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Abstract

The main goal of this paper is to investigate if determining factors of clean energy stock

performance in Europe have been influenced by the Paris Agreement. The analysis consist

of three models in the time period before the Paris Agreement, and three models in the

time period after the Paris Agreement. The models consist of variables related to the

stock- and energy market and climate factors as well as a European clean energy index. To

conduct our analysis we utilize a LA-VAR and a VAR framework. Using the results from

this we examine the Granger causality, impulse responses and variance decomposition.

The main findings of this paper are the shift in Granger causality before and after the

Paris Agreement. We find that the stock market factors Granger-causes the clean energy

index prior to the Paris Agreement, but not following the Agreement. On the other

hand, we find that the climate- and energy factors do not Granger-cause the clean energy

index prior to the Paris Agreement, but Granger-causes in the period following the Paris

Agreement. This indicates that the Paris Agreement have influenced determining factors

of clean energy stock performance in Europe.

Keywords – Clean energy, climate change, Paris Agreement
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1 Introduction & Motivation

In today’s world, there is an urgent need to address the challenges of climate change.

The consequences of this global issue pose significant threats to our planet and future

generations. Efficient political regulations and policies are crucial, in order to combat

climate change and mitigate its impact. The urgency of the climate crisis demands

immediate and coordinated action from governments worldwide, to drive innovation, and

create a sustainable pathway forward.

The Paris Agreement (PA), announced on December 12, 2015, is widely recognized as

the most significant milestone in global climate mitigation and adaptation efforts. Its

emergence took many by surprise as, for the first time, a majority of UN countries

agreed on the urgent need to limit global temperature increase "well below 2°C" above

pre-industrial levels. The Agreement also emphasized strengthening countries’ abilities to

address the impacts of climate change and committing to align financial flows with low

greenhouse gas emissions and climate-resilient development (UNCC, 2018). There is also

an ongoing debate surrounding the question of whether implementing climate policies to

meet the 2-degree Celsius target generates systemic risks, or presents opportunities for

low-carbon investments and economic growth (Battiston et al., 2017).

There exist several studies that looks at the determining factors of clean energy assets.

Studies have also been done to examine the impact of the Paris Agreement. Building on

these studies we aim to further contribute to the literature by examining the relationship

between a set of selected variables and a European clean energy index. Specifically we aim

to analyse the causal relationship between the European clean energy index and climate-,

energy-, and stock market based factors. Understanding the dynamics between such

variables is critical for policy makers, regulators, and investors in energy- and financial

markets. The learning process around these dynamics is vital for anticipating market shifts,

structuring effective energy policies, and identifying promising investment opportunities

in the clean energy sector.

Specifically our main research question is:

• Did the Paris Agreement influence determining factors of clean energy stock

performance in Europe?
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1.1 Variables and Methodology

In our thesis, we carefully chose a specific set of variables that we believe are important

in understanding how European clean energy assets perform. Our goal was to analyze the

underlying factors that influence the performance of these assets. Due to data availability

and the impact of the Covid-19 pandemic, we focused on the time period from January 1,

2011, to January 31, 2020. In order to examine any potential changes we divided the time

period into two parts, one before and one after the Paris Agreement.

To capture European clean energy assets, we have used the NASDAQ OMX Clean Energy

Focused Index. The other variables we considered were grouped into two categories. The

first category included stock market factors: MSCI Europe Growth Index, STOXX Europe

600, and Euribor 3-month interest rate. The second category consisted of climate- and

energy-related factors: Brent Crude oil price, Climate Policy Uncertainty Index, and

Carbon Emissions futures price.

Inspired by the methodology by Toda and Yamamoto (1995) we implement a Lag-

Augmented Vector Autoregressive model to examine the causal relationship between our

variables. In addition, we implement a standard VAR model and perform impulse response

functions and variance decomposition analysis. Finally we complete our analysis with

robustness checks using US and Asian clean energy indexes.

1.2 Outline

This thesis is structured into seven chapters, with the current chapter serving as the

introduction. Chapter 2 offers a comprehensive overview of the existing literature,

encompassing various aspects and perspectives related to the research question. In

chapter 3, we outline our hypotheses, which are formulated based on our own theories

and insights gained from the existing literature. Chapter 4 presents the theoretical

methodology employed to analyze these hypotheses. Chapter 5 presents the data collected

and provides detailed information on each individual variable utilized. The sixth chapter

presents our six distinct models, along with our findings, discussions, and robustness tests.

Finally, chapter 7 concludes the thesis by summarizing the key findings, acknowledging

shortcomings and limitations, and suggesting questions for future research.
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2 Litterature Review

In the literature, the subjects of oil price fluctuations, clean energy stock performance,

climate change, and carbon risk have been extensively debated and studied. In the last

decade, an increased emphasis has been placed on addressing the pressing challenge

of climate change. Consequently, substantial efforts have been made in this direction,

reflecting a growing recognition of the importance of sustainability and clean energy. In

the process of selecting relevant literature for our thesis, we have put great effort into

including high-quality papers from well-cited journals with a high impact factor. By

doing so, we aim to ensure that our thesis is supported by reliable, reputable and relevant

sources.

Henriques and Sadorsky (2008), utilize a four-variable vector autoregressive model to

explore the connection between oil prices, technology stock prices, interest rates, and the

financial performance of alternative energy companies. The results highlight that both

technology stock prices and oil prices independently Granger-cause the stock prices of

alternative energy companies. Through simulations, they find that a shock to technology

stock prices exerts a more substantial impact on alternative energy stock prices compared

to a similar shock to oil prices. They argue that these findings hold significant implications

for a range of stakeholders, including investors, managers, and policymakers, given the

increasing prominence of energy security and climate awareness (Henriques and Sadorsky,

2008).

Inspired by the findings of Henriques and Sadorsky (2008), Kumar et al. (2012) apply

a vector autoregressive analysis to investigate the interrelationship among clean energy

firms’ stock prices, oil prices, carbon markets, and technology firms’ stock prices. Their

empirical evidence provides support to the theory that increasing oil prices catalyze the

transition towards alternative energy sources. Furthermore, they suggest that investors

perceive clean energy firms similar to high technology stocks. Intriguingly, the study

finds no substantial correlation between clean energy stock performance and carbon

pricing, attributing this to low carbon prices during the observed period, and geographic

differences. Nonetheless, given the recent increase in carbon prices, this aspect may bear

more significance in more recent times.
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In similar fashion Reboredo and Ugolini (2018) assesses the impact of quantile price

movements in oil, gas, coal and electricity on the quantiles of clean energy stock returns.

They use a multivariate vine-copula dependence setup in the time period from 2009 – 2016.

Their findings suggest that the price of electricity and oil has a major contribution to the

dynamics of clean energy stock returns in the US and the EU (Reboredo and Ugolini,

2018). Coal and gas prices played a minor role. In addition, they find that the impact is

symmetric with both negative and positive price movements in energy prices. The findings

of this article can be useful both in a risk management perspective for private investors

and for policymakers looking to support the development of clean energy (Reboredo and

Ugolini, 2018).

Zhou et al. (2023) is analyzing the time varying and dynamic relationship between climate

policy uncertainty, oil price and renewable energy consumption over the period from 2005

to 2021. They develop a time-varying parameter VAR and find similar results to the above

mentioned articles. Increased climate policy uncertainty positively affects the oil price

and the consumption of renewable energy (Zhou et al., 2023). Their findings have several

interesting policy implications. Firstly, the positive relationship between climate policy

uncertainty and the oil price suggest that this relationship should be considered when

formulating climate policy to avoid macroeconomic consequences related to an increasing

oil price. Secondly, there should be an increased policy support towards renewable energy

and increased investments which again will increase the consumption of renewable energy

and reduce emissions (Zhou et al., 2023).

An article by Fahmy (2022) hypothesize that the increased focus on green investment

and climate risk awareness should have had an impact on the relationship between clean

energy prices, oil price and technology stocks before and after the Paris Agreement. After

controlling for carbon price, market volatility and policy uncertainty, the author finds

that, before the Paris Agreement oil price is the best regime driver for clean energy. In

the post Paris Agreement period however, technology stocks are the best driver, and the

effect of the oil price is completely absent. This indicates a significant shift in investor

awareness and the perspective on clean energy assets. Further, these findings indicate

that large climate policy agreements and other important climate related events do have a

significant impact on decoupling clean energy assets from the traditional energy markets
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(Fahmy, 2022).

In an analysis of the stock market reaction of the Paris Agreement Monasterolo and

de Angelis (2020) aim to understand how and if markets react to climate related

announcements, and if assets are rewarded or penalized according to their carbon intensity.

They structure tests to see how the market price the Paris Agreement and how the

systematic risk is affected. They find that after the Paris Agreement the correlation

between high and low carbon indices drops, indicating that the Paris Agreement has led

to a further differentiating of high and low carbon assets. This implies that investors have

changed their perception of low carbon investments. However, high carbon assets have

faced mild reaction to the Paris Agreement (Monasterolo and de Angelis, 2020).

The article by Bolton and Kacperczyk (2021) explores the area of carbon risk. Similar

to the study done by Monasterolo and de Angelis (2020), they study if carbon emissions

affects US stock returns. After controlling for various return predictors, they find that

firms with high carbon emissions earn higher returns. These results are consistent with

the notion that investors demand compensation for exposure towards carbon risk (Bolton

and Kacperczyk, 2021). This is highly relevant for investors and policy makers that are

trying to price and understand the market dynamics and the implications of carbon risk.

The study by Battiston et al. (2017) employs a network-based climate stress-test

methodology, redefining current economic activities into climate-policy-relevant sectors.

The research reveals substantial direct and indirect exposure to these sectors across

financial actors’ portfolios, thereby highlighting the systemic risk tied to sudden climate

policy changes. The authors underscore the critical role of early and stable implementation

of climate mitigation policies, allowing investors to anticipate effects and avoid systemic

risk. They further suggest that these policies may lead to increased portfolio volatility

and could result in both winners and losers among financial actors depending on their

portfolio composition. The study emphasizes the need of a stable policy framework and

robust climate-related financial disclosure (Battiston et al., 2017).
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3 Testable Hypothesis

Hypothesis 1: The Paris Agreement has influenced determining factors of clean energy

stock performance in Europe.

Our primary objective is to investigate whether factors driving the performance of clean

energy stocks have been in influenced by the Paris Agreement. Building on the research

conducted by Fahmy (2022) and Monasterolo and de Angelis (2020), who found an increase

in investor awareness following the Paris Agreement, we propose that the Agreement also

prompted a shift in determining factors of clean energy stock performance. By examining

the post-Paris Agreement period, we aim to contribute to the existing literature and shed

light on any changes in some of these determining factors.

Hypothesis 2: Climate- and energy factors have seen an increase in significance after

the Paris Agreement.

In line with the growing importance of climate change and sustainable development, we

hypothesize that climate- and energy-related factors have gained greater significance in

influencing the performance of clean energy stocks following the Paris Agreement. This

hypothesis builds upon the premise that the Agreement’s focus on addressing climate

challenges has amplified the relevance of climate- and energy-related factors in the market,

potentially impacting the performance of clean energy stocks.

Hypothesis 3: An increase in the price of carbon (MO1) will have a positive effect on

clean energy stock prices.

Drawing on the findings of Kumar et al. (2012), we propose that an increase in the price

of carbon emission allowances (MO1) is likely to attract investors towards clean energy

companies. As the cost of carbon emissions rises, we propose that clean energy companies

will become relatively more attractive due to their cleaner and more sustainable energy

sources, that are not affected by an increase in the cost of emitting. Consequently, this

increased demand for clean energy stocks is expected to have a positive effect on their

stock prices.

Hypothesis 4: There exists a significant relationship between the MSCI Growth Index

(GRW) and clean energy stocks.
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Differing from existing literature that primarily associates technology stocks with clean

energy stocks, we suggest that clean energy companies are closely aligned with growth

stocks. This hypothesis aims to challenge the prevailing assumption and explore the

specific relationship between growth stocks and clean energy stocks.

Hypothesis 5: The Paris Agreement has contributed to improve the risk adjusted returns

for the clean energy index.

We believe that the Paris Agreement has contributed to an increased focus on climate risk,

sustainable innovations, and more attractive investment cases within clean energy assets.

In addition, the Agreement has incentivized governments to implement more favourable

climate policies. As a result of this, we believe that the risk return relationship for clean

energy assets has improved.

By formulating these hypotheses, we aim to contribute to the academic and theoretical

understanding of the factors influencing the performance of clean energy stocks. Through

empirical analysis and examining the selected variables, we expect to discovering valuable

insights that may challenge or complement the existing literature on this subject matter.
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4 Methodology

4.1 VAR

We employ a standard vector autoregressive model (VAR) and a lag augmented vector

autoregressive model (LA-VAR) to investigate the relationships between the GRNEUR

index and our selected variables. We view this approach as the most suitable for our

research objectives. VAR models are among the most popular estimation techniques used

in econometrics. The utilization of a VAR model offers various advantages. Specifically, it

obviates the necessity to explicitly determine the exogenous and endogenous variables, as

all variables are treated as endogenous. Consequently, each variable can rely on past values

of both the dependent variables and all other variables within the model (Brooks, 2019).

This characteristic offers greater flexibility in examining relationships and facilitates the

adoption of a more comprehensive framework. Moreover, VAR models have demonstrated

superior forecasting performance in comparison to conventional structured models (Brooks,

2019).

A VAR model can be estimated using OLS. Shown below is an example of a VAR(3)

model with two variables:

y1t = α10 + β11y1t−1 + β12y2t−1 + γ11y1t−2 + γ12y2t−2 + δ11y1t−3 + δ12y2t−3 + u1t

y2t = α20 + β21y1t−1 + β22y2t−1 + γ21y1t−2 + γ22y2t−2 + δ21y1t−3 + δ22y2t−3 + u2t

The utilization of a VAR model is based on several assumptions. To ensure the suitability

of the VAR model, we assume that the data exhibits stationarity, follows a normal

distribution, demonstrates stability, and possesses no autocorrelation in the residuals.

Furthermore, it is essential for the variables to be non-cointegrated, meaning they lack

a shared long-term trend or relationship. In cases where variables are cointegrated, a

VECM (vector error correction model) becomes a more appropriate choice (Brooks, 2019).

We will discuss this further later in this chapter.

As all econometric models, VAR models are subject to limitations. VAR models have

limitations as they are not heavily guided by established theories, making it challenging
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to derive clear policy implications. Hence, researchers run a higher risk of discovering

misleading relationships when analyzing the data. Interpreting coefficient estimates in

VAR models can be complex, and determining the appropriate number of time lags

remains a subject of ongoing debate. Additionally, estimating VAR models with numerous

parameters can yield imprecise results and wide confidence intervals around the estimated

coefficients. Ensuring stationarity in all variables is crucial for hypothesis testing in VAR

models, but deciding whether to use differencing or not presents a complex choice (Brooks,

2019).

4.2 Lag Augmented VAR

Toda and Yamamoto (1995) introduced a lag-augmented vector autoregression (LA-VAR)

testing procedure, distinguished by its robustness to both integration and co-integration

properties of data and its distinctive capability to circumvent the potential pre-test bias.

Provided that the data integration’s order doesn’t surpass the model’s true lag length,

a common lag length selection criterion can be employed to determine the suitable lag

length. We estimate a VAR with k+ dmax lags, with k representing the optimal lag length

according to the information criteria, and dmax representing the predicted maximum

order of integration. We have adopted this approach to overcome some of the limitations

associated with the standard VAR model and to establish a more robust framework for

our analysis.

Below is an example of a two variable LA-VAR model with k + dmax lags:

Y1,t = β1,0+β1,1Y1,t−1 + · · ·+ β1,pY1,t−p + β1,p+dY1,t−p−d

+ α1,1Y2,t−1 + · · ·+ α1,pY2,t−p + α1,p+dY2,t−p−d + u1,t

Y2,t = β2,0+β2,1Y2,t−1 + · · ·+ β2,pY2,t−p + β2,p+dY2,t−p−d

+ α2,1Y1,t−1 + · · ·+ α2,pY1,t−p + α2,p+dY1,t−p−d + u2,t

As Yamada and Toda (1998) discuss, the choice between a VECM and a LA-VAR involves

a trade-off between size and power. The LA-VAR model exhibits better performance

regarding the probability of falsely rejecting the true null hypothesis (Type I error), while
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the VECM exhibits better performance regarding the possibility of not rejecting a false

null hypothesis (Type II error). These finding were validated by Clarke and Mirza (2006).

To conduct the Granger causality tests, we employ a modified Wald test on the initial

(k) lags, determined by the optimal lag length. For instance, if the optimal lag length is

determined to be k = 3, and there is a level of integration of 1, the total lag length of the

model would be 4. However, due to the nature of the modified Wald test, we consider

only the first 3 lags (Toda and Yamamoto, 1995).

4.3 Lag Length

In order to establish the VAR model appropriately, it is essential to determine the suitable

lag length. Various methods exist for this purpose, and one commonly employed approach

is the utilization of information criteria. This method effectively captures the trade-

off between the reduction in residual sum of squares (RSS) achieved by incorporating

additional lags and the simultaneous increase in the penalty term value. By specifying

a predetermined maximum number of lags, the optimal lag length is determined by

identifying the number of lags that minimizes the selected information criteria (Brooks,

2019).

4.4 Stationarity / Unit Root

For the VAR model to yield reliable outcomes, it is essential that the variables exhibit

stationarity and integration of the same order. Stationarity, as defined by Brooks (2019),

refers to a series having a constant mean, constant variance, and constant autocovariance

for each given lag. Financial data commonly includes both a trend component and shocks

to the time series, which often results in non-stationarity. To ascertain what the order of

integration is, and whether the data is stationary, or contains a unit root, various tests

need to be employed (Brooks, 2019).

The Augmented Dickey-Fuller (ADF) test is employed to investigate the presence of a

unit root in a time series. Additionally, the KPSS (Kwiatkowski-Phillips-Schmidt-Shin)

and Phillips-Perron tests are employed. The Phillips-Perron test is similar to the ADF

test but incorporates a correction to account for autocorrelated residuals. In most cases,
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the Phillips-Perron test yields similar outcomes to the ADF test. Finally, the KPSS test

can be employed to ensure conclusive results across all three tests (Brooks, 2019).

There are four possible outcomes of the unit root/stationarity tests. In order to reach

confirmatory results of no unit root, we want to reject the null hypothesis for ADF and

PP. Additionally, we do not want to reject the null hypothesis for KPSS.

ADF / PP KPSS

H0 : yt ∼ I(1) H0 : yt ∼ I(0)

H1 : yt ∼ I(0) H1 : yt ∼ I(1)

(1) Reject H0 & Do not reject H0
(2) Do not reject H0 & Reject H0
(3) Reject H0 & Reject H0
(4) Do not reject H0 & Do not reject H0

Table 4.1: Unit root / stationarity conclusions (Brooks, 2019)

To ensure reliability of our conclusions, it is crucial that our results align with either

outcome (1) or (2). This alignment will be achieved when both of our tests unanimously

conclude that the data series is either stationary or non-stationary. If we encounter

outcomes (3) or (4), it indicates a discrepancy in the results (Brooks, 2019).

If it is determined that the data contains a unit root and is non-stationary, the subsequent

step involves differencing the data and repeating the testing procedure to examine whether

the data has become stationary. If the data achieves stationarity following first differencing,

it can be concluded that the data is integrated of order 1. When implementing the LA-VAR

it is crucial to ensure that the data is integrated of the same order, hence we verify that

the data becomes stationary when conducting the stationarity tests on first differences

(Brooks, 2019).

4.5 Cointegration & VECM

In addition to establishing the order of integration for the data, the data needs to be tested

for cointegration. In the presence of cointegration, the use of a vector error correction
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model (VECM) is the appropriate choice. It is not uncommon for financial time series to

be non-stationary, but move together over time. This long-term relationship or equilibrium

between the time series can be seen as the cointegrated relationship. The cointegrated

relationship can be viewed as the long-run equilibrium between the variables, with short-

term deviations (Brooks, 2019). Even with non-stationary data, a linear combination

of the variables may be stationary over time. To test for cointegration we employ the

Johansen test for cointegration Johansen (1988). The Johansen testing procedure for

cointegration is a method used to determine if variables are related in the long run. It

involves analyzing a non-stationary vector autoregressive process with a specific order

of integration and Gaussian errors. This method calculates the maximum likelihood

estimator for the cointegration vectors and uses a likelihood ratio test to assess the

dimensionality of the dataset. It also examines linear hypotheses about the cointegration

vectors. The test statistics used in this procedure have certain distributions, including a

multivariate variant of the standard test for a unit root and a chi-square test (Johansen,

1988).

4.6 Granger causality

When we have multiple variables and lags in a vector autoregressive model, it can be

challenging to determine which variables have a significant impact on the dependent

variable. To address this challenge, we can use Granger causality tests. These tests

help us assess the influence of one variable on another by setting the lags of the selected

variable to zero and using the F-test framework for analysis. This allows us to test all the

lags of a variable together, rather than individually examining each variable. The main

goal of this test is to determine if changes in one variable, let’s say y, cause changes in

another variable, x. If the lags of y are significant in explaining the changes in x while the

reverse is not true, we can conclude a unidirectional causality from y to x. Conversely, if

the variables influence each other in both directions, it indicates a bi-directional causal

relationship (Brooks, 2019).

Theoretical explanation of the Granger causality test in relation to the LA-VAR models

are explained in the LA-VAR section.
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Hypothesis Implied restriction
1 Lags of y1t do not explain current y2t β21 = 0 and γ21 = 0 and δ21 = 0
2 Lags of y1t do not explain current y1t β11 = 0 and γ11 = 0 and δ11 = 0
3 Lags of y2t do not explain current y1t β12 = 0 and γ12 = 0 and δ12 = 0
4 Lags of y2t do not explain current y2t β22 = 0 and γ22 = 0 and δ22 = 0

Table 4.2: Granger causality framework (Brooks, 2019)

4.7 Impulse Response & Variance Decomposition

Employing the F-test framework in the Granger causality test affords valuable insights

regarding which variables exert a statistically significant influence over others. However,

it does not provide information about the direction of this impact (positive or negative)

or the requisite time for the effect to manifest. In order to explore the more nuanced

information about the relationships, we examine the impulse response function (IRF) and

the variance decomposition (VDC) of the VAR model. The IRF exposes the responsiveness

of the dependent variable to shocks in each variable, essentially serving as the partial

derivatives of the variables with respect to the error term. Typically, a one standard

deviation shock is employed to find this responsiveness (Brooks, 2019).

Contrary to the impulse response function (IRF), the variance decomposition (VDC)

serves a marginally different purpose. The VDC quantifies the proportion of fluctuations in

the dependent variable that can be attributed to its own shocks, as well as shocks to other

variables. Naturally, a shock to a specific variable will directly influence that variable,

but owing to the dynamics of the VAR model, other variables will also be affected. The

variance decomposition shows the proportion of the s-step ahead forecast error variance

for a given variable that is accounted for by changes to each explanatory variable at each

s-step (Brooks, 2019).

An important similarity between the VDC and IRF is the necessity to correctly ordering

the variables. In order to achieve an accurate ordering, one might use financial theory

to arrange the data in accordance with which variables are likely to trigger movement

and which are anticipated to react. Failure to maintain this order could compromise the

interpretation and results of the analysis (Brooks, 2019).
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5 Data

We have obtained monthly closing prices from 31st of January 2011 to 31st of January

2020, generating a total of 108 end of month observations. We have chosen monthly data

in order to reduce noise and avoid non-trading days. Our decision on the time period

takes into account the data accessibility as well as the impact of the COVID-19 crisis.

The variables used are NASDAQ OMX Clean Energy Focused Index, Brent Crude oil

price, Climate Policy Uncertainty Index, MSCI Europe Growth Index, STOXX Europe

600, Euribor 3-month interest rate, Carbon Emissions Futures Price, NASDAQ OMX

Clean Energy Focused Asia Index and NASDAQ OMX Clean Energy US Index. All data

is gathered from Bloomberg, Refinitive/Eikon and www.policyuncertainty.net.

Variable name Ticker
Nasdaq OMX Clean Energy Focused Europe Index GRNEUR
Brent Crude oil CO1
Climate Policy Uncertainty Index CPU
MSCI Europe Growth Index GRW
Euribor 3-month interest rate ECB
CO2 Futures MO1
Stoxx Europe 600 STX

Table 5.1: Variables of study

5.1 Nasdaq OMX Clean Energy Focused Europe Index

The NASDAQ OMX Clean Energy Focused Europe Index (GRNEUR) is specifically

created to monitor and reflect the progress of sectors within the green economy that

promote the development of energy generation from non-fossil fuel sources. The indexes

encompass the following sectors: Renewable Energy, Energy Efficiency, Advanced Materials,

and Bio/Clean Fuels. To analyze the robustness of our results we have included the

same index for the US and Asia; NASDAQ OMX Clean Energy Focused Asia Index and

NASDAQ OMX Clean Energy Focused US Index (Nasdaqomx.com).
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Figure 5.1: GRNEUR price plot

5.2 Brent Crude oil

The Brent Crude price (CO1) is considered a benchmark for international oil prices and is

used as a reference for crude oil in Europe (Wittner, 2020). Incorporating the price of oil

in our analysis of clean energy stock variations is crucial due to the intricate relationship

between oil prices and the clean energy sector. Oil, as the world’s most traded physical

commodity, exerts a profound influence on the global economy and energy landscape.

When oil prices rise, production costs for goods and services often increase, consequently

impacting cash flows and stock prices negatively. This can, in turn, stimulate the search for

alternative energy sources, incentivizing investments in clean energy firms. Additionally,

oil price fluctuations, particularly upward trends, often signal inflationary pressures, which

may prompt central banks to raise interest rates, thereby affecting the discount rates

used in equity valuation (Basher and Sadorsky, 2006). As clean energy represents an

alternative to oil, its attractiveness and, consequently, its stock prices could be inversely

associated with oil prices. Therefore, the inclusion of Brent Crude price in our analysis

provides a more comprehensive understanding of the factors influencing clean energy

stock fluctuations. A lot of literature covers the significant relationship between oil price

movements and equity prices, and in more recent years, research has been done on the

relationship between oil price and alternative energy companies (Basher and Sadorsky,
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2006; Boyer and Filion, 2007; Henriques and Sadorsky, 2008; Kumar et al., 2012; Reboredo

and Ugolini, 2018)).

There is conclusive research on the connection between oil price and clean energy stock

performance. Reboredo and Ugolini (2018) find that fluctuations in oil prices and electricity

prices are significant determinants in driving the movements of clean energy stock returns

within the US and Europe. Henriques and Sadorsky (2008) find that both technology

stock prices and oil prices individually Granger-causes the stock prices of alternative

energy companies. This suggests that past values of these variables can help in predicting

the future direction of clean energy stock prices.
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Figure 5.2: CO1 price plot

5.3 Climate Policy Uncertainty Index

The Climate Policy Uncertainty (CPU) Index tracks articles from eight prominent US

newspapers that mention terms related to climate and policy (Gavriilidis, 2021). The

index experiences spikes during significant events concerning climate policy, such as the

introduction of new emissions legislation, global strikes focusing on climate change, and

statements made by the President regarding climate policy. The CPU Index is our only

variable that is non-tradable, hence, it has some specific properties that we explain in

more detail in the Descriptive Analysis part.
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In general, uncertainty often lead companies to postpone investments. This delay can

result in reduced investments in new equipment and research and development (Bloom,

2009). However, when it comes to uncertainty specifically associated with climate policy,

the effect may be different. Bouri et al. (2022) provide empirical evidence that the

performance of green energy stocks as compared to brown energy stocks is significantly

influenced by climate policy uncertainty. During periods of crisis, this uncertainty has a

positive impact, causing green energy stocks to perform better.

While our study primarily concentrates on Europe, we posit that the CPU Index, which is

based on US news articles, can act as an effective representative measure for uncertainty

within the European context too. The economic alliance between the EU and the US

stands as a critical pillar of worldwide economic growth, commerce, and wealth. Combined,

the EU and the US make up 42 percent of the global GDP. As each other’s primary

trading partners, they form the world’s most substantial bilateral trade relationship (EU,

2021).
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Figure 5.3: CPU price plot

5.4 MSCI Europe Growth Index

The MSCI Europe Growth Index (GRW) represents large and mid-cap securities across

15 developed European countries, which display general characteristics of a growth-
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oriented investment style. In light of the significant growth observed by numerous clean

energy equities over the previous decade, it can be hypothesized that investors perceive

these firms as growth companies. Consequently, this index has been incorporated to

encapsulate this particular market sentiment. The criteria for index inclusion are dictated

by five parameters: long-term forward EPS growth rate, short-term forward EPS growth

rate, current internal growth rate, long-term historical EPS growth trend and long-term

historical sales per share growth trend (Msci, 2023). GRNEUR is largely weighted in

industrials (37.64%), with only a small fraction in telecommunications (5.57%). MSCI

Europe Growth Index is also largely weighted in industrials (20.14%) and more moderately

weighted in information technology (11.78%). Hence, one of the reasons for why we have

chosen to include the MSCI Europe Growth Index rather than a pure technology index, is

the similar weighting of industrials in GRNEUR.
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Figure 5.4: GRW price plot

5.5 Euribor 3-month

The Euribor 3-month interest rate (ECB) is included to capture the relationship between

cost of capital and asset valuation. The rationale for choosing a short-term maturity

for this interest rate is primarily attributed to its trade liquidity and minimal, if not

non-existent, exposure to interest rate fluctuations. Fundamental financial theory suggests

that if the long-term real interest rate is low, the corresponding discount rate employed
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for calculating present values will be low, thereby resulting in high present values. Despite

the observed rise in long-term rates over the recent years, these rates in the context of

the 21st century remain relatively low (until recently), both nominally and in real terms,

especially when compared to historical averages. As a consequence, asset valuations such

as stock prices, house prices and commercial real estate prices, and even prices of oil

and other commodities are reported to be exceptionally high. A reduction in interest

rates reduces the cost of borrowing, leading to an increase in investments. Consequently,

this results in an increase in the value of the respective assets (Ubl, 2014). More recent

research done by Monnin (2015) find that interest rate changes have a greater impact on

the costs of clean energy technologies, relative to brown energy technologies. He further

suggests that to enhance the proportion of green energy investments relative to brown

energy investments, there could be potential merit in contemplating either a reduction in

interest rates for the former or a premium on interest rates for the latter (Monnin, 2015).
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Figure 5.5: ECB price plot

5.6 CO2 Futures

The Carbon Emission futures price, or CO2 futures (MO1), is denoted in Euros per

emission ton allowance. It is often referred to as European Union Allowances (EUA), as

traded on the Intercontinental Exchange Group’s (ICE) European platform. The EUA

represents a form of climate credit, or carbon credit, utilized within the framework of
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the European Union (EU) Emissions Trading System (ETS). Traded on the ICE, EUA

futures contracts obligate participating traders to either deliver or receive a total of 1,000

emission allowances. Each of these allowances permits the emission of one ton of carbon

dioxide-equivalent gas.

In Hammoudeh et al. (2020), they identified a significant causal relationship, which

fluctuated over time, emanating from the price of CO2 emission allowances and influencing

green bonds. However, Hung (2021) find that green bonds have a unidirectional connection

with the CO2 price, indicating that green bonds affect the price of CO2 but not vice

versa. Furthermore, Kumar et al. (2012) did not find any significant evidence of Granger

causality or impulse responses between carbon price and clean energy indexes. Given

the varied and inconclusive findings in the existing literature, much of which is centered

around the US stock market, we find it intriguing to incorporate this aspect into our

analysis of the European market.
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Figure 5.6: MO1 price plot

5.7 Stoxx Europe 600

The STOXX Europe 600, commonly known as STOXX 600 (STX), is a stock index

created by STOXX Ltd. It comprises a fixed number of 600 components that represent

companies of varying sectors and market capitalization from 17 European countries. This



5.8 Descriptive Analysis 21

comprehensive index covers approximately 90% of the free-float market capitalization

of the European stock market. The stock market serves as a broad indicator of overall

market sentiment and economic conditions. By considering the market exposure, one can

assess the impact of general market movements on the returns of individual stocks within

the clean energy sector. This variable helps to capture the systematic risk associated with

the broader market, which can influence investor behavior and the pricing of clean energy

equities.
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Figure 5.7: STX price plot

5.8 Descriptive Analysis

To facilitate better understanding and comparison of the variables, we provide summary

statistics for the log returns of each variable. The descriptive statistics for the monthly log

returns are presented in Table 5.2 for the period prior to the Paris Agreement (pre-PA)

and Table 6.13 for the period after the Paris Agreement (post-PA).

Prior to the PA, GRNEUR had an average monthly return of 0.02% and a standard

deviation of 6.33%. Compared to STX and GRW, which we see as the most similar assets,

GRNEUR had a much lower average monthly return-to-standard deviation-ratio in the

pre-PA period. CO1 has the largest (in absolute terms) monthly average return of -1.69%

pre-PA, which comes as a result of the oil crisis in 2014, where the Brent Crude oil price
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plunged from a price of USD 110.80 at the beginning of 2014, to a price of USD 37.28 at

the end of 2015. CO1 has the second highest standard deviation (after MO1) among the

traded variables, which is in line with oil being, historically, a volatile commodity. At the

same time as the oil price plunged, the European Central Bank ran an expansive monetary

policy. As a result, the monthly average return for ECB was -0.39% in the pre-PA period.

GRW and STX has stable positive average monthly returns and standard deviation in both

the pre- and post-PA period. MO1 had a monthly average return of -0.97% and a standard

deviation of 9.96% in the period before the Paris agreement. Common to a lot of financial

data, most of our variables are negatively skewed, meaning they exhibit fat tails on on

the left side of the distribution. The negative skewness observed in financial data implies

that investors can anticipate relatively frequent occurrences of small gains, alongside

few large losses. Kurtosis provides insights into the presence of outliers within the data

distribution. Negative excess kurtosis indicates a lower likelihood of extreme outliers,

suggesting that the data tends to have fewer observations that deviate significantly from

the mean. Conversely, positive excess kurtosis suggests a higher probability of observing

extreme outliers, indicating a distribution with a greater tendency to exhibit values that

deviate significantly from the mean. Interestingly, GRW and STX has a leptokurtic

distribution, while GRNEUR has a platykurtic distribution.

Mean Maximum Minimum Std. Dev. Skewness Kurtosis
GRNEUR 0.019 11.186 -17.600 6.334 -0.370 -0.043
CO1 -1.689 19.207 -20.208 8.191 -0.231 0.317
CPU 0.128 87.399 -89.411 41.467 -0.090 -0.636
GRW 0.664 8.109 -9.453 3.710 -0.443 0.345
STX 0.453 7.664 -11.080 3.824 -0.600 0.462
ECB -0.392 4.483 -7.157 2.667 -0.552 -0.029
MO1 -0.967 30.195 -23.866 9.964 0.390 0.626

Table 5.2: Summary statistics for monthly log returns pre-PA

I the post-PA period, all variables have positive average monthly returns. The GRNEUR

increases to a monthly average return of 1.04% and the standard deviation is reduced by

2.07 percentage points. This results in higher return-to-standard-deviation-ratio than STX

and GRW in the post-PA period. After the oil crisis the European Central Bank ran a

more restrictive monetary policy, with higher interest rates, resulting in a monthly average
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return of 0.04% for ECB. MO1’s average monthly returns has increased significantly

post-PA, yielding a monthly average of 2.23%. At the same time the standard deviation

has increased by just under 100 basis-points (to 10.74%), meaning the return-to-standard-

deviation-ratio has increased for MO1 even thought the standard deviation is still relatively

high. In the post-PA period, the excess kurtosis of GRNEUR, GRW, and STX is notably

more alike than it was before the Agreement.

Mean Maximum Minimum Std. Dev. Skewness Kurtosis
GRNEUR 1.042 8.872 -10.450 4.266 -0.470 -0.456
CO1 0.908 19.508 -25.113 8.046 -0.665 1.028
CPU 0.860 97.703 -62.091 33.580 0.277 -0.008
GRW 0.414 5.904 -6.678 2.906 -0.454 -0.426
STX 0.236 6.039 -6.651 3.043 -0.438 -0.403
ECB 0.043 4.558 -3.655 1.857 0.242 -0.387
MO1 2.229 27.836 -29.391 10.735 -0.241 0.549

Table 5.3: Summary statistics for monthly log returns post-PA

Due to CPU being a news article index, it will remain low in times when little is being

written about climate policy and spike around major events, such as the Paris Agreement.

As a result, it is difficult to interpret the monthly average return. The index is relatively

volatile, but the standard deviation has decreased significantly in the period after the

Paris Agreement, with a standard deviation of 41.47% pre-PA and 33.58% post-PA.
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Figure 5.8: All variables indexed
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We have constructed two correlation matrixes, Table 5.4 and 5.5 to reveiew the correlation

between the variables in each period. During the pre-PA period, we have made several

interesting findings. Firstly, we observe a negative correlation (-0.23) between GRNEUR

and CO1. This finding is somewhat surprising, as we would typically expect an increase in

oil prices to correspond with an increase in GRNEUR. However, the correlation indicate

that this may not be the case, possibly due to the rapid decline in oil prices during this

period.

Secondly, we find positive correlations between GRW and STX, with coefficients of 0.56

and 0.66, respectively. These findings align with our expectations, although they may fall

slightly below what we anticipated. One particularly interesting finding is the very low

correlation (coefficient of 0.05) between the ECB rate and GRNEUR. This suggests a

weak relationship between the two variables, and is very surprising as this rate directly

influences the cost of capital which again directly influences the value of the assets included

in GRNEUR. This is in contrast to STX and GRW which have a correlation coefficient

of -0.75 and -0.66 with the ECB. This relationship is as expected, STX and GRW are

increasing when interest rates are decreasing. We see no obvious reason for the GRNEUR

to have such a low correlation with ECB. A possible explanation could be that the stocks

in the GRNEUR index is less sensitive to interest rate due to lower levels of leverage or

because of cash flows that are resilient towards changes in the interest rate.

The MO1 has a correlation of 0.11 with the GRNEUR which indicates a weak relationship

and that the two variables move independent of each other. Similar patterns are observed

for the CPU and GRNEUR which has a correlation coefficient of -0.12.

GRNEUR CO1 CPU GRW STX ECB MO1
GRNEUR 1
CO1 -0.23 1
CPU -0.12 0.03 1
GRW 0.56 -0.82 -0.24 1
STX 0.66 -0.76 -0.24 0.99 1
ECB 0.05 0.90 0.08 -0.75 -0.66 1
MO1 0.11 0.13 0.46 -0.34 -0.30 0.30 1

Table 5.4: Correlation matrix pre-PA

During the post-PA period, we observe notable changes in the correlations between the
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variables. The correlation coefficient between CO1 and GRNEUR is 0.66, which aligns

with our expectation that higher oil prices would lead to an increase in GRNEUR. However,

it is important to consider that CO1 started from very low levels at the beginning of the

period due to the oil crisis, and GRNEUR performed well throughout the period. This

could result in a significant positive correlation between the two variables, regardless of

their underlying relationship.

The correlations between GRW, STX, and GRNEUR are even stronger in the post-PA

period compared to the pre-PA period. This suggests that the movements in GRNEUR

are largely influenced by the same factors that drive GRW and STX. Surprisingly, the

correlation between GRNEUR and the ECB rate is positive at 0.44 during this period.

This contradicts much of the financial theory and the concept of capital cost, but gives

support to the notion that GRNEUR´s cash flow and performance is less interest rate

sensitive and are resilient towards increases in interest rates.

In the post-PA period, we observe a more significant relationship between MO1 and

GRNEUR, with a correlation coefficient of 0.65. This may indicate that the higher carbon

price has increased the attractiveness of the GRNEUR index, highlighting the growing

importance of the EU ETS in this market. Both the carbon price and GRNEUR have

experienced significant increases over the period. However, the correlation between CPU

and GRNEUR remains relatively low at 0.26.

GRNEUR CO1 CPU GRW STX ECB MO1
GRNEUR 1
CO1 0.66 1
CPU 0.26 0.16 1
GRW 0.91 0.53 0.34 1
STX 0.91 0.61 0.35 0.91 1
ECB 0.44 0.47 -0.31 0.10 0.28 1
MO1 0.65 0.58 0.26 0.70 0.46 -0.01 1

Table 5.5: Correlation matrix post-PA
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6 Result & Analysis

To investigate the relationship in our analysis we employ a multifactor lag-augmented

vector autoregressive model, as well as a simple VAR model with first difference data. We

examine the Granger causality, impulse response function and variance decomposition.

For the majority of our analysis the dependent variable is set to the NASDAQ OMX

Clean Energy Focused Europe Index (GRNEUR).

6.1 The models

We split our sample period into two distinct sub-samples, before (pre-PA) and after

(post-PA) the Paris Agreement (PA). The pre-PA period spans from January 31st, 2011,

to December 31st, 2015, while the post-PA period spans from January 31st, 2016, to

January 31st, 2020.

In our analysis, we have established three primary models. The first model encompasses

all variables considered, the second model focuses on stock market-related variables, and

the third model concentrates on climate and energy-related variables. With three primary

models and two time periods we end up with six models in total. Considering the two

distinct time periods and the diversity of models, each model encompasses varying lag

lengths for each respective period. To provide clarity, we have opted to present our models

using a lag length of 2, which is the most frequently employed lag length across our

analyses. Furthermore, we have specified the specific lag lengths utilized in each segment

of our analysis.

Model Period Dependent Variable Independent Variables
(1) Pre-PA GRNEUR GRW, STX, ECB, CO1, MO1, CPU
(2) Pre-PA GRNEUR GRW, STX, ECB
(3) Pre-PA GRNEUR CO1, MO1, CPU
(4) Post-PA GRNEUR GRW, STX, ECB, CO1, MO1, CPU
(5) Post-PA GRNEUR GRW, STX, ECB
(6) Post-PA GRNEUR CO1, MO1, CPU

Table 6.1: Description of our six models
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Below is the general formula for the Lag-Augmented VAR model containing all variables

with 2 lags.

GRNEURt = β1,1GRNEURt−1 + β2,1GRWt−1 + β3,1STXt−1 + β4,1ECBt−1 + β5,1CO1t−1

β6,1MO1t−1 + β7,1CPUt−1 + β1,2GRNEURt−2 + β2,2GRWt−2 + β3,2STXt−2

β4,2ECBt−2 + β5,2CO1t−2 + β6,2MO1t−2 + β7,2CPUt−2

Below is the general formula for the Lag-Augmented VAR model defined as the market

model with 2 lags.

GRNEURt = β1,1GRNEURt−1 + β2,1GRWt−1 + β3,1STXt−1 + β4,1ECBt−1

β1,2GRNEURt−2 + β2,2GRWt−2 + β3,2STXt−2 + β4,2ECBt−2

Below is the general formula for the Lag-Augmented VAR model defined as the climate

model with 2 lags.

GRNEURt = β1,1GRNEURt−1 + β2,1CO1t−1 + β3,1MO1t−1 + β4,1CPUt−1

β1,2GRNEURt−2 + β2,2CO1t−2 + β3,2MO1t−2 + β4,2CPUt−2

6.2 Pre-PA analysis

6.2.1 Stationarity and integration

We examine the stationarity and integration of the data with the help of various testing

methods, such as the Augmented Dickey-Fuller (ADF) test, Phillips and Perron (PP) test,

and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Toda and Yamamoto, 1995).

P-values from the unit root tests from the pre-PA period are reported in Table 6.2. For

CPU we reach inconclusive results on levels data, due to rejecting the null hypothesis for

ADF, PP, and KPSS. For first difference data we achieve conclusive results, which holds

for all variables. With respect to each variable, the highest observed order of integration

is one (I (1)).
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Levels First differences
ADF PP KPSS ADF PP KPSS

GRNEUR 0.736 0.756 0.086 0.01∗∗∗ 0.01∗∗∗ 0.06
CO1 0.677 0.660 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
CPU 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.10
GRW 0.138 0.242 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
ECB 0.655 0.668 0.07 0.01∗∗∗ 0.01∗∗∗ 0.10
MO1 0.738 0.910 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
STX 0.219 0.330 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10

Table 6.2: Integration (unit root) of each variable: Pre-PA. (P-values).

6.2.2 Lag length

The selection of the ideal lag length is crucial for accurately defining the model. To achieve

this, we have utilized the Akaike Information Criteria (AIC), choosing the lag length that

results in the lowest AIC. In the LA-VAR model we’re using the AIC optimal lag length

k, plus dmax, which represents the maximum level of integration in our data (Toda and

Yamamoto, 1995). In Table 6.3 we have reported adjusted R-squared, p-values, f-statistics

and lag length for each model.

Model (1) Model (2) Model (3)
Adj. Rsquared 0.8984 0.9028 0.8876
P-value 0.0000 0.0000 0.0000
F-stat 37.38 67.17 51.03
Lags 2 2 2

Table 6.3: Fit and significance of pre-PA models
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Model (1) Model (2) Model (3)
GRNEURt-1 1.093* 1.224* 0.910*
GRWt-1 -33.400* -29.204* -
STXt-1 10.111* 8.768* -
ECBt-1 -817.663 -855.969* -
CO1t-1 1.550 - 0.172
MO1t-1 -0.489 - -7.831
CPUt-1 0.162 - 0.528
GRNEURt-2 -0.416 -0.476* 0.151
GRWt-2 20.136 17.363 -
STXt-2 -4.924 -4.116 -
ECBt-2 1080.041* 794.920* -
CO1t-2 -3.152* - -1.778
MO1t-2 -1.242 - -6.865
CPUt-2 -0.235 - 0.227

Table 6.4: Coefficient estimates of pre-PA models
*Significant at 5% level

As seen in table 6.3 all the models demonstrate excellent fit, as evidenced by their adjusted

R-squared values of approximately 0.90 or higher. This indicates that the selected variables

are highly relevant, and their lagged values contribute significantly to explaining the

fluctuations in GRNEUR. Furthermore, the variables collectively exhibit high levels of

significance, as indicated by p-values approaching zero. It is worth noting that in the

pre-PA period, all models consistently exhibit an optimal lag length of two.

The residuals exhibit normal distribution and we found no evidence of serial correlation

or heteroskedasticity in either of the models.

6.2.3 Granger causality

Despite having a good fit with high adjusted r-squared and very low p-value, the variables

in model 1 do not Granger-cause GRNEUR. We find it surprising that there is no joint

causal relationship between the variables, considering the findings from similar studies

done. However, we will continue examining the causal relationship further through this

chapter both individually and jointly.
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Model (1) Model (2) Model (3)
Do not GC GRNEUR GC GRNEUR Do not GC GRNEUR

Table 6.5: Joint Granger causality pre-PA

In model 2, containing all market variables, we find that the stock market factors (GRW,

STX, ECB) jointly Granger-causes GRNEUR. This is similar to the findings of Henriques

and Sadorsky (2008). Although Henriques and Sadorsky (2008) include a technology

variable, in contrast to our growth variable (GRW), we believe that our findings indicate

a similar relationship. Both these studies have focused on the equity markets of the

United States during a period when clean energy companies possessed a comparatively

lower market capitalization. We believe that with the development of the clean energy

market, the firms within this sector have less in common with technology firms, and

more in common with general growth factors. Kumar et al. (2012) and Henriques and

Sadorsky (2008) find individual Granger causality from technology to clean energy firms.

Employing similar testing for GRW show no individual Granger causality. Nor do we find

any individual Granger causality from STX or ECB.

Our decision to include a growth variable instead of a technology variable was done under

the assumption that the GRNEUR had more in common with growth stocks compared

to technology stocks. However, our findings in the pre-PA period indicated that this is

not the case. Fahmy (2022) present similar findings in their article, where they find that

technology stocks is not the best regime driver in the pre-PA period, but in the post-PA

period.

GRW STX ECB
Do not GC GRNEUR Do not GC GRNEUR Do not GC GRNEUR
CO1 MO1 CPU
Do not GC GRNEUR Do not GC GRNEUR GRNEUR GC CPU

Table 6.6: Individual Granger causality pre-PA

It is unexpected that both the ECB and STX do not individually Granger cause GRNEUR.

We consider these two variables as crucial drivers of clean energy stock movements.

We cannot identify a clear reason behind this counter-intuitive finding. One possible

explanation could be that the movements in GRNEUR are influenced by numerous small
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contributions from various factors. Individually, each factor may not have a significant

impact, but when combined, they collectively exert a strong influence on GRNEUR.

Continuing our analysis with the energy and climate factors (model 3) we find that they

jointly do not Granger-cause GRNEUR. CO1, MO1 and CPU does not individually

Granger-cause GRNEUR either. The lack of significance between CO1 and GRNEUR is

unexpected, and in contradiction with what Henriques and Sadorsky (2008) find. However,

our study is done at a later time-period where the dynamics may have changed and the

movements in GRNEUR may be more related to the price of other energy sources such as

electricity. Our finding of no causal relationship between MO1 and GRNEUR is in line

with the findings of Kumar et al. (2012) that find no link between the price of carbon and

the performance of renewable energy firms. Kumar et al. (2012) state that this may be

due to the low price of carbon. We believe that our findings is supported by this argument,

considering the low price level of MO1 during the pre-PA period.

We find that GRNEUR Granger-causes the CPU. Considering that the CPU index is

an American Index this could indicate a random occurring relationship between the

two variables, as they operate on different continents. It could also be the case that

journalist are observing movements in green assets such as the GRNEUR, which again

results in an increased focus on climate uncertainty related topics which again results

in more articles being written about the topic. Considering that CPU Granger-causes

GRN, and not the other way around, provides evidence supporting the notion that news

articles regarding climate uncertainty-related topics in the United States is of limited

importance for European investors. A reason behind this may be that Europe, historically,

has implemented more stringent climate policies compared to the United States, which

could potentially mean that European investors display reduced concern towards news

concerning US climate policy uncertainty.

6.2.4 Impulse responses

In this part of our analysis, we move from the LA-VAR methodology, and utilize a

standard VAR approach with first differences. This is because the use of impulse response

function requires the use of stationary data, since the system needs to be stable for the

shock to die out (Brooks, 2019). Ordering of the variables is an important factor in the
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impulse response analysis, and we have made our ordering based on the decreasing order of

exogeneity of our variables. As seen in the plot, we can visually inspect both the direction

and size of the movements in the variables (Brooks, 2019).

According to Runkle (1987), the accurate interpretation of both impulse responses and

variance decompositions poses a notable challenge. Runkle (1987) suggests that it is

essential to construct confidence bands around these responses and decomposition’s.

However, even with the inclusion of confidence intervals, they tend to be so wide that

making precise conclusions remains challenging.

In all the impulse response plots the confidence bands are wide, indicating a degree of

uncertainty in the estimation of the plots. The GRNEUR index has an immediate positive

effect to a shock to itself, but it is not significant. The shock dies out after the second

month. A shock from GRW to GRNEUR is slightly negative, but not significant. Our

initial thought was that GRNEUR would exhibit stronger similarities with a growth index

(GRW) rather than technology indexes. Interestingly, GRW is the only variable that does

not demonstrate a significant individual impact on GRNEUR. This finding suggests that

investors may perceive clean energy stocks as being more closely aligned with technology

stocks, which is in line with existing literature (Henriques and Sadorsky, 2008; Kumar

et al., 2012).

STX and ECB have a significant effect up until the second month which is positive and

negative, respectively. This in line with the basic understanding of the CAPM model,

beta, and how the cost of capital (interest rates) affect stock performance. This suggests

that GRNEUR and other green assets tend to perform well when interest rates are falling

and the overall market is experiencing positive growth. Considering the current market

conditions characterized by high inflation, rising interest rates, and increased market

volatility, this could potentially slow down the pace of the transition towards more clean

energy. This is consistent with the findings of Henriques and Sadorsky (2008), which

find that a positive shock to the interest rate has a negative effect on the alternative

energy index after ten weeks. We can compare these results to our findings in the Granger-

causality test, where we find no significance on the mentioned variables individually, but

find that they jointly Granger-cause GRNEUR.
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Figure 6.1: Pre-PA: Impulse response function: Shock from STX to GRNEUR
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Figure 6.2: Pre-PA: Impulse response function: Shock from ECB to GRNEUR

In the pre-PA period, we observe no significance in any of the impulse response plots for

any of the climate and energy factors (CO1, CPU, MO1). Similar to what we found in the

test for Granger causality. We have explained our reasoning behind this in the Granger

causality section.
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6.2.5 Variance decomposition

We have made our variable selection based on our analysis of the GRNEUR index.

Therefore, the interpretation of the variance decomposition for the other variables in

our analysis is of limited importance. All figures with all variables are included in the

Appendix.

As seen in figure 6.3, the contribution of variance from the different variables stays

relatively constant over time. There is a minor change to the CPU where the contribution

is slightly increasing from period 1 to period 2. As expected, we observe that the stock

markets based factors, including GRNEUR are major contributors of the variance in

GRNEUR. Further we will examine the variance decomposition of our two other models.
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Figure 6.3: Pre-PA variance decomposition of all factors

As mentioned in the previous paragraph, the stock market based factors are the main

sources in explaining the variance in GRNEUR. As seen in figure 6.4, GRW, ECB, and

STX each account for about similar amounts of variation to GRNEUR. ECB explains less

than STX and GRW, which are almost equal in magnitude in the pre-PA period.
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Figure 6.4: Pre-PA variance decomposition of market factors

Figure 6.5 shows that GRNEUR is the majority contributor of variance for GRNEUR in

model 3. CO1 is the second largest, and MO1 and CPU has less of an impact. Comparing

this to the results from the Granger causality test and figure 6.4 we conclude that during

the pre-PA period, the climate- and energy factors explains less of the variation than

compared to our other models, and that the relationship between the variables may not

be of large significance.
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Figure 6.5: Pre-PA variance decomposition of energy- and climate Factors

6.3 Post-PA analysis

6.3.1 Stationarity and integration

We will present this section in the same structure as in the pre-PA section. Table 6.7

reports p-values from the unit root tests for the post-PA period. As we achieve stationarity

on first differences for all variables, we can conclude that the highest order of integration

is one (I(1)).

Levels First differences
ADF PP KPSS ADF PP KPSS

GRNEUR 0.528 0.491 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
CO1 0.628 0.614 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
CPU 0.117 0.083 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
GRW 0.590 0.409 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
ECB 0.705 0.687 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10
MO1 0.413 0.637 0.1 0.01∗∗∗ 0.01∗∗∗ 0.07
STX 0.433 0.405 0.1 0.01∗∗∗ 0.01∗∗∗ 0.10

Table 6.7: Integration (unit root) of each variable: Post-PA. (P-values).

Table 6.8 demonstrates that, similar to the pre-PA period, the three post-PA models
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exhibit good fit, with adjusted R-squared values slightly below or above 0.90. The p-values

indicate strong joint significance among the variables.

Model (4) Model (5) Model (6)
Adj. Rsquared 0.9359 0.8864 0.9208
P-value 0.0000 0.0000 0.0000
F-stat 45.8 45.87 31.08
Lags 2 2 4

Table 6.8: Fit and significance of post-PA models

Model (4) Model (5) Model (6)
GRNEURt-1 -0.184 0.513 0.550 *
GRWt-1 18.079 * 10.111 -
STXt-1 -3.997 * -2.620 -
ECBt-1 750.327 574.820 -
CO1t-1 0.986 - -0.001
MO1t-1 -15.729 * - -14.780 *
CPUt-1 -0.067 - -0.108
GRNEURt-2 -0.359 0.469 0.072
GRWt-2 -7.112 -9.716 -
STXt-2 4.949 * 2.686 -
ECBt-2 559.118 -1083.888 -
CO1t-2 -5.826 * - -4.597
MO1t-2 -3.147 - 16.787 *
CPUt-2 0.038 - 0.357
GRNEURt-3 - - 0.082
CO1t-3 - - 5.105
MO1t-3 - - -14.301
CPUt-3 - - -0.088
GRNEURt-4 - - 0.205
CO1t-4 - - -4.522 *
MO1t-4 - - 5.379
CPUt-4 - - 0.312

Table 6.9: Coefficient estimates of post-PA models
*Significant at 5% level

6.3.2 Lag length

The lag length for most models is two, except for model (6), which has a lag length of

four. Overall, the summary of the fit and significance provides compelling evidence of a

well-fitting model that proves valuable for further analysis.
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We analyzed the residuals of all models and found them to be normally distributed. We

also found no evidence of serial correlation or heteroskedasticity in any of the models.

6.3.3 Granger causality

During the post-PA period, we observe a significant joint causal relationship between

GRNEUR and all the variables included in the analysis. The stock market- and the

climate- and energy factors (Model 4) collectively contribute to Granger-causing GRNEUR.

This finding offers valuable insights into factors that influence movements in clean energy

assets, and particularly GRNEUR.

Model (3) Model (4) Model (6)
GC GRNEUR Do not GC GRNEUR GC GRNEUR

Table 6.10: Joint Granger causality post-PA

Expanding on the findings in Model (4), we find different results in the post-PA period

compared to the pre-PA period. What we find particularly interesting is that the Paris

Agreement seem to have impacted investors, policy makers and the market. In this

period, we find that the stock market factors (Model 5) do not Granger-cause GRNEUR,

individually or jointly. This is contrary to our initial belief that the movements in the price

of GRNEUR was mainly dictated by movements in the overall stock market, growth, and

interest rate. The importance of the interest rate level and expansionary monetary policy

became very evident during the Covid-19 pandemic. Zero interest rate and quantitative

easing contributed to rapidly increasing asset valuation. However, in our selected time

period the interest rate were stable and slightly increasing, which may be a cause to why

ECB does not Granger-cause GRNEUR as the interest rate in this period was simply not

a deciding factor of movement in GRNEUR.

GRW STX ECB
Do not GC GRNEUR Do not GC GRNEUR Do not GC GRNEUR
CO1 MO1 CPU
Do not GC GRNEUR MO1 GC GRNEUR GRNEUR GC CPU

Table 6.11: Individual Granger causality post-PA
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As mentioned, contrary to Henriques and Sadorsky (2008) we use a growth index (GRW)

instead of a technology index. This choice was based on our hypothesis that the GRNEUR

is more closely related to growth stocks than technology stocks. The fact that GRW does

not Granger-cause GRNEUR in either of the pre- or post-PA periods indicate that this

is not the case. Finding a reasonable explanation for why STX does not individually

Granger-cause GRNEUR is challenging considering the correlation of the two assets

during the period. We believe that this finding could suggest that the assets included in

GRNEUR is viewed differently from the assets included in STX, and that the signing of

the Paris Agreement may have contributed to decoupling these assets from the overall

market movements.

In the post-PA period, the climate- and energy factors (Model 6) seem to play a more

significant role. We find that CO1, MO1 and CPU jointly Granger-cause GRNEUR.

Contrary to Kumar et al. (2012) and Henriques and Sadorsky (2008), CO1 does not

exhibit individual Granger causality with respect to GRNEUR. Even though oil price

is directly linked to energy prices, this might not be a significant determining factor of

GRNEUR. One plausible explanation for this is the linkage of clean energy production

to long-term Power Purchase Agreements (PPA’s typically spanning 15-30 years), which

effectively insulates it from the immediate impact of spot oil prices. It is worth mentioning

that the prior studies mentioned above were conducted on weekly data in the United

States in another time period.

Another interesting finding is the relationship between GRNEUR and MO1. Here we

find a univariate relationship, with MO1 Granger-causing GRNEUR. During the post-PA

period MO1 has experienced a sharp increase in price. This increase in price is likely

due to political pressure, ESG speculation, reduction of allowances and increased focus

on carbon risk, which is likely to have increased the visibility of carbon risk to investors

(Böhm, 2022). This is consistent with the findings of Bolton and Kacperczyk (2021) and

the COP 21 event-study done by Monasterolo and de Angelis (2020). The univariate

Granger causality suggests that there is a directional relationship between the price of

carbon and the price of clean energy assets. As the price of carbon rises, it is anticipated

that the adoption and utilization of clean energy assets will increase.

As in the pre-PA period, we find that GRNEUR Granger-causes the CPU. We believe
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that the reasoning behind this finding is similar to what we found in the pre-PA period

and that the relationship has persisted through both time periods.

6.3.4 Impulse responses

In the post-PA period we find no significant impulse responses from the stock market

factors (STX, GRW, ECB) to GRNEUR. This is consistent with the findings of the

Granger causality tests, where we find no individual or joint effect to GRNEUR.

As presented in Figure 6.6 we find that a positive shock in MO1 to GRNEUR has a

significant negative effect until the second month. This is in contrast to Kumar et al.

(2012), which do not find a significant impulse response from carbon price to renewable

energy stocks. We find this somewhat surprising, as one would expect clean energy stocks

to perform well when the price of carbon increases. A possible explanation for this could

be that the EU ETS is politically regulated, whereas the GRNEUR is market regulated.

In 2018 the EUA (MO1) prices rose beyond double digit levels and more than trebled

since the beginning of the year. The rise was mainly due to the EU ETS Directive

published in April 2018 (Roig-Ramos, 2018). The directive of 2018 set new rules for

Phase 4 (2021-2030), where they agreed to reduce the current surplus of emission quotas

from the market, by 1) introducing a stronger decline in the annual emission cap, and 2)

reinforcing the market stability reserve. At the same time the stock market experienced

a period of higher risk and lower return, with leading stock indexes ending 2018 with

negative returns. We believe that these two simultaneous events may help to explain

the somewhat counter intuitive findings in the impulse response plot seen in figure 6.6.

In addition in the period before the rapid growth of MO1, MO1 was flat without major

variation in price, in the same period GRNEUR experienced significant growth.

It is also important to note, that this model only captures the short-term relationship,

and we would expect the long-term effects to be positive. A shock to CO1 and CPU has

no significant effect on GRNEUR.
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Figure 6.6: Post-PA: Impulse response function: Shock from MO1 to GRNEUR

6.3.5 Variance decomposition

In figure 6.7 we observe an even larger change over time in the variance decomposition

plot. In the post-PA period the variables explain more of the variance than in the pre-PA

period. CPU has an increasing trend with increasing contribution to GRNEUR´s variance.

The same is the case for MO1. CO1 is close to zero in period 1 but increase significantly

in period 2. Further analysis of the dynamics will be done in the coming paragraphs.
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Figure 6.7: Post-PA variance decomposition of all factors
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Figure 6.8 reveals that both STX and GRW contribute almost equally to the overall

variation, while ECB has the least significant impact. The relationship between the

variables does not change over time which is somewhat surprising. It is important to

note that the three relevant variables do not jointly Granger cause GRNEUR during this

period.
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Figure 6.8: Post-PA variance decomposition of market factors

Figure 6.9 for the post-PA period indicates that GRNEUR accounts for over 80% of the

variance to itself in period 1, then there is a gradual decline, and the variance becomes

increasingly attributable to the other variables. We observe that the MO1 has an increasing

explanatory factor from period 1 to period 2 and that the other variables seem to stay

constant over the whole period. This may suggest that in the short-term, the effect of

MO1 in explaining variation may not be very significant, but in the medium- to long-term

the effect is more significant.
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Figure 6.9: Post-PA variance decomposition of energy- and climate factors

6.4 Returns before and after the Paris agreement

Name Mean Max Min Std Skewness Kurtosis AR*
GRNEUR Pre-PA 0.019 11.186 -17.600 6.334 -0.369 -0.0430 -2.737
GRNEUR Post-PA 1.0423 8.872 -10.450 4.265 -0.470 -0.456 12.890

Table 6.12: Descriptive statistics for monthly log returns pre- and post-PA
*Annualized Return

To further examine the impact of the Paris Agreement on GRNEUR, we conducted an

analysis of the index returns. To account for the difference in the number of months

between the two periods, we calculated the annualized return. The annualized return for

the pre-PA period was -2.74%, whereas for the post-PA period, it was 11.51%. While

multiple factors may have influenced this performance disparity, it is highly likely that

the increased focus on climate, energy transition, and the implementation of the Paris

Agreement played a significant role. Furthermore, despite the higher annualized return

in the post-PA period, we observed a notable improvement in risk-return metrics. The

standard deviation of returns was 2.1% lower, and both the minimum and maximum values

were lower as well. These findings suggest that the asset’s risk-return profile experienced
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a significant enhancement following the signing of the Paris Agreement.

2011 2012 2013 2014 2015 2016

−
0.

4
−

0.
2

0.
0

0.
1

GRNEUR

Date

P
ric

e

Figure 6.10: GRNEUR accumulated return pre-PA
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Figure 6.11: GRNEUR accumulated return post-PA

6.5 Robustness checks

To assess the validity of our analysis, we conducted a comparison between the models

using common clean energy indexes for the United States and Asia, which represent the

two largest markets globally. Due to significant structural changes in the Asian clean
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energy index (GRNAS) from 2011 to 2012, we excluded the first 15 months of the sample

to ensure a Gaussian distribution of the error terms Brooks (2019). Our findings indicate

that neither the market factors nor the energy- and climate factors Granger-causes the

Asian clean energy index or the US clean energy index. This holds for both the period

before and after the signing of the Paris Agreement.

Ticker Variables
GRNAS NASDAQ OMX Clean Energy Focused Asia USD
GRNUS NASDAQ OMX Clean Energy Focused US

Table 6.13: Variables for robustness checks

In the post-PA period we find no Granger causality for any of the models for either US

or Asia. Similar to the finding that the market factors do not Granger-cause GRNEUR

in the period following the Paris Agreement, a corresponding outcome was observed for

GRNAS and GRNUS. However, in contrast to GRNEUR, we find that the energy- and

climate variables do not Granger-cause GRNAS or GRNUS following the PA. We assert

that this circumstance can be attributed to a multitude of contributing factors. Prior to

the implementation of the Paris Agreement, both the European Union and the United

States were successful in reducing emissions. Nevertheless, the United States was reluctant

to bind itself to any concrete mitigation agreements during this period. On the other

hand, the European Union demonstrated its commitment to climate change mitigation

by endorsing and signing the Kyoto Protocol, an international treaty that legally binds

countries to their pledge of reducing greenhouse gas emissions (UN, 1998). Following

the enactment of the Paris Agreement, the European Union has emerged as a leader

in climate policy implementation, setting ambitious goals that have influenced policy

direction across Europe. Conversely, the United States has adopted a less aggressive

stance towards climate change mitigation, rendering climate change a less salient issue

in their political discourse. We posit that this divergence in climate policies underpins

the differences observed in our findings. Similarly, when comparing Asia and Europe, we

suggest that this dynamic continues to be a significant factor.
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7 Conclusion

7.1 Conclusion

Climate change, carbon risk, and energy security concerns are increasingly highlighting the

urgency for a transition towards clean energy solutions. The Paris Agreement represents the

largest legally binding agreement aiming to combat climate change. The energy transition

is driven by the need to reduce carbon emissions and ensure energy stability, factors

that are becoming more prevalent in economic and political discourse. In this context,

clean energy companies are positioned favorably, presenting potential opportunities for

growth and innovation in clean energy solutions. Understanding the dynamics between

stock market-, climate- and energy variables is critical for market participants and policy

makers, to comprehend market behavior.

Using various climate-, energy-, and stock market variables we utilize a LA-VAR and VAR

framework to analyze the Granger causality, impulse responses and variance decomposition

for the Nasdaq European Clean Energy Focused Index (GRNEUR) in the period from

2011 to 2022. Further we split the sample into two distinct periods, before and after the

Paris Agreement, to investigate how the Paris Agreement has affected the market.

In the pre-PA period, we find that the broad market index (STX), growth index (GRW)

and interest rate (ECB) has a causal effect on GRNEUR, but the oil price (CO1), carbon

price (MO1) and Climate Policy Uncertainty Index (CPU) does not. From this we can

understand how investor price and view the clean energy index. These findings are similar

to what Henriques and Sadorsky (2008) find in their paper. In the same period the impulse

response functions show significance for the market index (STX) and interest rate (ECB)

up to two months after the shock. Shocks to oil price, carbon price and climate policy

uncertainty have no significant impact on GRNEUR.

In the post-PA period, we find that the oil price (CO1), carbon price (MO1) and the Climate

Policy Uncertainty Index (CPU) jointly have a significant causal effect on GRNEUR.

However, the broad market index (STX), growth index (GRW) and interest rate (ECB)

do not Granger-cause GRNEUR. Interestingly, we find that a positive shock to the carbon

price (MO1) has a negative effect to the clean energy index (GRNEUR).
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Our findings suggest that the Paris Agreement had an influence on determining factors of

clean energy stock performance in Europe. Upon reviewing the return performance of the

GRNEUR index before and after the agreement, we observed a notable improvement in

performance following its implementation. Additionally, the risk-return relationship has

become more favorable during the post-Agreement period. These results highlight the

importance of ongoing commitment to climate mitigation efforts and the need for climate

policies that support the development of alternative energy sources.

7.2 Limitations

Throughout our research process, we have gained a strong understanding for the limitations

of statistical tests. While we have reached conclusions supported by statistical significance,

it is important to exercise caution when interpreting these findings.

One potential limitation is that the use of monthly data may not capture a sufficient

amount of information or variation within the data. However, we made the deliberate

decision to employ monthly data due to its desirable properties that enhance the robustness

of our analysis.

Furthermore, we utilized the Climate Policy Uncertainty Index as a proxy for policy

uncertainty in Europe, recognizing that it may not perfectly represent the actual state of

climate policy uncertainty in Europe.

Another concern is related to omitted variable bias. Instead of the commonly used

technology indexes, we opted to include a growth index (GRW). Prior studies have

identified individual Granger-causality and statistical significant impulse responses from

technology indexes to renewable energy companies. However, we did not observe similar

outcomes with our chosen growth index (GRW), which may have introduced limitations

to our models.

7.3 Questions for future research

Energy transition, climate change and sustainable development are topics that are

experiencing rapid growth and development. Continuous research on these topics are of

large importance in understanding the determining factors and mechanisms that help
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combat climate change. It is also crucial in order to ensure that the pace of the energy

transition is sufficient.

Using stock performance as a measure of the development of clean energy capacity might

not always provide an accurate representation. Therefore, it would be interesting to

investigate the factors that effectively encourage the development of clean energy capacity.

Such research would assist policymakers in comprehending the most effective policies to

facilitate investments aimed at enhancing clean energy capacity.

Moreover, given our discovery of increased risk-adjusted returns in the period after the

Paris Agreement. We suggest exploring what events, with regards to climate mitigation

and adaptation, that have had the most significant impact on the risk-reward relationship

for clean energy equities.
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Figure A.1: Pre-PA: Impulse response function: Shock from GRNEUR to GRNEUR
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Figure A.2: Pre-PA: Impulse response function: Shock from GRW to GRNEUR
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Figure A.3: Pre-PA: Impulse response function: Shock from GRNEUR to GRNEUR
Climate/Energy Model
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Figure A.4: Pre-PA: Impulse response function: Shock from CO1 to GRNEUR
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Figure A.5: Pre-PA: Impulse response function: Shock from MO1 to GRNEUR
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Figure A.6: Pre-PA: Impulse response function: Shock from CPU to GRNEUR
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Figure A.7: Post-PA: Impulse response function: Shock from GRNEUR to GRNEUR
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Figure A.8: Post-PA: Impulse response function: Shock from GRW to GRNEUR
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Figure A.9: Post-PA: Impulse response function: Shock from STX to GRNEUR
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Figure A.10: Post-PA: Impulse response function: Shock from ECB to GRNEUR
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Figure A.11: Post-PA: Impulse response function: Shock from GRNEUR to GRNEUR
Energy/Climate Model
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Figure A.12: Post-PA: Impulse response function: Shock from CO1 to GRNEUR
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Figure A.13: Post-PA: Impulse response function: Shock from CPU to GRNEUR
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Figure A.14: Pre-PA: Variance decomposition of all factors
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Figure A.15: Pre-PA: Variance decomposition of market factors
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Figure A.16: Pre-PA: Variance decomposition of energy- and climate factors
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Figure A.17: Post-PA: Variance decomposition of all factors

1 2 3 4 5 6 7 8 9 10 11 12

GRW
ECB
STX
GRNEUR

FEVD for GRNEUR

Horizon

P
er

ce
nt

ag
e

0.
0

0.
6

1 2 3 4 5 6 7 8 9 10 11 12

GRW
ECB
STX
GRNEUR

FEVD for STX

Horizon

P
er

ce
nt

ag
e

0.
0

0.
6

1 2 3 4 5 6 7 8 9 10 11 12

GRW
ECB
STX
GRNEUR

FEVD for ECB

Horizon

P
er

ce
nt

ag
e

0.
0

0.
6

1 2 3 4 5 6 7 8 9 10 11 12

GRW
ECB
STX
GRNEUR

FEVD for GRW

Horizon

P
er

ce
nt

ag
e

0.
0

0.
6

Figure A.18: Post-PA: Variance decomposition of market factors
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Figure A.19: Post-PA: Variance decomposition of energy- and climate factors
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