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Abstract 

The Nordic power market is a key player in facilitating the production of green 

energy. Especially in recent time, the market has seen a substantial increase in 

power prices and volatility. A tool for hedging this exposure is the Nasdaq 

Commodities exchange, which offers Nordic power derivatives. However, Nasdaq 

themselves has claimed this market is relatively illiquid.  

Our thesis aims to investigate how volatility in Nordic power prices affects the 

liquidity in the Nordic power derivative market, with special emphasis on the 2022 

power crisis. Our analysis is based on daily orderbooks from different power 

derivatives, as well as daily Nordic system prices from 2016 to 2023. We use OLS 

regression in order to examine any possible relationship between volatility and 

liquidity. 

We find volatility and liquidity to have a negative relationship. This is in line with 

present literature, due to liquidity providers being less attracted to volatile markets, 

although empirical testing has given different results. We found volatility in 2022 

to bid-ask spread, but lack statistical significance to back up this result. In 2022, we 

observed that market participants were more willing to add orders despite volatile 

system prices compared to 2019. 
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1 Introduction  

The Nordic power market has seen substantially high prices and volatility during 

2022. It is expected that energy prices will continue to be volatile due to the fast 

transition to low-carbon energy. Furthermore, Nordic energy consumption is 

projected to increase by 50% by 2050, with the possibility of increasing as much as 

100% (Wråke et al., 2021). The increased prices and volatility have caused financial 

problems for households, corporations, and producers alike. If clean energy 

production does not increase by a similar amount as projected consumption, 

managing electricity price risk may become even more important in the future. 

A tool for handling electricity exposure in the Nordics is the Nasdaq Commodities 

Exchange. They offer power derivatives for the entire Nordic area. These 

instruments can be used either for hedging power exposure or for speculative 

trading. However, in an interview we conducted with Nasdaq, they described the 

Nordic power derivative market as “relatively illiquid” compared to other financial 

markets. With the growing need to hedge volatile energy prices, understanding the 

volatility and liquidity of the power derivative market is crucial for effective risk 

management, stability, and efficiency of the market. Given the increased focus on 

Nordic power prices and its volatility, has there been an increase in interest in power 

derivatives, and if so, has liquidity improved? 

In the commodity futures market, the demand for liquidity is considered high 

(Grossman & Miller, 1988). This is because hedgers need to buy continues, due to 

inflow of commodities in the supply chain. This is especially true in volatile 

markets, and liquidity becomes crucial for this reason. Moreover, futures markets 

involve high level based on margin requirements that vary with the volatility of the 

underlying asset. Trading therefore becomes riskier for speculators during high 

volatility scenarios, which may affect liquidity (Haugom & Ray, 2017). 

The relationship between volatility and liquidity have been studied for other 

derivatives such as oil futures (Haugom &Ray, 2017) and stocks (Ma et al., 2018). 

Although there is some literature on the Nordic power derivative market, most of 

these papers investigate specific price dynamics. Our thesis aims to investigate the 
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liquidity in the Nordic power derivative market, how it relates to liquidity in the 

underlying power prices, and how this may have changed during the 2022 energy 

crisis. To our knowledge, we are the first to provide a research paper that 

investigates this. 

We are expecting to find volatility to have a negative relationship with liquidity. 

This is based on work such as Amihud and Mendelseon (1980) who find liquidity 

providers to be less attracted to volatile markets. We are unsure to what extent the 

2022 energy crisis affected liquidity. Results from Chang, Chou and Nelling (2000) 

found the demand of hedgers to increase with volatility in the underlying asset, 

especially during shocks. However, results from Amihud and Mendelson (1980) 

still apply, where liquidity providers will be less inclined to provide liquidity.  

To investigate this further, we will deploy OLS regressions with daily data ranging 

from 2016-2022 provided by Nasdaq. Furthermore, we will analyze if the 2022 

crisis brought more attention to the Nordic power market. 

We have structured our thesis as follows: We will first present a background of the 

market, followed by existing literature on volatility, liquidity and shocks. Based on 

our literature review, we will introduce our hypotheses and look further into what 

data and methodologies we have used to perform our research. Thereafter, we 

discuss and validate our results based on our hypotheses. In the final chapter, we 

conclude our findings with discussion of limitations, weaknesses and future 

research. 
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2 The Nordic Power market 

2.1 Electricity  

Electricity has unique qualities that distinguish it from other commodities. First, 

electricity is completely interchangeable. This means one unit of electricity contains 

the same amount of energy, regardless of its source. Secondly, production and 

consumption must occur at the same time. Power storage is currently expensive and 

inefficient. While most commodities have the option of being stored for later usage, 

this is not currently applicable to electricity. As a result of this, any imbalance in 

supply and demand can cause big fluctuations in price. Electricity is also difficult 

to transport over long distances. This can make the price of electricity vary across 

regions, as some regions may not be able to supply their own electricity demand, 

and therefore must rely on importation (and vice versa) (Bessembinder & Lemmon, 

2002; Çanakoğlu & Adıyeke, 2020; Lucia & Schwatz, 2002). Electricity markets, 

especially in the Nordics, are largely temperature driven. There will be higher 

demand during the colder months, as residents need heating for their homes (Espen 

Benth & Meyer-Brandis, 2009). In addition, most forms of electricity production 

have some dependencies on weather conditions, which are seasonal as well. 

 

Graph 1: Seasonality in energy consumption 



9 

 

There has been an increasing focus on the development of green energy in the 

Nordic countries. According to Sovacool et al. (2018), 83% of all electricity 

generated in the Nordic countries is considered low carbon, with a significant 

portion coming from renewable sources. Furthermore, Saranyaa & Fathima (2023) 

indicate that there is a strong shift towards renewable energy sources in the global 

power market, and Wörner et al. (2022) say policymakers aim to make renewable 

energy sources more accessible and attractive to customers. With this in mind, it 

should come as no surprise that the Nordic power market has become more 

attractive to outside markets in recent years. A recent example of this is the 

newfound connection between Norway and Germany, so called NordLink, which 

allows for power transmission between the two countries. With Germany’s recent 

investment in wind- and solar energy, they are now able to substitute this energy 

with Norwegian hydro energy in periods with low wind and/or sun (NordLink, 

2023). 

The Nordic countries, especially Norway, export some of their electricity 

production. Norway can do this reliably due to its production portfolio being 

dominated by hydropower (about 95%). While electricity cannot be stored, water 

can be stored in reservoirs and used for power production later. When reservoir 

levels are higher than needed in order to supply electricity for the foreseeable future, 

Norway can use this excess water and export it to other nations. Bolwig et al. (2020) 

noted that Norwegian households and firms were opposed to the exportation of 

Norwegian power to other nations. This is because the exportation of power will 

reduce the available supply in Norway. However, there has been no evidence of this 

being the case just yet. This is possibly due to the level of exportation fluctuating 

with seasonal precipitation and thus reservoir levels (Lenzen et al., 2010). Either 

way, Norwegian reservoir levels are a very significant determinant of the power 

price, both nationally and in the Nordics as a whole.  

 



10 

 

2.2 Nord Pool 

Nord Pool was created in 1993 and has since established itself as the second largest 

power market in Europe. It offers clearing, trading (intraday and day-ahead) and 

settlements across 14 European countries. We have decided to focus solely on the 

Nordic Power Market, consisting of countries such as Norway, Sweden, Denmark, 

and Finland (Nord Pool [a], 2023).  

Nord Pool is responsible for calculating the system price for the day ahead. The 

system price is the benchmark for price fixing in the Nordic region. The price is 

made up of producers submitting bids that delineate the desired quantities they are 

willing to produce and for what price. Meanwhile, end-users give their estimation 

of how much they are willing to consume and for what price.  

The Nordic areas are further divided into several bidding areas, where electricity 

will flow to areas where demand and prices are higher (Nord Pool [b], 2023). This 

is known as the area price, which is the price consumers are familiar with. Area 

prices can differ from system prices based on the demand of different areas 

compared to transmission capacity. For our thesis, we will focus on the system 

price, as this serves as a more unbiased price of electricity, as possible congestion 

in different areas is not considered. Furthermore, according to Nord Pool, the 

system price is also the most common reference price in financial contracts traded 

in the Nordics (Nord Pool [b], 2023). 

2.3 Nasdaq 

Nasdaq Commodities is a division under the Nasdaq umbrella, which is one of the 

biggest marketplaces in the world for trading stocks, options, and futures (Nasdaq 

[a], 2023). Nasdaq Commodities offers power derivatives, such as futures and 

options. These derivatives can be used by both power producers and consumers to 

hedge their exposure to fluctuating power prices. Nasdaq Commodities is an 

exchange, meaning it connects potential buyers and sellers for different products. 

This makes finding a counterparty easier and eliminates counterparty risk, as this is 

taken care of by the exchange. 
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2.4 Power Futures Contracts 

In our thesis, we are going to be focusing on futures contracts. Futures- and forward 

contracts are financial instruments where two parties agree on buying/selling a set 

quantity of an asset at a set price on a set date or month (Hull, 2018). Futures 

contracts differ from forward contracts in that they are standardized. While forward 

contracts are traded over the counter (OTC), futures are sold and bought at 

exchanges. The exchange guarantees the execution of the contract, which eliminates 

counterparty risk. For the exchange to offset this risk, collateral is required in the 

form of margin accounts. The value of the account will fluctuate according to the 

underlying asset. Once the account falls below a certain threshold, additional funds 

are required in the form of a margin call. If the party is not available to provide 

further collateral, the position is liquidated. Because of the margin account, 

engaging in a futures contract can be very expensive, especially if the underlying 

asset is volatile. 

Futures are priced in a non-arbitrage fashion. The theoretical price of any given 

futures contract is a combination of spot price, yield, cost of carry, and time to 

maturity. However, since these instruments are traded on exchanges, futures 

contracts are not initially priced, instead, the price must be discovered through 

bidding and offering. 

3 Literature Review 

3.1 Liquidity and Volatility 

Due to several factors, the Nordic power futures market has received little research. 

First, the primary areas of interest for financial market research have historically 

been stocks, bonds, and commodities such as oil and gold. These markets are more 

appealing for research because they have a longer history and are traded more 

frequently. Because of this, there has been much more research done and more 

established methodologies for analyzing these markets (Kiesel et al., 2009) 
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Second of all, the Nordic power market, which focuses on electricity contracts in 

the Nordic region, is relatively small and less significant globally. For researchers 

who lack domain expertise, the market's specialized nature, which necessitates a 

thorough understanding of the electricity industry, may limit its accessibility. Data 

accessibility and transparency may also be lower than in established financial 

markets. The market's make-up, particularly the utilities and energy companies, 

may also be a factor in the decline in research interest. 

Even though liquidity and volatility have not been studied for the Nordic Power 

Derivative market, these two factors have been studied for other markets, such as 

other futures markets and the stock market. Original papers such as Corwin & 

Schultz (2012) and Roll (1984) have studied liquidity for the stock market and the 

bond market, but their research has also been applied to the futures market as well. 

Examples of this are Bryant et al. (2006) and Locke & Venkatesh (1997).   

Amihud and Mendelson (1980) showed that there is a negative relationship between 

asset volatility and liquidity in the stock market. They did this through an inventory 

model. While Nasdaq themselves do not have inventories of these derivatives, the 

institutions that provide liquidity to the market do, and they will be less inclined to 

provide said liquidity when volatility in the underlying asset increases (Drechsler 

et al., 2021). Empirical evidence on this subject of liquidity and volatility shows 

different results, however. Pastor and Stambaugh (2003) find there to be a negative 

correlation between volatility and liquidity, whereas Menyah and Paudyal (1996) 

find there to be a positive one. Parlour and Seppi (2008) found prices to be more 

volatile in thin markets, as the lack of liquidity hinders the price discovery process, 

causing more uncertainty about the security's value. Furthermore, Acharya and 

Pedersen (2005) find that when aggregate market liquidity falls, it falls primarily 

for already illiquid assets. 

Andersen (1996), Clark (1973), Tauchen and Pitts (1983), Epps and Epps (1976), 

and Gallant, Rossi, and Tauchen (1992) all find a positive relationship between 

trading volume and volatility. Trading volume inherently has a negative impact on 

liquidity, as it shrinks the order book. However, trading volume is often correlated 
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with more market interest/activity, which has a positive impact on liquidity. 

Therefore, the effect this will have on liquidity is uncertain.  

The link between the bid-ask spread and volatility has been studied by Stockton & 

Glassman (1987). He finds volatility to be an important factor in the bid-ask spread 

in the exchange rate market. This is in line with the conclusion presented by 

Bollerslev & Melvin (1994), where they found a positive connection between the 

bid-ask spread and volatility.  

Huberman & Stanzl (2005) find that traders are risk-averse, tend to decrease their 

trade sizes over time, and conduct a larger proportion of their trades during periods 

of high price volatility or liquidity. When transaction fees are involved, traders 

prefer to trade less frequently when volatility or liquidity increase.  

Chung & Chuwongnant (2018) found that the relationship between market volatility 

and stock returns is twofold. Volatility directly affects returns, while also 

influencing liquidity provision. This in turn affects returns, where greater liquidity 

premiums are associated with higher market volatility.  

Chan, Hameed & Kang (2013) find that stock price synchronicity impacts stock 

liquidity, with higher co-movement in returns and systematic volatility improving 

liquidity. Their findings support both the relative synchronicity hypothesis (higher 

co-movement relative to total volatility improves liquidity) and the absolute 

synchronicity hypothesis (stocks with higher systematic volatility or beta exhibit 

better liquidity). They observe a positive relationship between the measures of 

liquidity and stock return co-movement as well as systematic volatility. 

In line with what was mentioned earlier, Garleanu and Pedersen (2007) found 

institutions to become more cautious and less likely to engage in risky activities 

during times of higher volatility. They further argue that this can create a feedback 

loop, where risk management in corporations is less inclined to engage in hedging 

activities due to institutions providing less liquidity. This further decreases the 

liquidity in the market. Brunnermeier and Pedersen (2009) examined previous 

shocks and its effect on liquidity. They found that after big shocks occurred, 

affected markets tended to be caught in downward liquidity spirals, and margin 
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requirements were substantially increased. This resulted in the markets becoming 

less efficient, and trades were harder to execute at desired prices.  

Beltran-Lopez, Durre & Giot (2004) found evidence that the provision of liquidity 

remained adequate when volatility increased but found it more costly to trade. 

When the volatility was high, the liquidity dynamics were affected, but not by 

much. Locke & Sarkar (2001), on the other hand, found that customer trading and 

its costs do not increase with volatility as a measure.  

Chang, Chou, & Nelling (2000) studied the effect of stock market volatility on the 

open interest of S&P 500 stock index futures contracts. They found open interest in 

the derivative to increase when both expected and unexpected volatility in the 

underlying increased. Furthermore, they were also able to identify large hedgers, 

large speculators, and small traders. They found the increase in open interest to be 

significantly larger for hedgers, suggesting that an increase in volatility also 

increases hedging demand.  

3.2 Hypotheses  

We will first investigate how volatility in the Nordic system price affects liquidity 

in the power derivative market. Our first hypothesis is: 

H1 : In general, increased volatility in the underlying will negatively impact the 

liquidity of the derivative. 

This is in line with the findings of Amihud and Mendelson (1980), Drechsler et al. 

(2021), and Garlenau & Pedersen (2007), who all find volatility to decrease market 

liquidity due to liquidity providers being less attracted to the market. The Nordic 

power derivative market is first and foremost made up of liquidity providers and 

firms wanting to hedge their electricity exposure. It has also been categorized as a 

relatively illiquid market, suggesting that firms may not be willing to hedge 

exposure to fluctuating power prices. However, from 2022 and on, the volatility of 

power prices increased substantially. As mentioned above, Chang, Chou & 

Nelling’s (2000) found hedging demand to increase when expected- and unexpected 

volatility increased. Hypotheses 2 and 3 are therefore: 
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H2 : During 2022, increased volatility in the system price positively impacted the 

liquidity of power derivatives.  

H3 : During 2022, increased volatility in system prices led to more market activity 

in the Nordic power futures market. 

While higher volatility will incentivize firms to hedge, liquidity providers will also 

be less attracted to the market. The result of H2  will therefore depend on which of 

these two forces has the most impact. Increased volatility will also make hedging 

more expensive, as outlined by Brunnermeier & Pedersen (2009). This is due to the 

possibility of exchanges increasing collateral requirements. Furthermore, the 

chance of a margin call happening will also increase with more volatility. The cost 

of hedging may at some point become so big that it is not attractive anymore. 

4 Data and Methodology 

4.1 Data description 

Our dataset is self-constructed and contains data from many different sources. The 

first and most important source is the ITCH log files from Nasdaq OMX. This data 

contains order messages directly from Nasdaq’s order books from 2016 to 2023, for 

a total of about 133 million messages. This allows us to see every order added, 

deleted, and executed during the time period, and we can use this to build up the 

different order books. From this data, we can infer different metrics such as 

midpoint price, bid-ask spread, volume, etc. Nasdaq Power futures are standardized 

to 100 MW/h per contract, and the price is denoted in Euro. Nasdaq offers five 

different maturities/exercise dates for their futures: daily, weekly, monthly, 

quarterly, and annually. The difference between these products is the time frame 

within which the future can be exercised. Daily futures can only be exercised on the 

day they mature, weekly futures can be exercised any time during the week in which 

they mature, etc. We further sample the data on futures using the Nordic system 

price as the underlying. This gives us 2722 different derivatives. The main 

differences between the futures are the date of maturity and exercise period. As we 
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infer different liquidity measures for a given derivative each day from origination 

to maturity, our dataset contains 82416 observations. 

We also have daily Nordic day-ahead system prices collected from Nord Pool and 

their FTP-servers. The prices are denoted in euros and are for 1 MW/h. 

We also include Norwegian reservoir levels, and the Oslo Stock Exchange Index 

returns in our dataset. This data has been downloaded online. Norwegian reservoir 

levels contain the weekly percentage levels of Norwegian reservoirs used by 

hydropower plants from 2016-2023. The Oslo Stock Exchange Index contains daily 

prices and returns from 2016-2023. 

 

Graph 2: Nordic system power prices 2016-2022 

Power prices have always been volatile, having the possibility of being very cheap 

or very expensive given differences in supply and demand. As we can see from 

Graph 1, the volatility increased exponentially in 2022.  
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Graph 3: Nordic system power prices Jan-Dec 2022 

According to Nordic Energy Regulators (NordREG Annual Report 2022, 2023), the 

increase in both prices and volatility was due to a multitude of reasons. First of all, 

the Nordics experienced a longer and colder winter than usual, resulting in more 

demand for electricity. Norwegian water reservoir levels were also low this year, 

meaning there was less capability for production. 

 

 

Graph 4: Norwegian Reservoir Levels 2022 
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Lastly, following the Russian invasion of Ukraine, Russia cut its gas pipelines to 

Europe as a response to sanctions. Russia is an important player in the European 

gas market, with their gas accounting for roughly 40% of all imported gas (Ben 

Hassen & El Bilali, 2022). This sudden drop in gas supply led to the commodity’s 

price rising, making electricity production through gas a lot more expensive. The 

interplay of these three factors led to a significant imbalance in the supply and 

demand of electricity. 

 

 

Graph 5: European natural gas prices 2018-2023 

From Table 1, we can see that Nordic system prices are very volatile. The prices 

are right-skewed, as the mean is substantially higher than the median (50%). This 

makes sense due to the fact that there is a price floor of zero but no price ceiling. 

This is further illustrated by the difference between the 75th percentile and the 

maximum value. As expected from the graphs above, the values are much higher in 

2022 than in previous years. 

 

 

Table 1: Descriptive statistics of Nordic system prices. 
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4.1.1 Liquidity 

In the context of asset pricing, liquidity refers to the ability to buy or sell a large 

position quickly without it influencing the price of the asset to a large degree (Lee 

& Lee, 2015). According to Amihud et al. (2005), market liquidity is a multi-faceted 

concept that encompasses several dimensions. The authors name five main 

dimensions of market liquidity: tightness, depth, resiliency, immediacy, and 

breadth. For our thesis, we will focus on tightness and depth.  

Tightness refers to the bid-ask spread, which measures the difference between the 

highest price a buyer is willing to pay and the lowest price a seller is willing to sell 

for. A smaller bid-ask spread is indicative of more liquidity, as it is less costly to 

enter and exit positions. 

%𝐵𝐴𝑆	 = 	
𝐴𝑠𝑘	 − 	𝐵𝑖𝑑

(𝐴𝑠𝑘 + 𝐵𝑖𝑑)/2	

Depth refers to the market´s ability to absorb large trading volumes. As mentioned 

earlier, trades will mechanically shrink the order book, as the order(s) get deleted 

once the trade has occurred. A deep market therefore has enough orders that a large 

trade will have little impact on the new trading price of the asset.  

Amihud’s (2002) illiquidity measure measures the effect of trading volumes on 

asset returns. If the measure has a high value, then this would indicate little depth 

in the orderbook. This, in turn, will lead to larger trading volumes, which will have 

a significant impact on price. 

𝐼𝐿𝐿𝐼𝑄	 = 	
1
𝑛 𝛴!"#

$ |𝑟!|
𝑝! ∗ 𝑣!

	

Where ILLIQ is the illiquidity measure for a given asset over a given time interval. 

Furthermore, r is the absolute daily return of the asset, p is the daily trading price, 

and v is the trading volume during the day. 

A problem with Amihud’s illiquidity measure is that it does not perform well in less 

traded markets, such as the Nordic power derivative market. This is because there 

may be days where a given asset is not traded during the day, which causes a severe 
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lack in the performance of the measure (Fong et al., 2017). To counteract this, Kang 

and Zhang (2014) found an alteration to the measure, AdjILLIQ, to allow for better 

performance in less traded markets.  

𝐴𝑑𝑗𝐼𝐿𝐿𝐼𝑄	 = 	 =𝑙𝑛 ?
1
𝑛 𝛴!"#

$ |𝑟!|
𝑝! ∗ 𝑣!

@A × (1	 +	𝑍𝑒𝑟𝑜𝑉𝑜𝑙$)	

Where 𝑙𝑛 is the natural logarithm change, and ZeroVol is the percentage of zero 

trading days during the time interval, which in our case is going to be the last 30 

days of the observation.  

Other measures that will be used in this thesis are volume, depth, and width. Volume 

is the number of trades during a time period. Depth is the number of unique price 

points within +/- 2% of the midpoint price, and width is the number of quantities 

within +/- 2% of the midpoint price in the orderbook. 

4.1.2 Volatility 

Volatility in financial markets refers to the degree of variation or fluctuation in the 

prices/returns of financial assets over a specific period of time. It is a measure of 

the uncertainty and risk associated with investing in these assets (Lempérière et al., 

2017). Market volatility can be influenced by various factors, including economic 

conditions, geopolitical events, investor sentiment, and market participants' 

behavior (Wei & Kong, 2016). Changes in market volatility can have significant 

implications for investors, as they can impact the profitability and risk of investment 

portfolios (Abduh, 2020). 

For our volatility measure of the underlying system prices, we will use the rolling 

standard deviation. According to Duxbury and Summers (2018), the standard 

deviation is the most commonly used volatility measure for financial markets. The 

standard deviation of returns measures the dispersion centered around the mean, 

which captures price fluctuations and uncertainty in financial markets. The standard 

deviation can be sensitive to the time interval used in the measurement. For this 

reason, we will test several time periods (N) in order to see what measure fits our 

model the best and see how different volatility parameters affect liquidity. 
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𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦		 = 	J
𝛴!"#% (𝑥! 	− 	𝜇)&

𝑁 	

4.2 Methodology 

In order to examine H1, we will deploy two models. These models use OLS 

regressions to regress different liquidity measures on market volatility, as well as 

controlling for other variables. The liquidity measures are the bid-ask spread and 

the Amihud illiquidity measure. We will test the model using different 

specifications of volatility by alternating the number of days used for the 

calculations. We will use six different volatility parameters, spanning from 3- to 

180 days. This allows us to both find what measure fits our model best and see how 

short-term and long-term volatilities impact liquidity.  

While there have been several studies on the liquidity of a financial asset, most of 

these have focused on equities. A challenge this imposes on us is that the models 

mostly deploy firm characteristics as control variables, such as Amihud (1980) 

using SIZE, the market capitalization of the firm. Some of the relevant control 

variables we found include trading day dummy variables from both McInish (1992) 

and Chordia et al. (2001). However, due to the issue of seasonality in the power 

market, we include a dummy for both the current year and the current month. 

Similar to Chordia et al. (2001), also include market index returns, to control for 

general economic activity and market sentiment. Interestingly, Chordia et al. (2001) 

also included dummy variables for regularly scheduled announcements such as US 

Nonfarm Payrolls and US Employment rates, as there is typically more trading 

activity as a response to the announcement. However, we could not find any 

regularly scheduled announcements related to the Nordic energy sector. Finally, 

McInish (1992) controls for the current price of the underlying in his model, which 

we will do as well. 

In addition to this, we also control for time-to-maturity (TTM), volume, depth, 

width, Norwegian reservoir levels, and month of maturity.  
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We control for TTM, as the closer a futures contract is to maturity, the more certain 

one can be of its fundamental value. This would mean tightness (the bid-ask spread) 

decreases as maturity gets closer, as there is less room to speculate over the 

fundamental value. However, as these derivatives are used for hedging purposes, it 

is reasonable to assume these hedging activities are done some time before the cash 

flow occurs. Therefore, the effect of TTM is unclear.  

Volume is controlled for, as increased trading volume will mechanically shrink the 

orderbook, which decreases liquidity. However, an increased trading volume is also 

indicative of more market activity, which is a positive for liquidity. It is therefore 

uncertain to what extent volume will impact liquidity. 

Depth and width are control variables that help us distinguish between more- and 

less liquid order books. If an order book is very liquid prior to a volatility shock, it 

is reasonable to believe liquidity will be less impacted by this compared to a less 

liquid orderbook.  

As mentioned earlier, Norwegian reservoir levels are a big determinant of the 

Nordic system's price. In order to control for this, we deploy the control variable 

“Water Reservoir Difference” (WRD), which is the difference between the current 

reservoir level and the average reservoir level during 2016-2023.  

We control for month of maturity due to the seasonal aspect of power prices. For 

instance, there may be more incentive to hedge cash flows during the winter, when 

electricity prices are higher. We therefore expect to see increased liquidity in futures 

contracts that expire during colder months, although we are unsure to what degree 

this will be. 
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Model 1: 

%BAS =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width + 𝛽)* Depth 

+ 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … +   

𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December +  

𝐷&'* Date_2017 + … + 𝐷&,* Date_2022 + Ɛ 

Model 2: 

AdjILLIQ =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width + 𝛽)* 

Depth + 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … +   

𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December +  

𝐷&'* Date_2017 + … + 𝐷&,* Date_2022 + Ɛ 

 Variables Measurement Description 

Dependant variables %BAS Percentage Bid-ask spread as a 
percentage of the 
midpoint price. A 
higher value indicates 
less liquidity 

 AdjILLIQ Percentage Change in midpoint 
price (%)  per Euro 
traded1 

Independent variables Volatility Percentage Standard deviation of 
Nordic system prices 
over a set number of 
days  

 

1 In order to avoid scientific notations in our models, the measure has been multiplied. 
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 TTM 𝑇𝑖𝑚𝑒	𝑡𝑜	𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦
7  Amount of weeks 

until the derivative 
matures 

 Volume 𝑇𝑟𝑎𝑑𝑖𝑛𝑔	𝑣𝑜𝑙𝑢𝑚𝑒
10000  

Number of trades per 
10 000 units 

 Width Integer Number of quantities 
within 2% of the 
midpoint price 

 Depth Depth Number of orders 
within 2% of the 
midpoint price 

 SYS Integer Nordic system price 

 RetOBX Percentage 30 days return of 
Oslo Stock Exchange 
index 

 WRD (Water 
Reservoir difference) 

Percentage Difference between 
current water 
reservoir levels and 
historical average 
reservoir levels in 
Norway. 

Dummy variables Month of maturity  Dummy variable for 
which month the 
derivative matures 

 Current year   Dummy variable for 
what year the 
observation happens 

 Current month   Dummy variable for 
month  
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Table 2: Summary of variables 

 

For H1 to be true, all volatility parameter coefficients must be negative and 

statistically significant. This is because higher values of %BAS and the Amihud 

illiquidity measure indicate lower levels of liquidity. If only a sample of the 

volatility parameters is negative and/or statistically significant, an individual 

assessment will be made based on our findings. 

In order to test H2, we will run the same models as earlier. However, this time we 

will sample the data for observations in 2022. This will allow us to examine how 

volatility impacted liquidity during that given year, and also compare the results to 

the model using the full dataset. 

For H2 to be true, the inverse rationale of H1 applies, where we would need to see 

negative coefficients for the volatility parameters. In the event that H1 is confirmed, 

but we find the volatility in 2022 to contribute to less illiquidity, we would still 

reject H2. 

In order to test H3, we will deploy a very similar model to Models 1 and 2. However, 

this time we will use BidOrders and AskOrders as our dependent variables. Due to 

our unique data, we have access to every new order added to any power derivative 

order book from 2016 to 2023. Most data available online only contains Bid and 

Ask, which are the best offers at any given time. We are, on the other hand, able to 

see how all orders change over time, and the quantities of these orders. BidOrders 

and AskOrders measure how many times a new bid/ask order was added during the 

day, regardless of the quantity of the order. Chang, Chou & Nelling’s (2000) used 

open interest as their dependent variable when modelling how interest/activity 

changed over time in the derivative market. Since we do not have identification of 

orders, we are unable to compute this measure. Despite BidOrders and AskOrders 

measuring a very different thing than open interest, it can still be used as a proxy 

for market interest.  

We will sample the data into a 2022 sample and a 2019 sample. 2022 is the year we 

are interested in, and 2019 was a year with low volatility in power prices. 
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In order for H3 to be true, we would need to see positive volatility coefficients in 

the 2022 model. If the volatility coefficients are positive in the 2019 model as well, 

the 2022 coefficients would need to be substantially higher. 

Model 3: 

BidOrders =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width + 𝛽)* 

Depth + 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … +   

𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December +  

𝐷&'* Date_2017 + … + 𝐷&,* Date_2022 + Ɛ 

Model 4: 

AskOrders =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width + 𝛽)* 

Depth + 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … +   

𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December +  

𝐷&'* Date_2017 + … + 𝐷&,* Date_2022 + Ɛ 

5 Results  

This section presents the results of our different models and discusses our findings. 

We present each model, as well as a table presenting the different volatility 

coefficients when we run the model using the different volatility measures. We use 

Newey-West's heteroskedastic and autocorrelation consistent (HAC) standard 

errors in all models (more on this later). All models contain coefficients and their 

respective z-values. *, ** and *** are representative of a significance level of 10%, 

5% and 1% respectively. 

For models that have different samples, a merged version of these is given in the 

appendix for comparative purposes. A summary of the number of observations and 

R-squared for each model is also available in the appendix. 
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5.1 Hypothesis 1 

Our first hypothesis is that volatility in the Nordic system price will, in general, lead 

to less liquidity in Nordic power futures. We investigate this by running models 1 

and 2, which use liquidity measures as dependent variables, and volatility as our 

main independent variable of interest.  

5.1.1 Model 1 Overview 

Model 1: %BAS =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width + 

𝛽)* Depth + 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … +   

𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December +  

𝐷&'* Date_2017 + … + 𝐷&,* Date_2022 + Ɛ 

N: 81 831, R2: 0.139 

 

This regression regresses the percentage bid-ask spread on several factors, with the 

point of interest being 𝛽# (30 days). Since a higher bid-ask spread means less 

liquidity, a positive variable coefficient means a negative relationship to liquidity, 

and a negative coefficient means a positive relationship to liquidity. 
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This data set contains all observations from 2016-2022. From the results, we 

observe that volatility has a positive coefficient of 0.0095. In other words, a 10-

percentage point increase in 30-day volatility will result in a bid-ask spread increase 

of 0.1 percentage points. This means volatility in Nordic system prices in general 

leads to less liquidity (tightness) in the Nasdaq power derivative. We also observe 

the coefficient to be statistically significant at a 1% level. A more detailed overview 

of our volatility coefficients in models 1 and 2 will be presented later. 

In our non-categorical control variables, we do, for the most part, see expected 

results. First, all of them are statistically significant at a 1% level, except for 

RetOBX, which is significant at a 5% level. Time-to-maturity (“TTM”) is positively 

associated with liquidity, but not by much. This could indicate the conflict between 

the certainty of fundamental value the closer it gets to maturity, and hedgers not 

wanting/needing to hedge into the immediate future. A similar story could be drawn 

for volume, where it is positively associated with liquidity in our model, but not by 

much given the counteracting forces explained earlier. RetOBX is positive, 

suggesting there is greater liquidity when the equity markets are not doing well. We 

do not see much statistical significance in our maturity dummies, nor do we see any 

pattern of seasonality. We see a lot more statistical significance in our date dummies 

and some patterns of seasonality where liquidity is slightly higher at the start and 

end of the year. Furthermore, we also observe that liquidity was lower in 2022 

through the dummy variable. To what extent this is driven by increased volatility 

will be investigated in Hypothesis 2. 

5.1.2 Model 2 Overview 

Model 2: AdjILLIQ =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width 

+ 𝛽)* Depth + 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … 

+  𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December 

+ 𝐷&'* Date_2017 +  … + 𝐷&,* Date_2022 + Ɛ 

N: 57 285, R2: 0.505 
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This model regresses the adjusted Amihud liquidity measure on several factors, 

once again with volatility as the main variable of interest. As explained earlier, the 

Amihud liquidity measure measures how the price (return) of the asset is affected 

when trades occur. A positive variable coefficient is associated with less liquidity, 

and a negative coefficient is associated with more liquidity.  

This model seems to fit better than model 1, due to a higher R-squared and more 

statistically significant variables. We find the volatility variable to have a 

coefficient of 0.2677, meaning we once again find volatility to have a negative 

impact on liquidity (depth). This coefficient is also statistically significant at a 1% 

level. 

For our non-categorical control variables, we see some different results from model 

1. Unlike the previous model, TTM is positive. However, the coefficient value is 

small relative to the other coefficients, telling a similar story as TTM in model 1. 

SYS and RetOBX improved liquidity in this model, whereas they decreased liquidity 

in model 1. The maturity dummies are all statistically significant. In addition, there 

seems to be a pattern of seasonality, where futures that mature in the early months 

of the year are less liquid. Similar conclusions can be drawn regarding the date 

dummy variables, where all are statistically significant and there seems to be less 

liquidity at the start of the year. Unlike model 1, liquidity seems to have improved 
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in 2022. It should be noted that all years improved liquidity compared to the 

reference year (2016), but 2022 improved it the most. 

The diversions in coefficients from this model to model 1 are likely due to the 

differences in liquidity dimensions. Tightness (model 1) and depth (model 2) 

measure liquidity in different ways, and certain factors may affect these dimensions 

differently. 

5.1.3 Volatility Overview 

 

Table 3: Volatility summary of Model 1 and Model 2 

Table 3 summarizes the different volatility time periods, spanning from 3- to 180 

days, in models 1 and 2. Our first hypothesis is that increased volatility in the Nordic 

system price will decrease liquidity in the Nordic power derivative market. For this 

to be true, we expect the volatility coefficients to be positive under both models.  

In model 1, we observe all coefficients except 7-day volatility to be negative. 

Neither the 3-day nor the 7-day volatility measures seem to be able to capture any 

significant effect of volatility on liquidity, as they are both far from statistically 

significant on any ordinary level. This indicates that short-term volatility does not 

seem to affect liquidity (tightness). From the perspective of hedgers, this makes 

sense, as the same argument as for TTM can be used here. Hedgers are typically not 

interested in hedging short-term (intra-week) cash flows, as there is a small chance 

of the price diverging to a drastic level. In line with Beltran-Lopez, Durre & Giot’s 

(2004) findings, trading costs typically increase when volatility increases. Thus, 

there is little incentive for increased hedging activity when short-term volatility 

increases.  



31 

 

We find all coefficients in model 1 to be positive and statistically significant for 14-

days and beyond. This is in line with Amihud & Mendelson (1980), Drechsler, 

Savov & Schnabl (2021), and Garlenau & Pedersen (2007), who all find liquidity 

providers to be less active when markets are volatile, resulting in less liquidity.  In 

addition, if trading costs also increase with volatility, this would further reduce 

liquidity on the demand side as well. However, as outlined by Chang, Chou, & 

Nelling (2000), the demand for hedging instruments is also higher during volatile 

times (Chang et al., 2000). The results from this model would indicate that the 

decrease in supply during volatile times out-weights any increases on the demand 

side.  

Furthermore, we also observe both the coefficient and statistical significance 

increasing in tandem with the volatility period (for 14 days and beyond). This 

suggests that liquidity providers devalue long-term volatility over short-term 

volatility. This seems in line with the literature mentioned above. We find model 1 

to be highly supportive of our first hypothesis.  

In model 2, all coefficients are positive, meaning volatility was negatively 

associated with liquidity (depth) in this model as well. All coefficients between 7- 

and 90 days are statistically significant. Similarly to model 1, we find that between 

7- to 45 days, an increase in the number of days increases both the coefficient and 

the statistical significance. This implies that short- and long-term volatility affect 

the adjusted Amihud illiquidity measure the most. A possible explanation for this 

is Huberman and Stanzl (2005), who found that traders conduct a larger proportion 

of their trades during periods of high volatility. This would imply a large number 

of trades occurring once market volatility is established, meaning there is less of an 

effect if volatility remains in the long term, as a large number of the trades have 

already been done. We find model 2 to be highly supportive of hypothesis 1 as well.  

Through models 1 and 2, we find good evidence that volatility in the Nordic system 

price led to weakened liquidity in the Nordic power derivative market. This is most 

likely due to liquidity providers, typically financial institutions, being less attracted 

to the market. We also found the different volatility time periods to affect liquidity 

differently. Tightness (model 1) was more affected by long-term volatility. 
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Meanwhile, depth (model 2) was more affected by short- to mid-term volatilities. 

Because of this, we confirm Hypothesis 1, which states that volatility in system 

prices leads to less liquidity in the power futures market. 

5.2 Hypothesis 2 

Our second hypothesis is that volatility in the Nordic system price positively 

impacted liquidity during 2022. We investigate this by running the same models as 

in Hypothesis 1, but this time sampling for observations during 2022. This allows 

us to see if volatility in the underlying asset affected the liquidity of the derivative 

differently during the 2022 energy crisis. 

5.2.1 Model 1 Overview 

Model 1: %BAS =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width + 

𝛽)* Depth + 𝛽** RetOBX + 𝐷#*January_maturity + … +  𝐷##* 

December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December   + Ɛ 

N: 9 213, R2: 0.135 
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Again, this model regresses the bid-ask spread of Nordic power futures on the 

volatility in the Nordic system price, while controlling for several variables. It is 

worth mentioning that the volatility time period displayed is the 7-day volatility, 

as this fits the model the best. In Hypothesis 1, we displayed the 30-day volatility. 

We do not include water reservoir difference (WRD) in this model, because it 

would induce multicollinearity in the model. More on this in the robustness check 

section. We do not use any dummy variables for the year of the observation either, 

since the data is only sampled for 2022.  

First and foremost, we find the volatility measure to have a coefficient of -0.0086 

and be statistically significant on a 1% level. This indicates that volatility in power 

prices led to more liquidity in the derivative market. The 7-day volatility in 

hypothesis 1 was also negative for model 1. However, it was not statistically 

significant. This is evidence for Hypothesis 2. 

We find most of our non-categorical dummy variables have a similar relationship 

to liquidity as in the full sample model. However, the coefficients seem to be larger 

in the 2022 sample. A possible explanation for this is the removal of year dummy 

variables. We find a lot more statistical significance in the maturity date variables, 

with 7 out of 11 being statistically significant on at least a 5% level. We also see a 

pattern of seasonality, where contracts that mature at the start- and end of the year 

are more liquid. We see a lot of statistical significance in our date dummy variables. 

In our full sample model, we found some pattern in seasonality, where there was 

less liquidity at the start of the year. In the 2022 sample, we find the opposite, where 

liquidity was higher at the start of the year. This could possibly be a result of 

growing market concern as the crisis evolved. 

5.2.2 Model 2 Overview 

Model 2: AdjILLIQ =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width 

+ 𝛽)* Depth + 𝛽** RetOBX + 𝐷#*January_maturity + … +   

𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December     

+ Ɛ 



34 

 

N: 6 705, R2: 0.497 

Again, this model regresses the adjusted Amihud illiquidity measure on system 

price volatility, but this time sampled on 2022 observations. The volatility time 

period is 45 days, and WRD and yearly dummies are omitted for the same reasons 

as above.  

Unlike the 2022 sample for model 1, we find system price volatility to negatively 

impact liquidity power derivatives when using the Amihud illiquidity measure as 

our volatility measure, as volatility has a coefficient of 0.3536. This works as 

evidence against hypothesis 2. We also find the coefficient to be larger than in the 

full sample model, indicating that volatility in system prices increased the liquidity 

in power futures even more. 

For model 2, we find our non-categorical control variables to have the exact same 

relationship to liquidity in 2022 as in the full sample model. Much like in model 1, 

the coefficients are also larger in 2022. Most likely due to the same reason as in 

model 1.  For the maturity dummy variables, the relationships are very similar to 

those in the full sample. Most of them are also statistically significant, much like in 

the full sample. The month dummy variables are coefficients are very similar as 
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well. We see the same pattern of seasonality as in the 2022 sample, where there is 

less liquidity at the start of the year. 

5.2.3 Volatility Overview 

 

Table 4: Volatility summary of Model 1 and Model 2, 2022 sample 

Table 4 summarizes the different volatility time periods in models 1 and 2. when 

sampled for 2022 observations. Since our second hypothesis is that increased 

volatility in the Nordic system price will lead to more liquidity in the Nordic power 

market during 2022, we expect volatility coefficients in both models to be negative. 

For model 1, we find volatility coefficients to be negative for volatility periods 

ranging from 3 to 45 days. However, only the 7-day and 14-day coefficients are 

statistically significant. Both the 90-day and 180-day coefficients are positive, but 

neither is statistically significant. While this leaves some room for arguing that 

short-term volatility increased liquidity (tightness) during 2022, the lack of 

statistical significance in most of the coefficients makes it hard to be confident in 

the results. Due to a lack of confidence in the results, this works as evidence against 

Hypothesis 2. 

For model 2, all coefficients are positive except for the 3-day volatility. In addition, 

only the 45-day volatility is statistically significant. Based on this, it is very hard to 

argue that system price volatility impacted the Amihud illiquidity measure in 2022. 

This serves as evidence against hypothesis 2. 

Overall, we find it hard to make any empirical judgments based on these results, 

due to the lack of statistical significance when only sampling for 2022. In model 1, 

we find the 7- and 14-day coefficient to be statistically significant, which signals 

that short-term volatility impacted liquidity (tightness) in 2022. In model 2, we find 



36 

 

the 45-day coefficient to be statistically significant and negative as well. However, 

in the broad picture, we do not see any clear trajectory. We therefore reject 

hypothesis 2. 

5.3 Hypothesis 3 

Our third and final hypothesis is that increased volatility in system prices during the 

2022 energy crisis led to increased market activity for Nordic power futures. This 

will be done by deploying similar models as in our previous hypotheses, but this 

time using the amount of added bid- and ask orders as the dependent variable. We 

use 2019 as the benchmark year, which was a year where the Nordic system price 

was relatively stable. We will compare the different volatility coefficients between 

the 2019- and 2022 models and see if volatility affected liquidity differently during 

these years. 

5.3.1 Model 3 Overview 

Model 3: BidOrders =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width 

+ 𝛽)* Depth + 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … 

+  𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December 

+ Ɛ 

2019 – N: 12 015, R2: 0.496, 2022 – N: 9 164, R2: 0.518  
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This model regresses bid orders added to Nordic power futures order books on 

Nordic system price volatility, while controlling for other variables. As we are 

interested in any possible changes between 2019 and 2022, both samples are 

illustrated at the same time. 

We find both volatility coefficients to be negative and statistically significant. The 

2019 coefficient is -359, and the 2022 coefficient is -20. This suggests that 

increased volatility in system prices reduces market activity, at least on the bid side. 

However, the 2022 coefficient is substantially smaller than the 2019 one. This could 

possibly mean that a volatility increase has disincentivized market participants less 

than in previous years.  

For our control variables, we find them to be rather similar across both time periods. 

The only exceptions to this are width and depth, which control for which order 

books are more/less liquid by default.  

5.3.2 Model 4 Overview 

Model 4: AskOrders =	𝛼 +  𝛽#* Volatility + 𝛽&* TTM + 𝛽'* Volume + 𝛽(* Width 

+ 𝛽)* Depth + 𝛽** SYS + 𝛽+* RetOBX + 𝛽,*WRD + 𝐷#*January_maturity + … 

+  𝐷##* December_maturity + 𝐷#&* Date_January + … +  𝐷&&* Date_December 

+ Ɛ 

2019 – N: 12 015, R2: 0.541, 2022 – N: 9 164, R2: 0.508 
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This model is the same as model 3 above, but this time we use new ask orders as 

our dependent variable. We once again sampled for both 2019 and 2022 

observations to examine any possible differences between the two years. 

Similar to model 3, we find the volatility coefficients to be both negative and 

statistically significant for both years. The 2019 coefficient is -343, and the 2022 

coefficient is -22. We also observe the 2022 coefficient to be substantially smaller 

compared to the 2019 coefficient. The size of the volatility coefficients is also very 

similar to those of model 3. This would imply that volatility impacts both the bid- 

and the ask sides similarly. Considering we cannot distinguish between hedgers, 

speculators, and liquidity providers, this suggests they are evenly spread among 

both sides of the order book.  

Interestingly, we find almost all coefficients to be very similar between models 3 

and 4. This further implies that different players in the market are split evenly 

between the bid- and the ask side, and that there are few differences between the 

two in terms of how they respond to different factors. 

5.3.3 Volatility Overview  

 

Table 5: Volatility summary of Model 3 

This table summarizes the different volatility coefficients in Model 3, the model 

that uses BidOrders as the dependent variable.  

We first observe that all variables (except 2019, 180 days) are negative. Two 

variables are statistically significant at a 10% level, one variable is statistically 

significant at a 5% level; and eight variables are statistically significant at a 1% 

level. This encourages confidence in claiming that increased volatility leads to less 

activity on the bid side of the order book.  
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Although volatility led to less market activity in 2022, the effect of volatility was 

much less in all measures (except 180 days) than in 2019. The effect of volatility is 

about 10 times larger in 2019 when using the 14-, 30-, 45- and 90-day volatility 

measures.  

We cannot say that the increased system price volatility in 2022 directly caused 

more market activity for power futures as a consequence of the coefficients being 

negative. This is evidence against hypothesis 3. However, the results show that 

market participants (on the bid side) were less disincentivized by volatility in 2022 

compared to 2019. This is because of the large deviations in coefficient sizes 

between 2019 and 2022. Even so, this does not serve as evidence for hypothesis 1, 

as liquidity was not improved, but rather “less worsened”. 

 

Table 6: Volatility summary of Model 4 

This table summarizes the different volatility coefficients in model 4, which uses 

AskOrders as the dependent variable. 

In 2019, we find short-term volatility (3- and 7 days) to be positively associated 

with activity on the ask side, given the positive coefficient. However, none of these 

are statistically significant, making drawing any inference hard. The 30-day 

volatility measure is negative, but not statistically significant. Mid- to long-term 

volatilities (30- to 180 days) are all negative and statistically significant at a 1% 

level. This suggests that the ask-side activity is sensitive to mid- and short-term 

volatilities, and the relationship is negative. 

In 2022, we find all volatility coefficients to be negative. Furthermore, all 

coefficients except 3- and 14 days are statistically significant at a 1% level. This 

makes us confident in saying there was a negative relationship between mid- to 

short-term volatilities and market activity, just like in 2019.  



40 

 

We find similar differences between the 2019- and 2022 volatilities as we did in 

model 3. The coefficients for mid- to long-term volatilities are much larger in 2019 

than in 2022, generally by a factor of 5 to 10. This leads us to a similar conclusion 

as in model 3, where system price volatility did not directly lead to more market 

activity in 2022, but rather disincentivized market participants less than in 2019.  

Based on our findings in models 3 and 4, we find that volatility led to less market 

activity in 2022. However, compared to 2019, the effect of this was substantially 

smaller. From this, we conclude that volatility in system prices in 2022 incentivized 

market participants less than in 2019. We also find there to be no big differences 

between the behavior of the bid- and ask side. We reject hypothesis 3, as volatility 

had a negative impact on market activity, although the impact was much less 

compared to 2019. 

5.4 Robustness check 

5.4.1 Heteroscedasticity 

One of the OLS assumptions is that the residuals are homoscedastic. 

Homoscedasticity is observed when the residuals are constant (no variations over 

time). If the residuals are not constant, the standard errors will become 

inappropriate, and therefore the OLS estimator will no longer be BLUE. Therefore, 

the inference might be wrong, and we have Heteroscedastic residuals. 

To detect heteroskedasticity, one common approach is to visually examine the 

scatterplot of the residuals (the differences between the observed and predicted 

values) against the predicted values or independent variables (Brooks, 2018).  

 

Another way to detect Heteroskedasticity is to perform a White's test. To perform 

this test, we run the first regression to obtain the residuals, 𝑈-R, so we can run the 

auxiliary regression. Thereafter, we extract the 𝑅& and multiply this measure with 

the number of observations, T. We will then be able to observe the test statistic. 

Lastly, we will then extract the critical value, 𝜒&(𝑚), and compare it to the t-stat. 

If the null hypothesis gets rejected, we conclude that we have residuals that are 

heteroskedastic (Brooks, 2018). 
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The regressions are as follows: 

 

𝑦- = 𝛽. + 𝛽#𝑥#,- + 𝛽&𝑥&,- . . . +𝛽$𝑥$,- + 𝑣-	

𝑢X-& =	𝛼0 + 𝛼#𝑥#,- + 𝛼&𝑥&,- + 𝛼'𝑥#,-& + 𝛼(𝑥&,-& + 𝛼)𝑥#,-𝑥&,- + 𝑣-	

𝐻0:	𝛼# = 0 𝑎𝑛𝑑 𝛼& = 0	𝑎𝑛𝑑	𝛼' = 0 and 𝛼( = 0 

𝐻1:	𝛼# ≠ 0 𝑎𝑛𝑑 𝛼& ≠ 0	𝑎𝑛𝑑	𝛼' ≠ 0 and 𝛼( ≠ 0 

If there is a sign for heteroskedasticity in the residuals in our regression, we can use 

Heteroskedastic Robust Standard Errors to correct for heteroskedasticity and 

proceed. 

5.4.2 Autocorrelation 

Usually referred to as the correlation between consecutive observations in a time 

series. 

It is assumption 3 for the OLS, where the assumption is no autocorrelated residuals. 

Autocorrelations can both be positive and negative, and they occur when there is a 

relationship between the current and past values of a variable, where 𝐶𝑜𝑣(𝑢! , 𝑢2) ≠

0. It is essential to see no pattern in the plots of the residuals because this would 

conclude autocorrelated errors. The OLS estimator will therefore not be BLUE, 

because it will be inefficient. 𝑅& will likely be inflated, and we might observe 

inappropriate standard errors, which can lead to an inference that is misleading. We 

use the Breusch-Godfrey-test to test for autocorrelated residuals (Brooks, 2018). 

We can run the OLS regression to collect the estimated residuals. Thereafter, we 

can run the auxiliary regression. We can then use the lagged estimated residuals and 

test the coefficients: 

𝑦- = 𝛽. + 𝛽#𝑥#,- + 𝑢-	

𝑢X- = 𝛽. + 𝛽#𝑥#,- + 𝜌#𝑢X-3#+. . . +𝜌4𝑢X-34 + 𝑣- 								𝑣-~𝑁(0, 𝜎5&) 

The null and the alternative hypothesis is: 
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𝐻0:	𝜌# = 0	𝑎𝑛𝑑	𝜌& = 0	𝑎𝑛𝑑	. . . 𝑎𝑛𝑑	𝜌4 = 0	

𝐻1:	𝜌# ≠ 0	𝑜𝑟	𝜌& = 0	𝑜𝑟	. . . 𝑜𝑟	𝜌4 = 0	

Test statistic: (𝑇 − 𝑡)𝑅&	~	𝜒4& 

Critical value 𝑥&(𝑟). Where (r) is the maximal order of autocorrelation. 

5.4.3 Multicollinearity 

Multicollinearity refers to a situation when two or more independent variables in a 

regression model are highly correlated with one another. It can cause issues for our 

statistical analysis because it indicates a strong linear relationship between the 

predictor variables (Brooks, 2008).       

 

There are several problems that might occur in the presence of multicollinearity: 

The coefficient estimates will be unreliable. Differentiating the individual impacts 

of the associated factors on the dependent variable becomes challenging. The 

estimates may have inflated standard errors, which can reduce the statistical 

significance, or they might be unstable, which can make the interpretation 

unreliable. It will become harder to choose those variables that are truly influential 

for our case, since highly correlated variables might show redundant information. 

 

One popular way to address multicollinearity is by using a Variance Inflation 

Factor (VIF). We chose to use VIF. This factor measures the degree to which the 

variance is overstated in comparison to what it would be, if the variables weren't 

connected. It can be calculated as follows (Velleman & Welsch, 1981): 

𝑉𝐼𝐹𝑘	 = (1 − 𝑅&𝑘)3#	

𝑅&𝑘 represents the coefficient of determination for a specific independent variable, 

xk, when this variable is regressed on all the other independent variables in the 

model. A VIF value above 10 is a typical threshold for multicollinearity detection. 

If the VIF for any variable is higher than this limit, there may be significant 

multicollinearity present, and the coefficient is likely to be underestimated 

(Velleman & Welsch, 1981).  
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If multicollinearity is present in the data, there are many alternative techniques to 

apply to the given problem, such as ridge regressions and principal component 

analysis. These techniques are quite complex and not very well understood. 

Therefore, many researchers do not use them. They argue further that the estimation 

method might not be the problematic variable in this case, but rather the data 

(Brooks, 2018). There are more easily and conveniently available ways to deal with 

multicollinearity:  

1. You can ignore it if the adequacy of the model is statistically acceptable.  

2. Drop one of the variables that are collinear, and the problem disappears. 

3. Transform the correlated variables into a given ratio. 

5.4.4 Stationarity 

A strictly stationary process is expressed as: 

𝑡#, 𝑡#, …, 𝑡6 	∈	Z, any k ∈ Z and T = 1,2, … 

𝐹𝑦-!"#,𝑦-$"# , …	 , 𝐹𝑦-%"#(𝑦#, … , 𝑦6) 

Where F represents the collection of random variables’ joint distribution function 

(Tong, 1990). If a series' value distribution is constant through time, it is said to be 

strictly stationary. This means that the chance that y falls inside a certain interval is 

constant across time, now or in the future. 

For any given lag, a stationary series is one with a constant mean, constant variance, 

and constant autocovariances. This is mathematically formulated as follows: 

𝐸(8&) = 𝜇	

𝐸(8&	3	;)(8&	3	;) =	𝜎
& < 	∞	

𝐸(8&! 	3	;)(8&$ 	3	;) =	𝛾-$3-! 							∀𝑡#, 𝑡&	

It is important to test for Stationarity because shocks that appear in non-stationary 

data, will last for an infinite time. It can also lead to high 𝑅& but have attributes that 

lead to insignificant coefficients for the slope because of spurious regressions. One 

other problem that might occur, is that the slope coefficients for the t-ratios will not 
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be distributed correctly (t-distribution), which will give lower p-values (Brooks, 

2018). 

To describe non-stationarity, two models have been frequently used: 

Random walk with drift: 

𝑦- = 	𝜙𝑦-3# + 𝑢-	

And the deterministic process: 

𝑦- = 𝛽. + 𝛽#𝑡 + 𝑢-	

if 𝜙 = 1, the process is considered non-stationary. 

 

Since the null is one of non-stationarity, the test statistics under the null hypothesis 

do not follow the ordinary t-distribution but follow a non-standard distribution. The 

critical values are derived from the models and experiments conducted by Dickey 

Fuller: 

𝑦- = 	𝜙𝑦-3# + 𝑢-	

𝐻0:	𝜙 = 1  𝐻1:	𝜙 < 1 

Test statistic: 𝜏 = <=3#
>?<=

 

A limitation with the use of DF-test is that it is only valid 𝑈- is a white noise process. 

where no autocorrelation is present. With our data, this is the case, and we therefore 

must look for a different option. We therefore used the Augmented Dickey Fuller 

test (ADF). The ADF process can be expressed as follows: 

∆𝑦- = 	𝜓𝑦-3#o𝛼∆𝑦- + 𝑢-

@

!"#

	

Where the main objective is to examine if 𝜙 = 1, (𝐻0), against the alternative 

hypothesis 𝜙 < 1. In other words, we are interested in examining(𝐻1): contains a 

unit root, vs 𝐻1: stationary series: 

𝐻0:	𝜙 = 1 or 𝜓 = 1.			 𝐻A:	𝜙 < 1 or 𝜓 < 1 
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ADF has the following test statistics: 

𝑇𝑒𝑠𝑡	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐:	
𝜓

𝑆𝐸(𝜓)	

To prevent 𝑈- from being autocorrelated, the dependent variable's dynamic 

structure is now "absorbed" by the lags of ∆𝑦-. As is customary, information criteria 

or data frequency establish the optimal lag duration. We take the initial differences 

and keep testing until there are no more unit roots if the null hypothesis is not 

disproved. The exam has its detractors. The major one has to do with the test's 

power; it performs poorly at identifying roots that are near the non-stationary 

border, such as = 1 versus = 0.95. Using stationarity tests in addition to unit root 

tests like the ADF is one approach to getting around this issue (Brooks, 2018). 

5.5 Robustness check results 

This section presents the results of our different robustness tests on our models. 

5.5.1 Heteroscedasticity and Autocorrelation 
To examine the presence of heteroscedasticity, we initially plotted the residuals 

against the fitted values for both Model 1 and Model 2. The graphical analysis 

revealed evidence of heteroskedasticity, as the spread of residuals appeared to vary 

systematically across the range of fitted values. We could have used White's test, 

but the visual examination of the residuals was sufficient in this case. 
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Graph 6: Summary of heteroskedasticity plots 

 While investigating heteroscedasticity, we also examined the presence of 

autocorrelation in our models. We utilized the Breusch-Godfrey test, to identify 

potential autocorrelation. The test results indicated the presence of autocorrelation 

in our data. A summary of the test is available in the appendix.  

 

To address both heteroscedasticity and autocorrelation, we employed Newey-

West's heteroskedastic and autocorrelation consistent (HAC) standard error 

estimation. This technique adjusts the standard errors, which will help with our 

problem, by providing more accurate inference. 

5.5.2 Multicollinearity 

To check for multicollinearity, we calculated the variance inflation factors (VIFs) 

for each variable in our models. After we examined the different variables, we found 

that OBX_Price induced multicollinearity in all our models, as it exceeded the VIF 

threshold of 10. We also observed water reservoir difference (WRD) to induce 

multicollinearity in models 1 and 2 when sampling for 2022, for the same reason. 

We deleted these variables from our analysis because it was necessary to mitigate 

the impact of multicollinearity and to ensure the reliability of our regression results, 

as their high correlation could potentially introduce bias and instability into our 

estimates. 

5.5.3 Stationarity 

In the analysis of stationarity, we performed unit root tests such as the Augmented 

Dickey-Fuller (ADF) test to examine the stationarity of our variables. The results 

showed that all our data were stationary in the regressions. This is a desirable 

property for time series data, as it implies that the statistical properties of the 

variables remain constant over time. Our finding provides a solid foundation for the 

analysis we have performed because it allows us to utilize standard regression 

models and conduct reliable inference on the estimated parameters, since these 

methods are based on stationarity. 
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6 Conclusion 

This thesis has aimed to investigate the relationship between volatility in the Nordic 

system price and liquidity in the Nordic power derivative market. From our 

research, we are the first to investigate this topic in the Nordic power derivative 

market. We place special emphasis on the 2022 power crisis, and how this shock 

specifically impacted the power derivative market. More specifically, we 

investigated if 

- Volatility in Nordic system price, in general, leads to less liquidity in the 

Nordic power derivative market 

- Volatility in Nordic system price positively impacted the liquidity in the 

Nordic power derivative market in 2022  

- Volatility in the Nordic system price led to more market activity in the 

Nordic power derivative market 

We investigated these questions through OLS regressions, using different 

dependent variables available through our dataset. We further sampled our data for 

2022 observations, to find out how the energy crisis impacted the derivative market. 

Our dataset is self-constructed, and contains daily data from different sources, such 

as Nasdaq and Nord Pool.   

We found volatility in the Nordic system price to have a negative relationship to the 

liquidity in the Nordic power derivative market, both when measuring the tightness 

and depth of the orderbooks. We suspect this is because of financial institutions 

being less incentivized to provide liquidity to the market, although we have no way 

of verifying this through our data. We did not find volatility in power prices to 

improve liquidity in the Nordic derivative market during 2022 either. Despite our 

volatility coefficients in model 1 looks promising, the lack of statistical significance 

deters us from making any empirical judgements. While the need for hedging may 

have been higher in 2022, the effect of financial institutions providing less liquidity 

probably overruled the added need for hedging. We did not find volatility in Nordic 

system prices to improve market activity in 2022 either. However, we did find it to 

have a substantially lessened negative effect compared to 2019. 
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7 Limitations, weaknesses and further 

research 

One of the big limitations encountered during this master's thesis was the significant 

amount of time required to handle and process the data obtained from Nasdaq, 

specifically the ITCH files. It also took some valuable time to receive it due to some 

challenges on their part. The process was quite time-consuming and demanding, as 

we had to clean the data, decode messages, and create variables to construct an 

understandable dataset. This process also required significant computational power, 

which resulted in significant processing time. It took us approximately two weeks 

of continues computer operation to generate the required dataset each time. This 

substantial data processing phase took longer than expected, resulting in time 

constraints and potential limitations on the depth and complexity of the study. 

  

Regarding model 1, it would be necessary to address the relatively low R-squared 

values of 0.139 and 0.134. This is indicating that the model's explanatory power is 

limited, where it suggests that the chosen model may not be the most optimal for 

the given dataset. It may not fully capture the complexity of the underlying 

relationship between the variables. If we had more time, we could have been 

conducting alternative models that could improve the fit and explanatory power of 

the potential model. 

 

Gas prices play a role in the overall market dynamics, and to determine it, these 

variables would have a certain impact, explaining the volatility and liquidity of the 

derivatives in the Nordic power market. Considering the interdependencies between 

power markets and gas prices, since we were not able to extract gas prices for the 

European market, we consider the absence of gas prices to restrict the 

comprehensiveness of this analysis to some degree. For future potential research, it 

would be suggested to incorporate gas prices in the model to get a better 

comprehensive understanding of the relationships between power derivatives, 

liquidity, volatility, and gas prices. 
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In hypothesis 3, it would be ideal to compare 2022 results to a model with all 

observations in our dataset (2016-2022). Due to a late development of this 

hypothesis, we did not have the required time to construct this dataset due to long 

processing times. We therefore had to use a smaller sample to shorten the time the 

program ran.  

 

An intriguing avenue for future research would be to investigate power markets 

beyond the Nordic region and compare their behavior to gain a broader 

understanding of market dynamics. It would be interesting to further analyze power 

markets in different European countries or even globally. This can shed light on 

variations in trading patterns and market structures, where we can gain insights into 

the unique factors influencing volatility and liquidity in various power markets. 

  

Another interesting direction for future research would be the exploration of other 

derivatives markets for commodities such as oil and gas. These markets are often 

considered more liquid and actively traded compared to power derivatives. It would 

therefore be interesting to look at the derivatives markets for oil and gas because it 

can provide valuable insights into the dynamics of highly liquid markets. By 

making these comparisons between liquid and illiquid markets, it would be possible 

to identify potential differences in market liquidity & volatility, the impact of 

fundamental factors, and the effectiveness of risk strategies. 
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