
- 1 -

DYSFUNCTIONAL AGILE–STAGE-GATE HYBRID DEVELOPMENT: KEEPING UP
APPEARANCES

Increasingly, the development of today’s “smart” products requires the integration of both software and hardware in embedded
systems. To develop these, hardware firms typically enlist the expertise of software development firms to offer integrated solutions.
While hardware firms often work according to a plan-driven approach, software development firms draw on Agile development
methods. Interestingly, empirically little is known about the implications and consequences of working according to contrasting
development methods in a collaborative project. In response to this research gap, we conducted a process study of a collaborative
development project involving a software firm and a hardware firm, within which the two firms worked according to contrasting
development methods. We found that the software firm was gradually compelled to forgo its Agile method, creating a role conflict
in terms of its way of working. As such, our results contribute to the literature on Agile–Stage-Gate hybrids by demonstrating how,
in collaborative embedded systems development, hybridization of development methods may cause projects to fail. Our main
practical implication entails the introduction of the “sequential Agile approach.”

1. Introduction

Products are becoming more complex, and as a result their development is also becoming increasingly challenging
(Kaisti et al., 2013; Tura et al., 2017; Kortelainen and Lättilä, 2013; Vatananan and Gerdsri, 2012). Notably, many
of today’s new smart products, such as smartphones, navigation tools, cars, and even home appliances, involve
intricate software and hardware. Interorganizational collaborations may serve as a means to cope with the demands
underlying the development of complex embedded systems (Das and Teng, 2000), as different actors can bring in
unique and complementary knowledge and skills (Bstieler, 2005). Indeed, collaborations in the form of, for
example, supplier involvement (Van Echtelt et al., 2008) have been found to improve focal firms’ innovative
capability and the success of new product development (Faems et al., 2005; Peng et al., 2012; Van Echtelt, 2008).
This may explain why integrated software and hardware are frequently developed by highly specialized
cooperating firms.

Typically, software and hardware firms utilize different development strategies. In answer to the particularities
of coding complexity, software developers have shifted from plan-driven product development methods to
fundamentally different Agile approaches1 (e.g., Scrum, XP) (Ågerfalk, et al. 2009; Conboy, 2009; Fowler and
Highsmith, 2001; Paluch et al., 2020; Annosi et al., 2020). While this transition appears as a logical evolutionary
step from a software development perspective, it breaks with the long-dominant plan-driven (or “traditional”)
method, still favored and maintained by many hardware developers. As such, the differences between the two
development methods may give rise to conflict in collaborative development projects in which software and
hardware development must go hand-in-hand.

Scholars have considered the integration or hybridization of Agile and plan-based methods. Several studies
illustrate, for instance, that elements of an Agile approach may effectively be integrated into a plan-based
development method (Cooper, 2008; Datar et al., 1997; Cooper and Sommer, 2016; Edwards et al., 2019; Port
and Bui, 2009) or vice versa (Port and Bui, 2009; Vigden and Wang, 2009; Bianchi et al., 2020). But such insights
are derived from single-company contexts, where one method is modified to include elements of the other. Other
studies have suggested that Agile and plan-driven methods may effectively be combined through a process called
“modularization” (e.g., Lenfle and Loch, 2010; Baldwin and Clark, 2006), in which a project is divided into
independent modules (Baldwin and Clark, 2006; Ghezzi and Cavallo, 2020) that are then handled by autonomous
product development teams that can use their own preferred development approach (Austin and Devin; 2009;
Lenfle and Loch, 2010). While the decomposition of a complex system into discrete subsystems with loose
coupling might indeed allow for particular projects to be handled more efficiently (Baldwin and Clark, 2006;
D’Adderio and Pollock, 2014), it seems a less suitable development strategy when there is significant
interdependence between the different components (Peng et al., 2014), because it might be impossible to truly
create independent subsystems. In this respect, in the context of collaborative embedded systems development,
software and hardware are likely developed by different highly specialized firms that need intense cross functional
and interfirm collaboration to achieve success (Peng et al., 2014).

1 E.g., in software development, product requirements are very likely to change (significantly) over the course of a project, making for an ill
fit with the core idea of plan-driven development that system requirements can be reliably established up front.

This is the accepted manuscript of: Walrave, B., Dolmans, S., van Oorschot, K. E., Nuijten, A. L. P., Keil, M., & van
Hellemond, S. (2022). Dysfunctional Agile–Stage-Gate Hybrid Development: Keeping Up Appearances.
International Journal of Innovation and Technology Management, 19(03), 2240004. https://doi.org/10.1142/
S0219877022400041

- 2 -

We seek to address this gap in the literature and uncover the implications and consequences of working
according to contrasting development methods (i.e., Agile vs. plan-based methods) in a collaborative embedded
systems development project. In fact, very little is known about such a collaborative development context, in
which diverging development methods are maintained. In response, we conducted an in-depth case study of a
collaborative embedded systems development project, in which an experienced “Agile” software development
firm was contracted by a “traditional” incumbent hardware manufacturer. Drawing on a process research approach
and systems thinking (Langley, 1999; Sterman, 2000; Van de Ven et al., 2000), we uncovered self-destructive
dynamics that resulted from the use of conflicting development methods. In particular, we found that the software
firm was gradually compelled to forgo its Agile method, creating a role conflict regarding its way of working.
Consequently, the software firm resorted to “keeping up appearances” (complying with plan-based milestones
while trying to maintain Agile development) to please the hardware firm, even though doing so undermined the
feasibility and quality of the entire project. As a result, by forcing an Agile supplier to comply with plan-driven
demands, the manufacturer sabotaged its own development.

Our findings thus show that hybridization of development methods may lead to project failure in collaborative
embedded systems development. Specifically, our findings contribute to the literature on hybrid development
tactics that has outlined functional hybrid forms (i.e., successful Agile-plan-based integration within a single
company context) (e.g., Cooper and Sommer, 2016; Edwards et al., 2019) by pointing to a dysfunctional hybrid
mode, which manifests in a collaborative context and is driven by keeping up appearances. The formalization of
such dysfunctional hybridization serves to illustrate boundary conditions for Agile-plan-based integration and
provides a basis for critical reflection on studies that argue that such integration may readily be achieved (Cooper
and Sommer, 2016; Edwards et al., 2019). From a practical perspective, based on the rich case data and insights,
we propose a new project management technique that we call the “sequential Agile approach” and that we
developed specifically to mitigate the potentially vicious keeping up appearances process.

2. Plan-Driven and Agile Development in a Collaborative Context

Arguably, contemporary project management originated from the Manhattan Project, which developed the first
atomic bomb in the 1940s, followed by the Atlas and Polaris ballistic missile projects of the 1950s (Lenfle and
Loch, 2010; Meredith and Mantel, 2011). These projects paved the way for what we now refer to as “traditional”
or “plan-driven” development. This project management technique emphasizes project control and uncertainty
reduction and is actionable by tools such as PERT, CPM, and the Gantt chart. Even though this development
tradition is now well over half a century old, it is still widely used, especially for developing physical products
(Cooper and Sommer, 2016).

A distinctive feature of plan-driven development is that it is composed of a number of stages that are executed
sequentially, with a go/no-go decision after each stage (e.g., Cooper, 2001; 2008). Usually, the first stage involves
determining requirements (and feasibility), and it is followed by development of a design in the second stage.
Subsequently, this design is executed in the third stage and tested in the fourth, after which the product is released
in the final stage (and then sometimes maintained). Plan-driven methods thus thrive in a context characterized by
relatively little uncertainty (although Johansson, 2014, describes how gates may play an important role in reducing
ambiguity and uncertainty) and in which a project’s requirements can be adequately assessed up front and
specialized/dedicated teams may handle the various stages of the development process.

Over time, scholars further developed and customized the plan-driven approach so that it fitted various
circumstances. For example, depending on a project’s complexity, some stages can (or should) be omitted,
overlapped, or repeated (Cooper, 2008). In this respect, a complex project is likely to benefit from additional
development stages compared to a simple development project, which likely requires fewer stages (Cooper, 2008).
Furthermore, in the case of overlapping stages, also referred to as “concurrent engineering,” a stage may start
before the previous one is completed, thereby potentially reducing overall development time (Clark and Fujimoto,
1991; Terwiesch et al., 2002). While this approach increases the risk of redundant work, as the downstream stage
may apply upstream information that is potentially subject to change later on (Mitchell and Nault, 2007),
successful implementations of concurrent plan-driven approaches have been found in, for example, the automotive
industry (Pechmann et al., 2015) and telecom industry (Lin et al. 2008).2

2 Previous research advises against concurrency in cases in which the downstream stage is (highly) sensitive to upstream changes, because
this circumstance may result in an endless problem-solving cycle (Cantamessa and Villa, 2000; Loch and Terwiesch, 2005).

- 3 -

Meanwhile, in the software industry, the need for development speed in combination with the desire to limit
problem-solving cycles between upstream and downstream stages resulted in the Agile development method
(Paluch et al., 2020; Annosi et al., 2020; Gonzalez, 2014; Tura et al., 2017). In contrast to the plan-based method,
this method assumes high levels of uncertainty, because a project’s requirements—often referred to as
“features”—cannot be reliably determined up front. The approach is characterized by many short development
iterations (Conboy, 2009; Dingsøyr et al., 2010), executed by a dedicated team to facilitate communication.
Features are typically added or adjusted until time runs out. As such, Agile development also requires substantial
customer feedback on the solution offered by the developer (Fowler and Highsmith, 2001). Features that need
development are placed in a backlog that serves as input for the next iteration—a so-called “sprint” (Dingsøyr et
al., 2010; Wood et al., 2013). This way of working implies that a software team can only begin a new task when
the current task is completed, reviewed, tested, and demonstrated to be fully functional and free of bugs, and it
prevents the generation of unexpected rework in later stages of the project owing to “almost finished” tasks of the
kind that typically endanger a whole project.

Table 1 lists key differences in the assumptions and characteristics underlying the plan-driven and Agile
development approaches. Whereas the Agile method aims to minimize the effects of changes at any time in the
product life cycle, allowing for flexible/evolving requirements, the plan-driven method aims to minimize
requirement changes (Karlström and Runeson, 2005; Bianchi et al., 2020; Paluch et al., 2020). In sum, time is the
fixed variable within an Agile development context, and requirements are allowed to vary, whereas functionality
is the fixed variable in a traditional development context.

Table 1. Fundamental assumptions and characteristics for plan-driven and Agile development.

 Plan-driven development Agile development

Typical use: Physical product development Digital product development

Assumed uncertainty: Low High

Specifications: Determined up front; specifications are fixed
Determined after each iteration; development
time is fixed

Development process: Linear development process Iterative development process

Team composition: Phase specific (benefits specialization) Integrated team (benefits communication)

Customer involvement: Typically low High (regular feedback required)

Over time, both practitioners and scholars became interested in developing Agile-plan-based hybrids (Cooper

and Sommer, 2016; Port and Bui, 2009; Edwards et al., 2019) such as the Agile–Scrum-Gate model (Cooper et
al., 2019). In practice, under this model each stage of the project uses sprints, or iterations, that are time boxed
(Cooper et al., 2019). Cooper and Sommer (2018: 19) explain: “an Agile–Stage-Gate hybrid embeds the Agile
way of working within Stage-Gate stages […], replacing traditional project management tools and approaches,
such as Gantt charts, milestones, and critical path planning, with Agile tools and processes.” Important differences
between the Agile–Stage-Gate hybrid and the traditional Stage-Gate approach include much more variable and
tentative gate deliverables as well as leaner deliverables (e.g., fewer and shorter templates) (Cooper et al., 2019).
Studies are increasingly reporting the effectiveness of such hybrid models. For instance, Karlström and Runeson
(2005; 2006) report that both methods can effectively be combined in a single project. Cooper and Sommer (2016)
also conclude that the two development methods can be compatible, even symbiotic, while stating that more
research is needed to uncover the advantages, disadvantages, and challenges. Furthermore, Port and Bui (2009)
conducted simulation experiments to conclude that a mixed development strategy outperforms a single
development method in some cases. Cooper and Sommer (2018) study manufacturing firms experimenting with
Agile–Stage-Gate hybrids and find that these companies benefit from increased design flexibility and improved
productivity. They also find, in a similar vein to Žužek et al. (2020), that hurdles including managerial skepticism
and dedicated resources must be overcome to reap those benefits. Finally, Edwards et al. (2019) conclude that the
Agile–Stage-Gate approach is beneficial to larger manufacturing firms and SME manufacturers when it comes to

- 4 -

the overall success of new product development—even if only particular Agile project management practices are
implemented (Žužek et al., 2020). In this respect, there is increasing support for the position that a hybrid
development strategy may enhance, among other things, cost control, product functionality, team communication,
and productivity. However, these studies report findings on development contexts in which a plan-based approach
was “enhanced” with Agile elements—in a within-firm development context.

As development teams face increasing pressure to develop products better and faster, the need to collaborate
with key stakeholders, inside as well as outside of the firm, has grown significantly (Pech, Heim, and Mallick,
2014). Interorganizational collaboration has long been recognized as an important antecedent of innovation
(Faems et al., 2005; Hofman et al., 2017). Such collaboration may involve, for instance, suppliers, users, and
customers and/or knowledge institutes (e.g., Belderbos et al., 2004; Van Echtelt, 2008; Brem et al., 2018), and it
may contribute to both exploitative and explorative innovation (Belderbos et al., 2004). Important reasons to
collaborate include, but are not limited to, access to complementary assets/knowledge, joint development of new
resources, or the possibility to share (the sometimes very high) development costs (and associated risks) among
the different participants (e.g., Faems et al., 2005). A collaborative development setting also involves specific
challenges, including the mitigation of opportunistic behavior (Gulati, 1995; Alvarez and Barney, 2001), the
avoidance of coordination gaps (Gerwin, 2004), or the role of contracts in collaborative new product development
(Hofman et al., 2017).

We lack, however, an understanding of the dynamics that may arise in the context of collaborative system
development, in which software and hardware are developed by different actors that maintain potentially
conflicting development strategies (see Table 1). Although we know about various functional hybrid development
strategies, these all pertain to a single-firm context. A collaborative setting in which software and hardware
development must go hand-in-hand adds complexities that remain undiscussed in the current literature. In this
respect, we do not know whether development hybrids (e.g., the Agile–Stage-Gate hybrid model) are (or are not)
a solution for a collaborative development project in which the two conflicting development methods are
maintained in their native form to develop an embedded system.

3. Research Method

To explore the implications and consequences of using conflicting development methods in a collaborative
project, we conducted an in-depth case study (Yin, 2009) on a collaborative embedded systems development
project in the automotive industry. We adopted a process research approach (Langley, 1999; Langley et al., 2013;
Van de Ven et al., 2000) and subsequently drew on systems thinking (Sterman, 2000) to uncover the project
dynamics that emerged over time. This research design is particularly appropriate given our investigation’s
exploratory and temporal nature, which renders cross-sectional variance studies less suitable.

3.1. Case Selection

We selected a development project: 1) that constituted a collaborative embedded systems development project
involving an Agile software development company that was contracted by a hardware manufacturer and that
worked according to the plan-driven method; 2) that was part of a mature industry setting, to make sure the project
was sufficiently representative of a typical embedded systems development project; 3) that had a sufficiently long
duration (that of the selected project was well over 100 weeks) to allow us to observe patterns and relationships
over time; 4) about which we were able to consult detailed information over the entire course of the project.

More specifically, the selected project involved a large and experienced software developer, SoftCo (which
uses Agile, i.e., Scrum), contracted by an even larger manufacturer, ManuCo (which uses a concurrent plan-driven
approach). SoftCo has a sound track record in developing highly customized and intricate software. For this
particular project, SoftCo was hired by ManuCo to develop a custom solution.

Our primary unit of analysis for this research project is SoftCo. ManuCo was both a supplier to and customer
of SoftCo. As a supplier, ManuCo provided the software team with the adequate testing setup. And as a customer,
it specified the boundaries (e.g., through specifications and feedback) within which the software developer needed
to operate. Indeed, in many development projects that include both software and hardware development, software
development exists as a subproject in an environment composed of hardware development (Karlström and
Runeson, 2006), making this a highly relevant setting.

By adhering to a plan-based approach—for instance, through setting strict up-front specification requirements
and associated deadlines—ManuCo (unwittingly) enforced plan-based influences on SoftCo’s Agile approach.

- 5 -

Furthermore, while ManuCo had a dual role (of both supplier and customer), the power distance between the two
organizations implied SoftCo had to synchronize to ManuCo’s schedule to a considerable extent. This power
distance also meant that the immediate consequences of the interaction were especially visible on the software
developer’s side.

3.2. Data Collection

Our data consists of qualitative data in the form of progress meeting presentations; these were supplemented with
interview data for clarification and triangulation (Yin, 2009). The main data consists of 83 SoftCo progress
meeting presentations—these detail the progress of the project and emerging challenges or problems for the
project team—as well as 81 meeting presentations for SoftCo’s senior management team (which oversaw this
strategically important project). These presentations were delivered over a period of 131 weeks. The weekly
presentations included the most recent detailed information on topics such as: feature development milestones,
development velocity and progress, key project activities (feature development and/or testing), requirements and
specifications, hardware availability, quality issues, technical issues, and so forth. By mainly relying on weekly
(detailed) presentations, our research design minimized retrospective bias (Golden, 1992). To obtain a complete
view of the project’s development, we gathered additional data through conducting 11 semistructured interviews
with various project informants, including the software project leader, software developers, and the manufacturing
project leader (at ManuCo) (Langley, 1999). Interviews lasted on average 60 minutes, during which interviewees
were asked to elaborate on the main developments of the project over time, including project planning, (changes
in) the development method, interaction with the other firm, and problems. All interviews were recorded and
subsequently transcribed. When necessary, one of the authors went back to validate the findings.

3.3. Data Analysis

Data analysis took place in several subsequent steps. First, we constructed a general case narrative from the
interview data and an initial analysis of the data from the progress meetings. This involved codifying a story that
served as a preliminary step “aimed at preparing a chronology for subsequent analysis” (Langley, 1999: 695). In
this respect, the narrative served as a first step in developing a detailed chronological account of the development
project, pointing to key causal relationships and themes (Langley, 1999). Table 2 offers an overview of the critical
events and their timing.

- 6 -

Table 2. A chronological account of key events.

Timing (week) Key events
May 2010 Start of the project; the initial feature adherence plan was developed and agreed upon.
June/July 2010 First accounts of unrealistic deadlines; growing development backlog.
September 2010 Failure to meet first mid-term deadline (number of features too low).
March 2011 Workshop to discuss software validation plan. Lack of input from ManuCo implied that no agreed-

upon validation plan became available.
March 2011 Decision to focus primarily on feature development, implying no bug fixing, to comply with

contractual demands.
June 2011 Realization that solution is inadequate (number of bugs). Testing hardware remains unavailable.
June 2011 Decision to focus primarily on testing and bug fixing.
July 2011 Anticipated project deadline not met (solution is unreliable).
Late 2011–early 2012 Testing hardware becomes increasingly available.
February–March 2012 Accounts that ManuCo cannot keep up with the development speed of SoftCo.
June 2012 New project deadline not met (performance issues).
June 2012 Project received a no-go decision (ManuCo will not use solution).

Subsequently, we systematically analyzed the progress meeting presentations and management team

presentations. Through doing so, we produced a detailed event list (database) of the project’s weekly dynamics.
Next, we coded the event list to uncover relevant themes or project activities during the course of the development
project. The resulting codes, including definitions and example quotes, are presented in Table 3.

- 7 -

Table 3. Coding scheme.

Code Description Example quote from progress presentation
Development backlog Development backlog compared to progress

as scheduled in project proposal/agreement.
Typically, mentions that indicate that the
project is behind schedule.

“Not enough front-end development progress to meet the week 42
deadline” (week 13)
“Not all expected features included” (week 57)

Quality issues Quality issues, such as (high levels of) bugs
and/or mentions of robustness/performance
of the solution.

“Large backlog of 10.1 defects will directly impact stability of
10.2. Rate of resolution too slow” (week 6)
“Robustness of the software is not good” (week 58)

Possibility to test (and fix)
features

The (non)availability of testing equipment
needed for testing the software solution on
ManuCo’s hardware.

“Lack of validation materials (cars)” (week 61)
“Test materials not available” (week 65)

Lack of specifications from
ManuCo

Unclear project specifications and/or
integration specifications.

“First software in product unclear” (week 1)
“No integration plan” (week 57)

Pressure on feature
development

Pressure on SoftCo to comply with
contractual obligations.

“High pressure put on SoftCo to respect next ManuCo milestones
in terms of content and deadlines” (week 58)

Regeneration of issues Bug proliferation process that results from
undetected issues in software solution.

“Number of open issues […] is increasing” (week 50)
“More issues than expected” (week 68)

Client (ManuCo) overload Inability of ManuCo to provide timely
feedback to SoftCo.

“Nonavailability of up-to-date [hardware]” (week 100)
“[Client] seems not to be able to handle complexity of [solution]”

The coded event list and interview data pointed to various project phases, in which a particular project activity

or theme dominated others. Notably, the conflict—and associated change in dominance—between the quantitative
dimension of the development (i.e., “development backlog”) and its qualitative dimension (i.e., “quality issues”)
stood out. Figure 1 denotes this interaction over time. More specifically, Figure 1 illustrates the number of
mentions, depicted as an eight-week moving average, that were made of the development backlog (in black) and
quality issues (in grey) during SoftCo’s core team’s weekly progress presentations. Using temporal bracketing
(Van de Ven and Poole, 1995), we were able to divide the total stream of events into four episodes (A to D) to
characterize further the (sequence of) key events and related themes that defined this development project. Note
that the different episodes in Figure 1 do not coincide with standard (plan-driven) phases; instead, the episodes
each mark a significant change in focus or activity within the software development project.

- 8 -

Fig. 1. Episodic phases underlying the development project, in terms of quantity versus quality of the solution.

In addition, we drew on systems thinking (Sterman, 2000) to identify the core mechanisms underlying the

dynamics of these episodic phases and their causal connections. To better understand the observed processes, we
developed a causal loop diagram (CLD). These are typical in system dynamics (Sterman, 2000) and increasingly
common in management studies (e.g., Van Oorschot et al., 2013; Perlow et al., 2002). Individuals and
organizations and the interactions between them constitute dynamic feedback systems that generate complex
behavior (Lin et al., 2006; Metallo et al., 2021), and CLDs are a powerful tool for representing the core dynamics
within such systems in terms of feedback (Lin et al., 2006). As such, the use of CLDs has a long tradition in
academic research.

4. Findings

4.1. Case Narrative

The findings are presented as follows. First, we present the case narrative according to the identified temporal
brackets. Figure 1 illustrates the four main brackets or episodes (A to D). As we have explained, this figure shows
the evolution of SoftCo’s focus on its two core activities, namely development (quantity, development backlog)
versus testing (quality, bugs/issues). The associated narrative aims to clarify critical dynamics that were triggered
by the collaborative development project and subsequently grounded the feedback loops in the CLD (see Figure
2). Using this causal loop diagram, we codified the potentially vicious keeping up appearances process.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

A
ve

ra
ge

 o
bs

er
va

tio
ns

Project week

Development
backlog

Quality issues

Episode A.
Understanding the full
scale of the software

system and its features.

Episode B.
Getting control

of the
development

backlog.

Episode C.
Getting control of

quality issues.

Episode D.
Trying to stabilize the

software system.

2010 2011 2012

- 9 -

Fig. 2. Causal loop diagram of the keeping up appearances process. The labels B and R denote the nature of the feedback loop: balancing and
reinforcing, respectively; the + and – denote the polarity of the causal link, while the denotes a substantial delay (see Sterman, 2000).

4.1.1. Episode A: A false start due to role conflict

The project commenced in May 2010. An initial feature adherence plan was developed in the requirement
definition phase. This plan stated, among other things, the number of features that needed to be developed as well
as the deadlines for delivering those features. In this respect, the first 10 features were planned for September
2010, and feature number 150 (the final feature) was scheduled for July 2011. After agreeing on the number and
nature of specifications as well as on their corresponding deadlines, the contracted software company and its client
(the hardware company) started development. As tasks among the partners were divided in a modular fashion, the
plan seemed to allow SoftCo’s team to develop using an Agile approach without too much interference from
ManuCo’s plan-driven approach. More specifically, ManuCo attempted to create discrete subsystems that allowed
independent teams to work on the project. As such, after the requirement definition phase, both organizations
started to work on the design concurrently.

Nevertheless, developing in an Agile manner can only be truly effective if each sprint (or feature development
cycle) consists of both development and testing (including customer feedback). Given the nature of this
collaborative embedded systems development project, testing required the input of validation equipment (i.e.,
hardware) that ManuCo developed. Because ManuCo did not work with short iterative cycles (e.g., through rapid
prototyping), but with one long design phase, SoftCo was forced to wait for this validation equipment to become
available. Although some testing and bug fixing was possible (mainly through simulations), a truly thorough
analysis of the developed features was not possible, which kept SoftCo in the dark about the actual quality of its

- 10 -

work. This situation was also acknowledged during an interview with the project manager of the software team.
He reflects:

“Actually, the whole project started too early. Against our better judgment, we started the
project, even though everyone knew the [testing] resources were not available.”

SoftCo’s core team meeting notes also mentioned in this regard:
“Some impact on project milestones due to unreliable estimates and resource [i.e.,
hardware] availability” (Core team meeting, July 2010).

As a result, the software team resorted to “sprints of faith” (Figure 2, “sprint of faith” loop). This implies that
features were being developed without thorough testing in an attempt to keep the development speed in line with
expectations and contractual obligations, thereby significantly increasing the length of their Agile iterations. This
situation finds its origin in role conflict (Katz and Kahn, 1978), whose presence was perceived by the software
team. Role conflict occurs when there are incompatible demands placed on an actor. That is, role conflict is
experienced when “we find ourselves pulled in various directions as we try to respond to the many statuses we
hold” (Macionis et al., 2010: 129). In other words, role conflict concerns the management of two (or more)
pressures in a context in which compliance with one pressure will make it difficult to comply with the other
pressure(s) (Katz and Kahn, 1978).

In this respect, the more the software company attempted to comply with the plan-driven demands of its client,
the more it forwent its Agile, highly iterative development cycles (which are required for successful development).
Early on in the project, this tension was fueled significantly by plan-based contractual agreements on
specifications and associated deadlines. This situation caused a significant delay in the project quite soon after it
had started—that is, a false start. The “feature development rate” was lower than initially planned owing to the
many “undetected issues (bugs),” and this resulted in a rapidly increasing feature development backlog. As
ManuCo’s project manager observed:

“I remember the presentation from SoftCo stating the next deliveries would be a little
delayed but after that we would make up some time and in June 2011 everything would be
done. This was not […] the case in the end…”

Notably, as the gap between planned and actually developed features kept increasing, so did the pressure on
SoftCo to adhere to the (plan-driven) schedule. This situation triggered Episode B.

4.1.2. Episode B: Keeping up appearances over bug proliferation

The delay resulted in intense discussions and tension between SoftCo and ManuCo. The latter insisted on
maintaining the project scope (150 features) and deadline (mid-2011). SoftCo replied that this was simply
impossible due to the size and complexity of the desired solution. Nevertheless, in an attempt to respond to
ManuCo’s pressure and contractual demands, a period of gear-up was announced. During this episode, SoftCo
mapped the backlog, and additional development resources were allocated. The emphasis at this stage was entirely
on feature development (i.e., quantity over quality):

“Feature development until [April 2011], so no bug fixing” (core team meeting, March
2011).

By directing all attention to feature development, the team was keeping up appearances (Figure 2, “keeping
up appearances” loop) in an attempt to keep ManuCo satisfied and, as such, reduce tensions by “adhering to”
contractual demands. Although the team knew that feature quality would likely turn out to be (too) low without
thorough testing, the feature development rate would at least look good on paper. SoftCo reflects:

“A part of the problem was that many features were incomplete or not finished. They
didn’t work or only partly [worked]. Therefore, we decided to finish these features first,
resulting in [a] full-feature, full-bug [solution].”

Testing would only be done after all features were developed. However, development was increasingly
hampered because there were already many problems with the software (i.e., bugs) and because (parts of) features
were strongly interrelated. In other words, a vast number of bugs were incorporated into newly developed features,
because the latter were based on features that had been developed earlier in the project and already suffered from
low quality:

“The software behaves strangely in [the product]” (Core team meeting, June 2011).
“The performance is unacceptable” (Core team meeting, June 2011).

- 11 -

In other words, Episode A was bound to result in undetected issues (bugs), restraining the “actual number of
features developed” and increasing the development backlog. This increased the “pressure on feature
development,” as the team had to meet plan-driven contractual agreements. As such, resources were increasingly
directed toward feature development—this was an attempt to boost the feature development rate—at the cost of
the “possibility to test (and fix) features.” As resources constitute a zero-sum game, resources dedicated to
development were not available for testing, and vice versa. While this full-feature, full-bug “strategy,” initiated
to keep up appearances, initially had a positive influence on the feature development rate and, therefore, on the
actual number of features developed, this approach was subjected to strong policy resistance (Senge, 1990;
Sterman, 2000). More specifically, the quantity of undetected issues (bugs) also dramatically increased as a result
of a structural lack of bug testing/fixing. However, the feature development rate at this time hid this fact (Figure
2, “keeping up appearances” loop). Over time, the accumulation of software bugs had an increasingly negative
influence on the actual number of features developed.

In developing representative tests to detect bugs, SoftCo remained dependent on ManuCo’s validation
equipment. More specifically, this equipment would allow SoftCo to test the software on the latest available
subcomponents. Nevertheless, at this stage, such validation materials were still not a development priority for
ManuCo, which was directing its focus toward other hardware involved in the development. This was also
identified during one of the interviews with a SoftCo project manager:

“There was no one at ManuCo who was responsible for organizing all the validation
equipment and bringing it up to date.”

Moreover, new software bugs were generated by old ones that remained undetected. This “bug proliferation”
process is self-reinforcing: the more undetected bugs there are in a piece of software, the higher the probability
that they will spread and generate even more bugs (Lin et al., 2008). This process is especially destructive if there
is a strong interdependence between features. In our case study, the full-feature, full-bug approach, initiated by
the incompatible development methods and fueled by role conflict (Episode A), drove an inclination on SoftCo’s
part to keep up appearances. This self-destructive strategy, intended to keep the client satisfied, initiated the
vicious bug proliferation loop (Figure 2, “bug proliferation” loop). As a result, the actual number of features
developed fell even further behind schedule. SoftCo was forced to keep on developing features as a result of its
contractual agreements with ManuCo (specific features with associated deadlines) but was increasingly frustrated
in executing this task due to the limited availability of validation resources.

Meanwhile, ManuCo did not yet have a validation plan describing how to precisely integrate the software into
its hardware solution. Such plans should detail integration steps and typically also prescribe which components
have priority over others, all of which would have been valuable input for SoftCo’s development. One of SoftCo’s
managers mentioned during an interview:

“In March 2011, together with ManuCo, we organized a workshop to look at the
validation plan and to decide which features needed to be delivered first to validate the
system. This workshop was a total failure because [ManuCo] did not have a plan […]”

4.1.3. Episode C: Firefighting

By the time the validation equipment and plan from ManuCo finally became available to SoftCo (following the
plan-driven schedule of the hardware developer), the actual status of the project also became painfully clear. Bugs,
which had remained hidden for an extended time, were discovered at a truly alarming rate. Bugs that were solved
led to the discovery of yet more bugs. Testing became an extraordinarily tedious and inefficient ordeal, so much
so that the decision was made to stop it completely:

“[At a certain point] I said to the team, stop with testing because we know there are 1,200
bugs. We first need to cut these back to 600… That will take us four weeks. After that you
are allowed to test again.”

The software team was unmasked at this stage, as many (nested) problems within the software solution were
exposed to the hardware developer. Whereas the software team was initially pressed to develop more features
while having a decreased ability to test them, this next phase was characterized by an opposing strategy: full
emphasis on bug testing and fixing (Figure 2, “firefighting” loop). This drove the “firefighting” loop aimed at
combating the many undetected issues that resulted from the keeping up appearances and bug proliferation loops.
This further delayed the collaborative project and resulted in Episode D.

- 12 -

More specifically, fixing issues to stabilize the system took almost 75% of the time it took to develop all
features (39 weeks compared to 54 weeks), which was much longer than planned. As a result, despite all SoftCo’s
increased efforts (e.g., overtime and an increase in capacity), the deadline was severely missed.

4.1.4. Episode D: What goes around…

Although many bugs were fixed during the previous episode, the stability and performance of the overall solution
left much to be desired. SoftCo therefore decided to give top priority to stabilizing the system in an attempt to
finish the project before June 2012 (a full year later than the initially agreed completion date). To finish the project
before the new deadline, SoftCo significantly prioritized the project, including by allocating additional resources
to it. And with the bug proliferation loop under control, SoftCo was finally able to work in an Agile manner. As
a result, the feature development rate increased substantially. Nevertheless, the improved workflow now strained
its client, ManuCo, which also needed to step up its reviewing activities. ManuCo reflects:

“Receiving new software to validate every day was a nightmare for the team.”
As a result, the problems around the availability of validation equipment remained, though now they were

occurring because ManuCo could not handle the increased inflow of work from SoftCo. ManuCo realized too late
that the validation of the system would require a significant amount of work, and it had not considered such a
workload in its schedule. This situation again delayed the feedback to SoftCo, once more frustrating development
speed. Often, testing equipment was not available on the requested date, or hardware was equipped with the wrong
specifications. SoftCo’s core team meeting notes state, among other things:

“[Hardware is equipped with the] wrong software for testing” (core team meeting,
February 2012)
“Nonavailability of up-to-date test equipment” (core team meeting, March 2012).

This “what goes around comes around” situation (Figure 2, “what goes around…” loop), is the culmination of
the keeping up appearances process. As a whole, this process substantially diminishes the chances of success in
collaborative development projects that try to combine Agile and plan-based development methods.

In the end, this situation caused further delays and disruptions, and the deadline was missed once more.
SoftCo’s solution received an overall no-go because its performance was insufficient. The missed deadline had
significant negative financial implications for both firms. One of SoftCo’s engineer’s recalls:

“In [June] we received a no-go for the software part, which was a complete crisis for us.”
The complete causal feedback structure set out in Figure 2, which includes five main feedback loops and

reflects a “shifting the burden” archetype (Senge, 1990), shows the dynamics that may arise due to the interaction
of plan-based and Agile development methods in the context of collaborative system development. The causal
loop diagram (Sterman, 2000), grounded in the case narrative and temporal brackets of the development project,
identifies and explains the generative mechanisms and patterns underlying the observed development process.

5. Discussion and Implications

The complexity of today’s embedded product development implies that software and hardware are often
developed by different highly specialized firms that typically adhere to potentially conflicting development
techniques. This study set out to investigate the dynamics underlying such collaborative embedded systems
development. More specifically, we investigated a development context that is arguably becoming increasingly
common, in which a plan-based hardware developer collaborates with an Agile software developer to develop
complex embedded systems (Karlström and Runeson, 2006). Using an in-depth case study from the automotive
industry, we observed the dynamics arising from the interaction between plan-based and Agile methods.
Subsequently, by applying a process research approach that included event-based analysis, temporal bracketing,
and systems thinking, we formalized a causal loop diagram (Figure 2) that captures the keeping up appearances
process. Our generic theory, unfolding over four main periods, describes how tensions arise in such a collaborative
development setting and how these tensions damage the project.

While conclusions drawn from a single case study require some caution, the findings presented in this paper
provide important insights into the dynamics that underlie keeping up appearances. The process finds its origin in
role conflict caused by mismatches between the development methods. Once initiated, a series of events unfolds
along a self-destructive path. Notably, Episode B is key, as this period is characterized by self-reinforcing
feedback. The negative influence of the keeping up appearances process grows exponentially during this period,

- 13 -

and therefore determines to a great extent the additional effort required to fix and finish the development project
later on (if this is still possible at all).

Development approaches that combine plan-based and Agile methods are often referred to as “hybrid”
development methods (Ghezzi and Cavallo, 2020; Paluch et al., 2020), or, more specifically, as Agile–Stage-Gate
hybrids (Sommer at al., 2015; Edwards et al., 2019; Cooper et al., 2019). Examples of functional hybrid
development approaches are becoming increasingly widespread (e.g., Cooper and Sommer, 2016; Karlström and
Runeson, 2005, 2006; Edwards et al., 2019; Žužek et al., 2020). Some scholars suggest making a plan-driven
approach more Agile by, for instance, introducing rapid prototyping (Cooper, 2008; Cooper and Sommer, 2016;
Datar et al., 1997). Others propose making an Agile approach more plan driven by, for instance, changing the
length of the iterative cycles or sprints (Port and Bui, 2009; Vigden and Wang, 2009). Yet other scholars advocate
modularity, which allows different modules to be developed by utilizing different methods (Austin and Devin,
2009; Lenfle and Loch, 2010; Loch and Terwiesch, 2005). We contribute to the literature on Agile–Stage-Gate
hybrids by studying a project that illustrated high interdependence between the different parts (implying a low
possibility for modularity3). Furthermore, different highly specialized organizations working in collaboration
developed software and hardware, maintaining conflicting development methods as they did so. We find that such
a development context renders existing functional hybrid solutions unattainable (Kaisti et al., 2013). In this
respect, our findings contribute to the literature by detailing a dysfunctional hybrid approach and serve to illustrate
that plan-based and Agile approaches, in the context of collaborative software and hardware development, cannot
readily be combined (cf. Cooper 2016; 2017; Edwards et al., 2019; Žužek et al., 2020). Our findings also imply
that more research is required to uncover the boundary conditions for hybrid development tactics, notably in
collaborative settings.

While product development success stories and best practices are widespread in the literature (e.g., Kahn et
al., 2012), studies on how firms or projects fail are relatively rare (some notable examples are: Ring and Van de
Ven, 1994; Tripsas and Gavetti, 2000; Van Oorschot et al., 2013; Walrave et al., 2011). Yet detailed knowledge
of the reasons underlying failure might prevent managers from falling into similar traps. Our study contributes to
this relatively small yet important body of knowledge by detailing a potentially vicious process by which a
collaborative systems development project fails. That is, our theory serves to explain why a contracted software
firm might deliberately follow a potentially self-destructive path through a series of seemingly rational decisions
and actions.

Our theory responds to a long-standing call by Dougherty (1996), who argues that, despite a few notable
examples (e.g., Lewis et al., 2002), scholars are failing to capture the tensions that underlie new product
development adequately. Tensions have long been considered in organization and management science (e.g.,
Magnusson et al., 2009; Sheremata, 2000). In this respect, many studies highlight the need for managers to cope
with conflicting and fluctuating demands (e.g., Dougherty, 1996; Lewis et al., 2002). Here, we focus specifically
on tensions that may arise due to the interaction of plan-based and Agile development approaches in the context
of a collaborative embedded systems development project.

5.1. Managerial Contributions

This study contains important insights for managers who are assigned to collaborative embedded systems
development projects that involve a software developer and a hardware developer (cf. Tiberius et al., 2021). First
of all, our in-depth case study illustrates in great detail how the project was effectively hindered by the
combination of the two development methods favored by each party and the nature of the buyer-supplier
relationship. This configuration resulted in a process that we call “keeping up appearances,” in which the software
company was forced to “adopt” a conflicting development strategy to manage the external pressure from its client.
Interestingly, forcing an Agile supplier to comply with plan-driven demands makes the manufacturer (buyer)
liable to sabotage its own development. In this respect, managers of such complex projects, informed by our
results, should be able to better formulate a viable development strategy.

But what would such a strategy look like, given that the two methods seem to be fundamentally incompatible?
One of the main advantages of the short cycles in Agile development is frequent testing. Although short cycles
do not prevent software bugs or issues, these are discovered much earlier, and therefore the reinforcing issue-

3 In this respect, our findings also serve to confirm our expectation that it is unlikely that modularization works for collaborative embedded
systems development.

- 14 -

regeneration process (i.e., bug proliferation) is prevented (see Figure 2). Significant reductions of 40-90% in
defect density are reported when teams perform frequent tests, as they do under Agile approaches (Nagappan et
al., 2008). Our case analysis illustrates that SoftCo took about 39 weeks to try to fix all issues (Episode C and a
part of Episode D) in an attempt to deliver a stable system to ManuCo. A 40% reduction of this time implies only
23 weeks would have been needed for testing. A 90% reduction implies only four weeks of testing. Such a
reduction could have prevented the project from being unsuccessful. Of course, frequent testing is only possible
when validation equipment is available. Indeed, the lack of such equipment in the early phases of the collaborative
project was a major enabler of keeping up appearances (Figure 2). Interestingly, if SoftCo had delayed the start
of its software development and waited for the validation equipment to become available, it could have maintained
an Agile development approach. It is very likely that frequent testing would have subsequently reduced the time
needed for fixing issues and stabilizing the system (Nagappan et al., 2008). This is depicted in Figure 3. In this
respect, the Agile approach, initiated after a delayed start, is more likely to result in a fully operational system at
the deadline, through a huge reduction of time and effort spent on fixing (regenerated) issues. Thus, the delayed
start could have been used to wait for validation equipment to be developed. This potentially functional hybrid
strategy allows both hardware and software teams to work with their own preferred method, thereby preventing
the software team from keeping up appearances.

Fig. 3. Delayed start of the software team: sequential Agile approach.

As such, a sequential Agile approach in which the software team has a delayed start and waits for test
equipment to be completed by the hardware team allows the software team to work in short cycles that include
frequent testing, thereby preventing an escalation of issues. The time gained by avoiding these issues is not used
to finish the project earlier but to delay the start of the software team’s work. This approach differs from the
existing hybrid strategies described in the literature thus far. First, it differs from the modularizing strategy as it
allows for a close integration between software and hardware development, which is problematic under a
modularization approach. Moreover, this approach, building on the Agile–Stage-Gate hybrid approach, could
make the latter better applicable to collaborative settings. Of course, more research is needed to test such an idea
for collaborative development in which both hardware and software teams are allowed to follow their own
preferred development approaches.

6. Limitations and future work

Naturally, the fact that our findings are the product of a single in-depth case study has implications on the
generalizability of the theory that we have developed (Dougherty, 1996). The process theory developed in this

deadlinestart

Requirements
analysis (part
of Episode A)

Feature development
(part of Episode A + B)

Bug fixing and stabilizing the
system

(Episode C + D)

14 weeks 54 weeks 39 weeks

Agile feature development with frequent testing
Reduction of bug fixing time by 90%

Agile feature development with frequent testing
Reduction of bug fixing time by 40%

Delayed start of software:
wait until test equipment is
partly finished,
start developing simple
features first

- 15 -

paper was grounded in a particular collaboration. However, we postulate that our findings are relevant to complex
development initiatives that entail a high level of interdependence and in which a plan-based hardware developer
contracts an Agile software developer. Other forms of cooperation could potentially result in different processes
for which further research is needed.

Here, we studied a development context that involved a plan-based hardware manufacturer. Cooper and
Sommer (2016) and Edwards et al. (2019) argue that the plan-based approach (i.e., Stage-Gate) may be replaced
by a hybrid Agile–Stage-Gate model. This implies that the plan-based approach is enriched with Agile elements.
One might wonder whether the Agile–Stage-Gate model is, as such, more compatible with the native Agile
method—perhaps even compatible enough to prevent the keeping up appearances process from happening. We
leave this as an open question for future work.

Future work may also focus on the trust-versus-control aspects in collaborative embedded systems
development projects (Bstieler, 2005). Our case seems to exhibit a lack of trust between the actors involved, as
imposed contractual obligations were guiding—and limiting—the (software) development. Previous research has
already established that trust is a central element in any relationship (Smets et al., 2013). However, the impact of
trust policies relative to that of control policies is unknown in a collaborative embedded context. Perhaps the
keeping up appearances process can be mitigated if formal controls (e.g., contracts) and informal controls (e.g.,
trust) are better balanced over time (see, e.g., Hofman et al., 2017; Smets et al., 2013).

7. Conclusion

This research set out to uncover the dynamics that may underlie complex collaborative embedded systems
development projects in which conflicting development methods are maintained. We found that such projects may
be subject to the keeping up appearances process, which is driven by role conflict and severely diminishes a
project’s chances of success. Building on the insights we developed, we propose the “sequential Agile approach,”
a development strategy that aims to counteract the vicious processes that our case study exposed. This potentially
functional hybrid strategy allows the use of both plan-based and Agile approaches in one collaborative project, in
which the Agile team delays the start of its part of the project until the plan-based team has made sufficient
progress on its part.

References

1. Ågerfalk, P. J., Fitzgerald, B. and Slaughter, S. A. (2009). Flexible and distributed information systems development:
State of the art and research challenges. Information Systems Research, 20(3): 317–328.

2. Annosi, M.C., Martini, A., Brunetta, F. and Marchegiani, L. (2020). Learning in an agile setting: A multilevel research
study on the evolution of organizational routines. Journal of Business Research, 110: 554–566.

3. Austin, R. D. and Devin, L. (2009). Weighing the benefits and costs of flexibility in making software: Toward a
contingency theory of the determinants of development process design. Information Systems Research, 20(3): 462–477.

4. Baldwin, C. Y. and Clark, K. B. (2006). Modularity in the Design of Complex Engineering Systems. In A. Minai, D.
Braha and B.Y. Yaneer (Eds.), Complex Engineered Systems: Science Meets Technology, 175–205. New York, NY:
Springer.

5. Belderbos, R., Carree, M. and Lokshin, B. (2004). Cooperative R&D and firm performance. Research Policy, 33(10):
1477–1492.

6. Bianchi, M., Marzi, G. and Guerini, M. (2020). Agile, Stage-Gate and their combination: Exploring how they relate to
performance in software development. Journal of Business Research, 110: 538–553.

7. Brem, A., Bilgram, V. and Gutstein, A. (2018). Involving lead users in innovation: A structured summary of research on
the lead user method. International Journal of Innovation and Technology Management, 15(03): 1850022.

8. Bstieler, L. (2005). Trust formation in collaborative New Product Development. Journal of Product Innovation
Management, 23(1): 56–72.

9. Cantamessa, M. and Villa, A. (2000). Product and process design effort allocation in concurrent engineering.
International Journal of Production Research, 38(14): 3131–3157.

10. Clark, K. B. and Fujimoto, T. (1991). Product development performance: Strategy, organization, and management in the
world auto industry. Boston, MA: Harvard Business School Press.

11. Conboy, K. (2009). Agility from first principles: Reconstructing the concept of agility in information systems
development. Information Systems Research, 20(3): 329–354.

12. Cooper, R. G. (2001). Winning at new products: Accelerating the process from idea to launch. Cambridge, MA: Basic
Books.

13. Cooper, R. G. (2008). The Stage-Gates idea-to-launch process—Update, what’s new, and NexGen systems. Journal of
Product Innovation Management, 25(3): 213–232.

- 16 -

14. Cooper, R. G. and Sommer, A. F. (2016). The Agile–Stage-Gate Hybrid Model: A promising new approach and a new
research opportunity. Journal of Product Innovation Management, 35(5): 513–526.

15. Cooper, R. G. (2016). Agile-Stage-Gate hybrids: The next stage for product development. Research-Technology
Management, 59(1): 1–9.

16. Cooper, R. G. (2017). Idea-to-launch gating systems: Better, faster, and more agile. Research-Technology Management,
60(1): 48–52.

17. Cooper, R. G. and Sommer, A.F. (2018). Agile–Stage-Gate for manufacturers – Changing the way new products are
developed. Research-Technology Management, 61(2): 17-26.	

18. Cooper, R. G., Dreher, A. and Fürst, P. (2019). How Agile development works for manufacturers”, Parts 1 & 2. Center
for Innovation Management Studies Management Report, Part 1 in March-April 2019 & Part 2 in May-June 2019.

19. D’Adderio, L. and Pollock, N. (2014). Performing modularity: Competing rules, performative struggles and the effect of
organizational theories on the organization. Organization Studies, 35(12): 1813–1843.

20. Das, T. K. and Teng, B. S. (2000). A resource-based theory of strategic alliances. Journal of Management, 26(1): 31–60.
21. Datar, S., Jordan, C., Kekre, S., Rajiv, S. and Srinivasan, K. (1997). New development structures and time-to-market.

Management Science, 43(4): 452–464.
22. Dingsøyr, T., Dyba, T. and Moe, N. B. (2010). Agile software development, current research and future directions.

Berlin, Germany: Springer-Verlag.
23. Dougherty, D. (1996). Organizing for innovation. In S.R. Clegg, C. Hardy, and W.R. Nord (Eds.), Handbook of

organization studies, 424–439. Thousand Oaks, CA: Sage.
24. Edwards, K., Cooper, R. G., Vedsmand, T. and Nardelli, G. (2019). Evaluating the Agile-Stage-Gate hybrid model:

Experiences from three SME manufacturing firms. International Journal of Innovation and Technology Management,
16(08): 1950048.

25. Faems, D., Van Looy, B. and Debackere, K. (2005). Interorganizational collaboration and innovation: Toward a portfolio
approach. Journal of Product Innovation Management, 22(3): 238–250.

26. Fowler, M. and Highsmith, J. (2001). The agile manifesto. Software Development, 9: 28–35.
27. Ghezzi, A. and Cavallo, A. (2020). Agile Business Model Innovation in Digital Entrepreneurship: Lean Startup

Approaches. Journal of Business Research, 110: 519–537.
28. Golden, B.R. (1992). The past is the past—or is it? The use of retrospective accounts as indicators of past strategy.

Academy of Management Journal, 35(4): 848–860.
29. Gonzalez, W. (2014). Applying agile project management to predevelopment stages of innovation. International Journal

of Innovation and Technology Management, 11(04): 1450020.
30. Hofman, E., Faems, D. and Schleimer, C. (2017). Governing collaborative New Product Development: Towards a

configurational perspective on the role of contracts. Journal of Product Innovation Management, 34(6): 739–756.
31. Johansson, C. (2014). Managing uncertainty and ambiguity in gates: Decision making in aerospace product

development. International Journal of Innovation and Technology Management, 11(02): 1450012.
32. Kahn, B. K., Barczak, G., Nicholas, J., Ledwith, A. and Perks, H. (2012). An examination of New Product Development

best practice. Journal of Product Innovation Management, 29(2): 180–192.
33. Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T. and Lehtonen, T. (2013). Agile methods

for embedded systems development: A literature review and a mapping study. EURASIP Journal on Embedded Systems,
15: 1–16.

34. Karlström, D. and Runeson, P. (2005). Combining agile methods with stage-gate project management. IEEE Software,
22(3): 43–49.

35. Karlström, D. and Runeson, P. (2006). Integrating agile software development into stage-gate managed product
development. Empirical Software Engineering, 11(2): 203–225.

36. Katz, D. and Kahn, R. L. (1978). The social psychology of organizations. Oxford, UK: Wiley.
37. Kortelainen, S. and Lättilä. (2013). Hybrid modelling approach to competitiveness through fast strategy. International

Journal of Innovation and Technology Management. 10(5): 1340016.
38. Langley, A. (1999). Strategies for theorizing from process data. Academy of Management Review, 24(4): 691–710.
39. Langley, A., Smallman, C., Tsoukas, H. and Van de Ven, A. H. (2013). Process studies of change in organization and

management: Unveiling temporality, activity, and flow. Academy of Management Journal, 56(1): 1–13.
40. Lenfle, S. and Loch, C. (2010). Lost Roots: How project management came to emphasize control over flexibility and

novelty. California Management Review, 53(1): 32–55.
41. Lewis, M. W., Welsh, M. A., Dehler, G. E. and Green, S. G. (2002). Product development tensions: Exploring contrasting

styles of project management. Academy of Management Journal, 45(3): 546–564.
42. Lin, C. H., Tung, C. M. and Huang, C. T. (2006). Elucidating the industrial cluster effect from a system dynamics

perspective. Technovation, 26(4): 473–482.
43. Lin, J., Chai, K. H., Wong, Y. S. and Brombacher, A. C. (2008). A dynamic model for managing overlapped iterative

product development. European Journal of Operational Research, 185(1): 378–392.
44. Loch, C. H. and Terwiesch, C. (2005). Rush and be wrong or wait and be late? A model of information in collaborative

processes. Production and Operation Management, 14(3): 331–343.
45. Macionis, J. J. and Gerber, L. M. (2010). Sociology. Toronto, ON: Pearson Canada.
46. Magnusson, M., Boccardelli, P. and Börjesson, S. (2009). Managing the efficiency-flexibility tension in innovation:

Strategic and organizational aspects. Creativity and Innovation Management, 18(1): 2–7.

- 17 -

47. Meredith, J. R. and Mantel, S. J. (2011). Project management: A managerial approach. Hoboken, NJ: Wiley.
48. Metallo, C., Agrifoglio, R., Briganti, P., Mercurio, L. and Ferrara, M. (2021). Entrepreneurial Behaviour and New

Venture Creation: the Psychoanalytic Perspective. Journal of Innovation & Knowledge, 6(1): 35–42.
49. Mitchell, V. L. and Nault, B. R. (2007). Cooperative planning, uncertainty, and managerial control in concurrent design.

Management Science, 53(3): 375–389.
50. Nagappan, N., Maximilien, E. M., Bhat, T. and Williams, L. (2008). Realizing quality improvement through test driven

development: Results and experiences of four industrial teams. Empirical Software Engineering, 13: 289–302.
51. Pechmann, F. von, Midler, C., Maniak, R. and Charue-Duboc, F. (2015). Managing systemic and disruptive innovation:

Lessons from the Renault Zero Emission Initiative. Industrial and Corporate Change, 24(3): 677–695.
52. Peng, D. X., Heim, G. R. and Mallick, D. N. (2014). Collaborative product development: The effect of project complexity

on the use of information technology tools and new product development practices. Production and Operation
Management, 23(8): 1421–1438.

53. Perlow, L. A., Okhuysen, G. A. and Repenning, N. P. (2002). The speed trap: Exploring the relationship between decision
making and temporal context. Academy of Management Journal, 45(5): 931–955.

54. Port, D. and Bui, T. (2009). Simulating mixed agile and plan-based requirements prioritization strategies: Proof of
concept and practical implications. European Journal of Information Systems, 18(4): 317–331.

55. Paluch, S, Antons, D., Brettel, M., Hopp, C., Salge, T.-O., Piller, F. and Wentzel, D. (2020) Stage-gate and agile
development in the digital age: Promises, perils, and boundary conditions. Journal of Business Research, 110: 495–501,

56. Ring, P. S. and Van de Ven, A. H. (1994). Developmental processes of cooperative interorganizational relationships.
Academy of Management Review, 19(1): 90–118.

57. Senge, P. M. (1990). The fifth discipline: The art & practice of the learning organization. New York City, NY: Doubleday
Business.

58. Sheremata, W. A. (2000). Centrifugal and centripetal forces in radical new product development under time pressure.
Academy of Management Review, 25(2): 389–408.

59. Smets, L. P. M., Van Oorschot, K. E. and Langerak, F. (2013). Don’t trust trust: A dynamic approach to controlling
supplier involvement in new product development. Journal of Product Innovation Management, 30(6): 1145–1158.

60. Sommer, A. F., Hedegaard, C., Dukovska-Popovska, I. and Steger-Jensen, K. (2015). Improved product development
performance through Agile/Stage-Gate hybrids. Research-Technology Management, 58(1): 34–45.

61. Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. New York City, NY:
McGraw Hill.

62. Terwiesch, C., Loch, C. H. and De Meyer, A. (2002). Exchanging preliminary information in concurrent engineering:
Alternative coordination strategies. Organization Science, 13(4): 402–419.

63. Tiberius, V., Schwarzer, H. and Roig-Dobón, S. (2021). Radical innovations: Between established knowledge and future
research opportunities. Journal of Innovation & Knowledge, 6(3): 145–153.

64. Tura, N., Hannola, L. and Pynnönen, M. (2017). Agile methods for boosting the commercialization process of new
technology. International Journal of Innovation and Technology Management, 14(03): 1750013.

65. Tripsas, M. and Gavetti, G. (2000). Capabilities, cognition, and inertia: Evidence from digital imaging. Strategic
Management Journal, 21(10/11): 1147–1161.

66. Van de Ven, A. H. and Poole, M. S. (1995). Explaining development and change in organizations. Academy of
Management Review, 20(3): 510–540.

67. Van de Ven, A. H., Angle, H. L. and Poole, M. S. (2000). Research on the management of innovation: The Minnesota
studies. Oxford, NY: Oxford University Press.

68. Van Echtelt, F. E. A., Wynstra, F., Van Weele, A. J. and Duysters, G. (2008). Managing supplier involvement in new
product development: A multiple-case study. Journal of Product Innovation Management, 25(2): 180–201.

69. Van Oorschot, K. E., Akkermans, H., Sengupta, K. and Van Wassenhove, L. N. (2013). Anatomy of a decision trap in
complex new product development projects. Academy of Management Journal, 56(1): 285–307.

70. Vatananan, R. S. and Gerdsri, N. (2012). The current state of technology roadmapping (TRM) research and practice.
International Journal of Innovation and Technology Management, 9(04): 1250032.

71. Vigden, R. and Wang, X. (2009). Coevolving systems and the organization of agile software development. Information
Systems Research, 20(3): 355–376.

72. Walrave, B., Van Oorschot, K. E. and Romme, A. G. L. (2011). Getting trapped in the suppression of exploration: A
simulation model. Journal of Management Studies, 48(8): 1727–1751.

73. Wood, S., Michaelides, G. and Thomson, C. (2013). Successful extreme programming: Fidelity to the methodology or
good teamworking? Information and Software Technology, 55(4): 660–672.

74. Yin, R.K. (2009). Case study research: Design and methods. Thousand Oaks, CA: Sage.
75. Žužek, T., Gosar, Ž., Kušar, J. and Berlec, T. (2020). Adopting agile project management practices in non-software

SMEs: A case study of a Slovenian medium-sized manufacturing company. Sustainability, 12(21): 9245.

View publication stats

https://www.researchgate.net/publication/359548105

