in medium-term yields. This is particularly notable since this factor has been shown to be

2A related approach by Shang (2022) proposes a Yields-Only model of Diebold and Li (2006) in which
exogenously identi�ed regime-dependent monetary policy uncertainty shocks impact the yield curve factors.

3This is contrast to a `Bear Steepening' in which long-term rates rise faster than short-term rates.
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relatively unresponsive to other types of shocks within the broader macro-�nance literature.

Uncertainty shocks are also found to simultaneously deteriorate macroeconomic conditions.

This evokes a monetary expansion and subsequent overshooting in capacity utilization that

is in line with research on uncertainty driven `wait-and-see' business cycles (Bachmann and

Bayer, 2013). Over time, however, the economy recovers, expectations about compensation

for longer-term securities improve, and the yield curve reverts to its normal state. The results

are found to be robust to all three distinct uncertainty measures. This suggests the existence

of a general mechanism in which uncertainty is being transmitted to the yield curve through

expectations of future monetary policy actions.

In addition to establishing our main empirical result, we also make two improvements to

the state-of-the-art algorithm for estimating YM models (Diebold et al., 2008). First, we

make the algorithm fully Bayesian. Since Nelson and Siegel (1987) it has been common to

�x the exponential decay rate parameter of the yields before estimating the remaining model

parameters (e.g., Diebold and Li, 2006; Diebold et al., 2006; Afonso and Martins, 2012; Byrne

et al., 2019, among others). For instance, Diebold and Li (2006) use the value that maximizes

the curvature loading at 30 months to maturity. In contrast, we propose a fully Bayesian

approach that estimates this parameter with a Griddy-Gibbs algorithm (Ritter and Tanner,

1992). Second, we show how the computationally intensive Kalman �ltering and smoothing

recursions for sampling the factors can be replaced by a faster, more e�cient, and conceptually

simpler, precision sampling algorithm (Chan and Jeliazkov, 2009), which has been shown to

speed up computations in a variety of state space models (Chan and Strachan, 2023).4

The rest of the paper is organized as follows. Section 2 introduces the empirical methodology

and algorithm. Section 3 presents the empirical results, and Section 4 concludes.

4Shang (2022) recently proposed a precision-based algorithm to sample the factors in a non-linear dynamic
Nelson-Siegel model with a Metropolis-Hastings step based on the integrated likelihood. In contrast, our
method directly samples the factors from their conditional posterior density. The two methods are related in
that they are precision-based, but are numerically distinct in that our sampler is direct while theirs is indirect.
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2 Empirical Methodology

In this section, we brie�y introduce the YM model and discuss how we use this framework

to address our research question. We then present an e�cient Gibbs-Sampling algorithm for

estimating the yield curve factors and exponential decay rate parameter. Finally, we present

the data that we use to estimate the model.

2.1 The Yields Macro (YM) Model

Following Nelson and Siegel (1987) and Diebold and Li (2006), we specify a three-component

dynamic exponential approximation to the cross-section of treasury yields over time as

yt(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− exp−λτ

)
, (1)

where Lt, St, and Ct, are respectively interpreted as time-varying level, slope, and curvature

yield curve factors, and λ is an exponential decay rate parameter that also governs where the

loading on Ct obtains its maximum. A theoretical foundation for this class of Nelson-Siegel

yield curve models is provided by Krippner (2015). Econometrically, the factor dynamics are

jointly modeled as a �rst-order vector autoregressive (VAR) process of the form


Lt

St

Ct

 =


b1

b2

b3

+


b11 b12 b13

b21 b22 b23

b31 b32 b33



Lt−1

St−1

Ct−1

+


ωtL

ωtS

ωtC

 . (2)

This `Yields-only' (YO) model can thus be viewed as a state space model with (1) and (2) repre-

senting the measurement and state equations, respectively. Letting Yt = [yt(τ1), yt(τ2), ..., yt(τN)]
′

where yt(τi) is a bond yield with τi months to maturity, and ft = (Lt, St, Ct)
′, allows the mea-
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surement equation to be expressed more compactly as

Yt = Λ(λ)ft + εt, εt ∼ N(0,Σ), (3)

where Σ = diag(σ2
1, σ

2
2, ..., σ

2
N), and the factor loading is a matrix variate function such that

Λ(λ) =



1 1−e−τ1λ

τ1λ
1−e−τ1λ

τ1λ
− e−τ1λ

1 1−e−τ2λ

τ2λ
1−e−τ2λ

τ2λ
− e−τ2λ

...
...

...

1 1−e−τNλ

τNλ
1−e−τNλ

τNλ
− e−τNλ


.

Similarly, the state equation in (2) can be written as

ft = b+Bft−1 + ωt, ωt ∼ N(0,Ω), (4)

where Ω = diag(ω2
1, ω

2
2, ..., ω

2
N). The model is completed by noting that

ωt

εt

 ∼ N


0
0

 ,

Ω 0

0 Σ


 . (5)

Following Diebold et al. (2006) the above YO model can be extended to a `Yields-Macro' (YM)

model that incorporates information from macroeconomic indicators. This is done by letting

ft = (f ′
1t, f

′
2t)

′ in which f1t = (Lt, St, Ct)
′ is a vector of yield curve factors, f2t is anm×1 vector

of macroeconomic indicators, and the de�nitions of the model parameters θ = {λ,Σ, µ, B,Ω}

in (3) and (4) are modi�ed appropriately.

The macroeconomic indicators used in this study are: uncertainty, capacity utilization, unem-

ployment, the annual in�ation rate, and the Federal Funds Rate. Speci�ed in this manner the

YM model facilitates a joint examination of how the yield curve and macroeconomic variables

respectively respond to both yield curve shocks and macroeconomic shocks. Since our focus is
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on examining the e�ects of an uncertainty shock, we follow the common practice of identifying

this shock via recursive identi�cation in which the uncertainty measure is placed �rst in the

vector of macroeconomic indicators (see, e.g., Caggiano et al., 2014; Leduc and Liu, 2016,

among others).

2.2 Bayesian Estimation

The YM model in (3) and (4) falls into the class of linear Gaussian state space models.

Following Diebold and Li (2006) it has become common to estimate YM models using a two-

step procedure. In step 1, the exponential decay rate parameter, λ, is �rst estimated by �nding

the value that maximizes the medium-term factor loading at some date between two- or three-

year maturities. In step 2, λ is �xed at this value, and the Kalman �lter is used to compute

the optimal yield predictions and associated prediction errors, and remaining parameters are

estimated by maximizing the Gaussian likelihood function. Diebold et al. (2008) propose to

replace the classical estimation in step 2 with a 2-Block Gibbs sampling algorithm is used

to sample the model parameters θ from their respective (conditional) posterior distributions,

and the latent factors are sampled via the multi-move Kalman �lter based algorithm of Carter

and Kohn (1994). However, they still �x the value of λ as in step 1. This approach has been

widely employed in the subsequent studies that estimate YM models (see, e.g., Mumtaz and

Surico, 2009; Bianchi et al., 2009; Zantedeschi et al., 2011; Byrne et al., 2019, among others).

We propose two re�nements to this algorithm. First, we integrate the two steps into a fully

Bayesian algorithm thereby allowing estimation uncertainty in step 1 to impact the estimates

in step 2. This is done by introducing a new block that samples the exponential decay rate

parameter λ as part of the Gibbs sampling algorithm via a Griddy-Gibbs step (Ritter and

Tanner, 1992). Second, we show that the computationally intensive Kalman �lter recursions

can be replaced with an e�cient precision sampling algorithm (Chan and Jeliazkov, 2009)

that has been shown to substantially speed up computations in a variety of (conditionally)
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Gaussian state space models (see Chan and Strachan (2023), and references therein).

To that end, we specify standard independent priors for elements of θ. Speci�cally

β = vec (B) ∼ N(0,Vβ),

Ω ∼ IW (ν0, S0),

σ2
i ∼ IG(νi, Si) fori = 1, . . . , N,

(6)

and set the prior for the initial condition of the factors to be f0 ∼ N(0,Vf ). The hyper-

parameters for these distributions are chosen so that the resulting prior distributions are

noninformative, i.e., Vβ = 10Ik, ν0 = G, S0 = 10IG, νi = 5, Si = .04, i = 1, . . . , N , a = 0,

b = 0.1, and Vf = 10In.

Since we are the �rst to estimate the rate parameter using Bayesian methods, we specify an

uninformative uniform prior over a bounded support

λ ∼ U(a, b), (7)

where 0 < a < b.

2.2.1 Posterior Distributions

In this section, we present details of an e�cient precision-based algorithm to draw ft2 and a

Griddy-Gibbs step for drawing λ. The conditional posteriors for the remaining parameters in

the model are easily derived and we omit them for brevity.

Sampling ft1 First, note that the log-likelihood implied by (3) is given by

log p(y|θ, f1) = −T

2
log(2π|Σ|)−−1

2

{
(y − IT ⊗ Λ(λ)f1)

′(IT ⊗ Σ)−1 (y − IT ⊗ Λ(λ)f1)
}
, (8)

8



where y = [Y ′
1 , Y

′
2 , ..., Y

′
T ]

′ and f1 = [f ′
11, f

′
21, ..., f

′
T1]

′. Similarly, we can rewrite (4) as

Hf = α + ω, ω ∼ N(0,S), (9)

where f = [f ′
11, f

′
12, f

′
21, f

′
22, ...., f

′
T1, f

′
T2], α = [b′ + f ′

0B
′,b′, . . . ,b′]′, ω = (ω1, . . . , ωT )

′, S =

IT ⊗ Ω and

H =



In 0 0 · · · 0

−B In 0 0

0 −B In
...

...
. . . . . . . . . 0

0 · · · 0 −B In



where b = [b′1, b
′
2]

′,B =

 B11 B12

B21 B22

. Note here H is a band matrix and it is therefore

simple to show that |H| = 1. Thus, H is invertible, and by a change of variable, (9) can be

interpreted as

f ∼ N(α̃, (H′S−1H)−1), (10)

in which α̃ = H−1α.

Using (8) and (10), along with the fact that

f = IT ⊗ [I3,O3×d]
′f1 + IT ⊗ [Od×3, Id]f2, (11)

it is straightforwardly to show that the conditional posterior of f1 is given by

(f1|θ, f2,y) ∼ N
(
µf ,Kf

−1
)

(12)
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in which

Kf = IT ⊗ Λ(λ)′Σ−1Λ(λ) + IT ⊗ [I3,O3×d]H
′S−1HIT ⊗ [I3,O3×d]

′

µf = Kf
−1

((
IT ⊗ Λ(λ)′Σ−1

)
y + IT ⊗ [I3,O3×d]H

′S−1Hα̃
)
.

Since the precision matrix Kf is a band matrix, we sample from the distribution e�ciently

using the precision-sampling algorithm of Chan and Jeliazkov (2009).

To draw the initial condition, f0, we note that setting t = 1 in (4) implies that

f1 = b+Bf0 + ω1, ω1 ∼ N(0,Ω). (13)

Combining this with the prior for f0 in (6), the conditional posterior for f0 is

p(f0|y,Z,Σ,Ω, β, f) ∝ −1

2

{
(f1 − b−Bf0)

′Ω−1(f1 − b−Bf0)
}
− 1

2

{
f
′

0V
−1
f f0

}
. (14)

Thus, using standard linear regression results it follows that

(f0|y,Z,Σ,Ω, β, f) ∼ N(f̂0,Kf0), (15)

in which

Kf0 = (B′Ω−1B+V−1
f )−1, f̂0 = Kf0 {B′Ω−1(f1 − b)} .

Sampling λ As mentioned above it has so far been common practice to �x λ to be a

particular value. We on the other hand are agnostic and estimate λ given the data. Given a

uniform prior for λ, p(λ) ∼ U(a, b), the conditional posterior of (λ|y, f1f0, θ) is given by

(λ|y, f1, f0, θ) ∝ p(y|θ, f1)p(λ),
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where a < λ < b. Since the support of this conditional density is bounded and non-standard,

we draw from this conditional density using a Griddy-Gibbs step (Ritter and Tanner, 1992).

This is done using the following steps:

1. Construct a grid with grid points λ̂1, . . . , λ̂R, where λ̂1 = a and λ̂R = b.

2. Compute Fi =
∑i

j=1 p(λ̂j|•).

3. Generate U from a standard uniform distribution.

4. Find the smallest positive integer k such that Fk ⩾ U and return λ = λ̂k.

2.3 Data

We use monthly data from 1971M8 to 2020M12. Following Diebold and Li (2006), the yield

curve is modeled using consider zero-coupon U.S. Treasury maturities of 3, 6, 9, 12, 15, 18,

21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months. However, the data that we use is from

a recently constructed dataset by Liu and Wu (2021), who show that their yield curve dataset

provides more of an accurate representation of the raw data compared to existing measures.

A three-dimensional plot of the yield curve data is shown in Figure 1, and Table 1 contains

associated descriptive statistics. The data provide a few stylized facts about empirical yield

curves that are consistent with alternate datasets (e.g., Diebold and Rudebusch, 2013; Diebold

et al., 2006). First, the yield curve exhibits a large degree of temporal variation, and takes

on a variety of shapes: upward sloping, downward sloping (inverted), concave and convex.

Second, the yield curve is increasing and concave on average.5 Third, short rates are typically

more volatile, less persistent, and have a greater range, than long rates.

5We emphasize that the literature tends to de�ne the empirical proxy of the yield curve slope as St =
yt(3)− yt(24). Thus, St > 0 implies a downward sloping yield curve and vice versa.
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Figure 1: Yield Curves from August 1971 to December 2020 at maturities of 3, 6, 9, 12, 15,
18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months

We consider three extremely popular types of uncertainty: macroeconomic uncertainty as

measured by Jurado et al. (2015), the �nancial uncertainty measure of Ludvigson et al. (2021)

and the three-component U.S. economic policy uncertainty (EPU) measure of Baker et al.

(2016). These metrics are shown in shown in Figure 2. The economic policy uncertainty

measure commences from January 1985, however the other two uncertainty measure date

back to the start of our sample in August 1971. It is immediately evident that these measures

are positively correlated, and tend to increase during periods of recession. They also have

independent variation. For instance, �nancial uncertainty exhibits a distinct spike during the

Black Monday event of October 1987, while the EPU index spikes in September 2001 and the

2011 debt ceiling crisis.

Finally, data on four macroeconomic variables: Capacity utilization (CU), the unemployment

rate (UE), CPI in�ation rate (CPI), and the Federal Funds rate (FFR), was sourced from the

FRED-MD database.
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Table 1: Descriptive statistics of yield curves

Maturity (months) Mean Std. dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

3 4.609 3.501 0.024 15.946 0.989 0.858 0.656
6 4.767 3.552 0.049 16.133 0.990 0.867 0.674
9 4.881 3.565 0.082 16.107 0.990 0.873 0.690
12 4.967 3.562 0.103 15.962 0.990 0.878 0.705
15 5.040 3.558 0.109 15.901 0.990 0.883 0.720
18 5.105 3.556 0.114 15.943 0.991 0.887 0.733
21 5.160 3.544 0.120 15.910 0.991 0.890 0.743
24 5.206 3.520 0.124 15.719 0.991 0.892 0.752
30 5.299 3.475 0.114 15.545 0.991 0.897 0.767
36 5.400 3.442 0.123 15.569 0.991 0.900 0.776
48 5.580 3.370 0.172 15.475 0.992 0.902 0.790
60 5.713 3.286 0.231 15.195 0.992 0.903 0.799
72 5.848 3.233 0.313 14.989 0.992 0.905 0.804
84 5.947 3.169 0.382 14.950 0.992 0.902 0.806
96 6.034 3.117 0.445 14.941 0.992 0.905 0.808
108 6.105 3.067 0.488 14.945 0.992 0.905 0.810
120 6.163 2.996 0.530 14.939 0.992 0.900 0.809
Level 5.326 3.292 0.249 15.278 0.992 0.895 0.758
Slope -1.554 1.385 -4.358 3.756 0.948 0.484 -0.098

Curvature -0.360 0.970 -2.695 2.765 0.927 0.637 0.377
Note: Descriptive statistics are for monthly yields at di�erent maturities. Following Diebold et al.

(2006), the empirical yield curve level, slope and curvature are de�ned as (Level)

Lt =
yt(3)+yt(24)+yt(120)

3 , (Slope) St = yt(3)− yt(24), and (Curvature) Ct = 2yt(24)− yt(3)− yt(120).
The �nal three columns are sample autocorrelations at lag lengths of 1, 12 and 30 months.
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Figure 2: Uncertainty Measures
Notes: The panels plot the time series of �nancial uncertainty, macroeconomic uncertainty and eco-

nomic policy uncertainty expressed in standardized units. Shaded areas are NBER recession dates.

3 Empirical Results

We present the results across four subsections. First, we discuss posterior estimates of the

yield curve. Second, we investigate whether the lagged coe�cient on the uncertainty term

for each variable in B is signi�cantly di�erent from zero. Third, we discuss the impact of

an uncertainty shock on the yield curve and macroeconomy. Finally, we discuss the impact

of an uncertainty shock on the entire term structure. All results were obtained using 50,000

posterior simulations after discarding the �rst 10,000 draws as a burn-in period.

3.1 Posterior Estimates of the Yield Curve

The posterior median estimate for the exponential decay parameter in each model is provided

in Table 2. Overall, we �nd the results to be extremely robust to the choice of uncertainty

indicator used in the YM model. This is despite the fact that the model including the EPU
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index is estimated on a shorter sample than the alternative uncertainty measures. The median

estimate of λ̂ is found to be within the range of 0.039-0.045. This means that the data suggests

that the curvature factor is maximized at, on average, around 48 months to maturity. The

small range of the 90 percent credible interval given by at most [0.03, 0.05] suggests that the

parameter is precisely estimated. In contrast, Diebold and Li (2006) and Diebold et al. (2006)

respectively calibrate λ̂DRA = 0.0609 and λ̂DRA = 0.077, which are associated with maturities

of 30 and 24 months. Both of these values are beyond the empirical range of our estimated

posterior distribution, and highlight the importance of estimating the λ in empirical work, as

opposed to �xing it a priori.

Table 2: Uncertainty and the yield curve

Uncertainty Measure Posterior median 95% credible interval

Financial 0.043 (0.03,0.05)
Macroeconomic 0.045 (0.04,0.05)
Economic Policy 0.039 (0.03,0.05)

The posterior estimates of the yield curve factors are also found to be extremely robust to the

choice of uncertainty metric used in the model. We therefore present results obtained using

the �nancial uncertainty indicator here and defer remaining results to the Online Appendix.

The estimated posterior median of the factors (solid line) and associated 95 percent credible

intervals (shaded region) are provided in Figure 3. The narrow credible intervals around these

factors indicate that they are precisely estimated. We �nd that the factors re�ect the various

stylized facts about empirical yield curves discussed in Section 2.3. We also observe that the

slope factor becomes positive before each recession, which is in line with the idea that yield

curve inversions are a leading indicator of the business cycle (Estrella and Hardouvelis, 1991).

To investigate the empirical reliability of these estimated factors, in Figure 4, we plot the

posterior median estimates of the yield curve factors (blue line) against their empirical coun-

terpart (black line). Consistent with Table 1, the empirical counterparts are respectively

calculated as (Level) Lt = yt(3)+yt(24)+yt(120)
3

, (Slope) St = yt(3) − yt(24), and (Curvature)
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Figure 3: Posterior estimates of the Slope, Level and Curvature factors

Ct = 2yt(24)− yt(3)− yt(120). The results show that our estimated factors track their empir-

ical counterpart reasonably well. The estimated correlation coe�cients between each factor

and its empirical counterpart are 0.91, 0.96 and 0.90, respectively. These high correlations are

in line with estimates in both Diebold and Li (2006) and Diebold et al. (2006), and suggest a

very high degree of co-movement between the factors and their empirical counterparts. The

descriptive statistics in Table 3 are also close to those reported in Table 1, thus lending further

support towards their credible interpretation as level, slope and curvature factors.

Table 3: Descriptive statistics of yield curves

Factor Mean Std. dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

Level 6.725 2.716 0.949 14.073 0.989 0.878 0.760
Slope -2.010 2.070 -6.308 6.151 0.962 0.584 -0.041

Curvature -1.017 2.570 -9.818 6.608 0.936 0.591 0.439
Note: Descriptive statistics are for the estimated factors (posterior median). The �nal three

columns are sample autocorrelations at lag lengths of 1, 12 and 30 months.

As a �nal determination of the validity of the factors interpretation as level, slope and cur-

vature, we also investigate whether important cross-variable correlations are in line with the-
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Figure 4: Estimated yield curve factors (blue) and empirical proxies (black)

oretical predictions. Economic theory suggests that the yield curve level is related to the

level of expected in�ation, and that the yield curve slope is linked to real activity (Estrella,

2005). We therefore calculated the correlations between Lt and the University of Michigan's

1-year ahead in�ation expectations, and between St and capacity utilization as an indicator

of macroeconomic activity. The correlation between Lt and in�ation expectations is 0.49 sug-

gesting a link between the movements in the yield curve level and in�ation expectations that

is consistent with the Fisher equation. The correlation between St and capacity utilization is

0.59, which suggests that the slope yield curve closely follows the economy's cyclical behavior.

Similar values for these correlations are reported in Diebold et al. (2006).

3.2 Does uncertainty impact the Yield curve?

To formally assess whether uncertainty impacts the Yield curve we utilize the Savage-Dickey

density ratio (SDR); a variant of the Bayes Factor (BF) that is useful when testing the cred-

ibility of equality constraints on a subset of one or more of the parameters in a model. Here
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we test whether or not the lagged coe�cients on the uncertainty term for all the variables

(except for uncertainty) are jointly di�erent from zero. Let the vector of lagged coe�cient on

the uncertainty term for all the variables be de�ned as bUNC = (B21, B31, B41, B51, B61, B71)
′.

The SDR associated with this restriction is given by

BF =
p(bUNC = 0)

p(bUNC = 0|y)
, (16)

where BF denotes the Bayes factor. The numerator is the marginal prior density of bUNC

evaluated at zero, and the denominator is the marginal posterior density evaluated at zero. If

bUNC ̸= 0, then the numerator will be larger than the denominator, implying that larger values

of (16) provide substantial evidence that bUNC is jointly di�erent from zero, and vice-versa.

The resulting Bayes Factors are reported in Table 4. Since the SDR is a version of the Bayes

Factor, a numerical interpretation of the results can be made via the popular rules of thumb

proposed by Kass and Raftery (1995). According to their interpretation, the strength of evi-

dence provided by the BF for values between 1−3.2 are `not worth more than a bare mention',

3.2−10 are `substantial', 10−100 are `strong', and anything greater than 100 is `decisive'. Our

results show that there is `strong' evidence that macroeconomic uncertainty has a credible im-

pact on the yield curve, `substantial' evidence for �nancial uncertainty, and `decisive' evidence

for economic policy uncertainty. While the general conclusion that uncertainty has a credible

impact on the yield curve is novel, our result that economic policy uncertainty has a relative

large impact on the yield curve is in line with recent results that high policy uncertainty may

mute the Federal Reserve's ability to impact bond yields (Tillmann, 2020; Shang, 2022).

Table 4: Uncertainty and the yield curve

Uncertainty Measure BF

Financial 37.10
Macroeconomic 14.36
Economic Policy 129.57
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3.3 How does uncertainty impact the yield curve?

To assess how an uncertainty shocks impact the yield curve we examine impulse response

functions (IRFs) to a one standard deviation uncertainty shock from each of the uncertainty

measures: �nancial, macroeconomic and economic policy. The resulting IRFs are presented in

Figures 5-7. In each case the thick line represents the posterior median and the shaded region

is the associated 68 percent credible interval.
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Figure 5: Impulse Response to a Financial Uncertainty Shock

The main general insight from this analysis is that each of the uncertainty shocks elicits a

similar transmission mechanism. In each case, unexpectedly heightened uncertainty has a

credibly negative impact on the yield curve's level, slope, and curvature factors.

The negative response of the yield curve level is in line with the notion that market par-

ticipants expect the Fed to respond to the deterioration of macroeconomic conditions � as

seen by the initial reduction in capacity utilization and associated heightened unemployment

� via expansionary monetary policy by reducing the Federal Funds Rate. A notable di�er-
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Figure 6: Impulse Response to a Macroeconomic Uncertainty Shock

ence between the level responses across uncertainty measures is that the level response to a

macroeconomic uncertainty shock quickly reverts to its pre-shock value, while the decline in

the level factor following the �nancial uncertainty and EPU shocks are extremely persistent.

These di�erences can be explained by the Fisher equation. According to this equation, a

prolonged decrease in the level factor is consistent the interpretation of market participants

decreasing their expectations of future in�ation, and vice-versa. Indirect evidence of such

behavior is provided in the CPI in�ation response. In that case, the �nancial uncertainty and

EPU shocks elicit an initial temporary increase in in�ation followed by persistent decrease,

while the macroeconomic uncertainty shock has a more persistent increase in in�ation. Both

of these responses lend empirical support to the Fisher e�ect. This raises the question of why

in�ation responds di�erently to the various types of uncertainty shock. As discussed in the

recent survey by Castelnuovo (2022), the in�ationary e�ect of uncertainty shocks is uncertain,

and relates to a debate surrounding the theoretical classi�cation of uncertainty in terms of
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Figure 7: Impulse Response to an Economic Policy Uncertainty Shock

aggregate demand and supply. If unexpectedly heightened uncertainty moves in�ation and

output (here proxied by capacity utilization) in the same direction then it is classi�ed as ag-

gregate demand shock. In contrast, if the uncertainty shock moves in�ation and output in

opposite directions then it is classi�ed as an aggregate supply shock. Using this classi�cation

our results are broadly in line with the �nancial and EPU shocks falling into the category

of aggregate demand shocks, however the classi�cation of macroeconomic uncertainty is less

clear. To our mind, this is not too surprising given that �nancial markets and economic policy

are generally believed to be closely related to demand conditions in the economy, given that

the primary origins of business cycle �uctuation have been debated for over a century. On

the one hand, the neoclassical perspective of the business cycle is that macroeconomic �uc-

tuations are primarily driven by supply-side shocks. On the other hand, the New Keynesian

perspective is that demand side factors play a more pertinent role. Given the relatively mod-

est response of in�ation to the macroeconomic uncertainty shock, the results here are more in
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line with results from New-Keynesian models which predict that macroeconomic uncertainty

has a demand side e�ect on in�ation due to its origins in countercyclical markups and sticky

prices (e.g., Leduc and Liu, 2016; Basu and Bundick, 2017; Bianchi et al., 2023).

Since the slope factor is here de�ned as long-rate minus short-rate, this decrease in slope factor

suggests the slope of the yield curve has increased, or steepened, in response to the uncertainty

shock. Such a steepening can be caused by short-term interest rates falling more quickly than

long-term rates. Alternatively, a steepening may also occur if long-term interest rates rise

faster than short-term interest rates. Financial practitioners often refer to these two distinct

scenarios as a `Bull Steepening', and `Bear Steepening', respectively, since their occurrence

is indicative of overall market sentiment.6 Given that both short-term and long-term rates

decline following an uncertainty shock, our results suggests that an uncertainty shock induces

a `Bull Steepening' of the yield curve, as opposed to a `Bear Steepening'. Over time, however,

the decrease in the policy rate causes macroeconomic conditions to improve. As the economy

recovers, expectations about compensation for longer-term securities improve, and the slope

of the yield curve gradually reverts to its normal state. The resulting e�ect is a U-shaped

response in the slope factor. This result is also in line with recent results in Amisano and

Tristani (2023) and Bianchi et al. (2023) who respectively �nd that macroeconomic uncertainty

shocks steepen the slope of the yield curve, albeit with di�erent methodologies to the one used

here. Similar results for �nancial uncertainty shocks are also reported in Castelnuovo (2019).

Another novel result in this paper is that the uncertainty shock has a signi�cant negative

impact on the yield curve's curvature factor. A decrease in the curvature factor implies a

relative reduction in medium-maturity yields, and a �atter shape of the yield curve. Since

medium-term interest rates are re�ective of expected future short-term rates, a reduction in

the curvature factor is indicative of an expectations channel. As discussed earlier, following

6Practitioners also often discuss the existence of so called `Bear Flattening': When short-term rates rise
faster than long-term interest rates, and `Bull Flattening': When long-term rates fall faster than short-term
rates. However neither of these scenarios are consistent with a steepening of the yield curve. The term
'�attening' here should also be interpreted with respect to the relative slope of the yield curve as opposed to
its curvature.
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the uncertainty shock, rational investors will expect that the deterioration of macroeconomic

conditions will be met by a monetary expansion as the Fed aims to stimulate the economy.

Expectations of further reductions in the interest rate result in lower medium-term rates, and

associated �attening of the yield curve. This result is especially notable since this factor has

been shown to be relatively unresponsive to other types of macroeconomic shocks (Diebold

et al., 2006). To the best of our knowledge, the subsequent macro-�nance literature is also

yet to establish any credible association between the curvature of the yield curve and shocks

from any macroeconomic variable.

A possible explanation for our general result that uncertainty elicits a lower, steeper, and

�atter yield curve is that uncertainty is being transmitted to the yield curve through market

perceptions and expectations of future monetary policy actions. This idea is not only con-

sistent with the idea that monetary policy is a primary driver of term structure dynamics,

but also suggests that the relative strength of this mechanism may be in�uenced by the Fed's

policy communication. For instance, using UK data from the Bank of England (BoE) In�ation

Report, Hansen et al. (2019) �nd that uncertainty in the BoE's communication of economic

conditions plays an important role in moving long-term interest rates. A similar result for the

European Central Bank (ECB) has recently been established by Leombroni et al. (2021). It

is therefore likely that such a result may also hold true for the Fed, however we leave this to

future research.

Finally, we highlight that all of the uncertainty shocks elicit an increase in unemployment and

an overshooting e�ect within capacity utilization. Both of these results are consistent with

the �ndings of numerous studies in the broader literature on the macroeconomic e�ects of

uncertainty shocks (e.g., Bloom, 2009; Bachmann and Bayer, 2013; Caggiano et al., 2014, 2022;

Basu and Bundick, 2017). The general mechanism is that an increase in uncertainty impacts

the real option value of waiting on investments. This results in �rms temporarily pausing

their hiring and investment decisions while they wait-and-see the Feds policy response, and

the broader macroeconomic e�ects. The reduction in job creation relative to the steady state
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results in increased unemployment, and an initial reduction in capacity utilization, followed

by an overshooting as the economy recovers. Such precautionary behaviour by �rms has been

identi�ed as a major cause of U.S. business cycles (Bachmann and Bayer, 2013).

3.4 How does uncertainty impact the term structure?

To further investigate how the yield curve responds to uncertainty shocks, we also examine

how the entire term structure reacts to such shocks. Computationally, this is done by premul-

tiplying the impulse response vector by the factor loading Λ(λ) in (3). The IRFs associated

with a one standard deviation uncertainty shock are shown in Figures 8-10. Since the impulse

responses are of the entire term structure, they can be viewed as functional IRFs in the spirit

of Inoue and Rossi (2021). The main di�erence is that Inoue and Rossi (2021) investigate

the response of a functional variable (i.e., the term structure) to a functional monetary policy

shock, while we consider the response of a functional variable to a scalar uncertainty shock.

In line with our results on the yield curve factors, we see that the level of the term structure

is lowered after the shock. There is also a general monotonic impact in terms of the relative

magnitude in the level e�ects at di�erent dates-to-maturity, with short-term yields falling

much more than long-term yields. This result provide further support for our aforementioned

�nding that uncertainty elicits a general steepening of the yield curve, and con�rms our

interpretation of the uncertainty shock generating a `bull steepening' of the yield curve, as

opposed to a `bear steepening'. The results also show that the short end follows exhibits a

U-shaped pattern with strong convexity, while the long end is relatively �atter. Thus, while

uncertainty shocks decrease the relative curvature across the entire yield curve, on average,

there is important heterogeneity in the responses of yields at di�erent dates-to-maturity.

Another area of heterogeneity in the responses of yields at di�erent dates-to-maturity occurs

across the various uncertainty measures. While we �nd that each of the uncertainty shocks

has a similar impact on the yields at the short-end � a sharp drop, followed by a gradual
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increase � we �nd a large degree of heterogeneity in the responses at the long-end of the curve.

Financial uncertainty results in a gradual decline in uncertainty that is extremely persistent,

macroeconomic uncertainty elicits more of a horizontally translated S-shaped response, and

economic policy uncertainty elicits a U-shaped response; albeit with a long right-tail due to

the high degree of persistence in the shocks e�ects. These results are again consistent with the

idea that the relative e�ects of uncertainty at the long-end of the yield curve may be in�uenced

by the Fed's policy communication (Hansen et al., 2019). This is because the Fed is likely

better able to communicate away uncertainty relating to future paths of policy, relative to

the future paths of macroeconomic and �nancial conditions. Policy uncertainty may therefore

have a relatively smaller impact on long-rates compared to other forms of uncertainty.

Figure 8: Functional Impulse Response Functions to a Financial Uncertainty Shock

25



Figure 9: Functional Impulse Response Functions to a Macroeconomic Uncertainty Shock

Figure 10: Functional Impulse Response Functions to an Economic Policy Uncertainty Shock
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4 Conclusion

How does the the yield curve react to unexpectedly heightened uncertainty? To address this

question we have proposed a simple Yields-Macro model that jointly estimates the dynamic

e�ects of uncertainty, the yield curve, and the macroeconomy. Two simple extensions of the

state-of-the-art Bayesian algorithm for estimating such models were also provided. First we

showed how the exponential decay rate parameter of the yields can be sampled as part of the

algorithm using a Griddy-Gibbs step. Second, we showed that the latent yield curve factors

can be sampled simply and e�ciently using a modern precision sampling algorithm in place

of the conventional Kalman �lter.

Our results provided new insights on the empirical impact of uncertainty on the yield curve.

First, results from the Savage-Dickey density ratio provided strong evidence of a credible link

between the yield curve and three distinct measures of uncertainty: �nancial, macroeconomic

and policy related uncertainties. Next, when investigating the impact of unexpectedly height-

ened uncertainty on the yield curve, we found the general insight that each type of uncertainty

shock results in a lower, steeper and �atter yield curve, along with a deterioration in macroe-

conomic conditions. This evokes a monetary expansion and subsequent overshooting e�ect in

capacity utilization that is in line with studies on uncertainty driven `wait-and-see' business

cycles. Our �nding that higher uncertainty generally elicits a credible decrease in the curva-

ture factor is especially notable since this factor has been shown to be relatively unresponsive

to other macroeconomic shocks within the broader macro-�nance literature. Given the fact

that each uncertainty shock elicits a similar transmission mechanism, a possible explanation

for this general result is that uncertainty is being transmitted to the yield curve through mar-

ket perceptions and expectations of future monetary policy actions. This calls for the need

to better understand the theoretical connections between uncertainty, the yield curve and the

broader macroeconomy.
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�Online Appendix�

�Not for Publication�

A Posterior estimates using di�erent uncertainty measures

We here present the posterior estimates of the yield curve where we use the macroeconomic

uncertainty measure and EPU in place of the �nancial uncertainty measure which was used in

the main text. The estimated yield curve factors are respectfully presented in Figures 11-12.

We �nd the results are extremely robust to the choice of uncertainty indicator used in the YM

model, despite the fact that the EPU is estimated on a shorter sample than the other two

uncertainty measures.

Figure 11: Posterior estimates of the Yield Curve factors: Macroeconomic uncertainty
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Figure 12: Posterior estimates of the Yield Curve factors: Economic policy uncertainty
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